

Water Resources Study Report

Bad Creek Pumped Storage Project

Oconee County, South Carolina

1 Project Introduction and Background

Duke Energy Carolinas, LLC (Duke Energy or Licensee) is the owner and operator of the 1,400-megawatt Bad Creek Pumped Storage Project (Project) (FERC Project No. 2740) located in Oconee County, South Carolina, approximately eight miles north of Salem. The Project utilizes the Bad Creek Reservoir as the upper reservoir and Lake Jocassee, which is licensed as part of the Keowee-Toxaway Hydroelectric Project (FERC Project No. 2503), as the lower reservoir.

The existing (original) license for the Project was issued by the Federal Energy Regulatory Commission (FERC or Commission) for a 50-year term, with an effective date of August 1, 1977, and expiration date of July 31, 2027. The license has been subsequently and substantively amended, with the most recent amendment on August 6, 2018, for authorization to upgrade and rehabilitate the four pump-turbines in the powerhouse and increase the Authorized Installed and Maximum Hydraulic capacities for the Project. Duke Energy is pursuing a new license for the Project pursuant to the Commission's Integrated Licensing Process, as described at 18 Code of Federal Regulations (CFR) Part 5.

In accordance with 18 CFR §5.11 of the Commission's regulations, Duke Energy developed a Revised Study Plan (RSP) for the Project and proposed six studies for Project relicensing. The RSP was filed with the Commission and made available to stakeholders on December 5, 2022. FERC issued the Study Plan Determination on January 4, 2023, which included modifications to one of the six proposed studies. Duke Energy completed its first year of studies in 2023 with stakeholder consultation as required by the Commission's SPD. Duke Energy filed the Initial Study Report (ISR) on January 4, 2024, and per the Commission's regulations at 18 CFR §5.15(c), Duke Energy held an ISR meeting with participants and FERC staff within 15 days of filing the ISR on Wednesday, January 17, 2024. Duke Energy completed its second and final year of studies in 2024, filed the Updated Study Report (USR) [18 CFR §5.15(c)] January 3, 2025, and held the USR meeting on January 16, 2025. This report describes the Licensee's methods and results of the studies conducted in support of preparing an application for a new license for the existing Project and construction of the proposed Bad Creek II Power Complex (Bad Creek II).

¹ Duke Energy Carolinas LLC, 164 FERC ¶ 62,066 (2018)

2 Water Resources Study

2.1 FERC Environmental Resource Issues

The Commission issued Scoping Document 2 on August 5, 2022, which identified the following environmental resource issues to be analyzed in the National Environmental Policy Act (NEPA) document for the Project relicensing related to water resources. These resource issues address the effects of continued Project operations as well as potential construction and operation of Bad Creek II during the new license term:

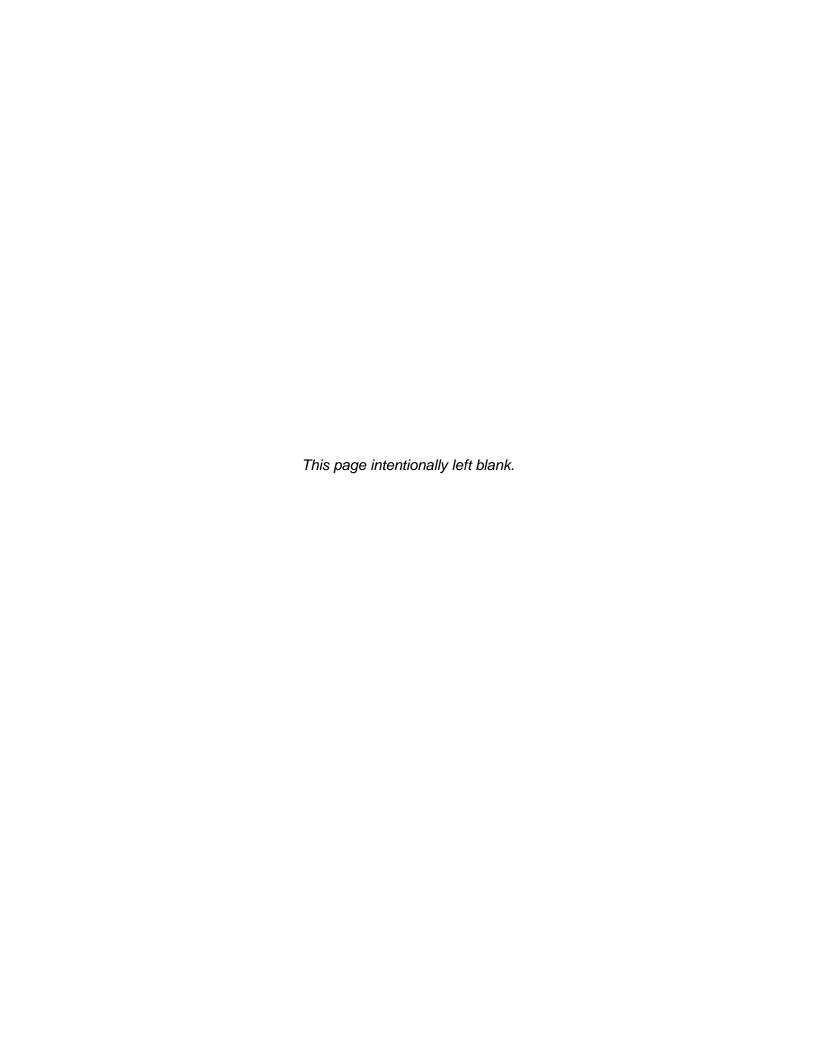
- Effects of construction-related erosion, sedimentation, and spoils disposal on water quality, aquatic habitat, and aquatic biota in Lake Jocassee and streams in the Project vicinity.
- Effects of Project operation on water levels in Lake Jocassee.
- Effects of Project operation on water quality in Lake Jocassee, including water temperature, dissolved oxygen (DO) concentrations, and vertical mixing of DO.
- Effects of reservoir fluctuations associated with Project operation on aquatic habitat and biota in Lake Jocassee.
- Effects of vertical mixing of DO associated with Project operation on fish populations in Lake Jocassee.

The Water Resources Study focused on historical water quality data of Lake Jocassee, potential impacts to surface waters due to construction of Bad Creek II, and water resources affected by a second inlet/outlet structure in the Whitewater River arm of Lake Jocassee, while the Aquatic Resources Study evaluated impacts associated with aquatic life and habitat. The Water Resources Study is complete, and this report presents methods and results of the individual study tasks.

2.2 Study Goals and Objectives

Tasks carried out for the Bad Creek Water Resources Study employ standard methodologies consistent with the scope and level of effort described in the RSP. The goal of the Water Resources Study is to evaluate the Project effects, as well as potential effects or impacts due to the construction and operation of the proposed facility using existing and new information; it is intended to provide sufficient information to support an analysis of the potential Project-related effects on water resources, as well as potential effects or impacts due to the construction and operation of Bad Creek II. The main objectives of this study are as follows:

- To evaluate water resources and water quality impacts of current Project operations using existing data.
- To evaluate water resources and water quality impacts potentially resulting from the construction and operation of Bad Creek II.
- To address stakeholder concerns regarding water resources in the Project Boundary with clear nexus to the Project and Bad Creek II.


Objectives of the Water Resources Study were met through five competed study tasks listed in Table 1 below.

3 Report Layout

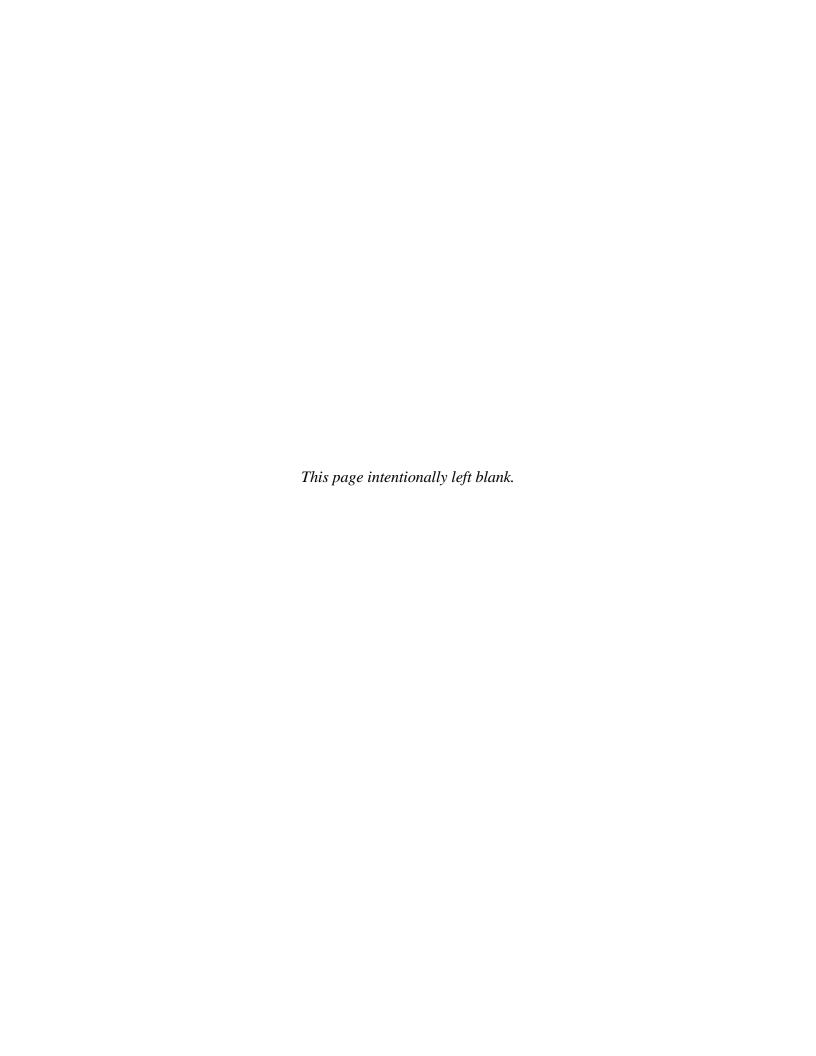
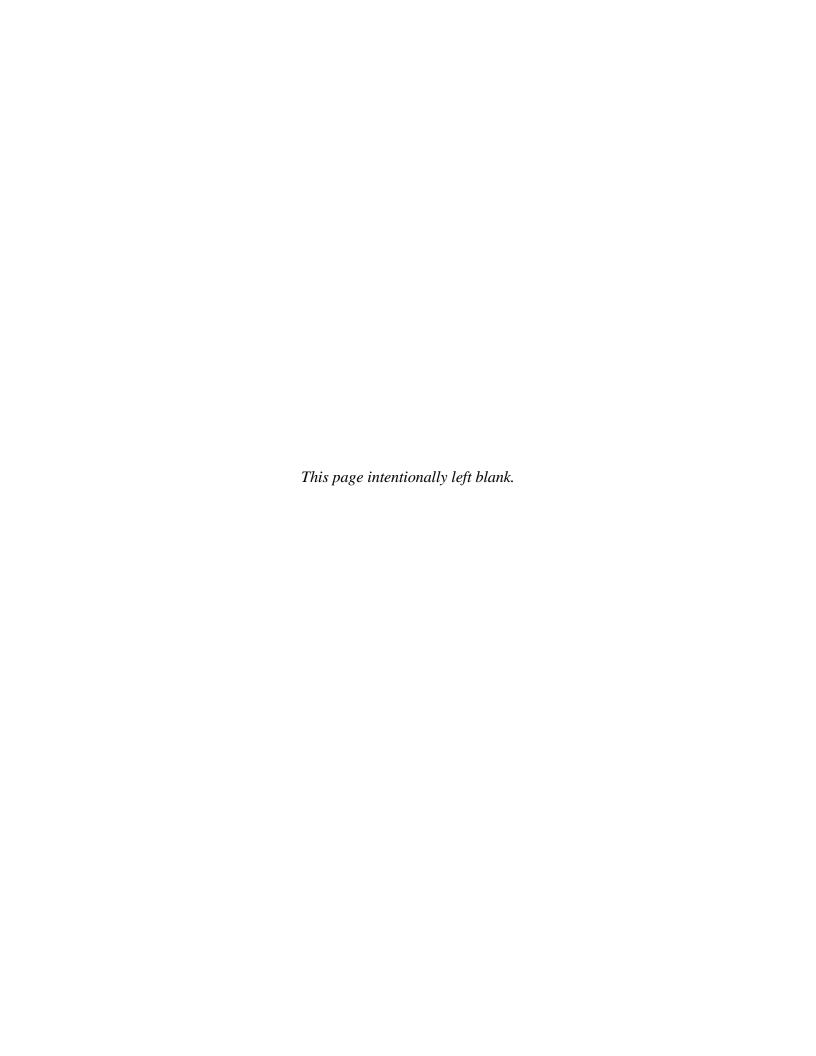

The Water Resources Study is complete and final task reports have been developed in consultation with the Water Resources Resource Committee; individual task reports are attached to this report as shown in Table 1. Documentation of consultation with the Resource Committee regarding the Water Resources Study is presented in Attachment 6.

Table 1. Water Resources Study Tasks and Attachments

Study Report Title	Attachment	Attachment Title		
	1	Summary of Existing Water Quality Data and Standards - Final Report		
	2	Whitewater River Cove Water Quality Field Study - Final Report		
Water Resources Study	3	Velocity Effects and Vertical Mixing in Lake Jocassee Due to a Second Powerhouse - Final Report		
Report	4	Water Exchange Rates and Lake Jocassee Reservoir Levels - Final Report		
	5	Water Quality Monitoring Plan - Final Report		
	6	Consultation Documentation		

Attachment 1 Summary of Existing Water Quality Data and Standards

SUMMARY OF EXISTING WATER QUALITY AND STANDARDS


FINAL REPORT

WATER RESOURCES STUDY

Bad Creek Pumped Storage Project FERC Project No. 2740

Oconee County, South Carolina

September 12, 2023

WATER RESOURCES STUDY REPORT BAD CREEK PUMPED STORAGE PROJECT FERC PROJECT NO. 2740

TABLE OF CONTENTS

Sec	ction	Title Pag	ge No.
1		ject Introduction and Background	
2		dy Goals and Objectives	
3		dy Area	
4		cription of Project Waters	
	1	Overview	
4	2	Water Quality Standards and Use Classifications	
4	.3	Compliance with SCDHEC State Standards	8
5	Lak	e Jocassee	9
5	5.1	Data Analysis Methods	10
5	5.2	Water Quality Monitoring Stations	13
5	5.3	Water Quality Summary Results	13
	5.3.		
	5.3.	±	
	Not	e: () indicates no DO saturation data were collected at Station 565.4	24
	5.3.	3 pH	24
	5.3.	- I	
	5.3.	\mathcal{C}	
	5.3.	1 2	
	5.3.	→	
_	5.3.	, and the second se	
_	5.4	Summary Pre construction vs. Post Construction Comparison	
6		ward Creek	
6	5.1	Data Analysis Methods	
6	5.2	Water Quality Monitoring Stations	42
6	5.3	Present-day Water Quality Summary Results	44
6	5.4	Compliance with SCDHEC State Standards	51
6	5.5	Summary Pre construction vs. Post Construction Comparison	52
6	5.6	Recent Howard Creek Aquatics Sampling Summary	
7	Nee	ed for Protection, Mitigation, and Enhancement Measures to Protect Water Quality.	
8		ure Work	
9	Var	iances from FERC-approved Study Plan	
10		mane Correspondence and Consultation	
11		erences	

TABLE OF CONTENTS CONTINUED

Section Title Page No.

LIST	OF	TABLES	,
------	-----------	---------------	---

Table 4-1. Bad Creek Project Construction or other Significant Events	5
Table 4-2. Surface Water Classifications of Waterbodies within Lake Jocassee Watershed	
Table 4-3. South Carolina Numeric State Water Quality Standards for Parameters Assessed in	
Project Waters	7
Table 5-1. Water Quality Monitoring Station Periods of Record	. 13
Table 5-2. Water Temperature in Surface Waters of Lake Jocassee	. 17
Table 5-3. Average and Standard Deviation of Surface Temperatures, Pre vs. Post Operations	. 18
Table 5-4. Dissolved Oxygen in Surface Waters of Lake Jocassee	. 22
Table 5-5. DO Saturation in Surface Waters of Lake Jocassee	. 24
Table 5-6. pH in Surface Waters of Lake Jocassee	. 25
Table 5-7. Phosphorus in Surface Waters of Lake Jocassee	. 26
Table 5-8. Total Nitrogen in Surface Waters of Lake Jocassee	. 27
Table 5-9. Chlorophyll a in Surface Waters of Lake Jocassee	. 29
Table 5-10. Conductivity in Surface Waters of Lake Jocassee	. 30
Table 5-11. Monitoring Stations and Years of Data	. 32
Table 5-12. Monitoring Station 564.1 Data Collection Details	. 33
Table 5-13. Monitoring Station 564.0 Data Collection Details	. 35
Table 5-14. Monitoring Station 560.0 Data Collection Details	. 35
Table 5-15. Turbidity in Surface Waters of Lake Jocassee	. 36
Table 5-16. Average and Standard Deviation of Depth-Averaged Temperatures, Pre vs. Post	
Operations	. 38
Table 5-17. Average and Standard Deviation of Surface Dissolved Oxygen, Pre vs. Post	
Operation	
Table 5-18. Depth-Averaged Turbidity Values (NTU) over Construction Periods	
Table 5-19. Average and Standard Deviation of Surface Turbidity, Pre vs. Post Operation	
Table 6-1. Previous Water Quality Reports for Howard Creek	
Table 6-2. Annual Flow Data for Howard Creek (1989-1996)	. 45
Table 6-3. Baseflow Discharge (cfs) for Howard Creek (1993)	. 46
Table 6-4. Water Quality Baseflow Conditions for Howard Creek H/1, 1993	. 47
Table 6-5. Water Quality Baseflow Conditions for Howard Creek H/2, 1993	. 47
Table 6-6. Water Quality Baseflow Conditions for Howard Creek H/6, 1993	. 48
Table 6-7. Water Quality Baseflow Conditions for Howard Creek H/7, 1993	. 49
Table 6-8. Water Quality Baseflow Conditions for Howard Creek H/9, 1993	. 49
Table 6-9. Range of Annual Water Quality Baseflow Data for Howard Creek, 1993	. 50
Table 6-10. Comparison of Water Quality Data: Pre construction vs. Post construction	. 52

CONTINUED

Section	Title	Page No.
	LIST OF FIGURES	
Figure 3-1. Study Area for Deskt	top Review of Lake Jocassee and Howard Creek	3
	oring Stations in the Whitewater River Arm of Lake Jo	
	d Creek Operation (top) Showing Temperature Stratifig Mixing in the Water Column	
=	tream of the Weir Showing Temperature Stratification	
<u> </u>	d Creek Operation (top) Showing DO Stratification vs xing in the Water Column	
	tream of the Weir Showing Stratification for Pre and F	
Figure 5-6. Surface Turbidity in	the Whitewater River Arm Over Construction Periods	36
Figure 6-1. Howard Creek Monit	toring Sites (Abernathy et al. 1994)	44
Figure 6-2. Comparison of Pre ar	nd Post Construction TSS Values	53
Figure 6-3. Comparison of Pre ar	nd Post Construction Turbidity Values	53
Figure 6-4. Comparison of Pre ar	nd Post Construction DO Concentration	54
Figure 6-5. Comparison of Pre ar	nd Post Construction DO Saturation	54
Figure 6-6. Comparison of Pre ar	nd Post Construction pH Values	55
Figure 6-7. Comparison of Pre ar	nd Post Construction pH Values	55
Appendices		
Appendix A – Duke Energy Wat Appendix B – Existing Water Qu Appendix C – Turbidity in White	•	

ACRONYMS AND ABBREVIATIONS

°C degrees Celsius

μS/cm microsiemens per centimeter
Bad Creek (or Project) Bad Creek II Complex Bad Creek II Power Complex

Bad Creek Reservoir Upper Reservoir

BOD₅ 5-day biochemical oxygen demand CFR Code of Federal Regulations

cfs cubic feet per second DO dissolved oxygen

Duke Energy or Licensee Duke Energy Carolinas, LLC

ft feet

ft msl feet above mean sea level

FERC or Commission Federal Energy Regulatory Commission

I/O structure Bad Creek inlet/outlet structure

KT Project Keowee-Toxaway Hydroelectric Project

m meter

mg/L milligrams per liter

mi² square miles

MOU Memorandum of Understanding
NTU Nephelometric turbidity units
ORW Outstanding Resources Waters

RSP Revised Study Plan

SCDHEC South Carolina Department of Health and Environmental Control

SCDNR South Carolina Department of Natural Resources

stdev standard deviation TN Trout Natural

TKN Total Kjeldahl Nitrogen
TPGT Trout Put, Grow, and Take

TR Trout Waters

TSS total suspended solids

USACE U.S. Army Corps of Engineers

USEPA U.S. Environmental Protection Agency

USGS U.S. Geological Survey

WQMP Water Quality Monitoring Plan

1 Project Introduction and Background

Duke Energy Carolinas, LLC (Duke Energy or Licensee) is the owner and operator of the 1,400-megawatt Bad Creek Pumped Storage Project (Project) (FERC Project No. 2740) located in Oconee County, South Carolina, approximately eight miles north of Salem. The Project utilizes the Bad Creek Reservoir as the upper reservoir (Upper Reservoir) and Lake Jocassee, which is licensed as part of the Keowee-Toxaway (KT) Hydroelectric Project (FERC Project No. 2503), as the lower reservoir.

The existing (original) license for the Project was issued by the Federal Energy Regulatory Commission (FERC or Commission) for a 50-year term, with an effective date of August 1, 1977 and expiration date of July 31, 2027. The license has been subsequently and substantively amended, with the most recent amendment on August 6, 2018 for authorization to upgrade and rehabilitate the four pump-turbines in the powerhouse and increase the Authorized Installed and Maximum Hydraulic capacities for the Project. Duke Energy is pursuing a new license for the Project pursuant to the Commission's Integrated Licensing Process, as described at 18 Code of Federal Regulations (CFR) Part 5.

In accordance with 18 CFR §5.11 of the Commission's regulations, Duke Energy developed a Revised Study Plan (RSP) for the Project and proposed six studies for Project relicensing. The RSP was filed with the Commission and made available to stakeholders on December 5, 2022. FERC issued the Study Plan Determination on January 4, 2023, which included modifications to one of the six proposed studies (Recreational Resources Study).

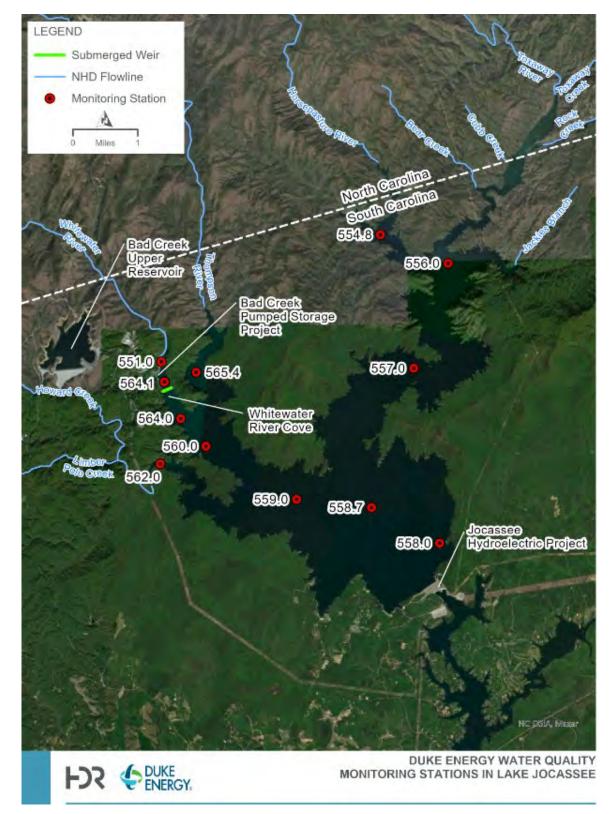
This report includes the findings for Task 1 (Summary of Existing Water Quality and Standards) of the Water Resources Study. The Water Resources Study is ongoing in support of preparing an application for a new license for the Project in accordance with 18 CFR §5.15, as provided in the RSP.

Page | 1

¹ Duke Energy Carolinas LLC, 164 FERC ¶ 62,066 (2018)

2 Study Goals and Objectives

Tasks carried out for the Bad Creek Water Resources Study employ standard methodologies that are consistent with the scope and level of effort described in the RSP filed with the Commission on December 5, 2022. This report was developed in support of Task 1 of the Water Resources Study (Summary of Existing Water Quality Data and Standards) and is intended to provide sufficient information to support an analysis of the potential Project-related effects on water resources with clear nexus to the Project.


The main goal of this desktop review is to compile previously collected water quality data and provide a summary of existing data from Lake Jocassee and Howard Creek under current Project operations and prior to Project operations, while addressing stakeholder concerns.

3 Study Area

The study area for the desktop review of existing water quality data includes Lake Jocassee (i.e., the lower reservoir) and Howard Creek (Figure 3-1), a tributary to Lake Jocassee that flows in a southeasterly direction along the downstream side of the Project dams. These are the waterbodies potentially impacted by the Project².

² Note that water quality monitoring in the Bad Creek Reservoir is not safe (due to rapid, large fluctuations in water level elevation and typically continuous Project operation) nor is it considered meaningful, given the short retention time of Bad Creek Reservoir. Due to pumping and generating cycles, retention time is approximately 3 days if only a single pump-turbine unit is operating. There are no existing water quality data in the Upper Reservoir; it is used only for Project operations and there is no public access.

Note: NHD = U.S. Geological Survey (USGS) National Hydrology Database

Figure 3-1. Study Area for Desktop Review of Lake Jocassee and Howard Creek

4 Description of Project Waters

4.1 Overview

The Project is located in the Blue Ridge physiographic province in the headwaters of the Savannah River basin. The Savannah River basin has an area of approximately 10,577 square miles (mi²) and drains portions of the Blue Ridge, Piedmont, and Coastal Plain regions.

The Project uses the Bad Creek Reservoir as its upper reservoir, which has a drainage area of approximately 1.5 mi². Construction of the Project began in December 1985 and major work was completed by December 1990 (see Table 4-1); initial filling of the Bad Creek Reservoir began in January 1991. Prior to impoundment, Bad Creek and West Bad Creek were tributaries of Howard Creek (a tributary to Lake Jocassee) located near the toe of the Main Dam and West Dam, respectively. Howard Creek flows from its headwaters (northwest of the Project) and through the southern border of the Project Boundary with a drainage area of approximately 4.3 mi² at its downstream confluence with Limber Pole Creek. Seepage through the two earthen dams now flows into Howard Creek near the toe of each dam. Average seepage flows from the Main Dam and the West Dam are approximately 5.0 cubic feet (ft) per second (cfs) combined. Water from Bad Creek Reservoir is exchanged directly with Lake Jocassee. Due to the small drainage area of Bad Creek Reservoir, inflows are minimal and have limited to no effect on water quality or Project operations.

Lake Jocassee, which operates as the lower reservoir for the Project, was formed by impounding the Keowee River at river mile 343.6, just downstream of the confluence of the Whitewater and Toxaway rivers. Lake Jocassee has a drainage area of 145 mi², a surface area of approximately 7,980 acres, and approximately 92 miles of shoreline at full pond (1,110 ft above mean sea level [msl]). Water from Lake Jocassee flows directly into Lake Keowee, which was formed by impounding the Keowee River and the Little River, and the two impoundments are connected through an excavated canal creating one large impoundment. Duke Energy has monitored water quality conditions in Lake Jocassee in some capacity since the reservoir's formation in 1973.

During Project construction, excavated rockfill was hauled to the western shore of Whitewater River cove (also called Whitewater River arm), transported out into the lake on barges, and placed in the water to construct an underwater weir approximately 1,800 ft downstream of the

Project inlet/outlet (I/O) structure (weir midpoint coordinates 35.0015, -82.991509). The existing submerged weir is approximately 567 ft wide and 455 ft long with a crest elevation of approximately 1,060 ft msl. It was installed to help minimize the effects of Project operations on the natural stratification of Lake Jocassee and dissipate the energy of the discharging water from the Project's I/O structure.

For reference, Table 4-1 includes a list of significant construction (or other) events at the Project.

 Table 4-1. Bad Creek Project Construction or other Significant Events

Date	Event		
October 30, 1984	Project access road construction begins		
December 12, 1985	Begin tunnel excavation construction		
April 18, 1986	Begin main cofferdam construction		
Spring 1986	Begin construction of West Abutment of Main Dam		
December 6, 1986	Complete intake channel excavation		
April 17, 1987	Complete main access shaft		
September 14, 1987	Complete Powerhouse cavern		
September 25, 1987	Complete excavation of tunnels		
February 24, 1989	Complete reservoir grouting		
June 11, 1990	Complete West Dam construction		
July 23, 1990	Complete East Dike construction		
October 10, 1990	Complete Main Dam construction		
December 27, 1990	Water up power tunnel		
March 15, 1991	Initial reservoir filling		
March 1991	Commercial operation – Unit 1 and 2		
September 1991	Commercial operation – Unit 3 and 4		
August 16-17, 1994	Tropical Storm Beryl		

4.2 Water Quality Standards and Use Classifications

North Carolina and South Carolina have assigned state water quality standards commensurate with a designated use of a waterbody and both states have similar categories of designated use. Some of the tributaries flowing into Lake Jocassee are wholly within North Carolina, some are wholly within South Carolina, and some flow through both states. Variations of sub-sets of general classifications between the two states exist; however, both states have recognized and distinguished between general use to maintain and support aquatic life and general contact recreation, trout habitats, and high value resource areas.

Under the authority of the South Carolina Pollution Control Act, the South Carolina Department of Health and Environmental Control (SCDHEC) Water Classification & Standards establishes appropriate water uses and protection classifications, as well as general rules and specific water quality criteria to protect existing water uses, establish anti-degradation rules, protect public welfare, and maintain and enhance water quality. Streams with the following Water Classifications are found in the Project vicinity: Outstanding Resources Waters (ORW); Trout Natural (TN); and Trout Put, Grow, and Take (TPGT). The Whitewater River is classified as ORW, Howard Creek is classified as TN, and Whitewater River tributaries are classified as ORW and TPGT (SCDHEC 2021; NCDEQ 2021). Lake Jocassee is designated as TPGT. TPGT waters are freshwaters suitable for supporting growth of stocked trout populations and a balanced indigenous aquatic community of fauna and flora. These waters are also suitable for contact recreation and as a drinking water supply source after conventional treatment. A summary of the designated use classifications for the Lake Jocassee watershed is provided in Table 4-2. Note the only waterbodies considered in this report are Lake Jocassee and the portion of Howard Creek downstream of the Project dams.

Table 4-2. Surface Water Classifications of Waterbodies within Lake Jocassee Watershed

Name	State	Description	Surface Water Classification
Bear Camp Creek	NC	From source to state line	C; TR
Bear Creek	NC	From source to state line	C; TR
Bear Creek	SC	Portion of the creek from state line to Lake Jocassee	TN
Corbin Creek	SC	The entire creek tributary to Devils Fork	ORW (TPGT)
Devils Fork Creek	SC	Portion of the creek from confluence of Corbin Creek and Howard Creek to Lake Jocassee	TN
Horsepasture River	NC	From a point approximately 0.60 mile downstream of N.C. Hwy 281 (Bohaynee Rd) to state line	B; TR, ORW
Howard Creek	SC	Portion of the creek from its headwaters to 0.3 mile below Hwy 130 upstream of the flow augmentation system at the Bad Creek Bad Creek Main Dam.	ORW (TPGT)
Howard Creek*	SC	The portion below Bad Creek Dam to Lake Jocassee	TN
Lake Jocassee*	SC	The entire lake	TPGT
Laurel Fork Creek	SC	The entire creek tributary to Lake Jocassee	TN
Limber Pole Creek	SC	The entire creek tributary to Devils Fork	TN
Rock Creek	SC	Portion of the creek within South Carolina	TN
Thompson River	NC	From source to state line	C, TR
Thompson River	SC	Portion of the river from state line to Lake Jocassee	TN

Name	State	Description	Surface Water Classification
Toxaway River	NC	From dam at Lake Toxaway Estates, Inc. to state line	С
Whitewater River	NC	From Little Whitewater Creek to state line	C, TR, HWQ
Whitewater River	SC	Portion of the river from state line to Lake Jocassee	ORW (TPGT)
Write Creek	SC	The entire creek tributary to Lake Jocassee	ORW (TPGT)
Coley Creek	SC	The portion of the creek in SC	TPGT
Devils Hole Creek	SC	The entire creek tributary to Lake Jocassee	TPGT
Jackie's Branch	SC	The entire creek tributary to Lake Jocassee	TN
Mill Creek	SC	The entire creek tributary to Lake Jocassee	TPGT

^{*} Evaluated in this report

Sources: SCDHEC 2020, 2021; NCDEQ 2021

A summary of water quality standards for South Carolina applicable to Project waters (i.e., Blue Ridge; trout waters) is included in Table 4-3. Note that nutrient criteria (i.e., phosphorous, nitrogen, chlorophyll a) in the state of South Carolina apply only to lakes and reservoirs, not rivers and streams. Numeric nutrient criteria are based on an ecoregional approach which takes into account the geographic location of the lake and are applicable to lakes of 40 acres or more (SCDHEC 2020). In evaluating the effects of nutrients on the quality of lakes and other waters of the state, SCDHEC may consider, but not be limited to, such factors as the hydrology and morphometry of the waterbody, the existing and projected trophic state, characteristics of the loadings, and other control mechanisms to protect the existing and classified uses of the waters (SCDHEC 2020).

Table 4-3. South Carolina Numeric State Water Quality Standards for Parameters
Assessed in Project Waters

Parameter	South Carolina Water Quality Standard	
Temperature (applies to heated effluents only)	Not to exceed 2.8°C (5°F) above natural temperatures up to 32.2°C (90°F) Trout Waters: Not to vary from levels existing under natural conditions, unless determined some other temperature shall protect the classified uses	
Dissolved Oxygen	Daily average not less than 5.0 milligrams per liter (mg/L) Instantaneous low of 4.0 mg/L Trout Waters: Not less than 6.0 mg/L	
рН	Between 6.0 and 8.5 Trout Waters: between 6.0 and 8.0	
Turbidity	Freshwater Lakes Only: Not to exceed 25 NTUs provided existing uses are maintained.	

B- Primary Recreation, Fresh Water; C- Aquatic Life, Secondary Recreation, Fresh Water; HQW- High Quality Waters; ORW-Outstanding Resource Waters; TN- Trout-Natural; TPGT- Trout-Put, Grow, and Take; TR- Trout Waters

ı	_ 1	J
н		

Parameter	South Carolina Water Quality Standard	
	Trout Waters: Not to exceed 10 NTUs or 10% above natural conditions, provided existing uses are maintained.	
Phosphorus	Blue Ridge – Shall not exceed 0.02 mg/L. Piedmont – Shall not exceed 0.06 mg/L.	
Nitrogen	Blue Ridge – Shall not exceed 0.35 mg/L. Piedmont – Shall not exceed 1.5 mg/L.	
Chlorophyll a	Blue Ridge – Shall not exceed 10 μg/L. Piedmont – Shall not exceed 40 μg/L.	

Source: SCDHEC 2020

4.3 Compliance with SCDHEC State Standards

One important goal of the Clean Water Act, the South Carolina Pollution Control Act, and the State Water Quality Classifications and Standards is to maintain the quality of surface waters to provide for the survival and propagation of a balanced indigenous aquatic community of fauna and flora (SCDHEC n.d.). The degree to which aquatic life is protected is assessed by comparing important water quality characteristics and the concentrations of potentially toxic pollutants with numeric criteria. Support of aquatic life uses is determined based on the percentage of numeric criteria excursions and, where data are available, the composition and functional integrity of the biological community (SCDHEC n.d.).

South Carolina water quality standards and thresholds are listed above in Table 4-3. The SCDHEC assessment methodology (SCDHEC n.d.) states that grab samples or samples collected at a depth of 0.3 meters are considered to be a surface measurement; this is consistent with Duke Energy's surface measurement methods. For the purpose of assessment, only surface samples are used in standards comparisons and trend assessments (SCDHEC n.d.). Note that the SCDHEC and U.S. Environmental Protection Agency (USEPA) do not define the sampling method or frequency of sampling for water quality to compare to criteria, other than indicating it should be "representative" (SCDHEC n.d.).

For temperature and dissolved oxygen (DO) standards, if the percentage of criterion excursions is greater than 10 percent, but less than or equal to 25 percent, the criterion is partially supported. If the percentage of criterion excursions is 10 percent or less across the dataset, the criterion is said to be fully supported (SCDHEC n.d.).

For turbidity, phosphorus, total nitrogen, and chlorophyll a, if the individual criterion is exceeded in more than 25 percent of the samples, the criterion is considered not supported. If the criterion is exceeded in more than 10 but less than 25 percent, sites are evaluated on a case-by-case basis to determine if local conditions indicate that classified uses are impaired. If the criterion is exceeded in less than 10 percent of the samples, the criterion is considered fully supported (SCDHEC n.d.).³

5 Lake Jocassee

Lake Jocassee is classified as an oligotrophic waterbody exhibiting low productivity, low nutrient concentrations, and high clarity. Generally, DO concentrations (as well as percent DO saturation) remain relatively high due to the low productivity (slow consumption of oxygen due to limited biological activity and benthic decomposition rates) (Dobson and Frid 2009). It is a monomictic lake experiencing seasonal thermal stratification (summer) and mixing (winter); however, the lake's geomorphological characteristics sometimes result in minor mixing between the upper and lower levels of the water column, allowing for thermal stratification to persist for several years without turn-over (Duke Power Company 1995).

Lake Jocassee is included in the highest water quality classification (i.e., excellent rating) as designated by SCDHEC and preservation of existing conditions is recommended, with most tributaries within the watershed fully supporting their designated use. It is one of only a few reservoirs in South Carolina possessing the necessary aquatic habitat (water temperature and DO) to support both warmwater and coldwater (salmonid [trout]) fisheries year-round (USACE 2014). SCDHEC has consistently identified Lake Jocassee, as well as downstream Lake Keowee, among the cleanest South Carolina reservoirs based on previous data and recent data continue to indicate Lake Jocassee fully supports aquatic life and recreational designated uses (USACE 2014).

³ Note that the goal of the standards for aquatic life uses is the protection of a balanced indigenous aquatic community; therefore, biological data are the ultimate deciding factor, regardless of chemical conditions. If biological data show a healthy, balanced community, the use is considered supported even if chemical parameters do not meet the applicable criteria (SCDHEC n.d).

5.1 Data Analysis Methods

Water quality datasets for Lake Jocassee were received directly from Duke Energy's Environmental Science Group in July 2022 (Microsoft Excel®). Methods for water quality data collection, calibration, data entry, and quality control have followed Duke Energy standard operating procedures (SOPs) and guidelines, which have been reviewed and updated periodically since inception of the environmental monitoring program. Duke Energy's most recent water quality monitoring SOPs are the Duke Energy Water Quality Field Procedure (ESFP-SW-0503, Rev1) and the Duke Energy Water Chemistry Sample Collection ESFP-SW-0504, Rev0), which are included for reference in Appendix A.

To satisfy the objective of summarizing existing water quality conditions and comparing them to conditions that existed prior to Project construction, Lake Jocassee water quality data were pooled and separated into two time periods: pre operations and post operations. Because Units 1 and 2 began commercial operation in March 1991 (see Table 4-1), the post operation period (also called post construction period) is 1991-2020. The start year for data from the pre operation/pre construction period is not consistent between monitoring stations but on average, data measurements began in the late 1970's. The pre operation period is considered any year prior to 1991.

Vertical water column measurements were averaged for every 15-foot interval for each month of the year⁴ to show average seasonal trends for each of the following water quality parameters:

- Temperature (degrees Celsius [°C])
- Dissolved oxygen (mg/L)
- Dissolved oxygen percent saturation (%)
- pH (Standard units)
- Phosphorus (mg/L)
- Nitrogen (mg/L)
- Chlorophyll a (mg/L)
- Conductivity (microsiemens per centimeter [μS/cm])

⁴ Winter months include December through February, spring is March through May, summer is June through August, and fall is September through November.

Water quality data are summarized in Section 5.3 and accompanying detailed data tables are provided in Appendix B for depth and surface-averaged measurements for individual monitoring stations shown on Figure 3-1.

Because water in the Whitewater River arm is directly exchanged with waters of the Upper Reservoir, a separate water quality analysis was carried out for three existing monitoring stations in the Whitewater River cove since those stations are most impacted by Project operations (Stations 564.1, 564.0, and 560.0 shown on Figure 5-1). For the Whitewater River cove analysis, a third time period covering the years during Project construction (1985-1991) was evaluated in addition to pre and post construction.

Turbidity values (vertical profiles) were also assessed at the three Whitewater River cove locations to identify; (1) potential relationships between past project construction activities (or other external drivers such as major storms) and increased turbidity, (2) downstream extent of turbidity impacts in Whitewater River cove, and (3) approximate length of time for elevated turbidity levels to recover. Turbidity data are compiled and presented in a format that shows pre construction, construction, and post construction conditions. This information can be used to help inform future potential water quality/turbidity impacts due to the potential construction of Bad Creek II.

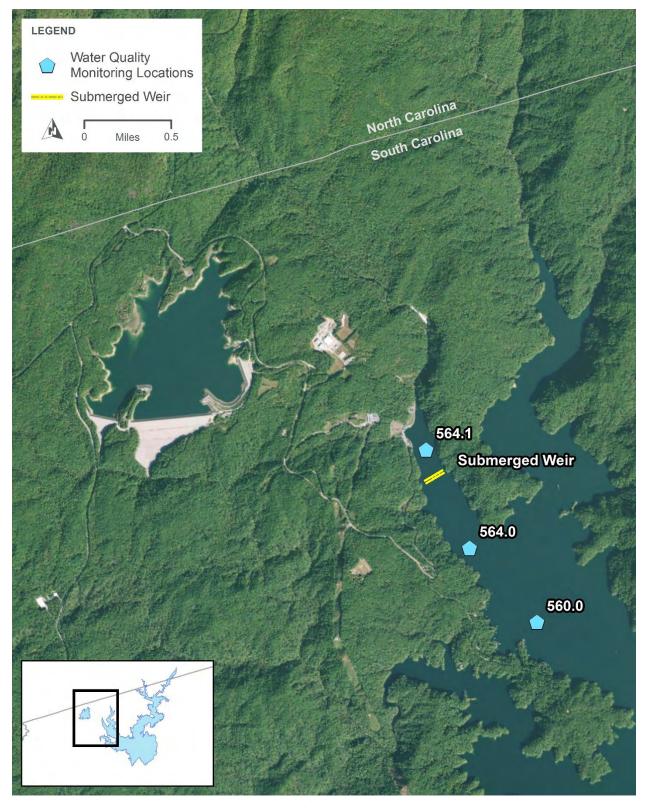


Figure 5-1. Water Quality Monitoring Stations in the Whitewater River Arm of Lake Jocassee

FD3

5.2 Water Quality Monitoring Stations

Twelve water quality monitoring stations have been routinely measured by Duke Energy over the last 40 years (Figure 3-1). Depth-averaged and surface data are included in Appendix B for each station. Periods of record for each monitoring station are provided in Table 5-1. Minimum reading elevations⁵ (ft msl) at each monitoring station are also presented in Table 5-1. Normal maximum pond elevation is 1,110 ft msl and normal minimum pond elevation is 1,080 ft msl.

Table 5-1. Water Quality Monitoring Station Periods of Record

Monitoring station	Start Year	End Year	Minimum Reading Elevation (ft)
558.7	1987	2015	763
558.0	1975	2020	757
559.0	1987	2015	793
560.0*	1975	2015	826
562.0	1980	2015	965
565.4	1987	1994	918
551.0	1975	2011	1083
564.0*	1976	2015	865
564.1*	1987	2017	960
557.0	1975	2015	820
554.8	1986	2015	945
556.0	1975	2015	918

^{*}Whitewater River arm

As stated previously, water quality at Stations 564.1, 564.0, and 560.0 in the Whitewater River arm were assessed separately over three periods since those locations are most impacted by Project construction and operation due to proximity. The data from these stations also provide information on the function of the submerged weir. Additionally, turbidity values are summarized at the three monitoring stations in the Whitewater River arm (discussed in Section 5.3.8).

5.3 Water Quality Summary Results

5.3.1 Temperature

Water temperature dictates the types of biota that can survive in a waterbody, affects metabolic rates and photosynthesis, influences the rates of chemical reactions, and impacts the physical

⁵ Minimum reading elevations are at or near the reservoir bottom for each monitoring station.

capacity of water to hold DO. Water temperature is also important because of its influence on water chemistry; the rate of chemical reactions generally increases at higher temperatures (USGS 2018a). Thermal stratification in a lake is a seasonal phenomenon that occurs from late spring to late fall in temperate regions. In the summer, the uppermost layer of water is warmed by the sun and cooler water in the lower water column begins to separate from the top, resulting in a warmer layer of water at the top (i.e., epilimnion) and a heavier/denser layer of water at the bottom (i.e., hypolimnion). The thinner layer that separates the warmer upper waters from the cooler bottom waters is the metalimnion or thermocline, which acts as a barrier that prevents mixing and heat exchange between the epilimnion and hypolimnion. During winter, there is usually little temperature stratification as the entire lake cools. In Lake Jocassee, the depth of the thermocline varies between locations in the lake (based on depth and geomorphology) as well as between seasons.

Because temperatures at depth determine patterns of stratification (i.e., warmer water in the upper water column, cooler water at depth), depth-averaged temperatures were assessed during this desktop review as well as surface water temperatures. Over the entire reservoir at all depths, Lake Jocassee winter temperatures range between 0 and 17°C, with an average of 10°C. Thermal stratification is not prevalent in the winter months (December – February) and at some stations, February temperatures vary by less than one degree between surface and bottom waters. Spring temperatures range from 5 to 25°C with an average of 11°C. Stratification begins to form in the upper third of the water column as temperatures continue to warm towards late spring. Summer temperatures range from 7 to 30°C with an average of 15°C. Stratification continues to develop through summer and extends further down into the water column. Fall temperatures range from 7 to 28°C with an average of 15°C. Stratification peaks in early fall and begins to wane as temperatures cool. All data tables showing temperatures and patterns of stratification for each monitoring station are included in Appendix B.

Bad Creek operational impacts to temperature are limited to monitoring Station 564.1 in the Whitewater River cove, which is between the I/O structure and submerged weir (see Figure 5-1). Monthly average temperatures within the water column at this location are nearly uniform after 1991 (post Bad Creek operation) (Figure 5-2). Vertical mixing from Bad Creek operations eliminates any stratification at this monitoring station regardless of season. The pre construction

depth-averaged temperature at Station 564.1 is 13.9°C, and the post construction average temperature at Station 564.1 (through 2017) is 17.2°C, a difference of 3.3°C.

Monitoring Station 564.0 (see Figure 5-3) is located downstream of the submerged weir and in contrast to Station 564.1, stratification is prevalent at this location after 1991. There is very little difference in temperature profiles between pre and post Bad Creek operations at Station 564.0. This is primarily due to the presence of the submerged weir, which limits mixing downstream of the weir structure (i.e., mixing is confined to the portion of the Whitewater River cove upstream of the submerged weir).

Tables of monthly averaged temperature profiles for pre and post Bad Creek operational conditions at each of the 12 monitoring locations are provided in Appendix B. Additionally, tables of data showing depth-averaged temperatures for pre construction, construction, and post construction in the Whitewater River arm indicating changing stratification trends are included in Appendix B.

		Jan	Feb	Mar	Apr	Temperati	Jun	Jul	Aug	Sep	Oct	Nov	De
-	1110 to 1095	10.9	11.6	12.6	16.0	20.8	24.2	26.1	26.8	25.8	21.6	18.2	13.
	1095 to 1080	10.6	10.2	11.2	14.2	18.3	21.8	24.6	26.0	25.4	21.8	17.9	13.
	1080 to 1065	9.8	9.2	10.8	13.3	16.9	20.3	23.1	25.2	25.1	21.3	17.6	13.
	1065 to 1050	8.8	8.2	9.4	11.9	15.3	18.0	21.5	24.0	23.9	20.3	16.1	11
	1050 to 1035	8.4	8.2	8.4	10.1	12.6	14.5	18.2	21.5	23.9	19.9		11.
	1035 to 1020	8.4	8.0	8.1	9.0	10.4	11.1	13.5	16.8	20.6	19.5	15.6 15.5	10.
		8.3	7.9	7.6	8.1		10.0		15.2		19.5		11.
	1020 to 1005	B.3 B.3	8.0		7.8	8.8	8.9	12.6 9.9	15.2	17.5	16.9	15.3 15.3	
H	1005 to 990			7.5						14.8			11.
	990 to 975	8.3	8.2	7,5	7.9	8,6	8.9	9.5	11.3	13.7	14.7	14.7	110
	975 to 960	8.2	7.6	6.7	7.2	8.6	8.9	9.6	11.0	13.2	13.0	13.1	9.6
L	960 to 945	1				8.6							
L	945 to 930	1											
L	930 to 915	1.											
	915 to 900	1											
	900 to 885	1				M	inimum Rea	ading 959.5	9 ft				
	885 to 870												
	870 to 855												
	< 855												
2.0													
+						Temperatu							
Ī	Joca	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	De
	Joca:	Jan 11.1	Feb 10.3	Mar 11.3	Apr 14.8	May 20.1	Jun 23.5	Jul 25.4	Aug 26.1	Sep 24.9	Oct 21.3	Nov 18.2	14.
1	Joca 1110 to 1095 1095 to 1080	Jan 11.1 10.7	10.3 10.1	Mar 11.3 11.0	Apr 14.8 14.0	May 20.1 18.4	Jun 23.5 22.4	Jul 25.4 24.7	Aug 26.1 26.2	Sep 24.9 25.2	Oct 21.3 21.5	Nov 18.2 17.8	14. 13.
-	Joca 11110 to 1095 1095 to 1080 1080 to 1065	Jan 11.1 10.7 10.7	10.3 10.1 10.0	Mar 11.3 11.0 10.9	14.8 14.0 13.7	20.1 18.4 17.2	Jun 23.5 22.4 21.3	Jul 25.4 24.7 24.3	26.1 26.2 25.7	24.9 25.2 25.1	Oct 21.3 21.5 21.7	18.2 17.8 17.8	14. 13. 13.
	Joca 11110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050	Jan 11.1 10.7 10.7 10.5	Feb 10.3 10.1 10.0 9.8	Mar 11.3 11.0 10.9 10.7	Apr 14.8 14.0 13.7 13.3	20.1 18.4 17.2 16.4	23.5 22.4 21.3 20.8	Jul 25.4 24.7 24.3 23.8	26.1 26.2 25.7 24.9	Sep 24.9 25.2 25.1 25.0	Oct 21.3 21.5 21.7 21.5	18.2 17.8 17.8 17.7	14. 13. 13. 13.
	Joca 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035	Jan 11.1 10.7 10.7 10.5 10.6	Feb 10.3 10.1 10.0 9.8 9.7	Mar 11.3 11.0 10.9 10.7 10.8	Apr 14.8 14.0 13.7 13.3 13.2	May 20.1 18.4 17.2 16.4 15.9	Jun 23.5 22.4 21.3 20.8 20.3	Jul 25.4 24.7 24.3 23.8 23.5	Aug 26.1 26.2 25.7 24.9 25.0	Sep 24.9 25.2 25.1 25.0 24.9	Oct 21.3 21.5 21.7 21.5 21.6	Nov 18.2 17.8 17.8 17.7 17.6	14. 13. 13. 13.
	Joca 11110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050	Jan 11.1 10.7 10.7 10.5 10.6 10.4	Feb 10.3 10.1 10.0 9.8 9.7 9.6	Mar 11.3 11.0 10.9 10.7	Apr 14.8 14.0 13.7 13.3	20.1 18.4 17.2 16.4	23.5 22.4 21.3 20.8	Jul 25.4 24.7 24.3 23.8 23.5 23.5 23.3	Aug 26.1 26.2 25.7 24.9 25.0 24.8	Sep 24.9 25.2 25.1 25.0	Oct 21.3 21.5 21.7 21.5	18.2 17.8 17.8 17.7	14. 13. 13. 13.
	Joca 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035	Jan 11.1 10.7 10.7 10.5 10.6	Feb 10.3 10.1 10.0 9.8 9.7	Mar 11.3 11.0 10.9 10.7 10.8	Apr 14.8 14.0 13.7 13.3 13.2	May 20.1 18.4 17.2 16.4 15.9	Jun 23.5 22.4 21.3 20.8 20.3	Jul 25.4 24.7 24.3 23.8 23.5	Aug 26.1 26.2 25.7 24.9 25.0	Sep 24.9 25.2 25.1 25.0 24.9	Oct 21.3 21.5 21.7 21.5 21.6	Nov 18.2 17.8 17.8 17.7 17.6	14. 13. 13. 13. 13.
	Joca 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020	Jan 11.1 10.7 10.7 10.5 10.6 10.4	Feb 10.3 10.1 10.0 9.8 9.7 9.6	Mar 11.3 11.0 10.9 10.7 10.8 10.8	Apr 14.8 14.0 13.7 13.3 13.2 13.1	May 20.1 18.4 17.2 16.4 15.9 16.0	Jun 23.5 22.4 21.3 20.8 20.3 19.9	Jul 25.4 24.7 24.3 23.8 23.5 23.5 23.3	Aug 26.1 26.2 25.7 24.9 25.0 24.8	Sep 24.9 25.2 25.1 25.0 24.9 24.8	Oct 21.3 21.5 21.7 21.5 21.6 21.6 21.5	Nov 18.2 17.8 17.8 17.7 17.6 17.4	14. 13. 13. 13. 13. 13.
	Joca 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005	Jan 11.1 10.7 10.7 10.5 10.6 10.4 10.3	Feb 10.3 10.1 10.0 9.8 9.7 9.6 9.7	Mar 11.3 11.0 10.9 10.7 10.8 10.8 10.8	Apr 14.8 14.0 13.7 13.3 13.2 13.1 13.0	20.1 18.4 17.2 16.4 15.9 16.0 15.9	Jun 23.5 22.4 21.3 20.8 20.3 19.9 19.8	25.4 24.7 24.3 23.8 23.5 23.3 23.1	Aug 26.1 26.2 25.7 24.9 25.0 24.8 24.7	Sep 24.9 25.2 25.1 25.0 24.9 24.8 24.8	Oct 21.3 21.5 21.7 21.5 21.6 21.5 21.5	Nov 18.2 17.8 17.8 17.7 17.6 17.4	14. 13. 13. 13. 13. 13. 13.
	Joca 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990	Jan 11.1 10.7 10.7 10.5 10.6 10.4 10.3 10.4	Feb 10.3 10.1 10.0 9.8 9.7 9.6 9.7 9.5	Mar 11.3 11.0 10.9 10.7 10.8 10.8 10.8	14.8 14.0 13.7 13.3 13.2 13.1 13.0 12.7	May 20.1 18.4 17.2 16.4 15.9 16.0 15.9 15.2	Jun 23.5 22.4 21.3 20.8 20.3 19.9 19.8 19.0	Jul 25.4 24.7 24.3 23.8 23.5 23.3 23.1 22.4	Aug 26.1 26.2 25.7 24.9 25.0 24.8 24.7 24.3	Sep 24.9 25.2 25.1 25.0 24.9 24.8 24.8 24.5	Oct 21.3 21.5 21.7 21.5 21.6 21.5 21.5 21.5 21.5 21.5	Nov 18.2 17.8 17.8 17.7 17.6 17.4 17.6 17.3	14. 13. 13. 13. 13. 13. 13.
	Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975	Jan 11.1 10.7 10.7 10.5 10.6 10.4 10.3 10.4 10.0	Feb 10.3 10.1 10.0 9.8 9.7 9.6 9.7 9.5 9.5	Mar 11.3 11.0 10.9 10.7 10.8 10.8 10.8 10.4 10.5	14.8 14.0 13.7 13.3 13.2 13.1 13.0 12.7 12.3	May 20.1 18.4 17.2 16.4 15.9 16.0 15.9 15.2 15.4	Jun 23.5 22.4 21.3 20.8 20.3 19.9 19.8 19.0	Jul 25.4 24.7 24.3 23.8 23.5 23.3 23.1 22.4 22.2	Aug 26.1 26.2 25.7 24.9 25.0 24.8 24.7 24.3 24.0	Sep 24.9 25.2 25.1 25.0 24.9 24.8 24.8 24.5 24.3	Oct 21.3 21.5 21.7 21.5 21.6 21.5 21.5 21.5 21.9	18.2 17.8 17.8 17.7 17.6 17.4 17.6 17.3 17.0	14. 13. 13. 13. 13. 13. 13.
	Jocai 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 1090 to 995 990 to 975	Jan 11.1 10.7 10.7 10.5 10.6 10.4 10.3 10.4 10.0	Feb 10.3 10.1 10.0 9.8 9.7 9.6 9.7 9.5 9.5	Mar 11.3 11.0 10.9 10.7 10.8 10.8 10.8 10.4 10.5	14.8 14.0 13.7 13.3 13.2 13.1 13.0 12.7 12.3	May 20.1 18.4 17.2 16.4 15.9 16.0 15.9 15.2 15.4	Jun 23.5 22.4 21.3 20.8 20.3 19.9 19.8 19.0	Jul 25.4 24.7 24.3 23.8 23.5 23.3 23.1 22.4 22.2	Aug 26.1 26.2 25.7 24.9 25.0 24.8 24.7 24.3 24.0	Sep 24.9 25.2 25.1 25.0 24.9 24.8 24.8 24.5 24.3	Oct 21.3 21.5 21.7 21.5 21.6 21.5 21.5 21.5 21.9	18.2 17.8 17.8 17.7 17.6 17.4 17.6 17.3 17.0	14. 13. 13. 13. 13. 13. 13.
	Jocai 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 945 to 930	Jan 11.1 10.7 10.7 10.5 10.6 10.4 10.3 10.4 10.0	Feb 10.3 10.1 10.0 9.8 9.7 9.6 9.7 9.5 9.5	Mar 11.3 11.0 10.9 10.7 10.8 10.8 10.8 10.4 10.5	14.8 14.0 13.7 13.3 13.2 13.1 13.0 12.7 12.3	May 20.1 18.4 17.2 16.4 15.9 16.0 15.9 15.2 15.4	Jun 23.5 22.4 21.3 20.8 20.3 19.9 19.8 19.0	Jul 25.4 24.7 24.3 23.8 23.5 23.3 23.1 22.4 22.2	Aug 26.1 26.2 25.7 24.9 25.0 24.8 24.7 24.3 24.0	Sep 24.9 25.2 25.1 25.0 24.9 24.8 24.8 24.5 24.3	Oct 21.3 21.5 21.7 21.5 21.6 21.5 21.5 21.5 21.9	18.2 17.8 17.8 17.7 17.6 17.4 17.6 17.3 17.0	14. 13. 13. 13. 13. 13. 13.
	Joca: 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 9945 to 930 930 to 915	Jan 11.1 10.7 10.7 10.5 10.6 10.4 10.3 10.4 10.0	Feb 10.3 10.1 10.0 9.8 9.7 9.6 9.7 9.5 9.5	Mar 11.3 11.0 10.9 10.7 10.8 10.8 10.8 10.4 10.5	14.8 14.0 13.7 13.3 13.2 13.1 13.0 12.7 12.3	May 20.1 18.4 17.2 16.4 15.9 16.0 15.9 15.2 15.4 14.5	Jun 23.5 22.4 21.3 20.8 20.3 19.9 19.8 19.0 17.8	Jul 25.4 24.7 24.3 23.8 23.5 23.3 23.1 22.4 22.2 21.5	Aug 26.1 26.2 25.7 24.9 25.0 24.8 24.7 24.3 24.0 22.4	Sep 24.9 25.2 25.1 25.0 24.9 24.8 24.8 24.5 24.3	Oct 21.3 21.5 21.7 21.5 21.6 21.5 21.5 21.5 21.9	18.2 17.8 17.8 17.7 17.6 17.4 17.6 17.3 17.0	14. 13. 13. 13. 13. 13. 13.
	Joca: 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1050 to 1035 1050 to 1005 1005 to 990 1000 to 975 1005 to 990 1000 to 975 1005 to 990 1005 to 990 1005 to 990 1005 to 995 1005 to 990	Jan 11.1 10.7 10.7 10.5 10.6 10.4 10.3 10.4 10.0	Feb 10.3 10.1 10.0 9.8 9.7 9.6 9.7 9.5 9.5	Mar 11.3 11.0 10.9 10.7 10.8 10.8 10.8 10.4 10.5	14.8 14.0 13.7 13.3 13.2 13.1 13.0 12.7 12.3	May 20.1 18.4 17.2 16.4 15.9 16.0 15.9 15.2 15.4 14.5	Jun 23.5 22.4 21.3 20.8 20.3 19.9 19.8 19.0	Jul 25.4 24.7 24.3 23.8 23.5 23.3 23.1 22.4 22.2 21.5	Aug 26.1 26.2 25.7 24.9 25.0 24.8 24.7 24.3 24.0 22.4	Sep 24.9 25.2 25.1 25.0 24.9 24.8 24.8 24.5 24.3	Oct 21.3 21.5 21.7 21.5 21.6 21.5 21.5 21.5 21.9	18.2 17.8 17.8 17.7 17.6 17.4 17.6 17.3 17.0	14. 13. 13. 13. 13. 13. 13.
	Jocai 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 9960 to 945 945 to 930 930 to 915 945 to 900 900 to 885	Jan 11.1 10.7 10.7 10.5 10.6 10.4 10.3 10.4 10.0	Feb 10.3 10.1 10.0 9.8 9.7 9.6 9.7 9.5 9.5	Mar 11.3 11.0 10.9 10.7 10.8 10.8 10.8 10.4 10.5	14.8 14.0 13.7 13.3 13.2 13.1 13.0 12.7 12.3	May 20.1 18.4 17.2 16.4 15.9 16.0 15.9 15.2 15.4 14.5	Jun 23.5 22.4 21.3 20.8 20.3 19.9 19.8 19.0 17.8	Jul 25.4 24.7 24.3 23.8 23.5 23.3 23.1 22.4 22.2 21.5	Aug 26.1 26.2 25.7 24.9 25.0 24.8 24.7 24.3 24.0 22.4	Sep 24.9 25.2 25.1 25.0 24.9 24.8 24.8 24.5 24.3	Oct 21.3 21.5 21.7 21.5 21.6 21.5 21.5 21.5 21.9	18.2 17.8 17.8 17.7 17.6 17.4 17.6 17.3 17.0	14. 13. 13. 13. 13. 13. 13.
	Joca: 1110 to 1095 1095 to 1080 1080 to 1085 1080 to 1085 1085 to 1080 1080 to 1085 1085 to 1080 1085 to 1090 1085 to 1090 1092 to 1005 1095 to 1095 975 to 960 990 to 975 975 to 960 990 to 975 975 to 990 990 to 975 975 to 986 990 to 975 885 to 870	Jan 11.1 10.7 10.7 10.5 10.6 10.4 10.3 10.4 10.0	Feb 10.3 10.1 10.0 9.8 9.7 9.6 9.7 9.5 9.5	Mar 11.3 11.0 10.9 10.7 10.8 10.8 10.8 10.4 10.5	14.8 14.0 13.7 13.3 13.2 13.1 13.0 12.7 12.3	May 20.1 18.4 17.2 16.4 15.9 16.0 15.9 15.2 15.4 14.5	Jun 23.5 22.4 21.3 20.8 20.3 19.9 19.8 19.0 17.8	Jul 25.4 24.7 24.3 23.8 23.5 23.3 23.1 22.4 22.2 21.5	Aug 26.1 26.2 25.7 24.9 25.0 24.8 24.7 24.3 24.0 22.4	Sep 24.9 25.2 25.1 25.0 24.9 24.8 24.8 24.5 24.3	Oct 21.3 21.5 21.7 21.5 21.6 21.5 21.5 21.5 21.9	18.2 17.8 17.8 17.7 17.6 17.4 17.6 17.3 17.0	14. 13. 13. 13. 13. 13. 13.
	Jocai 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 9960 to 945 945 to 930 930 to 915 945 to 900 900 to 885	Jan 11.1 10.7 10.7 10.5 10.6 10.4 10.3 10.4 10.0	Feb 10.3 10.1 10.0 9.8 9.7 9.6 9.7 9.5 9.5	Mar 11.3 11.0 10.9 10.7 10.8 10.8 10.8 10.4 10.5	14.8 14.0 13.7 13.3 13.2 13.1 13.0 12.7 12.3	May 20.1 18.4 17.2 16.4 15.9 16.0 15.9 15.2 15.4 14.5	Jun 23.5 22.4 21.3 20.8 20.3 19.9 19.8 19.0 17.8	Jul 25.4 24.7 24.3 23.8 23.5 23.3 23.1 22.4 22.2 21.5	Aug 26.1 26.2 25.7 24.9 25.0 24.8 24.7 24.3 24.0 22.4	Sep 24.9 25.2 25.1 25.0 24.9 24.8 24.8 24.5 24.3	Oct 21.3 21.5 21.7 21.5 21.6 21.5 21.5 21.5 21.9	18.2 17.8 17.8 17.7 17.6 17.4 17.6 17.3 17.0	14. 13. 13. 13. 13. 13.

Figure 5-2. Station 564.1 Pre Bad Creek Operation (top) Showing Temperature Stratification vs. Post Operation (bottom) Showing Mixing in the Water Column

		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	De	
	1110 to 1095	10.4	9.3	10.4	14.8	19.5	24.8	26.5	26.5	25.3	21.6	17.7	13	
	1095 to 1080	10.4	9.1	10.1	13.5	17.7	22.1	24.5	25.3	25.2	21.6	17.5	13	
S	1080 to 1065	10.3	8.7	9.6	11.9	15.6	19.5	22.4	24.0	24.8	21.5	17.5	13	
E	1065 to 1050	10.2	8.8	9.3	11.2	14.2	18.0	21.1	22.9	24.1	21.4	17.4	13	
Ē	1050 to 1035	10.3	8.7	8.7	10.4	12.6	16.1	19.3	21.6	22.9	21.0	17.5	13	
ğ	1035 to 1020	10.3	8.6	8.8	10.1	11.6	14.2	17.0	19.4	20.7	19.4	16.5	13	
Ra Sa	1020 to 1005	10.2	8.6	8.5	9.6	10.5	12.1	14.3	14.9	15.9	16.1	15.0	12	
<u>p</u>	1005 to 990	10.2	8.4	8.4	9.3	10.2	10.9	10.9	11.1	11.9	12.1	13.0	11	
₹	990 to 975	10.2	8.5	8.6	9.0	9.5	10.1	10.6	9.9	9.9	9.5	10.1	10	
ea	975 to 960	10.0	8.7	9.3	9.2	9.8	9.4	9.8	9.8	9.9	9.9	9.4	9	
=	960 to 945	9.7	9.1	9.2	9.3	9.6	9.9	10.0	10.0	10.0	9.6	9.8	9	
ē	945 to 930	9.4	9.1	9.2	9.2	9.4	9.8	10.0	9.7	9.9	9.3	9.6	9	
re-	930 to 915	9.3	9.0	9.1	9.2	9.3	9.6	9.7	9.7	9.8	9.5	9.5	9.	
Measurement Reading Range (ft msl)	915 to 900	9.1	8.9	9.0	9.1	9.2	9.5	9.7	9.6	9.6	9.4	9.4	9	
ea	900 to 885	9.1	8.8	8.9	9.0	9.1	9.4	9.6	9.6	9.5	9.3	9.2	9	
2	885 to 870	9.1	8.8	8.9	8.8	9.1	9.1	9.5	9.6	9.6	9.2	9.3	9	
	870 to 855	9.4		8.6	8.5	9.0	9.2	9.7	9.2	9.9	9.4	9.8	8	
	< 855	Minimum Reading 864.7 ft												
	Joca	ssee D_2_	64.0: Mor	thly Avera	ge Water	Temperatu	res (deg C) 1991 to	2015 (Post	Bad Creel	k Operatio	n)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	D	
	1110 to 1095	11.1	10.4	11.7	15.6	20.4	24.6	26.3	26.2	25.1	21.4	18.2	14	
_	1095 to 1080	10.8	10.1	11.4	14.4	18.2	22.6	25.1	26.5	25.2	21.7	17.8	14	
2	1080 to 1065	10.9	10.0	10.8	13.5	16.9	20.9	24.0	26.0	25.0	21.7	17.8	14	
Ē	1065 to 1050	10.8	10.0	10.6	12.7	16.0	19.7	22.9	24.9	24.9	21.6	17.8	14	
•	1050 to 1035	10.8	9.9	10.3	12.0	14.3	17.9	21.3	23.7	23.8	21.5	17.7	14	
E .	1035 to 1020	10.7	9.9	10.1	11.4	13.2	15.9	18.9	21.7	22.5	20.8	17.5	14	
2	1020 to 1005	10.8	9.8	9.9	10.6	12.0	13.6	15.5	17.1	18.6	19.3	17.0	13	
ng.	1005 to 990	10.8	9.7	9.7	10.2	10.6	11.5	12.4	12.7	13.3	13.6	14.6	13	
8	990 to 975	10.5	9.7	9.7	10.0	10.1	10.5	10.5	10.6	10.6	10.8	11.1	11	
Se .	975 to 960	10.2	9.6	9.5	9.7	9.7	9.9	9.9	10.0	10.0	10.0	10.0	10	
E	960 to 945	9.9	9.5	9.4	9.6	9.5	9.7	9.7	9.7	9.7	9.8	9.8	9	
Measurement Reading Range (ft msl)	945 to 930	9.6	9.4	9.3	9.5	9.3	9.5	9.5	9.6	9.5	9.6	9.6	9	
E .	930 to 915	9.4	9.3	9.3	9.4	9.2	9.4	9.4	9.5	9.5	9.5	9.5	9	
ası	915 to 900	9.4	9.2	9.2	9.3	9.0	9.3	9.3	9.4	9,4	9.5	9,4	9.	
Me	900 to 885	9.3	9.1	9.0	9.1	9.2	9.2	9.1	9.3	9.3	9.3	9.4	9.	
_	885 to 870	9.1	8.9	9.1	9.0	9.2	9.4	9.2	9.4	9.5	9.2	9.5	9.	
	870 to 855	9.2	8.2	9.5	8.9		10.0	9.1	9.3		9.0	10.3		
	< 855					Mi	inimum Re	ading 864	4 ft					
	< 855		8				minimum rec	duning oo i.					- 2	

Figure 5-3. Station 564.0 Downstream of the Weir Showing Temperature Stratification for **Pre and Post Operations**

Surface water temperature minimum, average, and maximum values for all stations over the entire dataset are included in Table 5-2. Discrete water quality data assessed in Lake Jocassee consistently met South Carolina water quality standards for trout waters for temperature. There is no numeric threshold for temperature, however, for trout waters, narrative criteria indicate water temperatures should not vary from levels existing under natural conditions (unless determined some other temperature shall protect the classified uses), which is supported by study findings.

A comparison of pre vs. post operations for surface water at each station is provided in Table 5-3 and average surface water data are included in Appendix B. There is no clear trend in warming from pre to post operations in surface waters and temperature differences are mostly within one degree. It is important to note that surface waters are affected by ambient air temperature, therefore, any elevated temperatures under present-day conditions may be impacted by climate warming over the last three decades.⁶ It is noteworthy that surface waters at Station 564.1 do not indicate the warmer temperatures noted at depth between pre and post operation periods (i.e., - 0.8°C change at the surface but +3.3°C change at depth, indicative of the I/O structure at depth).

Table 5-2. Water Temperature in Surface Waters of Lake Jocassee

Lake .	Jocassee Surface T	Cemperature (degr	ees C)
Station	Minimum	Average	Maximum
558.7	8.20	18.59	29.02
558.0	7.10	18.44	28.22
559.0	8.10	18.81	28.90
560.0	7.10	18.87	28.47
562.0	8.10	19.23	29.20
565.4	8.50	18.84	28.50
551.0	0.20	13.48	27.24
564.0	7.40	19.15	28.61
564.1	8.50	18.99	28.40
557.0	7.10	18.81	29.23
554.8	7.70	19.24	29.15
556.0	7.30	19.04	29.12

⁶ A climate assessment is beyond the scope of this desktop study, however, a summary of climate trends in the region will be assessed and reported in the license application.

Table 5-3. Average and Standard Deviation of Surface Temperatures, Pre vs. Post Operations

Monitoring		Tempera	ture (°C)		
Station	Pre ope	erations	Post op	erations	Difference of
	Average	Standard Deviation	Average	Standard Deviation	Averages
558.7	18.3	6.1	18.6	6.1	0.3
558.0	18.1	6.4	18.6	6.1	0.5
559.0	18.4	6.3	18.9	6.1	0.5
560.0	18.5	6.4	19.1	6.1	0.6
562.0	18.6	6.5	19.4	6.3	0.8
565.4	18.9	6.6	18.8	6.2	-0.1
551.0	13.3	6.0	14.7	7.2	1.4
564.0	19.0	6.6	19.2	6.0	0.2
564.1	19.7	6.2	18.9	5.8	-0.8
557.0	18.2	6.4	19.1	6.2	0.9
554.8	19.3	6.5	19.2	6.4	-0.1
556.0	18.7	6.5	19.2	6.3	0.5

5.3.2 Dissolved Oxygen

5.3.2.1 Dissolved Oxygen Concentration

Dissolved oxygen is a measure of how much oxygen is dissolved in the water and is the amount of oxygen available to living aquatic organisms. The concentration of DO in surface water is affected by temperature and has both a seasonal and a daily cycle. In winter and early spring, when water temperature is low, DO concentrations are typically higher as cold water can hold more DO than warm water. In summer and fall, when the water temperature is high, the DO concentration is often lower (USGS 2018b). Similar to temperature, DO typically shows patterns of stratification in large, deep reservoirs like Lake Jocassee. Just after summer stratification is established, the hypolimnion is rich in DO from the early spring mixing of the lake. However, because the metalimnion acts as a barrier between the epilimnion and hypolimnion, the hypolimnion is essentially cut off from oxygen exchange with the atmosphere and the deepest parts of the lake can become hypoxic (i.e., DO concentrations less than 2 mg/L) to anoxic (i.e., depleted of oxygen). Lake Jocassee is very deep in some places, and it is not unusual for DO to be depleted at depth. Because near-surface waters are used by most forms of aquatic life, DO concentrations measured at the water surface or in near-surface waters are used to assess the health of a waterbody (instead of DO at depth). Because depth-averaged values are not

considered when determining the health of the waterbody (i.e., SCDHEC standards only apply to water at the surface as explained in Section 4.3), these data are provided for context, however, average surface water values are also provided below for each season and as minimum, maximum, and average for each station in Table 5-4. All data (depth and surface) are included in Appendix B.

The position of the thermocline varies from location to location and between seasons, as is typical for large, deep reservoirs, therefore, an overall trend of DO values are provided herein. Lake Jocassee winter DO concentrations (throughout the water column) are between 0 and 14 mg/L, with an average of 7 mg/L. In deeper portions of Lake Jocassee, winter DO stratification is characterized by a rapid decline in DO in the lower half of the water column, with the upper half generally at constant values. The average winter surface (i.e., measurement depth 0.3 meter) DO over the entire dataset is 9.4 mg/L. Winter stratification is less prevalent in shallower portions of the lake.

Spring DO concentrations range from 0 to 13 mg/L with an average of 8 mg/L. DO concentrations remain consistent throughout the spring months and some stratification is present in the deepest sections of the lake. Average spring surface DO (0.3 m) is 9.7 mg/L.

Summer DO concentrations range from 0 to 13 mg/L with an average of 7 mg/L. Stratification becomes more pronounced throughout the lake with the transition from spring into summer. This stratification is generally limited to the lower half of the lake in both deep and shallow areas. Average summer surface DO is 8.2 mg/L.

Fall DO concentrations range from 0 to 11 mg/L with an average of 6 mg/L. The most notable stratification pattern is seen in the fall where the bottom of the lake can reach anoxic levels. DO concentrations remain constant in the top third of the water column, however, significant stratification is observed in the lower water column. Average fall surface DO is 8.1 mg/L.

Tables of monthly averaged DO profiles for pre and post Bad Creek operational conditions at each of the 12 monitoring locations are provided in Appendix B. Additionally, tables of data showing depth-averaged DO values for pre construction, construction, and post construction in the Whitewater River arm to show changing stratification trends over time are included in Appendix B.

Similar to trends in temperature data, Bad Creek operational impacts to DO are limited to monitoring Station 564.1 between the I/O structure and submerged weir. Monthly average DO concentrations within the water column at this location are nearly uniform after 1991 (post Bad Creek operation) (Figure 5-4). Vertical mixing from Bad Creek operations does not allow for stratification at this monitoring location regardless of season.

DO stratification does occur at monitoring Station 564.0 (downstream of the weir), and there is very little difference in DO profiles between pre and post Bad Creek operation indicating the submerged weir is functioning as intended (Figure 5-5).

In general, DO concentrations in Lake Jocassee are a function of the extent of the previous winter mixing – colder winter temperatures result in deeper mixing within the reservoir, which results in higher DO concentrations the following year (USACE 2014). Multiple droughts over the reservoir's history have resulted in maximum drawdowns up to 29 ft (USACE 2014); however, the overall thermal structure of the reservoir helped to maintain DO concentrations throughout the water column and were not impacted by the drawdown events (i.e., reduced water elevation), indicating even under extreme drought conditions, DO remains above state threshold levels throughout Lake Jocassee (i.e., 6.0 mg/L) (USACE 2014).

		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	De			
1110	to 1095	10.0	10.6	9.8	10.2	9.3	8.7	8.6	5.4	7.9	8.2	8.3	9.2			
1095	to 1080	9.8	9.5	10.0	10.2	9.5	8.9	8.7	6.3	7.7	8.0	8.5	9.2			
1080	to 1065	10.0	9.7	10.0	10.1	9.5	9.0	8.6	5.9	7.6	8.1	8.6	9.2			
	to 1050	10.6	10.6	10.2	10.3	9.4	8.5	8.2	5.5	7.5	8.0	8.7	9.7			
1050	to 1035	10.7	10.4	10.1	10.3	9.2	7.7	6.8	4.7	7.0	7.8	8.6	9.8			
	to 1020	10.7	10.2	10.0	9.8	8.7	6.2	5.3	2.7	4.6	7.7	8.5	9.			
1020	to 1005	10.6	10.4	9.8	9.1	7.7	5.1	3.8	2.2	1.0	6.2	8.4	9.			
1005	to 990	10.6	10.2	9.3	8.0	5.8	2.9	1.5	0.9	0.1	1.7	8.1	9.			
990	to 975	10.6	10.0	9.0	7.3	4.1	2.1	0.3	0.3	0.0	0.0	5.4	9.			
	to 960	10.5	9.9	9.5	8.7	2.8	1.5	0.0	0.4	0.0	0.0	1.9	10			
	to 945		707	-		2.7										
	to 930	2.1														
	to 915															
	to 900															
900	to 885															
885	to 870					Mil	nimum Rea	dina 959.	9 ft							
870	to 855	million rough good t														
<	855															
<	855	ee D_2_5	64.1: Mon	thly Avera	ged Disso	olved Oxy	gen (mg/l)	1991 to 2	017 (Post	Bad Creek	Operatio	n)				
	855 Jocass	Jan	Feb	Mar	Apr	May	Jun	Jul	017 (Post	Sep	Oct	Nov	De			
1110	Jocass to 1095	Jan 9.2	Feb 9.5	Mar 9.7	Apr 9.7	May 8.9	Jun 8.3	Jul 8.2	Aug 7.8	Sep 7.3	Oct 7.5	Nov 8.1	8.			
1110	355 Jocass to 1095 to 1080	Jan	9.5 9.4	Mar	9.7 9.7	May	Jun	Jul	7.8 7.6	7.3 7.2	7.5 7.5	Nov	8.			
1110 1095	Jocass to 1095	Jan 9.2	Feb 9.5	Mar 9.7	Apr 9.7	May 8.9	Jun 8.3	Jul 8.2	Aug 7.8	7.3 7.2 7.2	Oct 7.5	Nov 8.1	8. 8.			
1110 1095 1080	355 Jocass to 1095 to 1080	9.2 9.0	9.5 9.4	9.7 9.7	9.7 9.7	May 8.9 9.0	8.3 8.4	8.2 8.1	7.8 7.6	7.3 7.2	7.5 7.5	8.1 8.1	8. 8. 8.			
1110 1095 1080 1065	855 Jocass to 1095 to 1080 to 1065	9.2 9.0 9.1	9.5 9.4 9.3	9.7 9.7 9.6	9.7 9.7 9.6	May 8.9 9.0 9.0	8.3 8.4 8.5	8.2 8.1 8.2	7.8 7.6 7.6	7.3 7.2 7.2	7.5 7.5 7.5 7.5	8.1 8.1 8.1	8. 8. 8.			
1110 1095 1080 1065 1050	855 Jocass to 1095 to 1080 to 1065 to 1050	9.2 9.0 9.1 9.1	9.5 9.4 9.3 9.4	9.7 9.7 9.6 9.6	9.7 9.7 9.7 9.6 9.6	8.9 9.0 9.0 9.0	8.3 8.4 8.5 8.5	Jul 8.2 8.1 8.2 8.3	7.8 7.6 7.6 7.6	7.3 7.2 7.2 7.1	Oct 7.5 7.5 7.5 7.5 7.5	8.1 8.1 8.1 8.1	8. 8. 8. 8.			
1110 1095 1080 1065 1050 1035	855 Jocass to 1095 to 1080 to 1065 to 1050 to 1035	9.2 9.0 9.1 9.1 9.1	9.5 9.4 9.3 9.4 9.4	9.7 9.7 9.6 9.6 9.6	9.7 9.7 9.6 9.6 9.5	May 8.9 9.0 9.0 9.0	8.3 8.4 8.5 8.5 8.6	8.2 8.1 8.2 8.3 8.2	7.8 7.6 7.6 7.6 7.6 7.5	7.3 7.2 7.2 7.1 7.1	7.5 7.5 7.5 7.5 7.5 7.4	Nov 8.1 8.1 8.1 8.1 8.1	8. 8. 8. 8.			
1110 1095 1080 1065 1050 1035 1020	855 Jocass to 1095 to 1080 to 1065 to 1050 to 1035 to 1020	Jan 9.2 9.0 9.1 9.1 9.1 9.2	9.5 9.4 9.3 9.4 9.4 9.4	9.7 9.7 9.6 9.6 9.6 9.6	9.7 9.7 9.6 9.6 9.5 9.5	May 8.9 9.0 9.0 9.0 9.0	8.3 8.4 8.5 8.5 8.6 8.6	Jul 8.2 8.1 8.2 8.3 8.2 8.1	7.8 7.6 7.6 7.6 7.5 7.5	7.3 7.2 7.2 7.1 7.1 7.1	Oct 7.5 7.5 7.5 7.5 7.4 7.4	Nov 8.1 8.1 8.1 8.1 8.1 8.1	8. 8. 8. 8. 8.			
1110 1095 1080 1065 1050 1035 1020 1005	855 Jocass to 1095 to 1080 to 1065 to 1050 to 1035 to 1020 to 1005	9.2 9.0 9.1 9.1 9.1 9.2 9.1	9.5 9.4 9.3 9.4 9.4 9.4 9.3	9.7 9.7 9.6 9.6 9.6 9.6 9.6	9.7 9.7 9.6 9.6 9.5 9.5	May 8.9 9.0 9.0 9.0 9.0 9.0	Jun 8.3 8.4 8.5 8.6 8.6 8.6	Jul 8.2 8.1 8.2 8.3 8.2 8.1 8.1	7.8 7.6 7.6 7.6 7.5 7.6 7.6	7.3 7.2 7.2 7.1 7.1 7.1 7.1	Oct 7.5 7.5 7.5 7.5 7.4 7.4 7.4	Nov 8.1 8.1 8.1 8.1 8.1 8.1 8.0	8. 8. 8. 8. 8.			
1110 1095 1080 1065 1050 1035 1020 1005 990	855 Jocass to 1095 to 1080 to 1065 to 1050 to 1035 to 1020 to 1005 5 to 990	9.2 9.0 9.1 9.1 9.1 9.2 9.1	9.5 9.4 9.3 9.4 9.4 9.4 9.3 9.4	9.7 9.7 9.6 9.6 9.6 9.6 9.6 9.6	Apr 9.7 9.7 9.6 9.6 9.5 9.5 9.4 9.4	May 8.9 9.0 9.0 9.0 9.0 9.0 8.9 8.9	Jun 8.3 8.4 8.5 8.5 8.6 8.6 8.6 8.6	8.2 8.1 8.2 8.3 8.2 8.1 8.1 8.4	7.8 7.6 7.6 7.6 7.5 7.6 7.6 7.6 7.6	Sep 7.3 7.2 7.2 7.1 7.1 7.1 7.1 7.1	Oct 7.5 7.5 7.5 7.5 7.4 7.4 7.4 7.4	Nov 8.1 8.1 8.1 8.1 8.1 8.1 8.0 8.1	8. 8. 8. 8. 8. 8.			
1110 1095 1080 1065 1050 1035 1020 1005 990 975	855 Jocass to 1095 to 1080 to 1065 to 1050 to 1035 to 1020 to 1005 5 to 990 to 975	9.2 9.0 9.1 9.1 9.1 9.2 9.1 9.2	9.5 9.4 9.3 9.4 9.4 9.4 9.3 9.4 9.5	Mar 9.7 9.7 9.6 9.6 9.6 9.6 9.6 9.6	Apr 9.7 9.7 9.6 9.6 9.5 9.5 9.4 9.4	May 8.9 9.0 9.0 9.0 9.0 9.0 8.9 8.9 8.7	Jun 8.3 8.4 8.5 8.5 8.6 8.6 8.6 8.6	8.2 8.1 8.2 8.3 8.2 8.1 8.1 8.4	7.8 7.6 7.6 7.6 7.5 7.6 7.6 7.6 7.6	Sep 7.3 7.2 7.2 7.1 7.1 7.1 7.1 7.1 6.9	Oct 7.5 7.5 7.5 7.5 7.4 7.4 7.4 7.4 7.4	Nov 8.1 8.1 8.1 8.1 8.1 8.1 8.0 8.1	8. 8. 8. 8. 8. 8.			
1110 1095 1080 1065 1050 1035 1020 1005 990 975	855 Jocass to 1095 to 1080 to 1065 to 1050 to 1035 to 1020 to 1005 ito 990 to 975 to 960	9.2 9.0 9.1 9.1 9.1 9.2 9.1 9.2	9.5 9.4 9.3 9.4 9.4 9.4 9.3 9.4 9.5	Mar 9.7 9.7 9.6 9.6 9.6 9.6 9.6 9.6	Apr 9.7 9.7 9.6 9.6 9.5 9.5 9.4 9.4	May 8.9 9.0 9.0 9.0 9.0 9.0 8.9 8.9 8.7	Jun 8.3 8.4 8.5 8.5 8.6 8.6 8.6 8.6	8.2 8.1 8.2 8.3 8.2 8.1 8.1 8.4	7.8 7.6 7.6 7.6 7.5 7.6 7.6 7.6 7.6	Sep 7.3 7.2 7.2 7.1 7.1 7.1 7.1 7.1 6.9	Oct 7.5 7.5 7.5 7.5 7.4 7.4 7.4 7.4 7.4	Nov 8.1 8.1 8.1 8.1 8.1 8.1 8.0 8.1	8. 8. 8. 8. 8. 8.			
1110 1095 1080 1065 1050 1035 1020 1005 990 975 960 945	855 Jocass to 1095 to 1080 to 1065 to 1050 to 1035 to 1035 to 1005 to 1005 to 1005 to 990 to 975 to 960 to 945	9.2 9.0 9.1 9.1 9.1 9.2 9.1 9.2	9.5 9.4 9.3 9.4 9.4 9.4 9.3 9.4 9.5	Mar 9.7 9.7 9.6 9.6 9.6 9.6 9.6 9.6	Apr 9.7 9.7 9.6 9.6 9.5 9.5 9.4 9.4	May 8.9 9.0 9.0 9.0 9.0 9.0 8.9 8.9 8.7	Jun 8.3 8.4 8.5 8.5 8.6 8.6 8.6 8.6	8.2 8.1 8.2 8.3 8.2 8.1 8.1 8.4	7.8 7.6 7.6 7.6 7.5 7.6 7.6 7.6 7.6	Sep 7.3 7.2 7.2 7.1 7.1 7.1 7.1 7.1 6.9	Oct 7.5 7.5 7.5 7.5 7.4 7.4 7.4 7.4 7.4	Nov 8.1 8.1 8.1 8.1 8.1 8.1 8.0 8.1	8. 8. 8. 8. 8. 8.			
1110 1095 1080 1065 1050 1035 1020 1005 990 975 960 945	855 Jocass to 1095 to 1080 to 1080 to 1050 to 1035 to 1020 to 1005 to 990 to 975 to 990 to 945 to 930	9.2 9.0 9.1 9.1 9.1 9.2 9.1 9.2	9.5 9.4 9.3 9.4 9.4 9.4 9.3 9.4 9.5	Mar 9.7 9.7 9.6 9.6 9.6 9.6 9.6 9.6	Apr 9.7 9.7 9.6 9.6 9.5 9.5 9.4 9.4	May 8.9 9.0 9.0 9.0 9.0 9.0 8.9 8.9 8.7	Jun 8.3 8.4 8.5 8.5 8.6 8.6 8.6 8.6	8.2 8.1 8.2 8.3 8.2 8.1 8.1 8.4	7.8 7.6 7.6 7.6 7.5 7.6 7.6 7.6 7.6	Sep 7.3 7.2 7.2 7.1 7.1 7.1 7.1 7.1 6.9	Oct 7.5 7.5 7.5 7.5 7.4 7.4 7.4 7.4 7.4	Nov 8.1 8.1 8.1 8.1 8.1 8.1 8.0 8.1	8. 8. 8. 8. 8. 8.			
1110 1095 1080 1065 1050 1035 1020 1005 990 975 960 945 930	855 Jocass to 1095 to 1080 to 1065 to 1050 to 1050 to 1035 to 1020 to 1005 ito 990 to 975 to 960 to 945 to 995 to 995	9.2 9.0 9.1 9.1 9.1 9.2 9.1 9.2	9.5 9.4 9.3 9.4 9.4 9.4 9.3 9.4 9.5	Mar 9.7 9.7 9.6 9.6 9.6 9.6 9.6 9.6	Apr 9.7 9.7 9.6 9.6 9.5 9.5 9.4 9.4	May 8.9 9.0 9.0 9.0 9.0 9.0 8.9 8.9 8.7	Jun 8.3 8.4 8.5 8.5 8.6 8.6 8.6 8.6	8.2 8.1 8.2 8.3 8.2 8.1 8.1 8.4	7.8 7.6 7.6 7.6 7.5 7.6 7.6 7.6 7.6	Sep 7.3 7.2 7.2 7.1 7.1 7.1 7.1 7.1 6.9	Oct 7.5 7.5 7.5 7.5 7.4 7.4 7.4 7.4 7.4	Nov 8.1 8.1 8.1 8.1 8.1 8.1 8.0 8.1	8. 8. 8. 8. 8. 8.			
1110 1095 1080 1065 1050 1035 1020 1005 990 975 960 945 930 915	855 Jocass to 1095 to 1080 to 1065 to 1050 to 1035 to 1020 to 1035 to 1020 to 990 to 975 to 990 to 945 to 930 to 915 to 990	9.2 9.0 9.1 9.1 9.1 9.2 9.1 9.2	9.5 9.4 9.3 9.4 9.4 9.4 9.3 9.4 9.5	Mar 9.7 9.7 9.6 9.6 9.6 9.6 9.6 9.6	Apr 9.7 9.7 9.6 9.6 9.5 9.5 9.4 9.4	May 8.9 9.0 9.0 9.0 9.0 9.0 8.9 8.7 8.8	8.3 8.4 8.5 8.6 8.6 8.6 8.6 8.6 8.6	Jul 8.2 8.1 8.2 8.3 8.2 8.1 8.1 8.4 8.4	7.8 7.6 7.6 7.6 7.5 7.6 7.6 7.6 7.6 7.6 7.6	Sep 7.3 7.2 7.2 7.1 7.1 7.1 7.1 7.1 6.9	Oct 7.5 7.5 7.5 7.5 7.4 7.4 7.4 7.4 7.4	Nov 8.1 8.1 8.1 8.1 8.1 8.1 8.0 8.1	8. 8. 8. 8. 8. 8.			
1110 1095 1080 1065 1050 1035 1020 1005 990 975 960 945 930 915 900 885	855 Jocass to 1095 to 1080 to 1065 to 1050 to 1050 to 1005 fo 990 to 975 to 960 to 945 to 990 to 915 to 990 to 990 to 915 to 990 to 945 to 990 to 915 to 990 to 945	9.2 9.0 9.1 9.1 9.1 9.2 9.1 9.2	9.5 9.4 9.3 9.4 9.4 9.4 9.3 9.4 9.5	Mar 9.7 9.7 9.6 9.6 9.6 9.6 9.6 9.6	Apr 9.7 9.7 9.6 9.6 9.5 9.5 9.4 9.4	May 8.9 9.0 9.0 9.0 9.0 9.0 8.9 8.7 8.8	Jun 8.3 8.4 8.5 8.5 8.6 8.6 8.6 8.6	Jul 8.2 8.1 8.2 8.3 8.2 8.1 8.1 8.4 8.4	7.8 7.6 7.6 7.6 7.5 7.6 7.6 7.6 7.6 7.6 7.6	Sep 7.3 7.2 7.2 7.1 7.1 7.1 7.1 7.1 6.9	Oct 7.5 7.5 7.5 7.5 7.4 7.4 7.4 7.4 7.4	Nov 8.1 8.1 8.1 8.1 8.1 8.1 8.0 8.1	8. 8. 8. 8. 8. 8.			
1110 1095 1080 1065 1050 1035 1020 1005 990 975 960 945 930 915 900 885	855 Jocass to 1095 to 1080 to 1065 to 1050 to 1050 to 1005 5 to 990 to 975 to 990 to 945 to 990 to 915 to 990 to 915 to 990 to 985 to 990 to 975 to 985 to 975 to 987 to 987 to 9885 to 870	9.2 9.0 9.1 9.1 9.1 9.2 9.1 9.2	9.5 9.4 9.3 9.4 9.4 9.4 9.3 9.4 9.5	Mar 9.7 9.7 9.6 9.6 9.6 9.6 9.6 9.6	Apr 9.7 9.7 9.6 9.6 9.5 9.5 9.4 9.4	May 8.9 9.0 9.0 9.0 9.0 9.0 8.9 8.7 8.8	8.3 8.4 8.5 8.5 8.6 8.6 8.6 8.6 8.6 8.6	Jul 8.2 8.1 8.2 8.3 8.2 8.1 8.1 8.4 8.4	7.8 7.6 7.6 7.6 7.5 7.6 7.6 7.6 7.6 7.6 7.6	Sep 7.3 7.2 7.2 7.1 7.1 7.1 7.1 7.1 6.9	Oct 7.5 7.5 7.5 7.5 7.4 7.4 7.4 7.4 7.4	Nov 8.1 8.1 8.1 8.1 8.1 8.1 8.0 8.1	8. 8. 8. 8. 8. 8.			

Figure 5-4. Station 564.1 Pre Bad Creek Operation (top) Showing DO Stratification vs. Post Operation (bottom) Showing Mixing in the Water Column

		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	De	
	1110 to 1095	9.7	10.0	10.4	10.5	9.9	8.7	8.6	7.8	8.4	8.3	8.6	9.0	
	1095 to 1080	9.6	9.6	10.1	10.6	10.1	9.3	9.0	8.1	8.3	8.2	8.6	9.0	
<u>n</u>	1080 to 1065	9.5	9.5	10.0	10.5	10.3	9.8	9.2	7.6	8.3	8.1	8.6	9.0	
Ε.	1065 to 1050	9.5	9.4	9.9	10.3	10.0	9.4	9.0	7.4	7.8	8.1	8.5	9.0	
Measurement Reading Range (1t msl)	1050 to 1035	9.4	9.3	9.9	10.2	9.4	9.0	8.6	7.1	7.1	8.0	8.7	9.6	
Ď	1035 to 1020	9.5	9.1	9.6	10.0	8.9	8.5	7.6	6.1	6.2	7.4	8.2	9.	
2	1020 to 1005	9.5	9.2	9.5	9.6	8.2	7.6	6.7	4.6	4.0	4.8	7.1	8.	
D)	1005 to 990	9.5	9.3	9.4	9.2	7.9	7.3	6.1	3.1	3.3	2.6	4.8	7.	
3	990 to 975	9.5	9.4	9.2	8.9	7.7	7.3	6.8	3.1	3.5	2.3	2.7	5.	
5	975 to 960	9.6	9.3	8.6	8.6	7.9	6.6	6.0	3.8	4.1	3.9	3.0	4.	
	960 to 945	8.8	9.2	8.7	8.3	7.8	7.0	6.3	4.1	4.9	3.7	3.5	3.	
5	945 to 930	6.7	9.4	8.5	8.0	7.2	6.2	5.7	3.7	4.2	3.0	2.4	2.	
5	930 to 915	5.5	8.0	8.3	7.0	6.4	4.9	4.6	2.9	2.9	2.1	1.8	1.	
3	915 to 900	4.7	5.7	7.4	6.6	5.6	3.8	3.3	2.1	2.1	1.6	1.5	1.	
ġ	900 to 885	4.0	4.9	7.4	5.9	5.2	3.2	2.5	1.2	1.5	0.9	1.1	0.	
	885 to 870	3.3	4.3	6.1	4.0	3.8	3.1	2.3	0.8	0.7	0.4	0.6	0.	
	870 to 855	0.0		7.9	7.2	4.6	1.5	1.7	2.2	0.0	0.0	0.0	0.	
	< 855	Minimum Reading 864.7 ft												
	Jocass	ee D 2 5	64.0: Mon	thly Avera	ged Disso				015 (Post	Bad Creek	Operatio	n)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	De	
	1110 to 1095	9.1	9.3	9.9	9.8	9.0	8.2	8.2	7.9	7.7	7.6	8.1	8.	
	1095 to 1080	8.9	9.2	9.8	9.8	9.1	8.5	8.1	7.7	7.4	7.6	8.2	8.	
0	1080 to 1065	8.9	9.1	9.7	9.6	9.1	8.7	8.2	7.6	7.3	7.6	8.2	8.	
	1065 to 1050	8.9	9.0	9.6	9.5	9.1	8.7	8.2	7.6	7.1	7.5	8.1	8.	
			1000	9.5	9.4	9.0	8.6	8.1	7.3	6.9	7.5	8.1	8.	
	1050 to 1035	8.8	9.0											
26		8.8	9.0 8.9	9.3	9.3	9.0	8.5	7.8	7.0	6.4	7.3	8.0	O.	
200	1050 to 1035								7.0 6.9	6.4 5.9	7.3 6.4	8.0 7.6		
all affiness for	1050 to 1035 1035 to 1020 1020 to 1005	8.8	8.9	9.3	9.3	9.0	8.5	7.8			1004		8.	
an aguar guine	1050 to 1035 1035 to 1020	8.8 8.8	8.9 8.8	9.3 9.1	9.3 9.1	9.0 8.9	8.5 8.4	7.8 7.8	6.9	5.9	6.4	7.6	8. 7.	
of the same of the	1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990	8.8 8.8 8.8	8.9 8.8 8.8	9.3 9.1 8.9	9.3 9.1 8.8	9.0 8.9 8.6	8.5 8.4 8.1	7.8 7.8 7.6	6.9 6.7	5.9 5.8	6.4 5.3	7.6 6.1	8. 7. 5	
all paring supposes	1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975	8.8 8.8 8.8	8.9 8.8 8.8 8.7	9.3 9.1 8.9 8.7	9.3 9.1 8.8 8.4	9.0 8.9 8.6 8.1	8.5 8.4 8.1 7.6	7.8 7.8 7.6 6.8	6.9 6.7 6.1	5.9 5.8 5.4	6.4 5.3 5.0	7.6 6.1 4.6	8. 7. 5. 3.	
nem reading range (in	1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960	8.8 8.8 8.8 8.3 6.8	8.9 8.8 8.8 8.7 8.2	9.3 9.1 8.9 8.7 8.3	9.3 9.1 8.8 8.4 7.9	9.0 8.9 8.6 8.1 7.5	8.5 8.4 8.1 7.6 6.7	7.8 7.8 7.6 6.8 6.0	6.9 6.7 6.1 5.4	5.9 5.8 5.4 4.7	6.4 5.3 5.0 4.1	7.6 6.1 4.6 3.8	8. 7. 5. 3. 2.	
all paring wants	1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945	8.8 8.8 8.8 8.3 6.8 5.7	8.9 8.8 8.8 8.7 8.2 7.6	9.3 9.1 8.9 8.7 8.3 7.8	9.3 9.1 8.8 8.4 7.9 7.3	9.0 8.9 8.6 8.1 7.5 6.8	8.5 8.4 8.1 7.6 6.7 5.8	7.8 7.8 7.6 6.8 6.0 5.3	6.9 6.7 6.1 5.4 4.9	5.9 5.8 5.4 4.7 4.1	6.4 5.3 5.0 4.1 3.3	7.6 6.1 4.6 3.8 3.0	8. 7. 5. 3. 2. 2.	
salement regaing range (it	1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915	8.8 8.8 8.8 8.3 6.8 5.7 3.6 2.7	8.9 8.8 8.7 8.2 7.6 6.8 6.0	9.3 9.1 8.9 8.7 8.3 7.8 7.2 6.4	9.3 9.1 8.8 8.4 7.9 7.3 6.5 5.3	9.0 8.9 8.6 8.1 7.5 6.8 6.3 5.6	8.5 8.4 8.1 7.6 6.7 5.8 5.1	7.8 7.6 6.8 6.0 5.3 4.8 4.0	6.9 6.7 6.1 5.4 4.9 4.2 3.5	5.9 5.8 5.4 4.7 4.1 3.6 2.8	6.4 5.3 5.0 4.1 3.3 2.7 2.3	7.6 6.1 4.6 3.8 3.0 2.3 1.9	8. 7. 5. 3. 2. 2.	
leasurement reading range (it	1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930	8.8 8.8 8.8 8.3 6.8 5.7 3.6	8.9 8.8 8.7 8.2 7.6 6.8	9.3 9.1 8.9 8.7 8.3 7.8 7.2	9.3 9.1 8.8 8.4 7.9 7.3 6.5	9.0 8.9 8.6 8.1 7.5 6.8 6.3	8.5 8.4 8.1 7.6 6.7 5.8 5.1 4.5	7.8 7.8 7.6 6.8 6.0 5.3 4.8	6.9 6.7 6.1 5.4 4.9 4.2	5.9 5.8 5.4 4.7 4.1 3.6	6.4 5.3 5.0 4.1 3.3 2.7	7.6 6.1 4.6 3.8 3.0 2.3	8. 7. 5. 3. 2. 2. 1.	
Measurement Reading Kange (It ms)	1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885	8.8 8.8 8.8 8.3 6.8 5.7 3.6 2.7 2.1	8.9 8.8 8.7 8.2 7.6 6.8 6.0 5.7 5.3	9.3 9.1 8.9 8.7 8.3 7.8 7.2 6.4 5.3 4.8	9.3 9.1 8.8 8.4 7.9 7.3 6.5 5.3 5.0 4.1	9.0 8.9 8.6 8.1 7.5 6.8 6.3 5.6 5.4	8.5 8.4 8.1 7.6 6.7 5.8 5.1 4.5 4.0 2.8	7.8 7.6 6.8 6.0 5.3 4.8 4.0 3.9 3.4	6.9 6.7 6.1 5.4 4.9 4.2 3.5 3.1 2.6	5.9 5.8 5.4 4.7 4.1 3.6 2.8 2.7	6.4 5.3 5.0 4.1 3.3 2.7 2.3 1.9	7.6 6.1 4.6 3.8 3.0 2.3 1.9 1.6	8, 7, 5, 3, 2, 2, 1, 1, 1,	
Medsurement reguling range (it	1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900	8.8 8.8 8.8 8.3 6.8 5.7 3.6 2.7 2.1	8.9 8.8 8.7 8.2 7.6 6.8 6.0 5.7	9.3 9.1 8.9 8.7 8.3 7.8 7.2 6.4 5.3	9.3 9.1 8.8 8.4 7.9 7.3 6.5 5.3 5.0	9.0 8.9 8.6 8.1 7.5 6.8 6.3 5.6 5.4 3.7	8.5 8.4 8.1 7.6 6.7 5.8 5.1 4.5	7.8 7.6 6.8 6.0 5.3 4.8 4.0 3.9	6.9 6.7 6.1 5.4 4.9 4.2 3.5 3.1	5.9 5.8 5.4 4.7 4.1 3.6 2.8 2.7 2.1	6.4 5.3 5.0 4.1 3.3 2.7 2.3 1.9	7.6 6.1 4.6 3.8 3.0 2.3 1.9 1.6 1.2	8, 7, 5, 3, 2, 2, 1, 1, 1,	
Measurement reading range (it	1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870	8.8 8.8 8.8 6.8 5.7 3.6 2.7 2.1 1.7 2.3	8.9 8.8 8.7 8.2 7.6 6.8 6.0 5.7 5.3 3.9	9.3 9.1 8.9 8.7 8.3 7.8 7.2 6.4 5.3 4.8	9.3 9.1 8.8 8.4 7.9 7.3 6.5 5.3 5.0 4.1	9.0 8.9 8.6 8.1 7.5 6.8 6.3 5.6 5.4 3.7 2.9	8.5 8.4 8.1 7.6 6.7 5.8 5.1 4.5 4.0 2.8 2.7	7.8 7.8 7.6 6.8 6.0 5.3 4.8 4.0 3.9 3.4 3.0	6.9 6.7 6.1 5.4 4.9 4.2 3.5 3.1 2.6 2.2 2.8	5.9 5.8 5.4 4.7 4.1 3.6 2.8 2.7 2.1	6.4 5.3 5.0 4.1 3.3 2.7 2.3 1.9 1.5 2.2	7.6 6.1 4.6 3.8 3.0 2.3 1.9 1.6 1.2	8.4 7.4 5.1 3.1 2.1 1.1 1.1 1.4	

Figure 5-5. Station 564.0 Downstream of the Weir Showing Stratification for Pre and Post Operations

The state standard for DO in trout waters is > 6.0 mg/L (instantaneous minimum). Before 1991 there were two instances of surface DO less than 6.0 mg/L: 4.6 mg/L at monitoring Station 558.0 in 1973 and 5.4 mg/L at monitoring Station 556.0 in 1976, which correspond to the first few years after the reservoir was filled in 1973. There were no instances of surface DO values less than 6.0 mg/L after 1991. Average surface water data are included in Appendix B.

Over the entire dataset, there were 4,241 surface measurements assessed; a total of five measurements were below the state standard, which accounts for 0.12 percent of the dataset (Table 5-4). Therefore, surface water DO concentrations in Lake Jocassee fully support the designated use classification (i.e., less than 10 percent criterion excursions).

Lake Jocassee Surface DO (mg/L) Station Minimum Average Maximum 558.7 6.8 8.7 11.2 558.0 4.6 8.7 11.2 559.0 6.9 8.7 11.1 560.0 6.1 8.7 11.8 562.0 6.9 8.8 11.3 565.4 7.4 8.8 11.2 551.0 7.2 9.9 14.4 564.0 6.6 8.8 12.2 564.1 6.6 8.6 11.1 557.0 6.7 8.9 11.6 554.8 6.7 8.9 11.2 556.0 5.4 9.0 11.6

Table 5-4. Dissolved Oxygen in Surface Waters of Lake Jocassee

5.3.2.2 Dissolved Oxygen Saturation

Dissolved oxygen saturation is reported in units of percent and represents the percent of oxygen that has dissolved into water (a value typical of a given temperature). Percent saturation is indicative of the percentage of oxygen dissolved in water at a given temperature and gas pressure. Equilibrium is indicated by 100 percent saturation with higher temperatures decreasing oxygen solubility)⁷. Supersaturation, or saturation greater than 100 percent, may be observed in a reservoir as a result of the photosynthetic process by phytoplankton and other aquatic plants

⁷ https://www.waterboards.ca.gov/water_issues/programs/swamp/docs/cwt/guidance/3110en.pdf

that may be present. Conversely, saturation less than 100 percent in a reservoir can be a function of microbial respiration from decomposition of organic matter.

Lake Jocassee winter DO saturation ranges from 100 percent at the surface to 0 percent at the bottom of the water column. The average winter surface (measured at 0.3 m) DO saturation is 87.2 percent. DO saturation remains constant in the upper top half of the lake and decreases from about 80 percent saturation to near anoxic levels at the reservoir bottom.

The average lake-wide spring surface DO saturation is 98.6 percent. Spring has the highest average DO saturation; spring DO saturation decreases relatively uniformly with depth, with the deepest sections of the lake generally dropping from 100 percent at the surface to 50 percent saturation at the lake bottom.

The average lake-wide summer surface DO saturation is 101.3 percent. Similar to spring values, DO saturation decreases uniformly with depth, but more sharply, generally decreasing from 100 percent at the surface to 35 percent at the lake bottom.

The average lake-wide fall surface DO saturation is 91.5 percent. As expected, fall continues the trend of decreased saturation in the lower portions of the water column, becoming anoxic near the lake bottom.

Dissolved oxygen saturation depth profile tables are provided in Appendix B (DO saturation sampling began in 1998, i.e., post Bad Creek operations) at each of the 12 monitoring stations. Additionally, depth-averaged DO percentages for pre construction, construction, and post construction in the Whitewater River arm are included in Appendix B. While no data exist prior to operations, stratification between the stations in Whitewater River cove is apparent.

Dissolved oxygen percentage in surface samples are shown in Table 5-5. There is no state standard for DO saturation, however, since Lake Jocassee supports a diverse, healthy fish community, it is assumed percentage of DO saturation is suitable for aquatic resources.

DO Saturation (%) Station Minimum Average Maximum 558.7 65.80 93.98 108.50 558.0 68.20 106.00 93.63 559.0 94.30 62.70 109.80 560.0 53.30 93.75 107.70 562.0 66.50 96.59 112.70 565.4 551.0 85.80 95.51 100.80 564.0 58.30 93.84 107.20 564.1 63.00 92.27 108.20 557.0 67.80 95.99 109.60 554.8 74.80 97.26 111.90 556.0 74.00 97.04 110.80

Table 5-5. DO Saturation in Surface Waters of Lake Jocassee

Note: (--) indicates no DO saturation data were collected at Station 565.4

5.3.3 pH

The pH level of a waterbody is a measure of hydrogen ion concentration and is ranked on a scale of 1 (acidic) to 14 (basic). This water quality parameter affects many chemical and biological processes in the water and different organisms have different ranges of pH within which they flourish (USGS 2019). The relationship between phytoplankton and daily pH cycles is well established. Photosynthesis by phytoplankton consumes carbon dioxide during the day, which results in a rise in pH. In the dark, phytoplankton respiration releases carbon dioxide. In productive lakes, carbon dioxide decreases to very low levels, causing the pH to rise (SCDHEC n.d.). Note that the pH of a given waterbody is predominantly determined by the soil and rock type in the area. Surface waters in mountain streams in the vicinity of Lake Jocassee are typically poorly buffered and tend to have low pH values (Abernathy et al. 1994).

Typical Lake Jocassee pH values range between 5 and 10 (averaged throughout the water column) with an average of 6.2, which is considered neutral and indicative of a system with low production (i.e., little potential for algal growth). There is very little difference in pH between seasons and while there is some variation in the water column, there is very little to no pH stratification. Similar to temperature and DO trends, pH concentrations at monitoring station 564.1 are well mixed as a result of Bad Creek operations. Just downstream of the submerged

weir at monitoring Station 564.0, there is some pH variation in the water column post 1991 as the submerged weir limits vertical mixing at this location. pH profiles at this monitoring location are similar pre and post Bad Creek operations. Tables of monthly averaged pH depth profiles for pre and post Bad Creek operational conditions at each of the 12 monitoring locations are provided in Appendix B.

Surface pH values for all stations are included in Table 5-6 and average surface water data are included in Appendix B. Instantaneous pH surface readings were compared against the pH state standard for trout waters (6.0-8.0 Standard Units). Over the entire dataset, there were 4,253 samples assessed; a total of 2 samples were above the state standard (i.e., less than 1 percent of the dataset) and 255 samples were below the state standard (i.e., 6 percent of the dataset). Therefore, surface water pH levels in Lake Jocassee fully support the designated use classification (i.e., within 10 percent criterion excursions).

Surface Phosphorous (Standard Units) Station Minimum Average Maximum 558.7 5.50 6.67 7.60 558.0 5.20 6.56 8.00 559.0 5.30 6.67 7.71 560.0 5.60 6.69 7.80 562.0 5.60 6.76 7.90 565.4 5.60 6.50 8.10 551.0 5.50 6.53 7.90 564.0 5.60 7.90 6.78 564.1 5.60 6.73 7.90 557.0 5.50 6.73 7.80 554.8 5.60 6.84 8.10 556.0 5.63 7.90 6.80

Table 5-6. pH in Surface Waters of Lake Jocassee

5.3.4 Phosphorus

Phosphorus is a common constituent of agricultural fertilizers, manure, and organic wastes in sewage and industrial effluent; too much phosphorus in a waterbody can speed up eutrophication (a reduction in dissolved oxygen in water bodies caused by an increase of mineral and organic nutrients) (USGS 2018c). Because Lake Jocassee is not in a predominantly agricultural or industrial setting, phosphorus values are typically low.

Lake Jocassee phosphorus concentrations at depth range from 0.002 to 0.68 mg/L with an average of 0.01 mg/L. Tables of monthly averaged depth profiles for pre and post Bad Creek operational conditions at each of the 12 monitoring locations are provided in Appendix B. As with other water quality parameters, mixing due to Bad Creek operations creates relatively constant profiles of phosphorus in the water column at monitoring station 564.1.

Table 5-7 below shows a summary of phosphorus for the surface waters of Lake Jocassee over the entire dataset and surface water data tables are included in Appendix B. The state standard for total phosphorous in lakes and reservoirs in the Blue Ridge region of South Carolina shall not exceed 0.02 mg/L.

Over the entire dataset, there were 2,228 surface samples assessed; a total of 228 samples were above the state standard, which accounts for 9.8 percent of the dataset (Table 5-7). Therefore, surface water phosphorus concentrations in Lake Jocassee fully support the designated use classification (i.e., less than 10 percent criterion excursions).

Surface Phosphorous (mg/L) Maximum Station Minimum Average 558.7 0.002 0.007 0.100 558.0 0.002 0.011 0.650 559.0 0.002 0.008 0.056 560.0 0.002 0.009 0.081 0.002 0.009 0.037 562.0 565.4 0.002 0.012 0.082 551.0 0.0050.015 0.100564.0 0.002 0.009 0.057 564.1 0.002 0.011 0.165 557.0 0.002 0.010 0.087 554.8 0.002 0.010 0.057 556.0 0.002 0.009 0.061

Table 5-7. Phosphorus in Surface Waters of Lake Jocassee

5.3.5 Nitrogen

Similar to phosphorus, too much nitrogen (in the forms of nitrate, nitrite, or ammonium) can cause a number of adverse effects. Excess nitrogen can cause overstimulation of growth and aquatic plant and algae. Total Kjeldahl Nitrogen (TKN) is a measure of organic nitrogen (i.e., naturally occurring) and ammonia in a water sample and provides a way to quantify the amount

of nitrogen contained in organic form (USGS 2018e). Nitrate (NO₃) is the product of aerobic transformation of ammonia and is the most common form of nitrogen used by aquatic plants while nitrite (NO₂) is usually not present in significant amounts (SCDHEC n.d.). Total nitrogen is the sum of TKN and NO₂+ NO₃.

The dataset for total nitrogen is limited in Lake Jocassee relative to other water quality parameters. Of the nearly 2,000 measurements recorded for NO₂ and NO₃, there are only 545 readings where TKN was measured, therefore, the dataset for total nitrogen includes 545 datapoints. Tables of monthly averaged total nitrogen depth profiles for pre and post Bad Creek operational conditions at each of the 12 monitoring locations are provided in Appendix B.

Table 5-8 below shows a summary of total nitrogen for the surface waters of Lake Jocassee over the entire dataset and surface water data tables are included in Appendix B. The state standard for total nitrogen for lakes and reservoirs in the Blue Ridge region of South Carolina shall not exceed 0.35 mg/L. Over the entire dataset, there were 545 surface samples assessed; a total of 33 samples were above the state standard, which accounts for 6.1 percent of the dataset⁸ (Table 5-8). Therefore, surface water total nitrogen concentrations in Lake Jocassee fully support the designated use classification (i.e., less than 10 percent criterion excursions).

Table 5-8. Total Nitrogen in Surface Waters of Lake Jocassee

Lake Joc	assee Surface	Total Nitroge	en (mg/L)
Station	Minimum	Average	Maximum
558.7	0.11	0.23	0.56
558	0.11	0.23	0.59
559	0.14	0.26	0.78
560	0.11	0.23	0.55
562	0.13	0.24	0.56
565.4	0.13	0.21	0.47
551	0.12	0.16	0.20
564	0.11	0.22	0.51
564.1	0.18	0.22	0.34
557	0.11	0.21	0.54
554.8	0.12	0.21	0.48
556	0.11	0.22	0.53

⁸ Note that of the 33 total nitrogen excursions, only one excursion was caused by elevated inorganic nitrogen; the remaining excursions were due to elevated organic nitrogen (i.e., TKN), which is naturally occurring.

5.3.6 Chlorophyll a

Chlorophyll allows plants (including phytoplankton [algae]) to photosynthesize, i.e., use sunlight to convert simple molecules into organic compounds. Chlorophyll a is the predominant type of chlorophyll found in green plants and is a surrogate for the amount of algae growing in a waterbody; it can be used to classify the trophic condition of a waterbody (USEPA 2022b). One of the symptoms of degraded water quality condition is the increase of algae biomass as measured by the concentration of chlorophyll a. Typically, increased chlorophyll a is a result of external nutrient inputs from surface runoff from agricultural areas with fertilizers, septic systems, sewage treatment plants, and urban runoff (USEPA 2022a). However, the Lake Jocassee watershed is largely undisturbed (i.e., forested), therefore, does not have these input sources. Rather, chlorophyll a concentrations in Lake Jocassee stem from internal loading of phosphorus from inside the lake. As stratification develops during the summer months, cooler oxygenated water settles to the bottom of the reservoir. The oxygen is consumed over the summer and fall months due to the decomposition of organic matter and uptake from fish. When this happens, it triggers the release of phosphorous from the organic matter and sediments at the bottom of the reservoir. Because Lake Jocassee is oligotrophic (i.e., high dissolved oxygen, lower amounts of organic matter, and low levels of phosphorus), phosphorus input from internal loading does not significantly increase the total phosphorus levels (or chlorophyll a concentrations) in Lake Jocassee. Tables of monthly averaged chlorophyll a depth profiles for pre and post Bad Creek operational conditions at each of the 12 monitoring locations are provided in Appendix B.

Table 5-9 below shows a summary of cholorphyll a for the surface waters of Lake Jocassee over the entire dataset and surface water data tables are included in Appendix B. The state standard for chlorophyll a for lakes and reservoirs in the Blue Ridge region of South Carolina Shall not exceed 10 μg/L. Over the entire dataset, there were 1,753 surface samples assessed; all samples were below the state standard, which accounts for 100 percent of the dataset (Table 5-9). Therefore, surface water chlorophyll a concentrations in Lake Jocassee fully support the designated use classification (i.e., less than 10 percent criterion excursions).

Lake Jocassee Surface Chlorophyll (ug/L) Station Minimum Average Maximum 558.7 0.46 2.06 5.67 558.0 0.50 2.05 5.44 559.0 0.49 1.92 4.46 560.0 0.28 2.07 5.61 562.0 0.63 2.76 7.53 565.4 0.55 2.38 6.64

1.01

2.13

2.06

2.00

2.86

2.46

1.86

6.54

4.63

5.17

6.61

7.46

0.25

0.53

0.65

0.36

0.65

0.04

Table 5-9. Chlorophyll a in Surface Waters of Lake Jocassee

5.3.7 Conductivity

551.0

564.0

564.1

557.0

554.8

556.0

Conductivity is a measure of the ability of water to pass an electrical current; because dissolved salts and other inorganic chemicals conduct electrical current, conductivity increases as salinity increases, therefore it is an indirect measure of the saltiness of the water (USEPA 2022b). Conductivity is also directly related to rainfall runoff events as tributary inflows to Lake Jocassee carry these dissolved salts and inorganic chemicals from the watershed into the reservoir. Since rainfall is consistent through the year in the region, conductivity values in Lake Jocassee do not vary seasonally but do increase during periods of higher rainfall runoff. For example, during drier periods, conductivity in Lake Jocassee is very low ranging from 2.0 to 5.0 μ S/cm. During wetter periods, conductivity ranges from 85.5 to 275 μ S/cm. The overall annual average conductivity in the reservoir was approximately 18.1 μ S/cm.

Similar to the other water quality parameters, conductivity values at monitoring station 564.1 on the upstream side of the submerged weir are well mixed due to Bad Creek operations. Downstream of the submerged weir at monitoring station 564.0, there is some variability in conductivity throughout the water column but the conductivity profiles at this location are similar pre and post Bad Creek operations indicating limited vertical mixing due to the submerged weir.

Tables of monthly averaged conductivity profiles for pre and post Bad Creek operational conditions at each of the 12 monitoring locations are provided in Appendix B⁹.

Table 5-10 below shows a summary of conductivity for the surface waters of Lake Jocassee over the entire dataset and surface water data tables are included in Appendix B. While there is no state standard for specific conductivity, concentrations less than 500 μ S/cm are generally considered to be suitable for aquatic species in southern Appalachian waters (USEPA 2020). The maximum surface conductivity measured was 34 μ S/cm and the minimum was 2.0 μ S/cm (Table 5-10); since Lake Jocassee supports a diverse, healthy fish community, it is assumed this range of conductivity is suitable for aquatic resources.

Lake Jocassee Conductivity (uS/cm) Station Minimum Average Maximum 558.7 9.10 18.33 24.00 558.0 4.70 18.16 32.00 559.0 9.00 18.23 24.00 560.0 8.00 17.58 34.00 562.0 9.10 18.29 34.00 565.4 12.00 18.05 24.00 551.0 2.00 10.65 34.00 564.0 8.00 17.90 34.00 564.1 9.00 18.41 26.00 557.0 9.00 17.80 34.00 24.00 554.8 8.50 17.85 556.0 8.50 17.38 24.00

Table 5-10. Conductivity in Surface Waters of Lake Jocassee

5.3.8 Turbidity

Turbidity is a measure of the amount of suspended particles in water (quantified by the amount of light scattered) and is typically measured in Nephelometric Turbidity Units (NTU). While turbidity is not an inherent property of water like temperature and DO, it is recognized as an indicator of environmental health of a waterbody (USGS 2018d). Turbidity levels in a waterbody are typically episodic in nature and are not spatially or temporally consistent. Generally, turbidity

⁹ Erroneously high conductivity readings at or near the lakebed were removed from the dataset as the conductivity measuring device likely impacted the lakebed, stirring up sediment leading to false readings.

values in a river or lake increase proportionally with increased suspended sediment in the water column. Under natural conditions, suspended sediment load contribution to a receiving waterbody increases during a rainstorm/runoff event where sediment is eroded from upland areas or stream banks and flows into surface waters. Another major contributor to upland soil/sediment erosion is construction activities; these activities are often short-lived but can result in large amounts of soil released from the land that is subsequently transported to adjacent waterbodies. Depending on the magnitude of the rain event, amount and grainsize of sediment, proximity to the point of entry, and character of a waterbody, sediment can settle out quickly after the event or may remain suspended in the water column for some time after the event, resulting in prolonged elevated turbidity, which can be detrimental to aquatic habitat. Because turbidity is simply the amount of light that can pass through water, turbidity values can increase due to any solid particles in the water, including organic material and microscopic organisms.

During original Project construction, waters of the Whitewater River cove were directly impacted by construction activities. Historical turbidity data in the Whitewater River cove at three monitoring stations (see Figure 5-1) were evaluated to determine if original construction activities resulted in a noticeable increase in turbidity values and if so, estimate how far downstream impacts extended and for how long turbidity was elevated; this was done by comparing turbidity values from (1) pre construction (<1985), construction (1985-1991)¹⁰, and post construction (1992-2015) (see Table 5-11).

In general, turbidity data were collected once per month, however, there are notable gaps in datasets (several months or years at a time) depending on the station. Measurements were taken at varying depths along the vertical profile (i.e., varied between collection events). Data gaps and vertical depth measurement locations are shown on the turbidity data plots provided in Appendix C. Note that turbidity does not show spatial trends or patterns of stratification such as temperature and DO; turbidity measurements represent a snapshot in time and are typically driven by external factors, therefore, data points do not need to be contiguous in space or time for confidence in interpretation. Where it was obvious that a dataset had a falsely elevated

¹⁰ Duke Energy is considering expanding the existing submerged weir with newly excavated rockfill from the proposed Bad Creek II Complex in part to help mitigate the impacts of a second I/O structure in Whitewater River cove. Assessing pre construction turbidity data and estimating impacts to turbidity during original construction may help inform water quality conditions during proposed construction of the Bad Creek II Complex.

bottom reading (due to resuspension of bed sediment) or an erroneously high measurement in the water column when compared with data above and below it, values were removed from the dataset. Of 6,682 data points, 28 data values were removed, representing less than 1.0 percent of the dataset.

Station Pre construction **During construction** Post construction 564.1 N/A Jan 1988 – Dec 1991 Jan 1992– Jan 2015 564.0 Aug 1976 – Oct 1985 Feb 1986 - Dec 1991 Jan 1992 – Jan 2015 Sept 1973 - Oct 1985 560.0 Feb 1986 - Dec 1991 Jan 1992 – Jan 2015

Table 5-11. Monitoring Stations and Years of Data

5.3.8.1 Results

Turbidity results are summarized by monitoring station in the sections below. To evaluate turbidity impacts at depth, this parameter was evaluated throughout the water column. Three sets of turbidity figures are provided in Appendix C for each of the three monitoring stations and include;

- Turbidity values vs. lake elevation and year for pre construction, construction, and post construction periods (three separate figures);
- Turbidity values vs. lake elevation and year for the full dataset;
- Depth-averaged turbidity values compared to the 10 NTU state standard.

5.3.8.1.1 Station 564.1

As mentioned previously, Station 564.1 is located just downstream of the Project I/O structure and immediately upstream of the submerged weir. This station receives direct inflow from the Whitewater River and is approximately 45 meters (148 ft) deep. Details of data from Station 564.1 are provided in Table 5-12. Turbidity was not measured at Station 564.1 until January 1988, therefore, there is no pre construction dataset. During the construction period, when elevated turbidity values were observed, they were elevated consistently in the water column on the same days (i.e., rather than randomly in the water column or across many different days); this likely indicates episodic events contributing increased sediment to the area (e.g., construction activities). In general, turbidity values were elevated lower in the water column vs. near the surface on all days where elevated turbidity values were observed. The depth-averaged turbidity reading at this station during the construction period was 18.5 NTU with a standard deviation

[stdev] of 51 NTU, indicating significant variance in the dataset. The dataset from Station 564.1 contains the highest turbidity values from any period or monitoring station. There were three notable instances where turbidity was elevated for several readings in a row:

- January September 1988 (average 65 NTU); the first two readings at this station (January and February 1988) had the highest values at 476 NTU (Jan) and 202 NTU (February). Consistently elevated readings over a nine-month period are likely the results of construction activities. These values continued to decrease each month from March through September.
- July December 1990 Nine consecutive readings with an average of 26 NTU over the nine readings.
- April August 1989 (average 25 NTU).

Additionally, there was one measurement on February 21, 1990, with elevated turbidity; however, because elevated turbidity values were not noted in the measurements before or after this day, this was likely due to a rain event or very short-lived construction event.

Under post construction conditions, turbidity values at all depths averaged 0.8 NTU (stdev 2.0). The maximum turbidity level measured during this time was 28 NTU.

• There were seven measurements that exceeded the state standard of 10 NTU over the post construction dataset. Six of those seven measurements occurred on the same day - August 17, 1994. This event was correlated with Tropical Storm Beryl, which made landfall in the southeastern U.S. on August 16th. The state of South Carolina suffered more damage than any other state¹¹.

Overall, turbidity was consistently lower when compared to values from the construction period (see Table 5-12).

Table 5-12. Monitoring Station 564.1 Data Collection Details

Period	Max Depth (m)	Average NTU	Stdev NTU	Max NTU	Count
Pre construction	N/A	N/A	N/A	N/A	N/A
Construction	45	18.5	51.0	476	480
Post construction	44	0.8	2.0	28	890

¹¹ https://en.wikipedia.org/wiki/Tropical Storm Beryl (1994)

5.3.8.1.2 Station 564.0

Pre construction values were measured on average once per month, however, there are several periods without recorded data; the depth-averaged turbidity at Station 564.0 over the dataset was 6.6 NTU (stdev 10) and the maximum was 71 NTU (July 26, 1983). Details of data from Station 564.1 are provided in Table 5-13. Note that Project construction had not yet begun, therefore, these episodes of higher turbidity in the water column were likely due to rainfall events resulting in high inflows from Whitewater River. Elevated values were episodic and specific to the day the measurement was taken (i.e., high NTU values did not carry over to the following measurement). Higher turbidity values were associated with the same six days, listed below (all maximum values were recorded near the bottom of the lake¹²).

- 8/10/1976 (max 50 NTU)
- 3/15/1977 (max 48 NTU)
- 5/16/1978 (max 60 NTU)
- 9/12/1978 (max 38 NTU)
- 7/26/1983 (max 71 NTU)
- 8/27/1985 (max 40 NTU)

During the construction period, the average turbidity was lower than during the pre construction period with an average of 2.9 NTU (stdev 5.2) and a maximum measurement of 57 NTU. All higher NTU readings (within the water column) were associated with the same days and it is noteworthy that all elevated NTU values were at the bottom depth. The elevated turbidity values noted for Station 564.1 (extended periods of time in 1988 and 1990) were not observed at Station 564.0, indicating that elevated turbidity did not extend downstream into Whitewater River cove.

Post construction values at Station 564.0 were lower than pre construction and construction periods (see Table 5-13) with an average of 0.7 NTU (stdev 1.0) and a maximum reading of 14.0 NTU on February 20, 2012. (Note that this elevated turbidity value was from a surface measurement and decreased to <1.0 NTU just below the surface measurement).

¹² Continued decomposition of organic material early in the life of Lake Jocassee also likely contributed to elevated turbidity values

1.2

14

1353

Period	Max Depth (m)	Average NTU	Stdev NTU	Max NTU	Count
Pre construction	40	6.6	10	71	382
Construction	74	2.9	5.2	57	545

0.5

74

Table 5-13. Monitoring Station 564.0 Data Collection Details

5.3.8.1.3 Station 560.0

Post construction

During the pre construction period, the depth-averaged turbidity was 3.0 NTU (stdev 2.9) and the maximum turbidity value was 19 NTU. Note that half of the elevated turbidity values (i.e., those exceeding 10 NTU) were from a single day on September 12, 1978 (average 13.25 NTU) and includes the maximum reading. During the construction period, there was only one value that exceeded 10 NTU (bottom reading) on February 17, 1988, and during the post construction period, the average NTU was 0.7 (stdev 1.0) with a maximum NTU of 11.6, which was also a bottom reading. Details for monitoring Station 560.0 are included in Table 5-14.

Table 5-14. Monitoring Station 560.0 Data Collection Details

Period	Max Depth (m)	Average NTU	Stdev NTU	Max NTU	Count
Pre construction	60	3	2.9	19	593
Construction	82	1.5	1.0	13	462
Post construction	78	0.7	1.0	11.6	621

5.3.8.1.4 Surface Turbidity

In addition to values at depth, surface turbidity values were assessed and are provided in Table 5-15 and surface water data tables are included in Appendix B. A boxplot of surface turbidity data over all time periods is provided in Figure 5-6 to show a general summary and distribution of surface turbidity at the three stations. A boxplot is a standardized way of displaying the distribution of a dataset; it provides a five number summary, which includes the minimum, first quartile, median, third quartile, and maximum value of a dataset; the box itself extends from the first to the third quartile and a line is drawn within the box to indicate the median value of the dataset. The whiskers extend to the minimum and maximum numbers in the dataset that are not considered outliers, while outliers are plotted individually above and below the box.

	Lake Jocassee	Turbidity (N	TU)
Station	Minimum	Average	Maximum
560.0	0.00	1.90	17.00
564.0	0.00	1.96	47.00
564.1	0.00	1.61	19.00

Table 5-15. Turbidity in Surface Waters of Lake Jocassee

In freshwater lakes in South Carolina, turbidity is not to exceed 25 NTU provided existing uses are maintained; however, for trout waters, the threshold is not to exceed 10 NTU or 10 percent above natural conditions, provided existing uses are maintained. Over the entire dataset, there were 550 surface samples assessed; a total of 9 samples were above the state standard (i.e., 10 NTU), which accounts for 0.02 percent of the dataset (this also includes data collected during construction). Therefore, surface water turbidity levels in Lake Jocassee fully support the designated use classification (i.e., less than 10 percent criterion excursions).

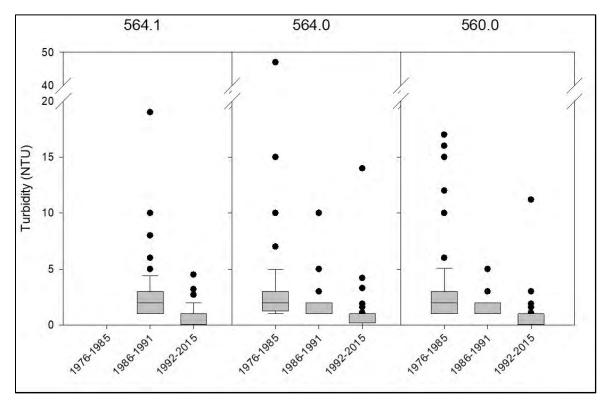


Figure 5-6. Surface Turbidity in the Whitewater River Arm Over Construction Periods

5.4 Summary Pre construction vs. Post Construction Comparison

Overall, the effect of Bad Creek operations on Lake Jocassee water quality is negligible except for the effects seen at the monitoring station upstream of the submerged weir in Whitewater River cove. Tables of water quality data at the three stations in the Whitewater River cove over the three construction periods are included in Appendix B to show trends in stratification patterns upstream and downstream of the weir and turbidity data are included in Appendix C.

Upstream of the submerged weir, data from monitoring Station 564.1 indicate mixing (from Bad Creek operations), which eliminates all stratification. Temperature and DO values have a uniform profile within the water column at Station 564.1. Immediately downstream of the submerged weir at location 564.0, post Bad Creek operation condition datasets show stratification and trends that follow trends at monitoring locations in other portions of the lake; therefore, based on this desktop review, results indicate that the submerged weir confines mixing to the upstream portion of the Whitewater River cove upstream of the submerged weir and effects of operations are not noted downstream of the weir.

Temperature - Prior to 1991 (pre operations), temperatures averaged throughout the water column in Lake Jocassee averaged between 11.7 and 15.3°C with a standard deviation around 5°C. After 1991, average temperatures in Lake Jocassee averaged between 12.1 and 17.2 °C with a standard deviation around 5°C as shown in Table 5-16. There is little difference between the pre and post operation temperature of Lake Jocassee. The variance in temperature is also reasonably consistent at each station between pre and post operations. As discussed previously, outside of Station 564.1, there are no discernable patterns that would suggest Lake Jocassee temperatures are affected by Bad Creek operations or outside the range of natural conditions and there is no pattern of warming or cooling between time periods (variation between time periods on average is less than one degree); therefore, Project operations have not impacted water temperatures in Lake Jocassee. The notable exception is the average temperature change from pre to post operations at monitoring Station 564.1; this station shows an increase of approximately 3.3°C (see Table 5-16).

Table 5-16. Average and Standard Deviation of Depth-Averaged Temperatures, Pre vs. Post Operations

		Tempera	ture (°C)		
Monitoring	Pre ope	erations	Post op	erations	Difference
Station	Average	Standard Deviation	Average	Standard Deviation	Difference
558.7	12.5	4.9	12.1	4.8	-0.4
558.0	12.9	5.2	13.5	5.4	0.6
559.0	12.5	5.0	12.1	4.9	-0.4
560.0	11.7	4.6	12.3	4.9	0.6
562.0	15.3	5.6	16.0	5.3	0.7
565.4	14.1	5.4	13.1	4.7	-1.0
551.0	13.5	5.8	14.8	7.3	1.3
564.0	12.1	4.7	12.7	4.9	0.6
564.1	13.9	5.6	17.2	5.5	3.3
557.0	11.7	4.5	12.2	4.8	0.5
554.8	14.6	5.5	14.2	5.3	-0.4
556.0	12.8	4.9	13.4	5.2	0.6

Dissolved Oxygen - There is little difference between the pre and post operation conditions of Lake Jocassee. The variance in DO at each station is also reasonably consistent between pre and post operations. As discussed previously, outside of Station 564.1, there are no discernable patterns that would suggest Lake Jocassee DO values are affected by Bad Creek operations or outside the range of natural conditions and there is no pattern of increasing or decreasing DO between time periods (variation between time periods on average is less than 0.5 mg/L); therefore, Project operations have not impacted water temperatures in Lake Jocassee. The notable exception is the average change from pre to post operations at monitoring Station 564.1, which is immediately downstream of the Project I/O structure; this station shows an increase of approximately 1.1 mg/L and the standard deviation dropped from 3.2 to 0.8, indicating there is little variation in DO at that station due to mixing (Table 5-17).

Table 5-17. Average and Standard Deviation of Surface Dissolved Oxygen, Pre vs. Post Operation

Monitoring	Pre ope	rations	Post operations		Difference
Station	Average	Standard Deviation	Average	Standard Deviation	Difference
558.7	6.9	2.4	6.9	1.9	0
558.0	6.5	2.8	7.0	1.8	0.5
559.0	6.5	2.7	6.5	2.2	0
560.0	6.7	2.5	6.4	2.3	-0.3

	≺

		Dissolved O	Oxygen (mg/L)			
Monitoring	Pre operations		Post of	Post operations		
Station	Average	Standard Deviation	Average	Standard Deviation	Difference	
562.0	7.8	2.7	7.9	2.0	0.1	
565.4	7.3	2.9	7.1	2.5	-0.2	
551.0	9.9	1.3	9.6	1.6	-0.3	
564.0	6.4	3.0	6.2	2.6	-0.2	
564.1	7.4	3.2	8.5	0.8	1.1	
557.0	6.8	2.9	6.8	2.3	0	
554.8	7.7	3.1	7.4	2.8	-0.3	
556.0	7.4	2.9	7.3	2.6	-0.1	

Turbidity - Where data are available, NTU values are higher during pre construction periods than during construction and post construction periods. This is true for depth-averaged turbidity (Table 5-18) as well as surface water turbidity (Table 5-19). Pre construction data show episodic elevated turbidity values likely associated with high surface water inflows during storm events from surface runoff. Additionally, turbidity would have been naturally elevated during that time as organic material decomposed in the years following initial reservoir filling. Over the three stations monitored, the highest values of turbidity are associated with monitoring Station 564.1 immediately downstream of the Project (closest to the Whitewater River mouth) during Project construction; however, these elevated turbidity values are not noted at monitoring Station 564.0, indicating that elevated turbidity does not extend downstream into Whitewater River cove.

Additionally, data indicate that elevated turbidity values typically returned to baseline for the following measurement, indicating rapid recovery from elevated values back to normal values (i.e., within one month conservatively, based on sampling frequency). There were several periods of prolonged elevated turbidity values noted at Station 564.1 during the construction period, therefore, these data are assumed to be associated with construction activities. Future construction activities at Bad Creek could increase turbidity in the Whitewater River cove; however, these events would likely be short-lived and based on previous data, recovery in the water column is expected to be rapid.

Table 5-18. Depth-Averaged Turbidity Values (NTU) over Construction Periods

Period	Station 564.1	Station 564.0	Station 560.0
Pre construction	N/A	6.6	3.0
Construction	18.5	2.9	1.5
Post construction	0.8	0.5	0.7

Table 5-19. Average and Standard Deviation of Surface Turbidity, Pre vs. Post Operation

	Temperature (°C)					
Monitoring	Pre ope	Pre operations		erations		
Station	Average	Standard Deviation	Average	Standard Deviation		
560	2.5	2.7	1.0	1.6		
564	2.6	4.4	1.0	1.6		
564.1	2.8	3.1	1.0	0.9		

6 Howard Creek

Howard Creek is a high-gradient, third-order, headwater mountain stream. It flows from about 3,200 ft msl to 2,000 ft msl at its confluence with Limber Pole Creek and Lake Jocassee. It is typically less than 30 ft wide and 1.65 ft deep, consists mostly of pools and riffles with steep sections of chutes and waterfalls, and has an average gradient of 8.6 percent (Miller et al. 1997). Howard Creek is a popular recreation stream known for Brook Trout and Rainbow Trout fishing.

6.1 Data Analysis Methods

Pursuant to Article 34 of the original license for the Project (issued to Duke Power Company in 1977) water quality sampling studies in Howard Creek have been carried out, mainly by Clemson University, to assess impacts to Howard Creek associated with construction and operation of the Project.

This section provides an overview of 1993 data presented in Abernathy et al. (1994), which are considered representative of existing (baseline) conditions. While a comparison of water quality between pre and post construction conditions is provided herein (see Section 6.4), water quality data from previous years are documented elsewhere. The body of literature for Howard Creek water quality monitoring is relatively large and there are many notable reports describing water

quality for pre construction, construction, and post construction conditions. References for these germane reports are listed below in Table 6-1.

This report provides a summary of: (1) results from January – December 1993, which represent water quality data for Howard Creek under existing (i.e., operational) conditions and (2) changes observed in water quality between pre construction and post construction data, as presented by Abernathy et al. (1994). While baseflow water quality in Howard Creek and major tributaries was monitored from near Howard Creek's confluence with Lake Jocassee to its headwaters upstream of the Project, this data summary only considers water quality downstream of the Project as upstream waters are not considered impacted by the Project.

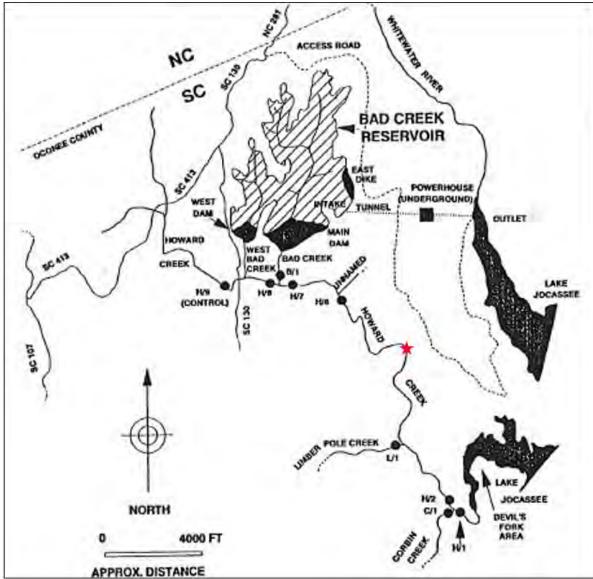
Table 6-1. Previous Water Quality Reports for Howard Creek

Period	Reference
	Dysart, B.C. III, C.S. Peralta, A.D. Ranson, A.R. Abernathy & J.B. Atkins, Howard Creek Pre construction Water Quality Monitoring: 1980, Rept. No. DPC/HC-TCR-02-0481 by Clemson University for Duke Power Co. (1981).
	Dysart, B.C. III & A.R. Abernathy, Howard Creek Pre- and Early-Construction Water Quality Monitoring: 1981, Rept. No. DPC/HC-TCR-04-0782 by Clemson University for Duke Power Co. (1982).
	Iseman, W.E., A.R. Abernathy, B.C. Dysart III & K.B. Chandler, Water Quality Investigation for the Howard Creek Basin: January 1974-June 1975, Rept. No. DPC/BC-SPR-07-0675 by Clemson University for Duke Power Co. (1975).
Pre Construction	Langdon, C.H. Ill, B.C. Dysart III, R.C. Roberts, R.D. Hatcher Jr. & R.C. Richards, Bottom Sediment and Discharge Studies for the Howard Creek Basin: January-June 1974, Rept. No. DPC/BC-SPR-06-0575 by Clemson University for Duke Power Co. (1975).
Pre Coi	Sigmon, E.B. & B.C. Dysart III, Hydrological Investigations for the Howard Creek Basin from July 1974-September 1975: Analysis of Baseflow and Storm Response, Rept. No. DPC/BC-SPR-09-1275 by Clemson University for Duke Power Co. (1975).
	Swit, F.J., B.C. Dysart III, R.D. Hatcher Jr. & C.H. Langdon III, Hydrological and Fluvial Sediment Investigations tor the Howard Creek Basin: April-December 1973, Rept. No. DPC/BC-SPR-01-1273 by Clemson University for Duke Power Co. (1973).
	Abernathy, A.R. & B.C. Dysart III, "Water Quality Investigation," Application for License for Bad Creek Pumped Storage Project, Vol. II, Exhibit W, App. C, Ch. IV, Duke Power Co., Charlotte (1974).
	Dysart, B.C. III, "Stream Flow and Hydrologic Analysis," Application for License for Bad Creek Pumped Storage Project, Vol. II, Exhibit W, App. C, Ch. Ill, Duke Power Co., Charlotte (1974).
ion	Dysart, B.C. III & A.R. Abernathy, Howard Creek Early-Construction Water Quality Monitoring: 1982, Rept. No. DPC/HC-TCR-07-0683 by Clemson University for Duke Power Co. (1983).
Construction	Dysart, B.C. III & A.R. Abernathy, Howard Creek Early-Construction Water Quality Monitoring: 1983, Rept. No. DPC/HC-TCR-09-0684 by Clemson University for Duke Power Co. (1984).
Coi	Dysart, B.C. III & A.R. Abernathy, Howard Creek Early-Construction Water Quality Monitoring: 1984, Rept. No. DPC/HC-TCR-11-0785 by Clemson University for Duke Power Co. (1985).

Period	Reference
	Dysart, B.C. III, A.R. Abernathy & D.R. Kosik, Howard Creek Early-Construction Water Quality Monitoring: 1985, Rept. No. DPC/HC-TCR-14-0286 by Clemson University for Duke Power Co. (1986).
	Dysart, B.C. III, A.R. Abernathy & M.T. Ruane, Howard Creek Major-Construction-Phase Water Quality Monitoring: 1986, Rept. No. DPC/HC-TCR- 19-0687 by Clemson University for Duke Power Co. (1987).
	Dysart, B.C. III, A.R. Abernathy & M.A. Lancaster, Howard Creek Major-Construction-Phase Water Quality Monitoring: 1987, Rept. No. DPC/HC-TCR-22-0588 by Clemson University for Duke Power Co. (1988).
	Dysart, B.C. III, A.R. Abernathy & T.K. Ziegler, Howard Creek Major-Construction-Phase Water Quality Monitoring: 1988, Rept. No. DPC/HC-TCR-26-0889 by Clemson University for Duke Power Co. (1989).
	Dysart, B.C. Ill, A.R. Abernathy & B.S. West. Howard Creek Major-Construction-Phase Water Quality Monitoring: 1989, Rept. No. DPC/HC-TCR-30-0890 by Clemson University for Duke Power Co. (1990).
	Abernathy, A.R., B. C. Dysart Ill & W.H. Jenkins, Howard Creek Construction-Phase Water Quality Monitoring: 1990, Rept. No. DPC/HC-TCR-35-0391 by Clemson University for Duke Power Co. (1991).
	Abernathy, A.R., B. C. Dysart Ill & B.S. Rudolph, Howard Creek Construction-Phase Water Quality Monitoring: 1991, Rept. No. DPC/HC-TCR-43-0692 by Clemson University for Duke Power Co. (1992).
	Abernathy, A.R., P.A. Augspurger & B.C. Dysart III, Howard Creek Post-construction Water Quality Monitoring: 1993, Rept. No. DPC/HC-TCR-46-0793 by Clemson University for Duke Power Co. (1993).
ruction	Ward, A. B., Stream Water Quality Changes Associated with Construction of the Bad Creek Project Dams, Special Project Rept. for the College of Engineering, Clemson University, Clemson, S.C. (1991).
Post Construction	Wood, T. H., The Environmental Significance of Elevated Concentrations of Iron, Aluminum and Calcium in the Bad Creek Project Dam Seepage Flows, M.S. thesis, Clemson University, Clemson, S.C. (1993).
Pos	Ziegler, T.K. & B.C. Dysart Ill, Investigation of Hydrology and Sediment Yield at a Major Construction Site In Steep Mountain Terrain, Rept. No. DPC/HC-MTH-34-1290 by Clemson University for Duke Power Co. (1990).

6.2 Water Quality Monitoring Stations

As described in Abernathy et al. (1994), water quality parameters were measured at several points along the length of Howard Creek; locations and specific parameters measured were determined in coordination and agreement with FERC, SCDHEC, and the South Carolina Department of Natural Resources (SCDNR) (formerly SC Wildlife and Marine Resources Department). During sampling, agency personnel were kept apprised of water quality monitoring activities and annual reports were submitted (Abernathy et al. 1994). The following five stations (shown on Figure 6-1) were monitored (listed from downstream to upstream) during the study:


- H/1: Between Corbin Creek and Lake Jocassee
- H/2: Between Limber Pole Creek and Corbin Creek
- H/6: Downstream from the Old Schoolhouse Road and an unnamed tributary entering from the east and upstream from Limber Pole Creek
- H/7: Just downstream from Bad Creek

• H/9¹³: Just upstream of Highway 130

Water quality parameters that were measured on a monthly basis include the following: water temperature, DO, pH, specific conductance, total alkalinity, total suspended solids (TSS), turbidity, flow rate/discharge, 5-day biochemical oxygen demand (BOD₅), fecal coliform, and total hardness. Water quality parameters that were measured on a quarterly basis include: ammonia nitrogen, nitrate/nitrite nitrogen, orthophosphate, and total phosphorus. Details on methodology used to collect water quality parameters are included in Abernathy et al. (1994).

¹³ Because Station H/9 is upstream of the Project, it is not considered in this study; however, results are included for completeness.

Note: red star indicates location of USGS 02184475 retired gage on Howard Creek.

Figure 6-1. Howard Creek Monitoring Sites (Abernathy et al. 1994)

6.3 Present-day Water Quality Summary Results

Flow data from the now-retired USGS gage on Howard Creek (USGS 02184475 HOWARD CREEK NEAR JOCASSEE, SC), which drains an area of approximately 2.16 mi², for the available period of record (1989-1996) are provided Table 6-2. The location of the retired gage is shown on Figure 6-1 indicated by a red star symbol. USGS 02184475 is located between H/6 and H/2; data from the retired gage are comparable to flows measured during the Abernathy et al. (1994) study as indicated in Table 6-3 below (from 1993). Water quality information from each

month of the year (1993) at each location is included in Table 6-4 through Table 6-8. A description and numerical range of all water quality parameters is included in Table 6-9.

Table 6-2. Annual Flow Data for Howard Creek (1989-1996)

Water Year	Discharge (cfs)
1989	10.9
1990	12.9
1991	6.85
1992	7.08
1993	7.79
1994	6.08
1995	6.06
1996	7.4

Source: USGS 02184475 HOWARD CREEK NEAR JOCASSEE, SC https://waterdata.usgs.gov/nwis/inventory/?site_no=02184475&agency_cd=USGS

Table 6-3. Baseflow Discharge (cfs) for Howard Creek (1993)

Station	Date	H/1	H/2	H/6	H/7	H/9
1	15 JAN	50.53	32.05	16.89	12.65	9.34
2	08 FEB	38.71	19.81	11.11	10.32	5.63
3	01 MAR	36.85	26.02	9.53	9.29	6.27
4	07 APR	48.35	32.55	16.86	11.36	8.70
5	06 MAY	45.17	33.97	17.87	13.83	9.97
6	01 JUN	28.42	15.96	8.20	8.68	3.99
7	07 JUL	16.21	12.06	5.05	5.45	2.07
8	05 AUG	15.59	9.56	6.19	4.97	1.60
9	08 SEP	12.52	10.08	4.92	4.09	1.36
10	06 OCT	9.26	9.98	3.56	3.09	0.86
11	03 NOV	98.26	8.89	3.05	3.25	0.86
12	16 DEC	13.33	12.69	6.15	15.85	2.19

Notes:

- (1) Discharge values obtained for Stations H/1, H/6, and H/9 are considered to be of good quality and reliable due to cross-sections which are reasonably well suited for discharge measurements.
- (2) Discharge values obtained for Station H/2 are believed to be higher than actual discharge at times due to cross-section conditions which are not well suited for obtaining accurate velocity measurements. Station H/2 has a significant amount of lateral flow. Since early 1981, special care was exercised to minimize the deviations at this Station by noting the angle of flow at each vertical.
- (3) Discharge values obtained for Station H/7 are believed to be higher than actual discharge due to a large proportion of the flow being concentrated in a relatively narrow chute. Special care was exercised to minimize deviations by increasing the number of verticals.

Table 6-4. Water Quality Baseflow Conditions for Howard Creek H/1, 1993

OBS	Date	ATEMP	WTEMP	SC	DO	BOD ₅	pН	TA	TH	TSS	TUR	FC	NO ₃ N	NO ₂ N	NH ₃ N	OP	TP
1	15 JAN	7.0	8.5	13.3	11.0	0.7	6.1	13.0	7.0	5.1	2.75	3					
2	08 FEB	12.0	11.0	15.0	11.7	1.0	6.2	13.5	7.5	1.9	2.90	2	0.08	< 0.01	0.070	0.002	0.001
3	01 MAR	8.0	7.0	14.2	12.8	0.7	6.1	13.5	4.0	2.6	1.90	<2		1	1	1	
4	07 APR	16.0	11.0	16.4	11.2	1.1	6.0	15.5	3.0	6.5	4.00	7		1	1	1	
5	06 MAY	15.0	14.0	16.2	9.8	0.5	6.1	13.0	3.5	9.5	5.20	10	0.10	< 0.01	0.072	0.005	0.021
6	01 JUN	15.5	16.0	17.4	10.2	0.8	6.2	19.0	6.5	8.6	5.85	11					
7	07 JUL	23.0	20.0	23.5	9.1	1.1	6.0	21.2	7.0	5.9	5.30	7		1	1	1	
8	05 AUG	19.0	18.5	27.0	8.3	0.9	5.9	20.5	8.0	5.2	4.05	11	0.20	< 0.01	0.045	0.006	0.021
9	08 SEP	23.0	19.0	24.5	9.1	1.0	6.2	21.4	7.0	5.8	3.35	19		1	1	1	
10	06 OCT	13.0	14.0	26.0	9.4	0.8	5.8	18.0	10.0	8.0	3.25	13		1	1	1	
11	03 NOV	8.0	7.5	24.0	12.6	0.3	6.3	20.1	6.0	3.4	1.70	11	0.17	< 0.01	0.069	0.006	0.021
12	16 DEC	4.0	7.0	23.5	11.4	0.8	6.4	18.0	5.0	0.7	1.50	8		1	1	1	

NOTE: ATEMP = Air Temperature (°C), WTEMP = Water Temperature (°C), SC = Specific Conductance (μmho/cm), DO = Dissolved Oxygen (mg/L), BOD₅ = Biochemical Oxygen Demand (mg/L), TA = Total Alkalinity (mg CaCO₃/L), TH = Total Hardness (mg CaCO₃/L), TSS = total Suspended Solids (mg/L), TUR = Turbidity (NTU), FC = Fecal Coliforms (# / 100 mL), NO₃N = Nitrate (mg/L), NO₂N = Nitrite (mg/L), NH₃N = Ammonia (mg/L), OP = Orthophosphate (mg/L), TP = Total Phosphorus <math>(mg/L)

Table 6-5. Water Quality Baseflow Conditions for Howard Creek H/2, 1993

OBS	Date	ATEMP	WTEMP	SC	DO	BOD ₅	pН	TA	TH	TSS	TUR	FC	NO ₃ N	NO ₂ N	NH ₃ N	OP	TP
1	15 JAN	7.0	8.5	14.0	11.3	0.7	6.2	15.0	6.0	4.9	2.55	3					
2	08 FEB	13.5	11.0	15.3	10.4	1.1	6.2	14.5	6.5	5.5	3.55	2	0.12	< 0.01	0.046	0.003	0.008
3	01 MAR	8.0	7.5	16.1	10.8	0.7	6.1	12.0	4.0	2.7	2.95	<2				-	
4	07 APR	14.5	12.0	15.8	12.8	1.3	6.0	14.5	4.0	5.8	3.65	<2				1	
5	06 MAY	17.0	14.5	16.2	9.4	0.4	6.0	11.5	3.5	11.8	4.35	11	0.12	< 0.01	0.055	0.007	0.018
6	01 JUN	19.0	16.5	17.7	9.6	0.9	6.0	17.0	5.0	6.7	5.30	12				-	
7	07 JUL	27.0	20.5	26.0	9.2	1.0	5.9	17.0	9.5	5.3	5.00	14				1	
8	05 AUG	21.0	19.0	28.0	9.0	0.8	5.7	21.5	8.0	5.0	4.00	12	0.28	< 0.01	0.079	0.004	0.011

ľ	ر-	≺

OBS	Date	ATEMP	WTEMP	SC	DO	BOD ₅	pН	TA	TH	TSS	TUR	FC	NO ₃ N	NO ₂ N	NH ₃ N	OP	TP
9	08 SEP	22.5	19.0	26.5	9.2	0.9	6.0	23.4	8.0	5.2	4.65	20					
10	06 OCT	15.0	14.0	28.0	9.5	0.5	5.9	20.0	11.0	4.1	2.35	11					
11	03 NOV	9.5	8.0	26.0	12.0	0.2	6.3	27.3	13.0	3.4	2.45	<2	0.32	< 0.01	0.077	0.002	0.024
12	16 DEC	7.0	7.0	25.5	12.4	0.2	6.3	25.0	8.0	0.7	2.55	**					

NOTE: ATEMP = Air Temperature (°C), WTEMP = Water Temperature (°C), SC = Specific Conductance (μ mho/cm), DO = Dissolved Oxygen (mg/L), BOD₅ = Biochemical Oxygen Demand (mg/L), TA = Total Alkalinity (mg CaCO₃/L), TH = Total Hardness (mg CaCO₃/L), TSS = total Suspended Solids (mg/L), TUR = Turbidity (NTU), FC = Fecal Coliforms (# / 100 mL), NO₃N = Nitrate (mg/L), NO₂N = Nitrite (mg/L), NH₃N = Ammonia (mg/L), OP = Orthophosphate (mg/L), TP = Total Phosphorus (mg/L); **Sample not taken due to lack of proper sampling bottles

Table 6-6. Water Quality Baseflow Conditions for Howard Creek H/6, 1993

OBS	Date	ATEMP	WTEMP	SC	DO	BOD ₅	pН	TA	TH	TSS	TUR	FC	NO ₃ N	NO ₂ N	NH ₃ N	OP	TP
1	15 JAN	6.0	9.0	19.5	10.7	1.0	6.4	21.0	9.0	3.8	2.20	2					
2	08 FEB	12.5	11.5	21.5	9.8	1.4	6.1	17.5	9.3	5.4	2.75	20	0.30	< 0.01	0.095	0.002	0.010
3	01 MAR	10.0	8.0	22.0	12.0	0.5	6.1	16.0	7.5	2.9	2.05	4				1	
4	07 APR	15.5	12.0	21.5	9.4	0.9	6.1	17.0	5.0	4.3	3.00	6				1	
5	06 MAY	23.0	15.0	21.8	10.3	0.5	6.2	16.0	6.0	7.5	3.35	8	0.23	< 0.01	0.089	0.006	0.022
6	01 JUN	22.5	17.0	26.0	8.6	0.8	6.0	21.0	8.1	6.0	4.00	12				1	
7	07 JUL	31.0	19.0	38.0	8.4	0.9	6.0	24.0	14.0	6.0	4.85	20					
8	05 AUG	25.0	18.0	39.5	8.5	0.8	5.8	26.7	13.5	5.3	3.85	8	0.57	< 0.01	0.062	0.002	0.005
9	08 SEP	23.0	19.0	37.0	8.9	1.0	6.0	27.7	12.0	6.3	4.65	18				1	
10	06 OCT	17.5	15.0	40.0	8.4	0.5	6.1	26.4	14.0	7.1	3.25	5					
11	03 NOV	9.0	10.0	37.5	11.0	0.2	6.4	27.3	13.0	3.4	2.45	<2	0.63	< 0.01	0.077	0.005	0.010
12	16 DEC	8.5	10.0	36.0	12.1	0.3	6.4	25.0	14.0	3.3	2.55	**					

NOTE: ATEMP = Air Temperature (°C), WTEMP = Water Temperature (°C), SC = Specific Conductance (µmho/cm), DO = Dissolved Oxygen (mg/L), BOD₅ = Biochemical Oxygen Demand (mg/L), TA = Total Alkalinity (mg CaCO₃/L), TH = Total Hardness (mg CaCO₃/L), TSS = total Suspended Solids (mg/L), TUR = Turbidity (NTU), FC = Fecal Coliforms (# / 100 mL), NO₃N = Nitrate (mg/L), NO₂N = Nitrite (mg/L), NH₃N = Ammonia (mg/L), OP = Orthophosphate (mg/L), TP = Total Phosphorus (mg/L); **Sample not taken due to lack of proper sampling bottles

Table 6-7. Water Quality Baseflow Conditions for Howard Creek H/7, 1993

OBS	Date	ATEMP	WTEMP	SC	DO	BOD ₅	pН	TA	TH	TSS	TUR	FC	NO ₃ N	NO ₂ N	NH ₃ N	OP	TP
1	15 JAN	6.0	10.0	25.0	11.4	0.6	6.4	19.5	13.5	4.6	2.00	<2					
2	08 FEB	10.5	12.0	28.0	11.4	0.8	6.2	23.0	12.0	5.2	2.20	<2	0.52	< 0.01	0.046	0.002	0.013
3	01 MAR	6.5	9.5	28.3	11.8	0.5	6.4	21.0	10.0	2.8	1.70	4	1		1	1	
4	07 APR	13.5	12.5	27.5	9.8	0.9	6.2	22.5	10.0	6.7	2.95	<2	1		1	1	
5	06 MAY	18.0	14.0	24.0	9.2	0.4	6.3	18.5	8.5	9.0	3.30	8	0.38	< 0.01	0.072	0.009	0.020
6	01 JUN	18.5	15.5	31.5	9.7	0.9	6.1	22.5	9.5	5.7	3.75	8					
7	07 JUL	25.0	18.0	42.5	8.6	0.8	6.1	26.2	15.5	16.7	5.60	4					
8	05 AUG	22.5	17.5	44.5	9.0	0.9	6.0	28.4	13.0	7.1	4.0	10	0.80	< 0.01	0.062	0	0.033
9	08 SEP	21.0	18.0	40.5	8.8	0.7	5.9	32.4	14.0	7.3	3.35	<2	-				
10	06 OCT	17.0	15.5	44.5	8.9	0.4	6.1	30.1	17.0	3.4	2.35	4	1		1	1	
11	03 NOV	9.0	11.0	39.0	9.9	0.0	6.5	30.0	12.0	2.9	1.35	3	0.71	< 0.01	0.094	0.004	0.041
12	16 DEC	7.5	11.5	42.5	10.8	0.3	6.4	28.0	16.0	1.4	2.55	6	1		1	1	

NOTE: ATEMP = Air Temperature (°C), WTEMP = Water Temperature (°C), SC = Specific Conductance (μmho/cm), DO = Dissolved Oxygen (mg/L), BOD₅ = Biochemical Oxygen Demand (mg/L), TA = Total Alkalinity (mg CaCO₃/L), TH = Total Hardness (mg CaCO₃/L), TSS = total Suspended Solids (mg/L), TUR = Turbidity (NTU), FC = Fecal Coliforms (# / 100 mL), NO₃N = Nitrate (mg/L), NO₂N = Nitrite (mg/L), NH₃N = Ammonia (mg/L), OP = Orthophosphate (mg/L), TP = Total Phosphorus <math>(mg/L)

Table 6-8. Water Quality Baseflow Conditions for Howard Creek H/9, 1993

OBS	Date	ATEMP	WTEMP	SC	DO	BOD ₅	pН	TA	TH	TSS	TUR	FC	NO ₃ N	NO ₂ N	NH ₃ N	OP	TP
1	15 JAN	6.5	9.0	8.5	12.8	1.3	6.0	9.0	5.0	2.8	1.95	<2					
2	08 FEB	13.0	9.5	8.3	12.5	0.9	6.0	10.5	3.8	9.6	1.80	2	< 0.01	< 0.01	0.054	0.006	0.003
3	01 MAR	7.5	7.0	9.1	12.6	0.6	6.0	7.5	3.0	1.9	1.20	2				-	
4	07 APR	12.0	10.5	8.2	11.0	0.6	6.1	6.0	2.2	3.5	2.20	3					
5	06 MAY	15.0	12.5	9.4	10.0	0.3	6.0	7.0	1.5	8.8	2.65	6	< 0.01	< 0.01	0.080	0.009	0.018
6	01 JUN	17.5	15.0	10.0	9.4	0.9	6.0	9.0	5.0	3.2	4.30	13				-	
7	07 JUL	22.0	18.0	12.5	8.4	0.9	5.8	9.1	1.0	5.0	4.25	12				1	
8	05 AUG	20.0	17.5	12.0	9.1	0.7	5.8	8.0	3.0	4.0	3.50	10	0.02	< 0.01	0.045	0.001	0.024

OBS	Date	ATEMP	WTEMP	SC	DO	BOD ₅	pН	TA	TH	TSS	TUR	FC	NO ₃ N	NO ₂ N	NH ₃ N	OP	TP
9	08 SEP	20.0	18.0	12.0	9.3	1.2	5.9	10.7	1.5	8.5	3.4	7					
10	06 OCT	17.5	14.5	12.5	8.8	0.3	5.9	9.0	5.5	2.3	1.85	7					
11	03 NOV	9.5	8.0	13.0	10.4	0.2	6.4	8.1	2.0	3.7	1.35	3	< 0.01	< 0.01	0.094	0.007	0.038
12	16 DEC	9.0	7.0	11.0	11.5	0.6	6.1	6.0	3.0	1.2	1.60	4					

NOTE: ATEMP = Air Temperature (°C), WTEMP = Water Temperature (°C), SC = Specific Conductance (μmho/cm), DO = Dissolved Oxygen (mg/L), BOD₅ = Biochemical Oxygen Demand (mg/L), TA = Total Alkalinity (mg CaCO₃/L), TH = Total Hardness (mg CaCO₃/L), TSS = total Suspended Solids (mg/L), TUR = Turbidity (NTU), FC = Fecal Coliforms (# / 100 mL), NO₃N = Nitrate (mg/L), NO₂N = Nitrite (mg/L), NH₃N = Ammonia (mg/L), OP = Orthophosphate (mg/L), TP = Total Phosphorus <math>(mg/L)

Table 6-9. Range of Annual Water Quality Baseflow Data for Howard Creek, 1993

Station	Date	ATEMP	WTEMP	SC	DO	BOD ₅	pН	TA	TH	TSS	TUR	FC	NO ₃ N	NO ₂ N	NH ₃ N	OP	TP
H/1	MAX	23.0	20.0	27.0	12.8	1.1	6.4	21.4	10.0	9.5	5.85	19	0.20	< 0.01	0.072	0.006	0.021
Π/1	MIN	4.0	7.0	13.3	8.3	0.3	5.8	13.0	3.0	0.7	1.50	<2	0.08	< 0.01	0.045	0.002	0.001
H/2	MAX	27.0	20.5	28.0	12.8	1.1	6.3	27.3	3.0	10.8	5.30	20	0.32	< 0.01	0.079	0.007	0.024
H/2	MIN	7.0	7.0	14.0	9.0	0.2	5.7	11.5	3.5	0.7	2.55	<2	0.12	< 0.01	0.046	0.002	0.008
H/6	MAX	31.0	19.0	40.0	12.1	1.4	6.4	27.1	14.0	7.5	4.85	20	0.63	< 0.01	0.095	0.006	0.022
П/О	MIN	6.0	8.0	19.5	8.4	0.2	5.8	16.0	5.0	2.9	2.05	<21	0.23	< 0.01	0.062	0.002	0.005
H/7	MAX	25.0	18.0	4.5	11.8	0.9	6.5	32.4	17.0	16.7	5.6	10	0.80	< 0.01	0.094	0.009	0.041
Π/ /	MIN	6.0	9.5	24.0	8.6	0.0	5.9	18.5	8.5	1.4	1.35	<2	0.38	< 0.01	0.046	0.000	0.013
11/0	MAX	22.0	18.0	13.0	12.8	1.3	6.4	10.7	5.5	9.6	4.3	13	0.02	< 0.01	0.094	0.009	0.038
H/9	MIN	6.5	7.0	8.2	8.4	0.2	5.8	6.0	1.0	1.2	1.20	<2	< 0.01	< 0.01	0.045	0.001	0.003

NOTE: ATEMP = Air Temperature (°C), WTEMP = Water Temperature (°C), SC = Specific Conductance (µmho/cm), DO = Dissolved Oxygen (mg/L), BOD₅ = Biochemical Oxygen Demand (mg/L), TA = Total Alkalinity (mg CaCO₃/L), TH = Total Hardness (mg CaCO₃/L), TSS = total Suspended Solids (mg/L), TUR = Turbidity (NTU), FC = Fecal Coliforms (# / 100 mL), NO₃N = Nitrate (mg/L), NO₂N = Nitrite (mg/L), NH₃N = Ammonia (mg/L), OP = Orthophosphate (mg/L), TP = Total Phosphorus (mg/L)

^{*}Instrumental problems with BOD measurement

6.4 Compliance with SCDHEC State Standards

Present day (1993) water quality parameters assessed for Howard Creek and compared against state standards for temperature, DO, pH, and turbidity were all within SCDHEC criteria limits for freshwater (trout) streams.

Since the maximum range of turbidity measured at all three stations in 1993 was consistent with (and even below) those observed during pre construction, baseflow turbidity values under current conditions are considered to be within the trout water turbidity standards set forth by SCDHEC. Post construction DO measurements were greater than the SC trout water standard, therefore DO is also considered to be within state standards for trout waters. Stream standards for trout waters must have a pH of 6.0 to 8.0; mountain streams such as Howard Creek are typically poorly buffered and tend to have low pH values (Abernathy et al. 1994). Low values were recorded in Howard Creek during all phases of sampling and there is a link between pH decreases and prolonged lack of rainfall; however, mean values of pH in 1993 were within the state criteria except for station H/9, which is upstream of the Project and therefore not impacted by the Project. In post construction data, the warmest temperature recorded above and below the Project on Howard Creek was 20.5°C at Station H/2. In pre construction data, water temperatures as high as 21°C were noted, therefore temperatures are consistent and within the range of pre-Project temperatures.¹⁴

The state standard for fecal coliform in waters call for a maximum of 200/100 milliliter (over five consecutive samples during any 30-day period with <10 percent of total samples any 30-day period exceeding 400/100 milliliter. While fecal coliform is not a state standard that would be affected by Project operations, based on these criteria, post construction values for fecal coliform satisfy the trout water standard.

¹⁴ Note that temperature was monitored on a monthly basis in the seepage at the toe of the main dam. The seepage waters appear to have a somewhat constant temperature, but do experience some ponding before they enter Howard Creek. The result tends to be a slight warming of Howard Creek (l-2°C) at Station H/7 during cooler (winter) months and a slight cooling at the same station in warmer (summer) months. In looking at these data along with the pre construction water temperature data tor Howard Creek, there appear to be no negative trends that would be detrimental to the biological community resulting from the construction of the Bad Creek reservoir.

FD3

6.5 Summary Pre construction vs. Post Construction Comparison

Table 6-10 provides water quality parameters for postconstruction (i.e., existing conditions) as well as pre construction (1980-1981) as a comparison, indicating that total suspended solids, turbidity, temperature, DO, pH, BOD₅ and fecal coliform under operational conditions are generally similar and fall well within the range of variation observed during pre construction conditions. Station H/1 is the furthest downstream, Station H/7 is just downstream of the Project, and Station H/9 is the control station (Abernathy et al. 1994). Comparisons between pre construction and post construction water quality data for each monitoring station are included in Figure 6-2 through Figure 6-7.

Table 6-10. Comparison of Water Quality Data: Pre construction vs. Post construction

		H/1		H/7		H/9	
Parameter		1980-81	1993	1980-81	1993	1980-81	1993
TSS	MAX	14.0	9.5	40.0	16.7	17.0	9.6
	MIN	0.05	0.7	0.6	1.4	0.05	1.2
	MEAN	4.9	5.3	8.5	6.1	3.9	4.5
TUR	MAX	19.0	5.8	34.0	5.6	18	4.3
	MIN	0.6	1.5	0.67	1.35	0.53	1.2
	MEAN	4.26	3.48	5.1	2.9	3.9	2.5
DO	MAX	15.2	12.8	15	11.8	13.7	12.8
	MIN	8.2	8.3	8.6	8.6	7.6	8.4
	MEAN	10.8	10.6	10.9	9.9	10.2	10.5
рН	MAX	7.3	6.4	7.2	6.5	7.4	6.4
	MIN	6.0	5.8	5.8	5.9	5.4	5.8
	MEAN	6.36	6.08	6.2	6.18	6.07	5.98
TA	MAX	16.4	21.4	15.4	32.4	10.7	10.7
	MIN	2.6	13	1.4	18.5	0.3	6.0
	MEAN	8.8	17.2	7.2	25.2	5.7	8.3
TH	MAX	24.2	10	36.9	17	38.2	5.5
	MIN	5.9	3.0	5.3	8.5	5.1	1.0
	MEAN	10.7	6.2	10.8	12.6	10.2	3.0
SC	MAX	35.0	27.0	19.0	44.5	19.0	13.0
	MIN	7.5	13.3	7.5	24.0	5.0	8.2
	MEAN	17.8	20.1	13.2	34.8	12.1	10.5
BOD ₅	MAX	2.5	1.1	3.3	0.9	3.8	1.3
	MIN	0.2	0.3	0.2	0.0	0.2	0.2
	MEAN	0.8	0.8	0.8	0.6	0.8	0.7
FC	MAX	52.0	19.0	52.0	10.0	28.0	13.0
	MIN	1.0	<2.0	1.0	<2.0	1.0	<2.0
	MEAN	11.0	9.0	9.0	6.0	8.0	6.0

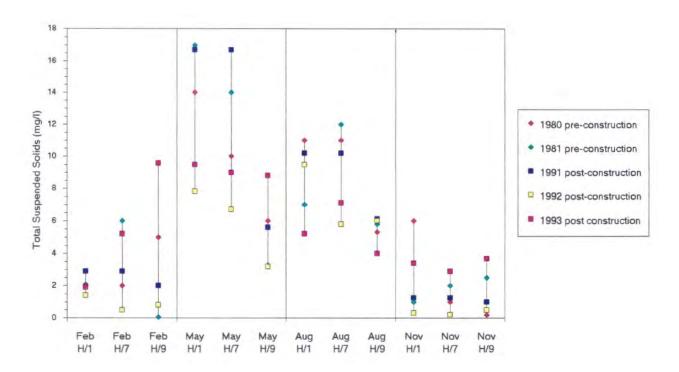


Figure 6-2. Comparison of Pre and Post Construction TSS Values

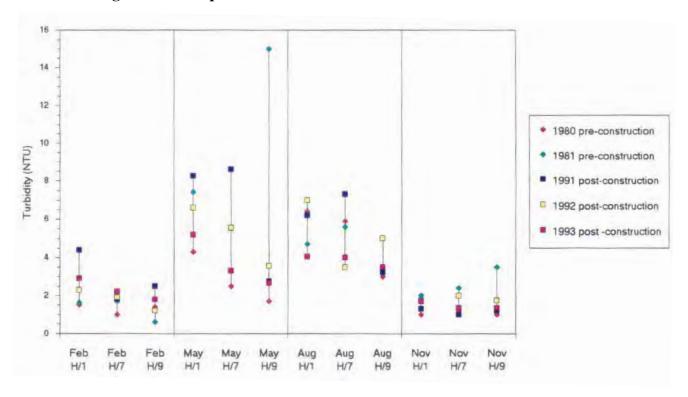


Figure 6-3. Comparison of Pre and Post Construction Turbidity Values

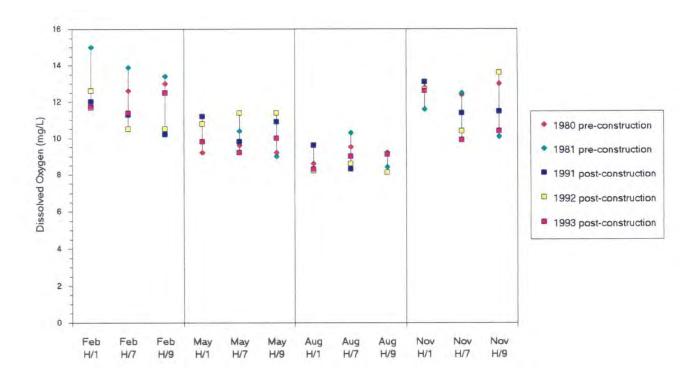


Figure 6-4. Comparison of Pre and Post Construction DO Concentration

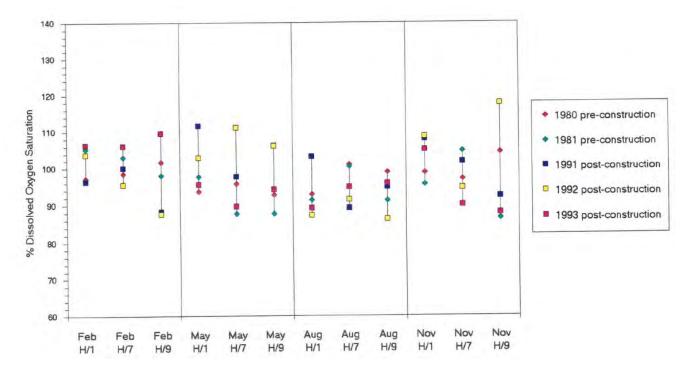


Figure 6-5. Comparison of Pre and Post Construction DO Saturation

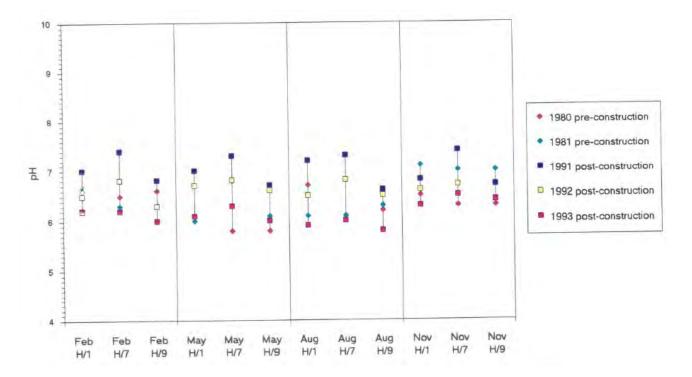


Figure 6-6. Comparison of Pre and Post Construction pH Values

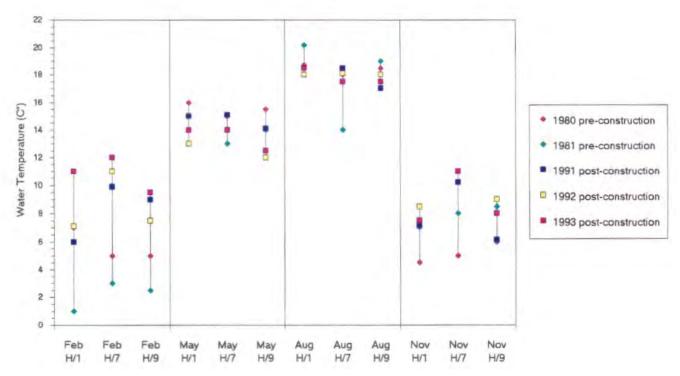


Figure 6-7. Comparison of Pre and Post Construction pH Values

Overall, Howard Creek, while showing typical annual variations, has remained a high-quality mountain stream with no major changes in the upper portion of the watershed upstream of the Project. Abernathy et al. (1994) notes that even with the major construction of the Project, most baseflow water quality conditions were relatively unchanged during and after construction and post construction water quality conditions are generally similar to pre construction, indicating little or no impact for the parameters studied. Notable changes in water quality that were observed between pre and postconstruction conditions included pH, total alkalinity, total hardness, and specific conductance.

Specific conclusions of the Abernathy et al. (1994) study include the following:

- Howards Creek's baseflow water quality in the postconstruction period is similar to that of pre construction. Differences are within the range of normal seasonal/annual variations with the following exceptions:
 - O During 1991 pH readings were elevated above pre construction and postconstruction, by 1992 the values had returned to near normal, and in 1993 values dropped near or below pre construction, most likely due to lack of rainfall.
 - O Total alkalinity values were elevated above pre construction levels at Station H/7 during 1991 and 1992 and remained elevated through 1993.
 - Total hardness values were elevated above pre construction levels at Station H/7 during 1991 and remained slightly elevated through 1992 and 1993.
 The control Station H/9, however, experienced a drop in mean total hardness during 1993 as compared to the pre construction mean.
 - Specific conductance values were elevated above pre construction levels at Station H/7 during 1991 and 1992 and-although decreasing-remained elevated through 1993.
- The elevated values of total alkalinity, total hardness, and specific conductance, and
 to some extent pH, following construction were likely due to seepage waters through
 the main and west dams coming into contact with grout materials. It is expected that
 these parameters (with the exception of pH) will continue to decline and stabilize
 over time.

6.6 Recent Howard Creek Aquatics Sampling Summary

Results from the initial recovery program suggested Howard Creek had returned to pre construction conditions by 1995. Commencing in 1997 and continuing through 2015, additional

fishery sampling of Howard Creek was implemented to assess whether the recovered state would persist. Sampling was performed at three monitoring stations (H/1, H/6, H/9).

All three survey locations maintained a consistent level of species diversity over the 18-year monitoring study. Generally, species diversity was higher at the downstream location (N=11 species) as compared to the upstream location (N=2 species); this is likely due to species immigration from the reservoir as well as a natural barrier (bedrock slide) found between H/1 and H/6 that hinders fish migration. All three species of trout known to the region (Rainbow Trout, Brown Trout, and Brook Trout) were collected in Howard Creek, but only Rainbow Trout were collected in significant numbers. The condition of Rainbow Trout was similar between the locations over time and was considered healthy. Other common species present in Howard Creek included Bluehead Chub (*Nocomis leptocephalus*), Yellowfin Shiner (*Notropis lutipinnis*), Blackbanded Darter (*Percina nigrofasciata*), Blacknose Dace, and Northern Hog Sucker (*Hypentelium nigricans*).

While water quality wasn't specifically monitored during this 18-year study, the results of the study suggest that Howard Creek has maintained a recovered condition from 1995 to at least 2015 (the last survey period); in the absence of any other known impacts, it is likely Howard Creek currently supports fish populations similar to those found in other southern Appalachian streams, indicating suitable water quality and habitat. Full results of the Howard Creek aquatics study are included in Duke Energy (2016) "Long-term Recovery Monitoring of the Howard Creek Fishery (1997-2015)".

Need for Protection, Mitigation, and Enhancement Measures to Protect Water Quality

Based on the results of this water quality study, and in consideration of results of other data collection efforts in support of the KT relicensing (Duke Energy 2014), there is no need for additional PM&E measures to protect water quality at the Project.

As a condition of the Original License for the Project, and as described in Section 1.6 of the Preapplication Document (Duke Energy 2022), Duke Energy entered into a Memorandum of

Understanding (MOU) with the SCDNR for the long-term management and maintenance of high-quality fishery resources in Lake Keowee, Lake Jocassee, and their tributary streams. The MOU and first 10-Year Work Plan were approved pursuant to Article #32(b)(1) of the Original License for the Project on May 1, 1997. License Article #32(b)(2) covers Lake Jocassee pelagic trout habitat and License Article #34 covers Lake Jocassee water quality. Through this MOU, SCDNR and Duke Energy personnel work cooperatively, and include third parties as necessary, to design and implement data collection and other activities to develop and enhance management strategies for fish in these areas. Activities included in the 10-Year Work Plans are focused on fisheries surveys and inventories, water quality and aquatic habitat evaluations, fish stocking, recreation, and shoreline impacts.

During the New License term, Duke Energy will continue to implement activities established by the MOU, as may be modified in consultation with stakeholders through the relicensing process and will continue to implement PM&E activities established under the KT Project Relicensing Agreement. Duke Energy plans to further consult with SCDHEC and relicensing stakeholders through the Integrated Licensing Process regarding final proposed mitigation and enhancement measures directed at operation of the existing Project and the proposed Bad Creek II Complex to be included in the Final License Application.

It should be noted that in the Environmental Assessment report developed as part of the KT Project relicensing effort in 2014, FERC specifically indicated that (1) existing water quality in the reservoirs and tailwaters (i.e., Lake Jocassee and Lake Keowee) is meeting or exceeding levels consistent with state water quality standards, and is consistent with levels supporting designated uses, and no issues have been raised concerning pH and total dissolved gas; (2) water quality modeling results indicate under the proposed [KT] Project operation, suitable DO levels and water temperatures would exist for the propagation of aquatic life in the Keowee Development water releases; (3) there are no proposed changes in KT Project operation that would alter water quality from existing conditions in the Jocassee Development tailwaters; and (4) the fishery at the KT Project is considered high quality.

This desktop review carried out to support Task 1 of the Water Resources Study is complete and results summarized in this document meet the goals and objectives stated in the RSP to describe

and analyze existing baseline conditions in waters impacted by the Project; data reported herein may serve as a reference for future water quality comparison and assessment.

8 Future Work

Under a separate task of the Water Resources Study (i.e., Task 2), Duke Energy will undertake water quality monitoring (continuous temperature and biweekly DO) at three historic monitoring stations in the Whitewater River arm (stations 564.1, 564.0, 560.0) of Lake Jocassee in June through September 2023 (two-unit powerhouse operation) and 2024 (four-unit powerhouse operation, with all ongoing upgrades complete). Water quality sampling in the Upper Reservoir is infeasible and because the Upper Reservoir directly discharges to Whitewater River cove (with very little other water contribution to the Upper Reservoir), water quality in Whitewater River cove and in particular at Station 564.1, is considered representative of conditions in the Bad Creek Reservoir.

These three locations have been routinely monitored by Duke Energy since the impoundment of Lake Jocassee and historic datasets represent data ranging from 1973 to 2015, depending on the location (provided in Appendix B). The continuous water temperature data will be used to better understand the effectiveness of the existing submerged weir and the effects of existing unit discharge in the Whitewater River arm. Additionally, newly collected water quality data will be compared against historical data and a summary comparison will be provided in the license application.

While Project operations are not expected to impose additional adverse effects on water quality, these baseline water quality data, such as what was compiled and assessed as part of this study, can be used to compare future impacts from construction and operation of the Bad Creek II Complex.

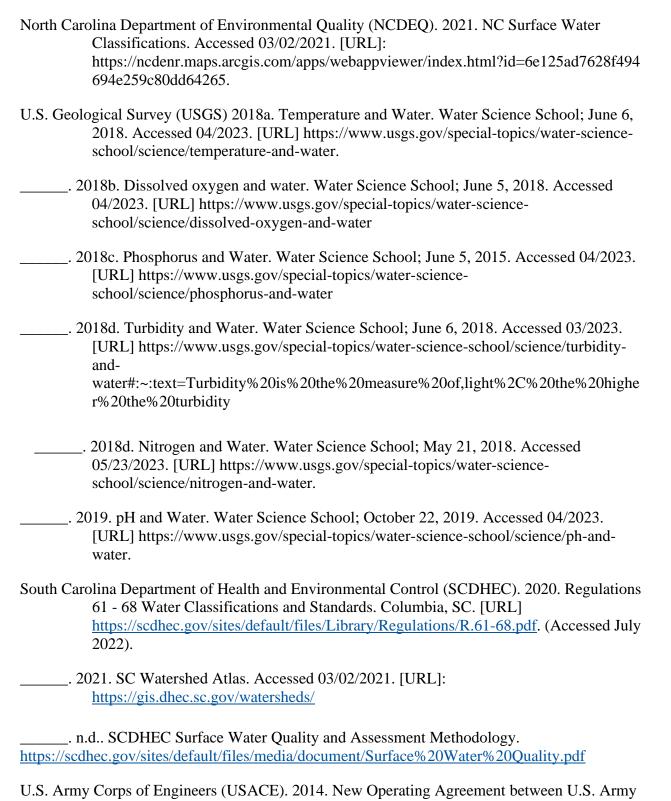
Note that pursuant to the existing MOU between Duke Energy and the SCDNR and subsequent 10-Year Work Plans, Duke Energy continues to collect water quality data in Lake Jocassee to support annual aquatic habitat evaluations. As part of the New License, Duke Energy plans to continue this long-term water quality monitoring program and will develop a Water Quality Monitoring Plan (WQMP) in consultation with agencies focused on the proposed Bad Creek II Complex. The WQMP will include three phases: pre construction, construction, and post

construction of Bad Creek II, including identification of applicable and appropriate threshold values for water quality parameters and monitoring means and methods. The future WQMP will be developed from January – December 2024 for submittal with the Draft License Application (March 2025) pending approval of Bad Creek II Complex construction.

9 Variances from FERC-approved Study Plan

There were no variances from the FERC-approved RSP for this task of the Water Resources Study.

10 Germane Correspondence and Consultation


Germane correspondence will be included with the Water Resources Study Report to be filed with the Initial Study Report in January 2024.

11 References

- Abernathy, A.R., Augspurger, P.A. and Dysart, Benjamin C. III. 1994. Howard Creek Postconstruction Water Quality Monitoring: 1993. Prepared for Duke Power Company, Huntersville, NC.
- Dobson, M., and C. Frid. 2009. Ecology of Aquatic Systems, Second Edition. Oxford University Press, New York, NY.
- Duke Power Company. 1995. Order Approving Additional Monitoring. Project No. 2740-032.
- Duke Energy Carolinas, LLC (Duke Energy). 2016. Long-term Recovery Monitoring of the Howard Creek Fishery (199702015). Final Report September 2016.
- _____. 2014. Keowee-Toxaway Hydroelectric Project FERC Relicensing Final License Application (FERC Project No. 2503). August 2014.
- ______. 2022. Pre-Application Document for the Bad Creek Pumped Storage Station. FERC No. 2740. February 2022.
- Miller, S.D., Van Lear, D.H., Abernathy, A.R., Barwick, D.H., Dysart III, B.C., and Wood, T.H. 1997. Sedimentation Impacts on Resident Rainbow Trout in a High-gradient Southern

Appalachian Stream. Proc. Annual Conf. Southeast. Assoc. Fish and Wildlife Agencies.

Corps of Engineers, Southeastern Power Administrations, and Duke Energy

Page | 61

Duke Energy Carolinas, LLC | Bad Creek Pumped Storage Project Water Resources Study – Summary of Existing Water Quality Data and Standards

Carolinas, LLC Final Environmental Assessment for Hydropower License. October 2014.

U.S. Environmental Protection Agency (USEPA). 2020. National Rivers and Streams Assessment 2013-2014: A Collaborative Survey. December 2020. EPA 841-R-19- 001. Washington, DC. Accessed January 2021. [URL]: https://www.epa.gov/national- aquatic-resource-surveys/nrsa.
2022a. National Aquatic Resources Surveys. Indicators: Chlorophyll a. Accessed May 2023. [URL] https://www.epa.gov/national-aquatic-resource-surveys/indicators-chlorophyll .
2022b. National Aquatic Resources Surveys. Indicators: Conductivity. Accessed 03/2023. [URL] https://www.epa.gov/national-aquatic-resource-surveys/indicators-conductivity.

Appendix A

Appendix A – Duke Energy Water Quality Field and Sample Collection Procedures

Procedure Number: ESFP-SW-0503

Procedure Title: Water Quality Field Procedure

Applicability: Applies to Duke Energy, Environmental Science Field Programs

Originator: Environmental Science Group

Approval: Zachary Hall – Director Environmental Science

Signature:

Approval Date: 01/06/2021

Effective Date: 01/06/2021

Summary of Changes

Revision Number	Date Revised/Reviewed	Summary of Changes (Include Page Number)	Revision By
0	01/01/2020	New Procedure	J. C. Green
1	01/06/2021	Section 8.1.1-Note added to identify NPDES requirements (pg.4)	J. C. Green
1	01/06/2021	Section 8.1.1.1- D.O. calibration and check updated to incorporate SC specific NDPES monitoring (pg. 4).	J. C. Green
1	01/06/2021	Section 8.1.1.2.1- Instrument manufacturers added (pg.5).	J. C. Green
1	01/06/2021	Section 8.1.1.2.3-Reference to manufacturer guidance for pH calibrations added (pg.5).	J. C. Green
1	01/06/2021	Section 8.1.1.2.5- Section language deleted. Sections 8.1.1.2.5-10 were updated to 8.1.1.2.5-9 after deletion (pg. 6).	J. C. Green
1	01/06/2021	Section 8.1.1.3.1- Instrument manufacturers added (pg. 6).	J. C. Green

		·	
1	01/06/2021	Section 8.1.1.3.6- Requirement for NPDES monitoring added (pg. 7).	J. C. Green
1	01/06/2021	Section 8.1.1.4-clarified digital non-NIST devices will be checked annually against an NIST device (pg.7).	J. R. Quinn
1	01/06/2021	Section 12.11-14-References for instrument user manuals added (pg. 10).	J. C. Green
1	01/06/2021	Section 13.4-Criteria for duplicate pH sample recovery added (pg.11).	J. C. Green
1	01/06/2021	Section 13.6-Table added to identify NC/SC specific field certified laboratory methodology and acceptance criteria (pg.11).	J. C. Green
1	01/06/2021	Section 13-Footnote added to clarify acceptance criteria from table in section 13.6 (pg. 11).	J. C. Green
1	01/06/2021	Section 13.7- Added to describe requirement of LCS during SC NPDES specific monitoring for specific conductivity (pg. 11).	J. C. Green
1	01/06/2021	Section 13.8- Added to describe automatic temperature compensation verifications for instruments used to measure specific conductivity (pg. 11).	J. C. Green
1	01/06/2021	Section 13.9-Added to describe annual instrument thermistor checks and criteria (pg. 11).	J. C. Green

Water Quality Field Procedure

Document number

ESFP-SW-0503

Applies to: Duke Energy – Environmental Science

1.0 Purpose

To obtain representative field data, including but not limited to: water temperature, dissolved oxygen (DO), hydrogen ion activity (pH), specific conductivity, Secchi disk transparency, salinity, turbidity, and photosynthetically active radiation (PAR) as needed to characterize and detect changes in water quality field conditions.

2.0 Forms Referenced in This Procedure

FRM-SW-0502 - Photosynthetically Active Radiation Field Form

3.0 Scope and Frequency

This procedure applies at all times to all field sampling programs in the Environmental Sciences Department that generate water quality data. Water quality monitoring conducted by third parties should be consistent with this procedure. Refer to Site specific study plans or special studies for current year activities.

4.0 Summary of Methods

Water Quality measurement description are detailed in this procedure to ensure collection of accurate, consistent and reliable information. Methods included detail the verification/operation of instrumentation used to quantitatively evaluate physical water conditions and recording of field information to support program objectives.

5.0 Equipment or Apparatus

- 5.1 Meter(s) probe(s), or sensor(s) measuring field parameters including the following but not limited to: temperature, dissolved oxygen (D.O.), pH, conductivity, and turbidity. This also includes any ancillary equipment or hardware required for use of instruments.
- 5.2 Data entry form or datalogger, labels, and pencil or pen.
- 5.3 Secchi disk with graduated line marked at meter and sub-meter increments.
- 5.4 LI-COR® or equivalent underwater spherical quantum sensor, lowering frame, and quantum/radiometer/photometer.
- 5.5 National Institute of Standards and Technology (NIST) traceable thermometer.
- 5.6 Refractometer.
- 5.7 Meter stick.

Rev. 1 (01/2021)	Page 1 of 10
	Rev. 1 (01/2021)

- 5.8 Depth finder/GPS unit.
- 5.9 First aid kit and AED.
- 5.10 Nitrile or latex gloves.
- 5.11 SPOT unit and cell phone.
- 5.12 Polarized safety sunglasses and safety glasses.
- 5.13 Coast Guard approved Personal Flotation Device (PFD) and throwable type IV PFD.
- 5.14 Closed toe non-slip shoes.
- 5.15 Spare batteries or battery charger.
- 5.16 Sunscreen and insect repellant.

6.0 Reagent List

- 6.1 Specific Conductance Standards $(0 50,000 \mu \text{S/cm})$
- 6.2 pH Buffer (4.0, 7.0, and 10.0)
- 6.3 Reagent grade de-ionized water.
- 6.4 Turbidity Standards (Formazin secondary, gel based).
- 6.5 Sodium chloride, reagent grade.
- 6.6 Sodium chloride solution, 10 ppt

Transfer 1.0 ± 0.10 g of sodium chloride to a 100-ml volumetric flask. Add approximately 50 ml of deionized water and dissolve salt. Dilute to volume (100-ml) with de-ionized water.

6.7 Sodium chloride solution, 20 ppt

Transfer 2.0 ± 0.10 g of sodium chloride to a 100-ml volumetric flask. Add approximately 50 ml of deionized water and dissolve salt. Dilute to volume with de-ionized water.

6.8 Sodium chloride solution, 30 ppt

Transfer 3.0 ± 0.10 g of sodium chloride to a 100-ml volumetric flask. Add approximately 50 ml of deionized water and dissolve salt. Dilute to volume with de-ionized water.

7.0 Safety, Limitations, Precautions, and Interferences

7.1 No element of this procedure may supersede the Company's safety standards and policies. Appropriate safety precautions and personal protective equipment (PPE) should be used when handling chemicals. Refer to Safety Data Sheets for specific descriptions of the physical and chemical properties, physical and health hazards, and

precautions for safe handling and use. Formalin is listed as an irritant and potential human carcinogen by the NC Occupational Safety and Health Standards for General Industry. Refer to the Duke Energy Environmental Health and Safety Handbook for guidelines to the proper use of Extremely Hazardous Chemicals.

- 7.2 Field staff are to ensure all pre and post operational instrument checks or calibrations have been performed for the parameters to be measured. These activities should occur prior to (pre) the collection of the first water quality sample and after collection of the final water quality sample (post).
- 7.3 Ensure that equipment found to be out of calibration or functioning improperly is promptly evaluated and the validity of data collected with the instrument since the last calibration is determined in coordination with the Site Lead. Management of this corrective action process will be carried out by instrument managers and field personnel.

7.3.1 Laboratory Supervisor or designee

- 7.3.1.1 Provide water quality instrumentation and equipment that is available to unit personnel for field monitoring or investigative purposes based on calibrations performed according to the frequency given in the instrument calibration procedures section
- 7.3.1.2 Provide a centralized location for field monitoring equipment and ensure "physical" control over equipment.
- 7.3.1.4 For instruments that do not electronically store calibrations internally, attach calibration stickers to instruments and include information as follows: calibration due or expiration date, date calibrated, calibration performed by.
- 7.3.1.5 Ensure that maintenance and repair work are performed as needed and that non-serviceable, uncalibrated, and/or non-functioning equipment is returned to service only after verified repair. Functional instruments are to be stored in centralized equipment storage area.
- 7.3.1.7 Maintain documentation of calibration records (including signature or initials of the persons performing the calibrations), repair, and instrument usage.

7.3.2 ES Personnel

- 7.3.2.1 Use of multiparameter instruments by various manufacturers requires user familiarity. Field staff will review operational manuals prior to usage of water quality instruments. Knowledge of recommended factory or user calibration intervals, specific probe tolerance values, and various maintenance operations are critical in collection of accurate data from this type of instrumentation.
- 7.3.2.2 Perform an operational check or necessary calibration prior to collection of field data.

ESFP-SW-0503	Rev. 1 (01/2021)	Page 3 of 10

- 7.3.2.3 Ensure proper usage, storage and handling of field equipment including transportation to and from laboratory in truck or boat.
- 7.3.2.4 Perform a post operational check after collection of field data.
- 7.3.2.5 Ensure that non-serviceable, uncalibrated, and/or non-functioning equipment is removed from service and flagged and/or tagged with a note indicating that the instrument is not to be used. This will include date, initials, and instrument issue/repair needed.
- 7.3.2.6 Report any damage, malfunction, and/or failure of equipment directly to laboratory supervisor or designee and coordinate to provide prompt evaluation of data collected during field sampling. <u>Do not return</u> malfunctioning instruments to the centralized location.
- 7.4 All standards will be obtained following the approved chemical control procedure.

 Standards for all water quality parameters will be within vendor stated expiration date.

 Expired or used standards will be disposed of properly.
- 7.5 Calibration or calibration check standards expiration date, and lot numbers will be documented based on specific parameters.

8.0 Procedure

- 8.1 Calibration Checks and Calibrations of field equipment (pre and post trip)
 - 8.1.1 Multiparameter Instrument Calibration Check/Calibration
 - NOTE: Pre-sampling calibrations and post calibration checks must be performed each day prior to making field measurements for NPDES compliance monitoring. For South Carolina compliance monitoring calibrations must be conducted at the certified laboratory.
 - 8.1.1.1 Check and Calibration of Dissolved Oxygen (D.O.)
 - 8.1.1.1 Refer to instrument manufacturer calibration instructions (In-situ, YSI, or Hydrolab) for dissolved oxygen. At a minimum, either 100 % saturated air or water calibrations will be performed based on manufacturer instructions for specific instrumentation.
 - 8.1.1.2 Determination of accuracy and or need for calibration will be conducted by placing the DO probe in 100% saturated air or 100% saturated water.
 - 8.1.1.1.3 Document the barometric pressure and instrument temperature. If check or calibration occurs at altitude, barometric pressure-corrected values should be used to correct for elevation above sea level.
 - 8.1.1.1.4 Document instrument conductivity for calibration/checks if calculating known dissolved oxygen concentration for saturated water.

ESFP-SW-0503	Rev. 1 (01/2021)	Page 4 of 10
--------------	------------------	--------------

NOTE: An excel spreadsheet is utilized to calculate predicted dissolved oxygen concentrations (mg/l) in water based on USGS DO solubility reference tables . The spreadsheet will be checked annually for accuracy against USGS values.

8.1.1.1.5

AIR CALIBRATION – Ensure the dissolved oxygen probe is dry by carefully blotting the measuring surface with a lint free wipe. Place the probe in the calibration cup with sufficient moisture to enable air saturation.

WATER CALIBRATION – Ensure the dissolved oxygen and temperature sensors are fully immersed in airsaturated water.

- 8.1.1.1.6 Allow the instrument to equilibrate until the dissolved oxygen % saturation is stable based on manufacturer specifications.
- 8.1.1.7 For non-NPDES compliance related monitoring: if the % saturation is between 98.0% and 102.0%, no calibration is needed. Document the % saturation reading from the instrument and move to the next parameter to be checked.
- 8.1.1.1.8 For NPDES compliance related monitoring OR If the % saturation is outside of 98.0% 102.0% for non-NPDES compliance related monitoring: follow the calibration procedure in the instrumentation manual and document the new % saturation and calibration values accordingly (8.2.4).
- 8.1.1.1.9 For South Carolina NPDES compliance related monitoring, a laboratory control standard (LCS) and an LCS duplicate (LCSD) must be analyzed to verify calibration prior to field analysis. The LCS and LCSD must be within 98.0% 102.0% of the calibrated value

8.1.1.2 Check and Calibration of pH

- 8.1.1.2.1 Refer to instrument manufacturer calibration procedures (In-situ, YSI, or Hydrolab) for pH. Initial daily calibrations are required for all NPDES permit required monitoring.
- 8.1.1.2.2 Inspect the status of the pH probe. If the glass bulb at the end of the probe is cloudy or damaged, or if the probe body is cracked or broken, replace the probe.
- 8.1.1.2.3 Three-point checks or calibrations are to be performed using traceable pH standards (values 4.0, 7.0, 10.0) according to manufacturer instructions.

- 8.1.1.2.4 Prior to recording instrument values for individual check or calibration reference standards, probes should be rinsed with deionized water, then triple rinsed with fresh respective pH standard 4.0, 7.0, or 10.0.
- 8.1.1.2.5 Fresh standards should be used to obtain values for calibration. Record values after pH readings have stabilized.
- 8.1.1.2.6 Calibration is required if NPDES permit required monitoring is to be performed or if measured pH readings deviate from the standard by more than 0.2 pH units for other monitoring. Follow calibration instructions in the instrumentation manual and document post-calibration pH values accordingly (8.2.4).
- 8.1.1.2.7 Calibration must be verified with a known traceable 7.0 pH reference standard prior to collection of field data. Standard verification results must be with 0.1 pH units of the known standard value to be accepted. If standard values are outside this range corrective action should be taken to identify instrument or calibration process deficiencies.
- 8.1.1.2.8 A calibration check must be conducted after every ten samples using a traceable pH standard when NPDES sampling is being performed.
- 8.1.1.2.9 Post check verification values are recorded after daily sampling activities are conducted. Values for 4.0, 7.0, and 10.0 standards are to be within 0.1 pH units for NPDES permit required monitoring, or 0.2 pH units for other monitoring.
- 8.1.1.3 Check and Calibration of Specific Conductivity
 - 8.1.1.3.1 Refer to instrument manufacturer calibration procedures for conductivity (In-situ, YSI, or Hydrolab).
 - 8.1.1.3.2 Inspect the operational condition of the conductivity probe (i.e cracks, film, fouling etc.).
 - 8.1.1.3.3 Perform a zero check in air. Rinse the conductivity probe with de-lonized water and blot the probe dry with lint free paper. Value should read 0.0 µS/cm. Record the specific conductance value in the appropriate format.
 - 8.1.1.3.4 Triple rinse the conductivity probe with fresh traceable reference standard (typically 150 µS/cm for inland waters).
 - 8.1.1.3.5 Place the probe in the calibration cup containing fresh standard. Record the specific conductance value in the

ESFP-SW-0503 Rev. 1 (01/2021) Page 6 of 10

appropriate format.

- 8.1.1.3.6 Calibration is required for NPDES permit required monitoring and if the at check, the measured specific conductance (µS/cm) deviates from the standard by more than 10%. Follow the calibration procedure in the instrument manual and document post-calibration values in the appropriate format (8.2.4).
- 8.1.1.4 Check of Non-NIST Digital Thermistors for Temperature (annually, at a minimum)
 - 8.1.1.4.1 Inspect the operational condition of the temperature probe.
 - 8.1.1.4.2 Immerse the temperature probe into a bucket of water alongside a NIST certified temperature probe and allow for equilibration. Record the temperature readings from both instruments in the appropriate format (8.2.4).
 - 8.1.1.4.3 If the temperature value deviates from the NIST certified probe by more than 0.2°C, condition of the probe should be checked prior to collection of field data. Differences of 0.5 °C or greater require replacement of the temperature probe.
- 8.1.2 Calibration Check/Calibration of Turbidity
 - 8.1.2.1 Follow procedure ESFP-SW-0500.
- 8.1.3 Calibration Check of Refractometers (Salinity)
 - 8.1.3.1 Ensure the refractometer is clean and no scratches are present on the lenses.
 - 8.1.3.2 Triple rinse the refractometer with De-lonized water and zero the instrument if necessary.
 - 8.1.3.3 Triple rinse the refractometer with salinity standard solution (10ppt) and place a small amount of solution on the sensor and record the salinity values in the appropriate format.
 - 8.1.3.4 Triple rinse the refractometer with salinity standard solution (20ppt) and place a small amount of solution on the sensor and record the salinity values in the appropriate format.
 - 8.1.3.5 Triple rinse the refractometer with salinity standard solution (30ppt) and place a small amount of solution on the sensor and record the salinity values in the appropriate format.
 - 8.1.3.6 Discard the refractometer if the salinity values deviate from the standards by more than 10%.

- 8.1.4 Calibration Check of Photosynthetically Active Radiation (PAR)
 - 8.1.4.1 Inspect the functionality and integrity of the sampling device.
 - 8.1.4.2 An annual calibration is conducted by the manufacturer. Calibration verification information is stored electronically for reference.
- 8.1.5 Calibration Check of Secchi depth cable
 - 8.1.5.1 Validate the distance markings on the depth cable annually and record. Verify markings are clear and discernable prior to each field usage. Validation information is stored electronically for reference.
- 8.1.6 Calibration Check of NIST thermometer
 - 8.1.6.1 Inspect the temperature probe for damage and sufficient battery life for field usage.
 - 8.1.6.2 Calibration of NIST thermometers performed annually by a third party. Calibration verification information is stored electronically for reference.
- 8.2 Collection of water quality data
 - 8.2.1 Record information specific to various programs or studies including but not limited to: site location code, date, sampler identification, station, weather conditions, instrument number, time of sample collection (military format). All information is recorded in an appropriate format enabling consistent and accurate tracking and verification of samples during and after collection (electronic format preferred).
 - 8.2.2 To record water quality parameter values such as D.O., pH, specific conductivity, or temperature, lower the multiparameter meter to surface depth to collect data. Allow time for the instrument to equilibrate and record measurements. Single point surface measurements collected in flowing water should be collected at this depth. Vertical profile water quality data should be collected at intervals described in specific study plans.
 - 8.2.3 To record PAR data the spherical quantum sensor and lowering frame are held just above the surface of the water on the sun-lit side of the boat or stream for a measurement of the amount of incident (I_o) light that is reaching the water surface. Photosynthetically active radiation is measured based on site specific study plan or site depth. Data are recorded on the Photosynthetically Active Radiation Field Form (FRM-SW-0502).
 - 8.2.4 Equilibration time is allowed at each depth. Values recorded are as follows:

Temperature to the nearest 0.1 (°C) D.O. to the nearest 0.1 (mg/L)

pH to the nearest 0.1 (standard unit)
Conductivity to the nearest 1.0 (μmho/cm)

Salinity to the nearest 0.1 (ppt)

PAR to the nearest $0.01 \, (\mu \text{E/sec/m}^2)$

Turbidity to the nearest 0.05 @ 0-1 (NTU) to the nearest 0.1 @ 1-10 (NTU) to the nearest 1.0 @ 10-40 (NTU) to the nearest 5.0 @ 40-100 (NTU) to the nearest 10 @ 100-400 (NTU) to the nearest 50 @ 400-1000 (NTU) to the nearest 100 @ >1000 (NTU)

- 8.2.5 The bottom sample depth is recorded by rounding to the nearest meter.
- 8.2.6 Secchi disk depth is read at each reservoir station or as required by the current monitoring program. Record Secchi disk depth to the nearest 0.1 m.

 Measurements should be an average of two readings first when the disk disappears and the second when the disk reappears as it is being raised. In addition, measurements should be recorded on the shaded (and if possible, leeward) side of the boat without the use of sunglasses.
- 8.2.7 Procedure discrepancies occurring in the field should be noted on the data sheet or in the comments section of data logging device.

9.0 Calculations

N/A

10.0 Results

Collected field data may be recorded electronically (preferred) or in field notebooks. Hard copy data will be transferred to a digital format following the appropriate QA protocol (see section 13.4). Electronic field data will be loaded to an electronic data storage system for end user analysis.

11.0 Definitions

Calibration Check – Comparison of measured values to known traceable standard.

Calibration – An adjustment made to the instrumentation to bring measured values of known traceable standards within approved/acceptable tolerances.

Operation Check – Ensuring an instrument has power and that measured values are stable without comparing it to known standards.

Multiparameter Instrument – An instrument capable of measuring multiple water quality parameters simultaneously by way of multiple specific probes.

Water Quality – A measured quantitative value generated by an instrument or device that is representative of a physical water condition (water temperature, DO, pH, conductivity, Secchi disk transparency depth, salinity, and PAR)

Surface – An area of the water column beginning at the air water interface and extending down to 0.30 meters in depth.

12.0 References

ESFP-SW-0503	Rev. 1 (01/2021)	Page 9 of 10
LOI1 -077-0000	100.1(01/2021)	1 agc 3 01 10

- 12.1 LI-COR® instruction manual LI-250 quantum/radiometer/photometer. LI-COR Incorporated, 4421 Superior St., P. O. Box 4425, Lincoln, NE 68504.
- 12.2 Lind, O. T. 1974. Handbook of common methods in limnology. C. V. Mosby Co., St. Louis, MO.
- 12.3 American Public Health Association, Standard Methods for the Examination of Water and Wastewater, 22th Edition 2012, 1015 Fifteenth St., NW, Washington, DC 20005.
- 12.7 Hach 2100Q and 2100Q*is* User Manual, DOC022.53.80041, 12/2017, Edition 4, HACH COMPANY World Headquarters P.O. Box 389, Loveland, CO 80539-0389 U.S.A.
- 12.8 North Carolina Wastewater/Groundwater Laboratory Certification Approved Procedure for the Analysis of pH, 15A NCAC 2H .0805 (a) (6) (F) and (g) (3).
- 12.9 North Carolina Wastewater/Groundwater Laboratory Certification Approved Procedure for the Analysis of Temperature, 15A NCAC 2H .0805 (a) (6) (F) and (g) (3).
- 12.10 North Carolina Wastewater/Groundwater Laboratory Certification Approved Procedure for the Analysis of Specific Conductance (Conductivity), 15A NCAC 2H .0805 (a) (6) (F) and (g) (3).
- 12.11 Aqua TROLL®600 Multiparameter Sonde Operator's Manual. 0096402 / 2019-09-04, In-Situ, 221 East Licoln Avenue, Fort Collins, Co 80524, U.S.A.
- 12.12 Hydrolab HL Series Sonde User Manual. 04/2017, Edition 2, OTT Hydromet, 5600 Lindbergh Dr., Loveland, CO 80538, U.S.A.
- 12.13 6-Series Multiparameter Water Quality Sondes User Manual. Item# 069300 Revision J, March 2012, YSI Incorporated, 1700/1725 Brannum Lane, Yellow Springs, Ohio, 45387 U.S.A
- 12.14 Professional Plus User Manual. Item# 605596 Rev D, March 2009, YSI Incorporated, 1700/1725 Brannum Lane, Yellow Springs, Ohio, 45387 U.S.A

13.0 Quality Control

- 13.1 Qualified personnel are responsible for briefing personnel on sample collection, study objectives, and sampling locations.
- 13.2 All project area stations will be sampled on the same day if possible.
- 13.3 If data are collected in field notebooks and transferred to a digital format, the newly created digital file must be verified by a second party to ensure the data has been transcribed accurately.
- 13.4 South Carolina NPDES specific: for samples not analyzed *in-situ*, a sample duplicate must be analyzed with each batch of 20 or fewer samples and must recover within the laboratory's acceptance criteria (± 0.2 SU of the first sample aliquot for pH, 10% of known standard value for specific conductivity) when conducting NPDES sampling in South Carolina.13.5 South Carolina NPDES specific: personnel conducting water quality

ESFP-SW-0503	Rev. 1 (01/2021)	Page 10 of 10

field collection in South Carolina waters for NPDES related monitoring will participate in initial demonstration of capability (IDOC), and continuing demonstration of capability (CDOC) for variables included as certified field laboratory parameters.

13.6 NPDES Specific Conditions

Parameter	North Carolina Specific Methods	South Carolina Specific Methods	Standard	Acceptance Criteria ¹
Temperature	SM 2550 B-2010 USGS Method 1975	SM 2550 B-2010	NIST-traceable device	Annual temperature accuracy verification: ±0.2 °C of NIST device temperature
Dissolved Oxygen	ASTM 0888-09 (C) ASTM 0888-05 HACH 10360 SM 4500-O C-2011 SM 4500-O G-2011	ASTM 0888-09 (C)	Water-saturated air, or air- saturated water	LCS/LCSD within 98 - 102 % of theoretical saturation concentration
Specific Conductance	SM 2510 B-2011 SW-846 9050A	SM 2510 B-2011	NIST-traceable KCI standard	±10% of standard LFB or CCV value
рН	SM 4500-H B-2011 SW-846 9040 C SW-846 9045 D	SM 4500-H B-2011	NIST-traceable buffers	±0.1 pH units of buffer value for calibration or check, ±0.2 pH units for duplicate

- 13.7 South Carolina NPDES specific: for specific conductivity samples not analyzed *in-situ*, a laboratory control sample (LCS) must be analyzed after every 10 samples and at the end of each analysis batch.
- 13.8 Specific conductivity instrument automatic temperature compensation will be verified before initial use and annually for equipment used to perform NPDES monitoring. Verification will be performed by analyzing standards which bracket observed temperature conditions where samples are to be collected, and a third temperature of 25° C. All standards measured at, above, or below 25° C must be within 10% of the true value of the standard. Equipment not meeting these criteria will be taken out of service for corrective action.
- 13.9 Initial and annual temperature verification will be performed on non-NIST thermometers. Comparison of a minimum of two temperature conditions which bracket field sample conditions will be performed for any instrument involved in water quality data collection. All temperatures measured must be within ± 0.2 °C of a certified NIST device. Equipment not meeting criteria will be taken out of service for corrective action

¹ The calibration acceptance criteria shown are based on NC and SC lab certification requirements and may in certain cases be modified by study plan-specific criteria, but only for studies that **are not** NPDES compliance-related. All compliance data must meet the criteria in this table. Consult applicable study plans for further details.

|--|

Procedure Number: ESFP-SW-0504

Procedure Title: Water Chemistry Field Sample Collection

Applicability: Applies to Duke Energy, Environmental Science Field Programs

Originator: Environmental Science Group

Approval: Zachary Hall – Director Environmental Science

Signature:

Approval Date: 01/01/2020

Effective Date: 01/01/2020

Summary of Changes

Revision Number	Date Revised/Reviewed	Summary of Changes (Include Page Number)	Revision By
0	01/01/2020	New Procedure	J.C. Green

Water Chemistry Sampling Procedure

Document number

ESFP-SW-0504

Applies to: Duke Energy – Environmental Science

1.0 Purpose

To provide representative, viable water chemistry samples as needed to allow for various characterizations of waterbodies associated.

2.0 Forms Referenced in This Procedure

Sample chain of custody forms for various programs.

3.0 Scope and Frequency

This procedure applies to field sampling programs in the Environmental Sciences Department that generate water chemistry data. Water chemistry sampling conducted by third parties should be consistent with this procedure. Refer to location specific study plans for current year.

4.0 Summary of Methods

Water samples are collected in an appropriate manner depending on analyte requirements. Samples are placed in labeled containers, preserved according to current analytical methodology, and sent to a laboratory within holding times for various analysis. A sample chain of custody is generated and maintained as required.

5.0 Equipment or Apparatus

- 5.1 Cooler, and ice.
- 5.2 Sample bottles containing appropriate preservatives as required for analysis.
- 5.3 Nonmetallic, subsurface water bottle sampler.
- 5.4 Data entry form or labels, and pencil or pen.
- 5.5 Depth finder/GPS unit.
- 5.6 Peristaltic pump with power supply.
- 5.7 Individually bagged pump tubing (Tygon® or equivalent for pump, HDPE for collection segment).
- 5.8 High capacity, 0.45 µm cartridge filters (meets analytical requirements).
- 5.9 Powder-free Nitrile, polyethylene, vinyl or latex disposable gloves.
- 5.10 First aid kit and AED.

ECED CIVI OFOA	D 0 (04/0000)	Dania 4 af 40
ESFP-SW-0504	Rev. 0 (01/2020)	Page 1 of 12

- 5.11 SPOT unit and cell phone.
- 5.12 Polarized safety sunglasses and safety glasses.
- 5.13 Coast Guard approved Personal Flotation Device (PFD) and throwable type IV PFD.
- 5.14 Closed toe non-slip shoes.
- 5.15 Spare batteries or battery charger.
- 5.16 Wide range (0-14) pH test strips.
- 5.17 Nonmetallic bridge sampling basket.
- 5.18 Spare sample bottle kit.
- 5.19 Field Computer and portable media storage.

6.0 Reagent List

- 6.1 De-ionized reagent grade water.
- 6.2 Laboratory grade detergent (Liquinox® or equivalent).
- 6.3 Preservatives as defined in Figure 1.

7.0 Safety, Limitations, Precautions, and Interferences

- 7.1 No element of this procedure may supersede the Company's safety standards and policies. Appropriate safety precautions and personal protective equipment (PPE) should be used when handling chemicals. Refer to Safety Data Sheets for specific descriptions of the physical and chemical properties, physical and health hazards, and precautions for safe handling and use. Formalin is listed as an irritant and potential human carcinogen by the NC Occupational Safety and Health Standards for General Industry. Refer to the Duke Energy Environmental Health and Safety Handbook for guidelines to the proper use of Extremely Hazardous Chemicals.
- 7.2 Surface samples are collected just below the surface to avoid collecting surface film.
- 7.3 If a preserved sample is spilled or the bottle is overfilled, the sample must be tested for appropriate pH level and discarded/ recollected if samples are not adequately preserved. pH testing is done by pouring a small amount of sample over the strip, not by inserting the strip into the sample container.
- 7.4 Samples should be collected, handled, and transferred to the minimum extent possible to reduce contamination. **Direct dip method** is preferred when possible to minimize the contact of sample from multiple containers.
- 7.5 Samples collection time should be recorded as identical to water quality condition collection time unless times are outside of 15 minutes.
- 7.6 Sample chain of custody sheets are maintained, and all pertinent information will be filled out accurately and completely. Store all water chemistry samples using

ECED CM OFOA	D 0 (04/0000)	D 0 -f 10	
ESFP-SW-0504	Rev. 0 (01/2020)	Page 2 of 12	

appropriate preservation techniques, and in a manner that maintains secure custody and relinquish to the laboratory as soon as possible to avoid exceeding sample holding times.

7.7 Location characteristics should be evaluated prior to any sample collection in order to prevent sample contamination due to various factors. Special consideration should be given to Low Level Mercury and other low-level metals sample collection. See procedure ESFP-SW-0502 for details on this specific process prior to sampling.

Examples of unfavorable conditions include but are not limited to: material spills nearby, leaking fuel/oil from boat motors, or pesticide/herbicide spraying near the sampling location. If samples are collected during atypical conditions, details should be included on field records and chain of custody to provide clarification on analytical results if needed.

7.8 Prior to sampling trip ensure that the appropriate number and type of sample containers are included in field gear. This includes appropriate labels for location/analyte identification and preservatives.

8.0 Procedure

- 8.1 Navigate to the sampling location. Using GPS or other landmark, to verify location.
- 8.2 Sampling personnel will put on new gloves prior to sample collection or handling of sampling equipment. If gloves are contaminated during use they will be replaced with a new pair. New gloves will be used at each individual sampling location.
- 8.3 Sampling locations should be visited in a manner that initiates the sampling day at the least contaminated location and progresses towards the most potentially contaminated location when possible. Sampling of spatial composite locations is to be performed in the same manner from least to most known contaminated areas.
- 8.4 Label sample container with the sample number, location code, station code, date, and depth using waterproof marking pen. If sample bottles are pre-labeled, verify location information prior to collection.
- 8.5 Non-preserved sample containers and sampling devices will be rinsed a minimum of two times with site water prior to filling the sample container. Bottles containing preservatives must not be rinsed prior to filling. Care must be taken not to overfill the bottle as preservative may be lost or diluted.
 - 8.2.1 If direct dip method is used to collect grab samples, always collect the sample with the container opening facing upstream to avoid contamination from gloves. If no current is present, use a forward sweeping motion to avoid backflow of water from around the sample bottle. Sample containers should be immersed under the air water interface during collection of surface samples to avoid surface films or scum.
 - 8.2.2 If a sampling device is used to collect grab samples, the water sample is transferred from the sampler into the sample containers and capped securely. The samples should be sealed as soon as possible with the minimal amount of entrained air to prevent oxidative changes.

- 8.3 Various parameters require specific sample bottles, volume of sample, or sampling technique such as no airspace in the sampling container, or other special considerations to ensure proper preservation. See Figure 1. or refer to analyte methodology for information on specific requirements.
- 8.4 Sampling equipment will be inspected for integrity and potential contaminants prior to field usage. If cleaning is needed a non-phosphorous detergent must be used followed by a thorough rinse using de-ionized reagent grade water. Samplers are to be suspended with accurately marked nylon rope to ensure proper sampling depth. When collecting samples from bridges or roadways, ensure that rope used to suspend the sampler does not contact railings or other structures which could result in contamination.
 - 8.4.1 Van Dorn style samplers are typically used to collect discrete depth grab samples from a specific depth in the water column. Refer to user manual for proper use and sample collection techniques. Bottom samples are collected ~ 0.5 m from bottom. If silt or sediment appears in sample or if sampling gear does not properly seal, sample must be discarded and recollected.
 - 8.4.2 Integrated Depth Sampler (IDS) may be used to collect both discrete grab and spatial composite samples of the water. When used for collection of spatial photic zone composite sampling, the IDS is lowered through the water column at a consistent rate to a depth equal to twice the secchi depth, and returned to the surface at the same rate. If the sampler fills prior to being returned to the surface, the sampler must be emptied and the photic zone resampled to ensure proper collection.
- 8.5 Samples requiring In-Field sample filtration will be filtered immediately on location as conditions allow. Secondary collection devices may be used to obtain designated depth samples when filtration is required.
 - 8.5.1 Battery powered peristaltic pumps are preferred for field filtered samples. If location conditions do not allow for immediate on-site field filtration, filtration may occur at a more appropriate location within 15 minutes of sample collection.
 - 8.5.2 A length of new, unused pump tubing should be placed in the pump head and secured to a longer length of HDPE sample tubing to be placed at the designated sampling depth.
 - 8.5.3 Prior to filling sample bottles, pump tubing and filter (if needed) will be flushed for a minimum 20 seconds.
 - 8.5.4 When filtered samples are being collected, attach a new unused $0.45~\mu m$ cartridge filter to the outlet end of the pump tubing. Turn the pump on and orient the outlet end of the filter (directional) up to allow air to be purged. After flushing as described in step 8.5.3, fill sample bottles according to steps 8.2.1 and 8.2.2.
 - 8.5.5 After all samples have been collected at a location, discard the tubing and filter. New tubing and filters are to be used at each location, and should remain bagged until use.
- 8.6 Samples require appropriate temperature and chemical preservation, and tracking.

FOFD OW OFOA	D 0 (04/0000)	D 4 . 540	
ESFP-SW-0504	Rev. 0 (01/2020)	Page 4 of 12	

- 8.6.1 Samples are placed into location specific sealed bags and immediately stored on ice for transport to the analytical laboratory. If samples are not sent immediately to an analytical lab, they may be stored at a consistent temperature of <6°C.
- 8.6.2 Samples submitted to a laboratory must be accompanied by a chain of custody. A chain of custody will be maintained during sample transfer. Pertinent information will be filled out accurately and completely according to ESFP-AD-0102.

9.0 Calculations

N/A

10.0 Results

Samples collected are sent to an analytical chemistry laboratory for analysis. Results are placed on computer master file to be utilized in annual reports and/or as requested.

11.0 Definitions

Grab sample – Sample collected at a discrete depth and time.

Composite Sample – Sample collected at 2 or more specified locations or times used to represent a spatial or temporal average.

12.0 References

- 12.1 American Public Health Association, Standard Methods for the Examination of Water and Waste water, 19th Edition 1995, 1015 Fifteenth St., NW, Washington, DC 20005.
- 12.2 US Government Printing Office. 201. Code of Federal Regulations. Part 136 Guidelines Establishing Test Procedures For the Analysis of Pollutants. CFR §136 Identification of Test Procedures. April 16, 2019, National Archives and Records Administration, Washington, D.C.
- 12.3 Intensive Survey Branch Standard Operating Procedures Manual: Physical and Chemical Monitoring, Version 2.1, December 2013, NC Department of Environment and Natural Resources, Division of Water Resources, Environmental Sciences Section.
- 12.4 Region 4, U.S. Environmental Protection Agency (USEPA) Science and Ecosystem Support Division, Athens, G.A., Operating Procedure, Surface Water Sampling, No. SESDPROC-201-R3, February 28, 2013.

13.0 Quality Control

13.1 Split Samples

Samples representing the same aliquot of the waterbody sampled which are typically used for evaluating sample handling and analytical processes of the recipients of splits samples. When collecting these samples, complete homogenization of samples should occur before samples are dispensed into separate containers.

ESFP-SW-0504	Rev. 0 (01/2020)	Page 5 of 12	

13.2 Duplicate Samples

Duplicate samples are collected as required by study design to evaluate

sample collection and preservation procedures. Duplicate samples are collected in a manner that minimizes changing site conditions while representing all aspects of sample collection.

13.3 Trip Blank

Trip blanks are used to evaluate storage and transport conditions of field samples. These should be treated as normal samples and not be opened in the field. Sample containers are pre-filled with reagent grade water that is transported into the field during sample collection activities, and is stored alongside samples in appropriate storage containers.

13.4 Equipment Blank

Equipment blanks are to be used in evaluation of sampling gear and equipment. Samples are exposed to reagent grade water which is then collected into sample bottles, preserved accordingly and delivered to an analytical lab for analysis.

13.5 Filter Blank

Filter blanks are used to assess the potential for contamination during the sample filtration process. Reagent grade water is processed through a filter in the same manner as a sample and then preserved according to analyte requirements.

13.6 Field Blank

Field Blanks are used to assess site or field conditions experienced during sampling. Samples are exposed to the same conditions as the sample, opened in the field.

13.7 Temperature Blank

Temperature Blanks are vials of water that accompany the samples that will be opened and tested upon arrival at the laboratory to ensure that the temperature of the contents of the sampling shipping container was within the required 6° C \pm 2° .

- 13.8 Site or Trip lead should instruct personnel taking samples in the proper methods, QA sample frequency, and station locations.
- 13.9 Sample holding times vary among analytical procedures. Refer to Figure 1. Or contact analytical laboratory for specific hold time and preservative requirements.

FIGURE 1. CFR §136, 136.3

TABLE II—REQUIRED CONTAINERS, PRESERVATION TECHNIQUES, AND HOLDING TIMES

ESFP-SW-0504	Rev. 0 (01/2020)	Page 6 of 12

Parameter number/name	Container ¹	Preservation ^{2 3}	Maximum holding time ⁴
Table I	A—Bacterial T	ests	
1-5. Coliform, total, fecal, and <i>E. coli</i>	PA, G	Cool, <10 °C, 0.008% Na ₂ S ₂ O ₃ ⁵	8 hours. ^{22 23}
6. Fecal streptococci	PA, G	Cool, <10 °C, 0.008% Na ₂ S ₂ O ₃ ⁵	8 hours. ²²
7. Enterococci	PA, G	Cool, <10 °C, 0.008% Na ₂ S ₂ O ₃ ⁵	8 hours. ²²
8. Salmonella	PA, G	Cool, <10 °C, 0.008% Na ₂ S ₂ O ₃ ⁵	8 hours. ²²
Table IA—	Aquatic Toxici	ty Tests	
9-12. Toxicity, acute and chronic	P, FP, G	Cool, ≤6 °C¹6	36 hours.
Table I	B—Inorganic 1	Tests	
1. Acidity	P, FP, G	Cool, ≤6 °C ¹⁸	14 days.
2. Alkalinity	P, FP, G	Cool, ≤6 °C¹8	14 days.
4. Ammonia	P, FP, G	Cool, ≤6 °C, ¹⁸ H ₂ SO ₄ to pH <2	28 days.
9. Biochemical oxygen demand	P, FP, G	Cool, ≤6 °C ¹⁸	48 hours.
10. Boron	P, FP, or Quartz	HNO₃ to pH <2	6 months.
11. Bromide	P, FP, G	None required	28 days.
14. Biochemical oxygen demand, carbonaceous	P, FP G	Cool, ≤6 °C¹8	48 hours.
15. Chemical oxygen demand	P, FP, G	Cool, ≤6 °C, ¹⁸ H ₂ SO ₄ to pH <2	28 days.
16. Chloride	P, FP, G	None required	28 days.
17. Chlorine, total residual	P, G	None required	Analyze within 15 minutes.
21. Color	P, FP, G	Cool, ≤6 °C¹8	48 hours.
23-24. Cyanide, total or available (or CATC) and free	P, FP, G	Cool, ≤6 °C, ¹⁸ NaOH to pH >10, ⁵⁶ reducing agent if oxidizer present	14 days.
25. Fluoride	Р	None required	28 days.
27. Hardness	P, FP, G	HNO₃ or H₂SO₄ to pH <2	6 months.
28. Hydrogen ion (pH)	P, FP, G	None required	Analyze within 15 minutes.
31, 43. Kjeldahl and organic N	P, FP, G	Cool, ≤6 °C, ¹⁸ H₂SO₄ to pH <2	28 days.
Tal	ble IB—Metals	7	
18. Chromium VI	P, FP, G	Cool, ≤6 °C, ¹⁸ pH = 9.3- 9.7 ²⁰	28 days.

ESFP-SW-0504	Rev. 0 (01/2020)	Page 7 of 12
ESFP-SW-0304	Rev. 0 (01/2020)	Page 7 of 12

35. Mercury (CVAA)	P, FP, G	HNO₃ to pH <2	28 days.
35. Mercury (CVAFS)	FP, G; and FP-lined cap ¹⁷	5 mL/L 12N HCl or 5 mL/L BrCl ¹⁷	90 days. ¹⁷
3, 5-8, 12, 13, 19, 20, 22, 26, 29, 30, 32-34, 36, 37, 45, 47, 51, 52, 58-60, 62, 63, 70-72, 74, 75. Metals, except boron, chromium VI, and mercury		HNO₃ to pH <2, or at least 24 hours prior to analysis ¹⁹	
38. Nitrate	P, FP, G	Cool, ≤6 °C¹8	48 hours.
39. Nitrate-nitrite	P, FP, G	Cool, ≤6 °C, ¹⁸ H₂SO₄ to pH <2	28 days.
40. Nitrite	P, FP, G	Cool, ≤6 °C ¹⁸	48 hours.
41. Oil and grease	G	Cool to ≤6 °C, ¹⁸ HCl or H₂SO₄ to pH <2	28 days.
42. Organic Carbon	P, FP, G	Cool to ≤6 °C, ¹⁸ HCl, H₂SO₄, or H₃PO₄ to pH <2	28 days.
44. Orthophosphate	P, FP, G	Cool, to ≤6 °C ^{18 24}	Filter within 15 minutes; Analyze within 48 hours.
46. Oxygen, Dissolved Probe	G, Bottle and top	None required	Analyze within 15 minutes.
47. Winkler	G, Bottle and top	Fix on site and store in dark	8 hours.
48. Phenols	G	Cool, ≤6 °C, ¹⁸ H ₂ SO ₄ to pH <2	28 days.
49. Phosphorous (elemental)	G	Cool, ≤6 °C¹8	48 hours.
50. Phosphorous, total	P, FP, G	Cool, ≤6 °C, ¹⁸ H ₂ SO₄ to pH <2	28 days.
53. Residue, total	P, FP, G	Cool, ≤6 °C¹8	7 days.
54. Residue, Filterable	P, FP, G	Cool, ≤6 °C¹8	7 days.
55. Residue, Nonfilterable (TSS)	P, FP, G	Cool, ≤6 °C¹8	7 days.
56. Residue, Settleable	P, FP, G	Cool, ≤6 °C ¹⁸	48 hours.
57. Residue, Volatile	P, FP, G	Cool, ≤6 °C¹8	7 days.
61. Silica	P or Quartz	Cool, ≤6 °C¹8	28 days.
64. Specific conductance	P, FP, G	Cool, ≤6 °C¹8	28 days.
65. Sulfate	P, FP, G	Cool, ≤6 °C ¹⁸	28 days.
66. Sulfide	P, FP, G	Cool, ≤6 °C, ¹⁸ add zinc acetate plus sodium hydroxide to pH >9	7 days.
67. Sulfite	P, FP, G	None required	Analyze within 15 minutes.
68. Surfactants	P, FP, G	Cool, ≤6 °C¹8	48 hours.
69. Temperature	P, FP, G	None required	Analyze within 15 minutes.

ESFP-SW-0504 Rev. 0 (01/2020) Page 8 of 12
--

73. Turbidity	P, FP, G	Cool, ≤6 °C¹8	48 hours.
Table	IC—Organic T	ests ⁸	
13, 18-20, 22, 24, 25, 27,28, 34-37, 39-43, 45-47, 56, 76, 104, 105, 108-111, 113. Purgeable Halocarbons	G, FP-lined septum	Cool, ≤6 °C, ¹⁸ 0.008% Na₂S₂O₃, ⁵ HCl to pH 2	14 days.
26. 2-Chloroethylvinyl ether	G, FP-lined septum	Cool, ≤6 °C, ¹⁸ 0.008% Na ₂ S ₂ O ₃ ⁵	14 days.
6, 57, 106. Purgeable aromatic hydrocarbons	G, FP-lined septum	Cool, ≤6 °C, ¹⁸ 0.008% Na ₂ S ₂ O ₃ , ⁵ HCl to pH 2 ⁹	14 days. ⁹
3, 4. Acrolein and acrylonitrile	G, FP-lined septum	Cool, ≤6 °C, ¹⁸ 0.008% Na ₂ S ₂ O₃, pH to 4-5 ¹⁰	14 days. ¹⁰
23, 30, 44, 49, 53, 77, 80, 81, 98, 100, 112. Phenols ¹¹	G, FP-lined cap	Cool, ≤6 °C, ¹⁸ 0.008% Na₂S₂O₃	7 days until extraction, 40 days after extraction.
7, 38. Benzidines ^{11 12}	G, FP-lined cap	Cool, ≤6 °C, ¹⁸ 0.008% Na₂S₂O₃ ⁵	7 days until extraction. ¹³
14, 17, 48, 50-52. Phthalate esters ¹¹	G, FP-lined cap	Cool, ≤6 °C¹8	7 days until extraction, 40 days after extraction.
82-84. Nitrosamines ^{11 14}	G, FP-lined cap	Cool, ≤6 °C, ¹⁸ store in dark, 0.008% Na₂S₂O₃⁵	7 days until extraction, 40 days after extraction.
88-94. PCBs ¹¹	G, FP-lined cap	Cool, ≤6 °C ¹⁸	1 year until extraction, 1 year after extraction.
54, 55, 75, 79. Nitroaromatics and isophorone ¹¹	G, FP-lined cap	Cool, ≤6 °C, ¹⁸ store in dark, 0.008% Na₂S₂O₃⁵	7 days until extraction, 40 days after extraction.
1, 2, 5, 8-12, 32, 33, 58, 59, 74, 78, 99, 101. Polynuclear aromatic hydrocarbons ¹¹	G, FP-lined cap	Cool, ≤6 °C, ¹⁸ store in dark, 0.008% Na₂S₂O₃⁵	7 days until extraction, 40 days after extraction.
15, 16, 21, 31, 87. Haloethers ¹¹	G, FP-lined cap	Cool, ≤6 °C, ¹⁸ 0.008% Na₂S₂O₃ ⁵	7 days until extraction, 40 days after extraction.
29, 35-37, 63-65, 107. Chlorinated hydrocarbons ¹¹	G, FP-lined cap	Cool, ≤6 °C¹8	7 days until extraction, 40 days after extraction.
60-62, 66-72, 85, 86, 95-97, 102, 103. CDDs/CDFs ¹¹	G	See footnote 11	See footnote 11.
Aqueous Samples: Field and Lab Preservation	G	Cool, ≤6 °C, ¹⁸ 0.008% Na₂S₂O₃, ⁵ pH <9	1 year.
Solids and Mixed-Phase Samples: Field Preservation	G	Cool, ≤6 °C¹8	7 days.
Tissue Samples: Field Preservation	G	Cool, ≤6 °C¹8	24 hours.
Solids, Mixed-Phase, and Tissue Samples: Lab Preservation	G	Freeze, ≤−10 °C	1 year.

Page 9 of 12 I

114-118. Alkylated phenols	G	Cool, <6 °C, H ₂ SO ₄ to pH <2	28 days until extraction, 40 days after extraction.
119. Adsorbable Organic Halides (AOX)	G	Cool, <6 °C, 0.008% Na ₂ S ₂ O ₃ , HNO ₃ to pH <2	Hold <i>at least</i> 3 days, but not more than 6 months.
120. Chlorinated Phenolics	G, FP-lined cap	Cool, <6 °C, 0.008% Na ₂ S ₂ O ₃ , H ₂ SO ₄ to pH <2	30 days until acetylation, 30 days after acetylation.
Table	ID—Pesticides	Tests	
1-70. Pesticides ¹¹	G, FP-lined cap	Cool, ≤6 °C, ¹⁸ pH 5-9 ¹⁵	7 days until extraction, 40 days after extraction.
Table	IE—Radiologica	al Tests	
1-5. Alpha, beta, and radium	P, FP, G	HNO₃ to pH <2	6 months.
Tabl	e IH—Bacterial	Tests	
1-4. Coliform, total, fecal	PA, G	Cool, <10 °C, 0.008% Na ₂ S ₂ O ₃ ⁵	8 hours. ^{22 23}
5. E. coli	PA, G	Cool, <10 °C, 0. 008% Na ₂ S ₂ O ₃ ⁵	8 hours. ²²
6. Fecal streptococci	PA, G	Cool, <10 °C, 0.008% Na ₂ S ₂ O ₃ ⁵	8 hours. ²²
7. Enterococci	PA, G	Cool, <10 °C, 0. 008% Na ₂ S ₂ O ₃ ⁵	8 hours. ²²
Table	e IH—Protozoan	Tests	
8. Cryptosporidium	LDPE; field filtration	1-10 °C	96 hours. ²¹
9. Giardia	LDPE; field filtration	1-10 °C	96 hours. ²¹

1"P" is for polyethylene; "FP" is fluoropolymer (polytetrafluoroethylene (PTFE); Teflon®), or other fluoropolymer, unless stated otherwise in this Table II; "G" is glass; "PA" is any plastic that is made of a sterilizable material (polypropylene or other autoclavable plastic); "LDPE" is low density polyethylene.

²Except where noted in this Table II and the method for the parameter, preserve each grab sample within 15 minutes of collection. For a composite sample collected with an automated sample (e.g., using a 24-hour composite sample; see 40 CFR 122.21(g)(7)(i) or 40 CFR part 403, appendix E), refrigerate the sample at ≤6 °C during collection unless specified otherwise in this Table II or in the method(s). For a composite sample to be split into separate aliquots for preservation and/or analysis, maintain the sample at ≤6 °C, unless specified otherwise in this Table II or in the method(s), until collection, splitting, and preservation is completed. Add the preservative to the sample container prior to sample collection when the preservative will not compromise the integrity of a grab sample, a composite sample, or aliquot split from a composite sample within 15 minutes of collection. If a composite measurement is required but a composite sample would compromise sample integrity, individual grab samples must be collected at prescribed time intervals (e.g., 4 samples over the course of a day, at 6-hour intervals). Grab samples must be analyzed separately and the concentrations averaged. Alternatively, grab samples may be collected in the field and composited in the laboratory if the compositing procedure produces results equivalent to results produced by arithmetic averaging of results of analysis of individual grab samples. For examples of laboratory compositing procedures, see EPA Method 1664 Rev. A (oil and grease) and the procedures at 40 CFR 141.24(f)(14)(iv) and (v) (volatile organics).

ESFP-SW-0504	Rev. 0 (01/2020)	Page 10 of 12

³When any sample is to be shipped by common carrier or sent via the U.S. Postal Service, it must comply with the Department of Transportation Hazardous Materials Regulations (49 CFR part 172). The person offering such material for transportation is responsible for ensuring such compliance. For the preservation requirement of Table II, the Office of Hazardous Materials, Materials Transportation Bureau, Department of Transportation has determined that the Hazardous Materials Regulations do not apply to the following materials: Hydrochloric acid (HCl) in water solutions at concentrations of 0.04% by weight or less (pH about 1.96 or greater; Nitric acid (HNO₃) in water solutions at concentrations of 0.15% by weight or less (pH about 1.62 or greater); Sulfuric acid (NaOH) in water solutions at concentrations of 0.080% by weight or less (pH about 1.230 or less).

⁴Samples should be analyzed as soon as possible after collection. The times listed are the maximum times that samples may be held before the start of analysis and still be considered valid. Samples may be held for longer periods only if the permittee or monitoring laboratory have data on file to show that, for the specific types of samples under study, the analytes are stable for the longer time, and has received a variance from the Regional ATP Coordinator under §136.3(e). For a grab sample, the holding time begins at the time of collection. For a composite sample collected with an automated sampler (e.g., using a 24-hour composite sampler; see 40 CFR 122.21(q)(7)(i) or 40 CFR part 403, appendix E), the holding time begins at the time of the end of collection of the composite sample. For a set of grab samples composited in the field or laboratory, the holding time begins at the time of collection of the last grab sample in the set. Some samples may not be stable for the maximum time period given in the table. A permittee or monitoring laboratory is obligated to hold the sample for a shorter time if it knows that a shorter time is necessary to maintain sample stability. See §136.3(e) for details. The date and time of collection of an individual grab sample is the date and time at which the sample is collected. For a set of grab samples to be composited, and that are all collected on the same calendar date, the date of collection is the date on which the samples are collected. For a set of grab samples to be composited, and that are collected across two calendar dates, the date of collection is the dates of the two days; e.g., November 14-15. For a composite sample collected automatically on a given date, the date of collection is the date on which the sample is collected. For a composite sample collected automatically, and that is collected across two calendar dates, the date of collection is the dates of the two days; e.g., November 14-15. For static-renewal toxicity tests, each grab or composite sample may also be used to prepare test solutions for renewal at 24 h, 48 h, and/or 72 h after first use, if stored at 0-6 °C, with minimum head space.

⁵ASTM D7365-09a specifies treatment options for samples containing oxidants (e.g., chlorine) for cyanide analyses. Also, Section 9060A of Standard Methods for the Examination of Water and Wastewater (20th and 21st editions) addresses dechlorination procedures for microbiological analyses.

⁶Sampling, preservation and mitigating interferences in water samples for analysis of cyanide are described in ASTM D7365-09a. There may be interferences that are not mitigated by the analytical test methods or D7365-09a. Any technique for removal or suppression of interference may be employed, provided the laboratory demonstrates that it more accurately measures cyanide through quality control measures described in the analytical test method. Any removal or suppression technique not described in D7365-09a or the analytical test method must be documented along with supporting data.

⁷For dissolved metals, filter grab samples within 15 minutes of collection and before adding preservatives. For a composite sample collected with an automated sampler (e.g., using a 24-hour composite sampler; see 40 CFR 122.21(g)(7)(i) or 40 CFR part 403, appendix E), filter the sample within 15 minutes after completion of collection and before adding preservatives. If it is known or suspected that dissolved sample integrity will be compromised during collection of a composite sample collected automatically over time (e.g., by interchange of a metal between dissolved and suspended forms), collect and filter grab samples to be composited (footnote 2) in place of a composite sample collected automatically.

⁸Guidance applies to samples to be analyzed by GC, LC, or GC/MS for specific compounds.

⁹If the sample is not adjusted to pH 2, then the sample must be analyzed within seven days of sampling.

¹⁰The pH adjustment is not required if acrolein will not be measured. Samples for acrolein receiving no pH adjustment must be analyzed within 3 days of sampling.

¹¹When the extractable analytes of concern fall within a single chemical category, the specified preservative and maximum holding times should be observed for optimum safeguard of sample integrity (*i.e.*, use all necessary preservatives and hold for the shortest time listed). When the analytes of concern fall within two or more chemical categories, the sample may be preserved by cooling to ≤6 °C, reducing residual chlorine with 0.008% sodium thiosulfate, storing in the dark, and adjusting the pH to 6-9; samples preserved in this manner may be held for seven days before extraction and for forty days after extraction. Exceptions to this optional preservation and holding time procedure are noted in footnote 5 (regarding the requirement for thiosulfate reduction), and footnotes 12, 13 (regarding the analysis of benzidine).

 12 If 1,2-diphenylhydrazine is likely to be present, adjust the pH of the sample to 4.0 ± 0.2 to prevent rearrangement to benzidine.

ESFP-SW-0504	Rev. 0 (01/2020)	Page 11 of 12

¹³Extracts may be stored up to 30 days at <0 °C.

 14 For the analysis of diphenylnitrosamine, add 0.008% Na₂S₂O₃ and adjust pH to 7-10 with NaOH within 24 hours of sampling.

 15 The pH adjustment may be performed upon receipt at the laboratory and may be omitted if the samples are extracted within 72 hours of collection. For the analysis of aldrin, add 0.008% Na₂S₂O₃.

¹⁶Place sufficient ice with the samples in the shipping container to ensure that ice is still present when the samples arrive at the laboratory. However, even if ice is present when the samples arrive, immediately measure the temperature of the samples and confirm that the preservation temperature maximum has not been exceeded. In the isolated cases where it can be documented that this holding temperature cannot be met, the permittee can be given the option of on-site testing or can request a variance. The request for a variance should include supportive data which show that the toxicity of the effluent samples is not reduced because of the increased holding temperature. Aqueous samples must not be frozen. Hand-delivered samples used on the day of collection do not need to be cooled to 0 to 6 °C prior to test initiation.

¹⁷Samples collected for the determination of trace level mercury (<100 ng/L) using EPA Method 1631 must be collected in tightly-capped fluoropolymer or glass bottles and preserved with BrCl or HCl solution within 48 hours of sample collection. The time to preservation may be extended to 28 days if a sample is oxidized in the sample bottle. A sample collected for dissolved trace level mercury should be filtered in the laboratory within 24 hours of the time of collection. However, if circumstances preclude overnight shipment, the sample should be filtered in a designated clean area in the field in accordance with procedures given in Method 1669. If sample integrity will not be maintained by shipment to and filtration in the laboratory, the sample must be filtered in a designated clean area in the field within the time period necessary to maintain sample integrity. A sample that has been collected for determination of total or dissolved trace level mercury must be analyzed within 90 days of sample collection.

 18 Aqueous samples must be preserved at ≤6 °C, and should not be frozen unless data demonstrating that sample freezing does not adversely impact sample integrity is maintained on file and accepted as valid by the regulatory authority. Also, for purposes of NPDES monitoring, the specification of "≤ °C" is used in place of the "4 °C" and "<4 °C" sample temperature requirements listed in some methods. It is not necessary to measure the sample temperature to three significant figures (1/100th of 1 degree); rather, three significant figures are specified so that rounding down to 6 °C may not be used to meet the ≤6 °C requirement. The preservation temperature does not apply to samples that are analyzed immediately (less than 15 minutes).

¹⁹An aqueous sample may be collected and shipped without acid preservation. However, acid must be added at least 24 hours before analysis to dissolve any metals that adsorb to the container walls. If the sample must be analyzed within 24 hours of collection, add the acid immediately (see footnote 2). Soil and sediment samples do not need to be preserved with acid. The allowances in this footnote supersede the preservation and holding time requirements in the approved metals methods.

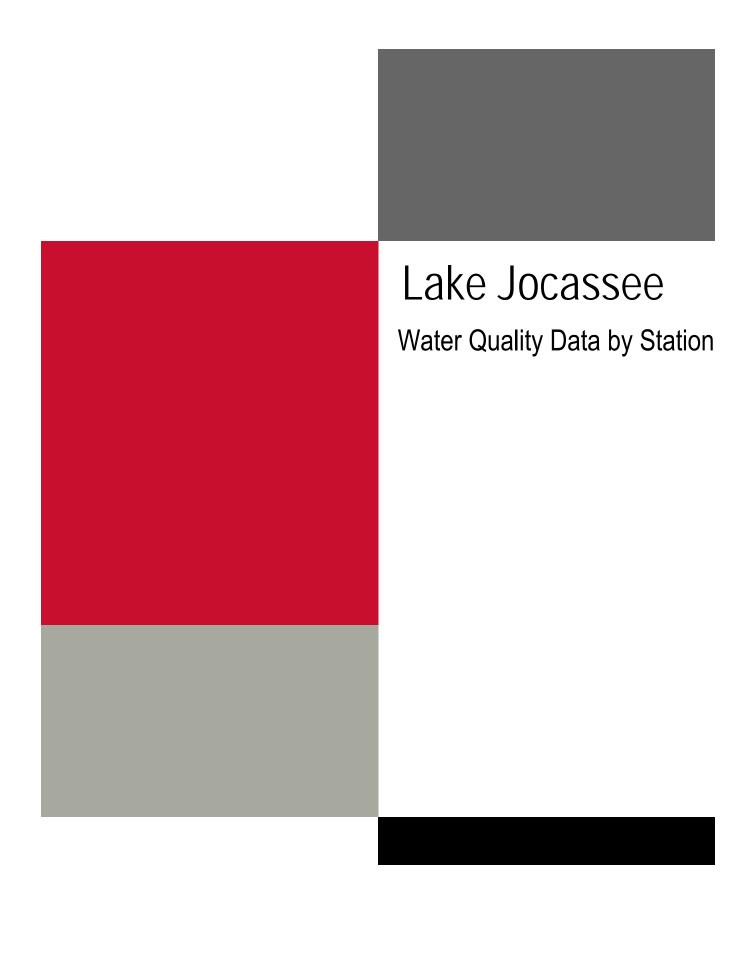
²⁰To achieve the 28-day holding time, use the ammonium sulfate buffer solution specified in EPA Method 218.6. The allowance in this footnote supersedes preservation and holding time requirements in the approved hexavalent chromium methods, unless this supersession would compromise the measurement, in which case requirements in the method must be followed.

²¹Holding time is calculated from time of sample collection to elution for samples shipped to the laboratory in bulk and calculated from the time of sample filtration to elution for samples filtered in the field.

²²Sample analysis should begin as soon as possible after receipt; sample incubation must be started no later than 8 hours from time of collection.

²³For fecal coliform samples for sewage sludge (biosolids) only, the holding time is extended to 24 hours for the following sample types using either EPA Method 1680 (LTB-EC) or 1681 (A-1): Class A composted, Class B aerobically digested, and Class B anaerobically digested.

²⁴The immediate filtration requirement in orthophosphate measurement is to assess the dissolved or bio-available form of orthophosphorus (*i.e.*, that which passes through a 0.45-micron filter), hence the requirement to filter the sample immediately upon collection (*i.e.*, within 15 minutes of collection).


[38 FR 28758, Oct. 16, 1973]

EDITORIAL NOTE: For FEDERAL REGISTER citations affecting §136.3, see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and at www.govinfo.gov.

ESFP-SW-0504	Rev. 0 (01/2020)	Page 12 of 12
	- ()	3

Appendix B Appendix B – Existing Water **Quality Data Tables**

Lake Jocassee Temperature Data

	Joca	ssee B_2_	558.7: Mo	nthly Aver	age Water	Temperati	ures (aeg (C) 1987 to	1991 (Pre l	Bad Creek	Operation	ו)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	10.5	10.3	12.1	14.9	21.0	24.7	25.4	26.0	24.8	21.4	18.4	13.5
	1095 to 1080	10.3	9.5	11.1	13.7	18.3	21.9	24.7	25.9	24.7	21.5	17.6	13.2
msl)	1080 to 1065	10.3	9.3	10.4	12.9	16.4	20.5	23.5	25.3	24.7	21.4	17.4	13.4
(ft n	1065 to 1050	10.2	9.5	10.3	12.2	15.5	19.5	22.5	24.9	24.7	21.4	17.5	13.4
(-)	1050 to 1035	10.3	9.5	10.2	11.4	14.5	18.8	21.7	24.3	24.7	21.3	17.6	13.6
Range	1035 to 1020	10.3	9.5	9.8	11.2	13.6	17.2	20.6	23.5	24.0	21.2	17.4	13.3
Ra	1020 to 1005	10.2	9.4	9.7	10.7	12.2	14.7	17.1	19.9	20.7	20.8	17.5	13.4
ng	1005 to 990	10.3	9.4	9.6	10.3	11.3	12.0	12.9	13.8	14.1	15.4	16.3	13.5
adi	990 to 975	10.3	9.5	9.6	9.9	10.3	10.5	11.0	11.0	11.4	11.2	12.0	12.5
Re	975 to 960	10.1	9.2	9.3	9.6	9.7	9.9	10.2	10.4	10.3	10.2	10.0	10.8
 	960 to 945	9.7	9.3	9.3	9.4	9.6	9.7	9.9	10.0	9.8	9.8	9.7	9.9
πe	945 to 930	9.5	9.3	9.3	9.3	9.4	9.3	9.8	9.8	9.6	9.5	9.6	9.6
Measurement Reading	930 to 915	9.4	9.2	9.1	9.1	9.3	9.4	9.4	9.6	9.5	9.5	9.3	9.4
asu	915 to 900	9.2	9.0	9.0	9.1	9.2	9.2	9.5	9.6	9.3	9.3	9.3	9.2
۸e	900 to 885	9.1	8.9	8.9	9.0	9.1	9.1	9.4	9.4	9.3	9.3	9.2	9.3
	885 to 870	9.1	8.9	8.9	8.9	9.0	9.1	9.4	9.3	9.3	9.1	9.2	9.2
	870 to 855	9.0	8.7	8.7	8.8	8.9	9.0	9.2	9.3	9.3	9.2	9.1	9.1
	< 855	9.0	8.7	8.4	8.6	9.0	9.0	9.2	9.2	9.2	9.1	9.1	9.1
	Jocas	see B_2_	558.7: Moı	nthly Avera	ige Water	Temperatu	res (deg C) 1991 to 2	2015 (Post	Bad Creel	k Operatio	n)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	10.7	9.8	11.2	15.1	19.7	24.0	25.9	26.1	24.9	21.4	17.6	13.9
	1095 to 1080	10.5	9.8	11.0	14.4	17.7	21.7	24.6	26.0	25.0	21.5	17.4	13.8
msl)	1080 to 1065	10.6	9.7	10.6	13.4	16.5	20.4	23.6	25.5	24.9	21.5	17.4	14.0
(ft r	1065 to 1050	10.6	9.7	10.2	12.5	15.1	19.0	22.6	24.6	24.8	21.5	17.4	13.9
<u>e</u>	1050 to 1035	10.5	9.5	10.0	11.5	13.4	17.1	20.7	23.4	23.7	21.3	17.3	13.8
Range	1035 to 1020	10.5	9.6	9.8	11.0	12.4	14.9	18.0	21.0	22.3	20.8	17.2	13.9
R	1020 to 1005	10.6	9.5	9.6	10.3	11.1	12.4	14.0	15.8	17.9	18.6	16.8	13.9
	1005 to 990										40.7	14.1	13.2
ng		10.6	9.5	9.5	9.9	10.1	10.7	11.2	11.7	12.5	12.7		
ading	990 to 975	10.1	9.5	9.4	9.6	9.7	9.8	9.9	10.2	10.3	10.4	10.6	11.2
Reading	990 to 975 975 to 960	10.1 9.9	9.5 9.4	9.4 9.3	9.6 9.4	9.7 9.4	9.8 9.5	9.9 9.6	10.2 9.7	10.3 9.8	10.4 9.7	10.6 9.8	9.9
nt Reading	990 to 975 975 to 960 960 to 945	10.1 9.9 9.5	9.5 9.4 9.2	9.4 9.3 9.1	9.6 9.4 9.3	9.7 9.4 9.2	9.8 9.5 9.3	9.9 9.6 9.4	10.2 9.7 9.5	10.3 9.8 9.5	10.4 9.7 9.5	10.6 9.8 9.5	9.9 9.4
ment Reading	990 to 975 975 to 960 960 to 945 945 to 930	10.1 9.9 9.5 9.2	9.5 9.4 9.2 9.0	9.4 9.3	9.6 9.4 9.3 9.0	9.7 9.4 9.2 9.0	9.8 9.5 9.3 9.1	9.9 9.6 9.4 9.2	10.2 9.7 9.5 9.3	10.3 9.8	10.4 9.7 9.5 9.2	10.6 9.8 9.5 9.3	9.9 9.4 9.2
rement Reading	990 to 975 975 to 960 960 to 945 945 to 930 930 to 915	10.1 9.9 9.5	9.5 9.4 9.2 9.0 9.0	9.4 9.3 9.1	9.6 9.4 9.3	9.7 9.4 9.2 9.0 9.0	9.8 9.5 9.3	9.9 9.6 9.4	10.2 9.7 9.5 9.3 9.2	10.3 9.8 9.5	10.4 9.7 9.5 9.2 9.2	10.6 9.8 9.5	9.9 9.4 9.2 9.1
asurement Reading	990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900	10.1 9.9 9.5 9.2	9.5 9.4 9.2 9.0 9.0 8.9	9.4 9.3 9.1 9.1	9.6 9.4 9.3 9.0 9.0	9.7 9.4 9.2 9.0 9.0 8.9	9.8 9.5 9.3 9.1 9.0 9.0	9.9 9.6 9.4 9.2	10.2 9.7 9.5 9.3	10.3 9.8 9.5 9.3	10.4 9.7 9.5 9.2 9.2 9.2	10.6 9.8 9.5 9.3	9.9 9.4 9.2 9.1 9.1
Weasurement Reading	990 to 975 975 to 960 960 to 945 945 to 930 930 to 915	10.1 9.9 9.5 9.2 9.1	9.5 9.4 9.2 9.0 9.0 8.9 8.8	9.4 9.3 9.1 9.1 8.9	9.6 9.4 9.3 9.0 9.0 8.9	9.7 9.4 9.2 9.0 9.0 8.9 8.8	9.8 9.5 9.3 9.1 9.0 9.0	9.9 9.6 9.4 9.2 9.2	10.2 9.7 9.5 9.3 9.2	10.3 9.8 9.5 9.3 9.3	10.4 9.7 9.5 9.2 9.2	10.6 9.8 9.5 9.3 9.2	9.9 9.4 9.2 9.1 9.1 9.0
Measurement Reading	990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900	10.1 9.9 9.5 9.2 9.1 9.0	9.5 9.4 9.2 9.0 9.0 8.9	9.4 9.3 9.1 9.1 8.9 8.9	9.6 9.4 9.3 9.0 9.0	9.7 9.4 9.2 9.0 9.0 8.9	9.8 9.5 9.3 9.1 9.0 9.0	9.9 9.6 9.4 9.2 9.2 9.0	10.2 9.7 9.5 9.3 9.2 9.1	10.3 9.8 9.5 9.3 9.3	10.4 9.7 9.5 9.2 9.2 9.2	10.6 9.8 9.5 9.3 9.2 9.2	9.9 9.4 9.2 9.1 9.1
Measurement Reading	990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870 870 to 855	10.1 9.9 9.5 9.2 9.1 9.0 9.0 8.8 8.9	9.5 9.4 9.2 9.0 9.0 8.9 8.8 8.8	9.4 9.3 9.1 9.1 8.9 8.9 8.8 8.8	9.6 9.4 9.3 9.0 9.0 8.9 8.9 8.8	9.7 9.4 9.2 9.0 9.0 8.9 8.8 8.8	9.8 9.5 9.3 9.1 9.0 9.0 8.9 8.8	9.9 9.6 9.4 9.2 9.2 9.0 9.0 8.9	10.2 9.7 9.5 9.3 9.2 9.1 9.0	10.3 9.8 9.5 9.3 9.3 9.2 9.1	10.4 9.7 9.5 9.2 9.2 9.2 9.0 9.0	10.6 9.8 9.5 9.3 9.2 9.2	9.9 9.4 9.2 9.1 9.1 9.0 9.1
Measurement Reading	990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870	10.1 9.9 9.5 9.2 9.1 9.0 9.0	9.5 9.4 9.2 9.0 9.0 8.9 8.8 8.8	9.4 9.3 9.1 9.1 8.9 8.9 8.8	9.6 9.4 9.3 9.0 9.0 8.9 8.9	9.7 9.4 9.2 9.0 9.0 8.9 8.8 8.8	9.8 9.5 9.3 9.1 9.0 9.0 8.9 8.8	9.9 9.6 9.4 9.2 9.2 9.0 9.0	10.2 9.7 9.5 9.3 9.2 9.1 9.0 9.1	10.3 9.8 9.5 9.3 9.3 9.2 9.1 9.1	10.4 9.7 9.5 9.2 9.2 9.2 9.0 9.0	10.6 9.8 9.5 9.3 9.2 9.2 9.1 9.0	9.9 9.4 9.2 9.1 9.1 9.0 9.1

	Jocas	ssee B_3_	558.0: Mo	nthly Aver	age Water	Temperati	ures (deg	C) 1975 to	1991 (Pre	Bad Creek	Operatio	n)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	10.3	9.1	10.1	13.7	18.8	23.3	25.9	25.8	25.0	21.6	18.3	13.3
	1095 to 1080	10.3	8.7	9.3	13.4	19.2	23.2	25.3	25.4	25.1	21.6	17.7	13.4
Range (ft msl)	1080 to 1065	10.3	8.8	9.8	13.1	17.8	21.3	24.2	25.1	24.7	21.4	17.5	13.4
ב	1065 to 1050	10.3	8.8	9.5	12.6	15.8	19.6	22.8	24.0	24.7	21.4	17.5	13.3
е (і	1050 to 1035	10.2	8.7	9.3	11.9	14.8	18.8	21.7	23.7	24.3	21.3	17.5	13.6
ng	1035 to 1020	10.2	8.7	9.2	11.5	13.6	16.7	20.5	22.6	24.1	21.3	17.5	13.4
	1020 to 1005	10.3	8.6	8.7	10.6	12.3	16.4	19.2	22.1	22.6	20.9	17.4	13.5
Reading	1005 to 990	10.2	8.6	8.9	10.2	11.6	13.4	17.1	19.3	22.3	20.5	17.5	13.1
ğ	990 to 975	10.3	8.6	8.8	9.9	11.2	13.9	15.7	18.4	19.0	18.9	16.3	13.2
Še	975 to 960	10.2	8.6	8.3	9.6	10.4	11.6	13.4	14.5	16.6	17.7	15.8	12.7
<u> </u>	960 to 945	10.3	8.5	8.5	9.1	9.9	10.8	11.5	12.3	12.8	13.2	12.8	11.3
Measurement	945 to 930	10.1	8.5	8.3	9.0	9.3	9.7	9.9	9.7	10.0	10.0	10.9	10.9
<u>re</u>	930 to 915	10.0	8.8	9.3	9.1	9.6	9.2	9.5	9.5	9.7	9.6	9.5	9.8
nse	915 to 900	9.5	9.0	9.1	8.9	9.4	9.3	9.5	9.5	9.2	9.1	9.5	9.5
Лег	900 to 885	9.1	8.5	8.4	8.7	8.9	8.9	9.0	8.9	9.0	8.8	8.9	9.0
_	885 to 870	9.0	8.7	8.8	8.7	9.0	9.1	9.3	9.1	9.3	9.1	9.2	9.2
	870 to 855	8.9	8.7	8.8	8.7	9.0	9.1	9.2	9.1	9.1	8.8	9.2	9.2
	< 855	8.9	8.4	8.4	8.5	8.8	8.8	8.9	8.9	8.9	8.8	9.0	9.0
	Jocas	see B_3_	558.0: Mon	thly Avera	age Water	Temperatu	res (deg C	c) 1991 to 2	2020 (Post	Bad Creel	k Operatio	n)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	10.7	9.8	11.1	14.7	20.1	24.1	25.9	26.2	25.1	21.5	17.5	13.9
	1095 to 1080	10.7	9.9	11.5	14.4	19.1	23.1	25.4	26.3	25.3	21.5	17.9	13.9
S	1080 to 1065	10.6	9.8	11.2	14.1	17.8	21.5	24.6	26.0	25.1	21.6	17.5	13.9
<u> </u>	1065 to 1050	10.5	9.8	11.1	13.7	17.0	20.9	24.1	25.8	25.2	21.7	17.6	14.1
e (i	1050 to 1035	10.6	9.7	10.6	12.9	15.6	19.5	23.1	25.3	24.9	21.5	17.4	13.8
Range (ft msl)	1035 to 1020	10.6	9.8	10.4	12.5	14.9	18.8	22.2	24.5	24.8	21.7	17.6	14.0
Ra	1020 to 1005	10.5	9.6	10.3	11.7	13.8	17.6	21.0	23.8	23.9	21.2	17.3	13.7
ling	1005 to 990	10.6	9.7	10.1	11.2	13.2	16.1	19.9	22.4	23.5	21.3	17.5	14.1
adi	990 to 975	10.5	9.6	10.0	10.8	12.1	14.3	17.5	20.7	21.9	20.6	17.1	13.7
Re.	975 to 960	10.7	9.7	9.8	10.3	11.2	12.7	14.3	16.6	18.9	18.7	17.2	13.8
T T	960 to 945	10.4	9.6	9.8	10.0	10.6	11.2	12.4	13.6	15.1	15.6	15.9	13.4
Measurement Read	945 to 930	10.4	9.6	9.6	9.7	9.8	10.0	10.3	10.6	11.0	11.0	11.6	11.9
Ī	930 to 915	9.7	9.3	9.4	9.4	9.4	9.4	9.5	9.6	9.8	9.6	9.7	9.7
nsk	915 to 900	9.3	9.1	9.2	9.2	9.2	9.2	9.3	9.3	9.5	9.3	9.3	9.3
Леŝ	900 to 885	9.0	9.0	9.1	9.0	9.0	9.0	9.1	9.2	9.3	9.2	9.2	9.1
	885 to 870	9.0	8.8	8.9	8.9	8.9	8.9	9.0	9.1	9.2	9.1	9.1	9.0
	870 to 855	8.9	8.8	8.8	8.8	8.8	8.8	8.9	9.0	9.1	9.0	9.0	9.0
	< 855	8.8	8.6	8.7	8.7	8.7	8.8	8.9	8.9	9.1	9.0	9.0	9.0
		Legend	8										25

	Jocas	ssee C_2_	559.0: Mo	nthly Aver	age Water	Temperati	ures (deg	C) 1987 to	1991 (Pre	Bad Creek	Operatio	n)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	10.5	10.3	11.2	16.7	21.3	25.5	25.8	26.1	24.8	21.4	18.6	13.7
	1095 to 1080	10.4	9.7	11.1	14.4	18.1	22.9	24.9	26.5	24.9	21.6	17.7	13.6
ısı	1080 to 1065	10.5	9.5	10.5	13.1	16.7	21.0	23.6	25.5	24.8	21.5	17.7	13.7
T	1065 to 1050	10.4	9.6	10.3	12.3	15.6	19.6	22.4	24.8	24.8	21.5	17.7	13.6
e (.	1050 to 1035	10.4	9.7	10.0	11.6	14.7	18.7	21.7	24.3	24.6	21.3	17.7	13.7
Range (ft msl)	1035 to 1020	10.4	9.5	9.8	11.3	13.8	17.4	20.5	23.3	24.0	21.3	17.7	13.5
	1020 to 1005	10.3	9.4	9.6	10.8	12.6	15.0	17.1	20.1	20.9	20.8	17.6	13.5
Reading	1005 to 990	10.4	9.5	9.5	10.5	11.4	12.3	12.9	14.2	13.9	15.2	15.9	13.5
adi	990 to 975	10.4	9.5	9.5	9.9	10.5	10.8	11.1	11.1	11.2	11.2	12.0	12.4
Re	975 to 960	10.3	9.3	9.3	9.6	9.9	10.1	10.2	10.4	10.3	10.2	10.1	10.4
Ħ	960 to 945	9.7	9.3	9.3	9.5	9.6	9.7	9.9	9.9	9.8	9.8	9.8	9.8
me	945 to 930	9.4	9.4	9.2	9.3	9.4	9.6	9.8	9.7	9.7	9.5	9.6	9.6
Measurement	930 to 915	9.3	9.1	9.1	9.2	9.4	9.4	9.4	9.6	9.5	9.5	9.4	9.4
สรเ	915 to 900	9.1	9.0	9.0	9.1	9.2	9.3	9.4	9.6	9.3	9.3	9.3	9.2
Μe	900 to 885	9.1	9.0	8.9	9.0	9.0	9.2	9.3	9.4	9.3	9.3	9.2	9.3
	885 to 870	9.0	9.0	8.9	8.9	9.1	9.2	9.3	9.3	9.2	9.2	9.2	9.2
	870 to 855	8.9	8.8	8.7	8.9	9.0	9.1	9.1	9.3	9.2	9.2	9.2	9.1
	< 855	8.9	8.7	8.7	8.7	8.9	9.0	9.2	9.2	9.1	9.1	9.1	9.1
	Jocas	see C_2_	559.0: Mor	thly Avera	ige Water	Temperatu	res (deg C	c) 1991 to 2	2015 (Post	Bad Creel	k Operatio	n)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	10.8	9.8	11.4	15.2	20.1	24.5	26.4	26.4	25.0	21.4	17.7	14.0
_	1095 to 1080	10.6	9.8	11.1	14.6	18.0	22.0	24.9	26.2	25.1	21.6	17.5	13.8
ısı	1080 to 1065	10.6	9.7	10.7	13.5	16.6	20.3	23.7	25.6	25.0	21.6	17.4	13.9
T T	1065 to 1050	10.6	9.7	10.2	12.4	15.2	18.9	22.5	24.5	24.8	21.5	17.5	13.9
Range (ft msl)	1050 to 1035	10.6	9.5	10.0	11.4	13.5	17.1	20.7	23.2	23.7	21.3	17.3	13.8
l gr	1035 to 1020	10.5	9.6	9.7	10.9	12.4	15.0	18.2	20.8	22.1	20.8	17.3	13.9
8	1020 to 1005	10.6	9.5	9.6	10.3	11.2	12.7	14.3	16.0	17.8	18.6	16.8	13.8
ling	1005 to 990	10.6	9.5	9.4	9.9	10.1	10.8	11.4	11.8	12.4	12.9	14.2	13.1
adi	990 to 975	10.1	9.5	9.4	9.6	9.7	9.9	10.1	10.1	10.3	10.4	10.7	11.2
Measurement Read	975 to 960	9.8	9.4	9.3	9.4	9.4	9.6	9.7	9.6	9.8	9.7	9.8	9.9
ř	960 to 945	9.5	9.2	9.1	9.3	9.2	9.3	9.4	9.4	9.5	9.5	9.5	9.4
l e	945 to 930	9.1	9.0	9.1	9.1	9.0	9.1	9.2	9.2	9.3	9.2	9.3	9.2
Ţ.	930 to 915	9.0	9.0	8.9	9.1	9.0	9.1	9.2	9.2	9.3	9.2	9.2	9.1
ası	915 to 900	8.9	8.9	8.9	8.9	8.9	9.0	9.1	9.1	9.2	9.2	9.2	9.1
Ĭ Ā	900 to 885	9.0	8.8	8.7	8.9	8.8	8.9	9.0	9.0	9.1	9.1	9.2	9.0
	885 to 870	8.8	8.8	8.8	8.8	8.8	8.8	9.0	9.0	9.1	9.0	9.0	9.1
	870 to 855	8.9	8.8	8.7	8.8	8.8	8.9	9.0	9.0	9.1	9.1	9.1	9.0
	< 855	8.7	8.6	8.6	8.7	8.8	8.8	8.9	8.9	9.0	9.0	9.0	9.0
		Legend	8										25

	Jocas	ssee C_2_	560.0: Mo	nthly Aver	age Water	Temperati	ures (deg	C) 1975 to	1991 (Pre	Bad Creek	Operatio	n)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	10.4	9.2	10.1	14.3	19.5	24.5	26.4	26.3	25.1	21.6	18.2	13.3
	1095 to 1080	10.4	9.0	10.1	13.3	17.6	21.9	24.4	25.4	25.1	21.6	17.7	13.4
ıısı	1080 to 1065	10.3	8.7	9.5	12.0	15.2	19.2	22.1	24.0	24.6	21.4	17.6	13.5
12 1	1065 to 1050	10.3	8.8	9.3	11.3	13.9	17.5	20.6	22.9	24.0	21.4	17.7	13.4
е (1050 to 1035	10.3	8.7	8.7	10.4	12.5	15.7	18.8	21.3	22.6	20.8	17.6	13.5
Range (ft msl)	1035 to 1020	10.3	8.6	8.8	10.0	11.6	13.5	16.1	18.8	19.9	18.9	16.7	13.2
	1020 to 1005	10.3	8.6	8.4	9.4	10.4	11.5	13.6	14.3	15.1	15.7	14.7	12.4
Reading	1005 to 990	10.2	8.4	8.3	9.2	10.1	10.4	10.3	10.8	11.1	11.9	12.5	11.2
ğ	990 to 975	10.1	8.5	8.2	8.9	9.4	9.7	9.6	9.7	9.5	9.4	10.0	10.4
Ze.	975 to 960	10.0	8.7	9.3	9.0	9.8	8.9	9.4	9.4	9.6	9.7	9.4	9.6
<u> </u>	960 to 945	9.8	9.2	9.2	9.2	9.7	9.7	9.7	9.6	9.8	9.6	9.8	9.7
Measurement	945 to 930	9.4	9.0	9.3	8.9	9.3	9.4	9.7	9.5	8.8	8.8	9.4	9.5
<u>re</u>	930 to 915	9.3	9.0	9.2	9.0	9.4	9.4	9.4	9.5	9.5	9.3	9.5	9.4
nst	915 to 900	8.9	8.3	8.2	8.5	8.7	8.7	8.8	8.8	8.7	8.8	8.8	8.8
Je 3	900 to 885	9.0	8.8	8.9	8.9	9.1	9.1	9.4	9.3	9.2	9.1	9.1	9.2
=	885 to 870	9.0	8.8	8.9	8.8	9.2	9.1	9.4	9.2	9.2	9.0	9.3	9.1
	870 to 855	8.9	8.6	8.7	8.7	9.0	9.1	9.2	9.2	9.3	9.0	9.2	9.1
	< 855	8.9	8.5	8.6	8.7	8.7	9.0	9.1	9.1	8.9	9.0	9.2	9.0
	Jocas	see C_2_	560.0: Mor	thly Avera	age Water	Temperatu	res (deg C	c) 1991 to 2	2015 (Post	Bad Creel	k Operatio	n)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	10.9	9.9	11.5	15.2	20.3	24.6	26.3	26.4	25.1	21.4	17.9	14.2
	1095 to 1080	10.8	9.9	11.3	14.5	18.2	22.3	24.9	26.4	25.2	21.6	17.6	13.9
S	1080 to 1065	10.8	9.7	10.7	13.4	16.7	20.6	23.7	25.7	25.0	21.6	17.6	14.1
בי	1065 to 1050	10.8	9.7	10.4	12.4	15.5	19.1	22.4	24.5	24.8	21.6	17.7	14.0
e (1	1050 to 1035	10.8	9.6	10.1	11.4	13.8	17.5	20.8	23.3	23.7	21.5	17.5	13.9
Range (ft msl)	1035 to 1020	10.7	9.6	9.9	11.0	12.9	15.7	18.7	21.2	22.3	20.8	17.4	14.0
Ra	1020 to 1005	10.8	9.6	9.7	10.4	11.6	13.3	15.1	16.6	18.0	18.9	16.9	13.9
ling	1005 to 990	10.7	9.5	9.5	10.0	10.5	11.1	11.9	12.2	12.5	13.1	14.1	13.0
ğ	990 to 975	10.3	9.5	9.5	9.7	9.9	10.1	10.2	10.3	10.3	10.4	10.8	11.3
Measurement Read	975 to 960	10.0	9.4	9.3	9.5	9.6	9.6	9.7	9.7	9.8	9.8	9.9	10.1
<u> </u>	960 to 945	9.6	9.3	9.2	9.3	9.3	9.4	9.5	9.5	9.5	9.6	9.6	9.5
ne	945 to 930	9.3	9.1	9.2	9.1	9.1	9.2	9.3	9.3	9.3	9.3	9.4	9.3
<u>re</u>	930 to 915	9.2	9.1	9.1	9.1	9.1	9.2	9.3	9.3	9.3	9.3	9.3	9.2
nsk	915 to 900	9.1	9.1	9.0	9.0	9.0	9.1	9.1	9.2	9.2	9.2	9.3	9.2
Леŝ	900 to 885	9.1	8.9	8.9	9.0	8.9	9.0	9.1	9.1	9.1	9.1	9.2	9.1
	885 to 870	8.9	8.9	8.9	8.8	8.8	9.0	9.0	9.1	9.1	9.1	9.1	9.1
	870 to 855	9.1	8.9	8.7	8.9	9.0	9.0	9.0	9.1	9.1	9.1	9.2	9.1
	< 855	8.6	8.4	8.6	8.6	8.6	8.8	8.7	8.7	8.9	8.7	9.2	9.1
		Legend	8										25

	Jocas	ssee C_2_	562.0: Moi	nthly Aver	age Water	Temperat	ures (deg (C) 1980 to	1991 (Pre	Bad Creek	Operation	າ)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	10.3	10.1	11.0	14.6	20.4	26.6	26.4	26.6	25.0	21.7	18.3	13.5
_	1095 to 1080	10.4	9.5	10.9	13.4	18.4	23.4	24.9	25.9	25.4	21.8	17.8	13.3
msl)	1080 to 1065	10.3	9.3	10.4	12.2	16.3	21.0	23.1	25.0	24.9	21.5	17.6	13.4
(ft n	1065 to 1050	10.2	9.2	10.2	11.7	15.2	19.7	21.9	24.0	24.6	21.6	17.6	13.3
e (1	1050 to 1035	10.2	9.2	9.9	11.1	14.3	18.9	21.1	23.1	24.1	21.3	17.6	13.5
ng	1035 to 1020	10.2	9.1	9.6	10.6	12.9	17.7	19.8	20.9	23.4	20.8	17.5	13.2
Range	1020 to 1005	10.1	9.1	9.5	10.1	12.1	15.5	15.7	17.2	19.8	19.1	17.4	13.2
ng	1005 to 990	9.8	8.7	9.5	9.7	11.3	12.7	12.3	12.9	13.9	14.4	14.9	12.9
Reading	990 to 975	8.9	8.1	8.6	9.1	8.6		9.3	8.6	9.3	9.7	9.2	
Ze.	975 to 960						-			9.3			
	960 to 945												
rement	945 to 930												
	930 to 915												
asn	915 to 900					Λ./	inimum Rea	adina 064 l	5 ff				
Measu	900 to 885					IVI	iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	auiiiy 904.3	ו נ				
_	005 4- 070												

	Jocas	see C_2_	562.0: Mon	ithly Avera	ige Water '	Temperatu	ıres (deg C	s) 1991 to 2	2015 (Post	Bad Creel	k Operatio	n)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	10.9	10.0	11.9	15.4	20.6	24.8	26.5	26.6	25.2	21.5	17.9	14.1
	1095 to 1080	10.6	10.0	11.5	14.2	18.3	22.4	24.9	26.4	25.2	21.6	17.5	13.7
msl)	1080 to 1065	10.7	9.7	10.8	13.3	16.9	20.7	23.8	25.6	25.0	21.6	17.5	13.9
(ft n	1065 to 1050	10.6	9.7	10.4	12.3	15.5	19.1	22.5	24.4	24.8	21.6	17.5	13.9
	1050 to 1035	10.6	9.5	10.1	11.3	13.6	17.2	20.8	23.2	23.7	21.3	17.4	13.7
Range	1035 to 1020	10.6	9.6	9.9	10.9	12.5	15.2	18.4	20.9	22.3	20.6	17.3	13.9
Ra	1020 to 1005	10.5	9.5	9.7	10.3	11.2	13.0	14.9	16.5	18.2	19.0	17.0	13.7
ng	1005 to 990	10.1	9.3	9.5	10.0	10.3	11.1	12.1	12.9	13.1	14.0	15.2	13.0
Reading	990 to 975												
Ϋ́ Ϋ́	975 to 960												
	960 to 945												
rement	945 to 930												
<u>ē</u>	930 to 915					Λ /	inimum Ba	odina 002 1	o #				
asn	915 to 900					IVII	inimum Rea	auiiiy 992.2	2 IL				
Meası	900 to 885												
	005 4- 070												

Legend

900 to 885 885 to 870 870 to 855 < 855

8

	Jocas	ssee C_2_	565.4: Mo	nthly Aver	age Water	Temperati	ures (deg (c) 1987 to	1991 (Pre	Bad Creek	Operation	1)				
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec			
	1110 to 1095	10.7	11.0	11.3	16.9	21.6	26.4	26.1	26.8	25.1	21.6	18.2	14.7			
_	1095 to 1080	10.5	9.8	11.1	14.1	18.6	22.2	25.2	26.6	25.1	21.7	17.7	13.7			
[St	1080 to 1065	10.3	9.5	10.4	12.6	16.5	20.5	23.9	26.0	24.9	21.5	17.6	13.8			
# <u>_</u>	1065 to 1050	10.3	9.5	9.9	11.9	15.6	19.4	22.7	25.0	24.7	21.7	17.6	13.7			
e (t	1050 to 1035	10.3	9.6	9.7	11.2	14.6	18.7	21.9	24.4	24.5	21.4	17.5	13.9			
ng	1035 to 1020	10.3	9.3	9.7	10.9	13.4	17.2	20.9	23.5	23.9	21.4	17.5	13.8			
Ra	1020 to 1005	10.2	9.3	9.5	10.7	12.5	15.3	17.6	20.0	20.8	20.8	17.4	13.6			
ng	1005 to 990	10.2	9.3	9.4	10.4	11.4	12.5	13.3	14.3	14.2	14.5	16.0	13.5			
adi	990 to 975	10.2	9.4	9.5	9.9	10.4	10.6	11.1	11.0	11.3	10.8	11.3	12.0			
Ze.	975 to 960	9.9	9.2	9.2	9.5	9.8	10.0	10.0	10.1	10.4	10.0	9.9	10.4			
Έ	960 to 945	9.8	9.2	9.2	9.4	9.6	9.6	9.7	9.8	9.9	9.9	9.9	9.7			
ле	945 to 930	9.4	9.1	9.3	9.5	9.5	9.7	10.2	9.7	9.7	9.6	10.2	9.5			
<u>ē</u>	930 to 915			9.9		9.4	10.3		10.3	9.6						
asn	915 to 900															
Me	900 to 885		Minimum Reading 918.1 ft													
_	885 to 870															
	2															
	870 to 855															
	< 855															
	< 855	see C_2_	565.4: M on	ithly Avera	ige Water	Temperatu	ıres (deg C) 1991 to	1994 (Post	Bad Creel	k Operatio	n)				
	< 855 Jocas	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec			
	< 855 Jocas 1110 to 1095	Jan 10.8	Feb 10.5	Mar 11.2	Apr 15.9	May 21.0	Jun 24.5	Jul 26.8	Aug 26.1	Sep 25.1	Oct 20.2	Nov 17.1	14.2			
<u> </u>	< 855 Jocas 1110 to 1095 1095 to 1080	Jan 10.8 10.5	Feb 10.5 10.2	Mar 11.2 10.6	Apr 15.9 13.8	May 21.0 18.6	Jun 24.5 21.8	Jul 26.8 24.8	Aug 26.1 25.5	Sep 25.1 25.1	Oct 20.2 20.5	Nov 17.1 17.0	14.2 13.1			
nsl)	< 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065	Jan 10.8 10.5 10.7	Feb 10.5 10.2 10.0	Mar 11.2 10.6 10.2	Apr 15.9 13.8 12.4	May 21.0 18.6 16.1	Jun 24.5 21.8 19.5	Jul 26.8 24.8 22.6	Aug 26.1 25.5 24.8	Sep 25.1 25.1 24.7	Oct 20.2 20.5 20.3	Nov 17.1 17.0 16.7	14.2 13.1 13.4			
ft msl)	< 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050	Jan 10.8 10.5 10.7 10.6	Feb 10.5 10.2 10.0 9.9	Mar 11.2 10.6 10.2 10.1	Apr 15.9 13.8 12.4 11.3	May 21.0 18.6 16.1 14.8	Jun 24.5 21.8 19.5 17.3	Jul 26.8 24.8 22.6 20.5	Aug 26.1 25.5 24.8 22.4	Sep 25.1 25.1 24.7 23.8	Oct 20.2 20.5 20.3 20.2	Nov 17.1 17.0 16.7 16.7	14.2 13.1 13.4 13.6			
ge (ft msl)	< 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035	Jan 10.8 10.5 10.7 10.6 10.7	Feb 10.5 10.2 10.0 9.9 9.8	Mar 11.2 10.6 10.2 10.1 9.9	Apr 15.9 13.8 12.4 11.3 10.8	May 21.0 18.6 16.1 14.8 13.0	Jun 24.5 21.8 19.5 17.3 15.6	Jul 26.8 24.8 22.6 20.5 18.5	Aug 26.1 25.5 24.8 22.4 19.8	Sep 25.1 25.1 24.7 23.8 20.1	Oct 20.2 20.5 20.3 20.2 19.7	Nov 17.1 17.0 16.7 16.7 16.6	14.2 13.1 13.4 13.6 13.2			
ange (ft msl)	< 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020	Jan 10.8 10.5 10.7 10.6 10.7 10.4	Feb 10.5 10.2 10.0 9.9 9.8 9.9	Mar 11.2 10.6 10.2 10.1 9.9 9.8	Apr 15.9 13.8 12.4 11.3 10.8 10.6	May 21.0 18.6 16.1 14.8 13.0 11.8	Jun 24.5 21.8 19.5 17.3 15.6 12.9	Jul 26.8 24.8 22.6 20.5 18.5 14.8	Aug 26.1 25.5 24.8 22.4 19.8 16.7	Sep 25.1 25.1 24.7 23.8 20.1 17.9	Oct 20.2 20.5 20.3 20.2 19.7 16.6	Nov 17.1 17.0 16.7 16.7 16.6 15.8	14.2 13.1 13.4 13.6 13.2 13.3			
Range (ft msl)	< 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005	Jan 10.8 10.5 10.7 10.6 10.7 10.4 10.5	Feb 10.5 10.2 10.0 9.9 9.8 9.9 9.8	Mar 11.2 10.6 10.2 10.1 9.9 9.8 9.7	Apr 15.9 13.8 12.4 11.3 10.8 10.6 10.2	May 21.0 18.6 16.1 14.8 13.0 11.8	Jun 24.5 21.8 19.5 17.3 15.6 12.9 11.7	Jul 26.8 24.8 22.6 20.5 18.5 14.8	Aug 26.1 25.5 24.8 22.4 19.8 16.7 12.5	Sep 25.1 25.1 24.7 23.8 20.1 17.9 13.9	Oct 20.2 20.5 20.3 20.2 19.7 16.6 14.7	Nov 17.1 17.0 16.7 16.7 16.6 15.8 14.4	14.2 13.1 13.4 13.6 13.2 13.3 13.1			
ing Range (ft msl)	< 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990	Jan 10.8 10.5 10.7 10.6 10.7 10.4 10.5 10.6	Feb 10.5 10.2 10.0 9.9 9.8 9.9 9.8 9.7	Mar 11.2 10.6 10.2 10.1 9.9 9.8 9.7 9.6	Apr 15.9 13.8 12.4 11.3 10.8 10.6 10.2 10.0	May 21.0 18.6 16.1 14.8 13.0 11.8 11.0 10.3	Jun 24.5 21.8 19.5 17.3 15.6 12.9 11.7	Jul 26.8 24.8 22.6 20.5 18.5 14.8 13.1 11.2	Aug 26.1 25.5 24.8 22.4 19.8 16.7 12.5 10.9	Sep 25.1 25.1 24.7 23.8 20.1 17.9 13.9 11.1	Oct 20.2 20.5 20.3 20.2 19.7 16.6 14.7 11.5	Nov 17.1 17.0 16.7 16.6 15.8 14.4 12.4	14.2 13.1 13.4 13.6 13.2 13.3 13.1			
ding	< 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975	Jan 10.8 10.5 10.7 10.6 10.7 10.4 10.5 10.6 10.3	Feb 10.5 10.2 10.0 9.9 9.8 9.9 9.8 9.7 9.8	Mar 11.2 10.6 10.2 10.1 9.9 9.8 9.7 9.6 9.5	Apr 15.9 13.8 12.4 11.3 10.8 10.6 10.2 10.0 9.7	May 21.0 18.6 16.1 14.8 13.0 11.8 11.0 10.3 10.2	Jun 24.5 21.8 19.5 17.3 15.6 12.9 11.7 10.7	Jul 26.8 24.8 22.6 20.5 18.5 14.8 13.1 11.2 10.2	Aug 26.1 25.5 24.8 22.4 19.8 16.7 12.5 10.9	Sep 25.1 25.1 24.7 23.8 20.1 17.9 13.9 11.1 10.2	Oct 20.2 20.5 20.3 20.2 19.7 16.6 14.7 11.5	Nov 17.1 17.0 16.7 16.7 16.6 15.8 14.4 12.4	14.2 13.1 13.4 13.6 13.2 13.3 13.1 11.4 10.7			
ding	< 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960	Jan 10.8 10.5 10.7 10.6 10.7 10.4 10.5 10.6 10.3 10.4	Feb 10.5 10.2 10.0 9.9 9.8 9.9 9.8 9.7 9.8 9.7	Mar 11.2 10.6 10.2 10.1 9.9 9.8 9.7 9.6 9.5 9.5	Apr 15.9 13.8 12.4 11.3 10.8 10.6 10.2 10.0 9.7 9.6	May 21.0 18.6 16.1 14.8 13.0 11.8 11.0 10.3 10.2 9.9	Jun 24.5 21.8 19.5 17.3 15.6 12.9 11.7 10.7 10.0 9.8	Jul 26.8 24.8 22.6 20.5 18.5 14.8 13.1 11.2 10.2 9.9	Aug 26.1 25.5 24.8 22.4 19.8 16.7 12.5 10.9 10.3 10.0	Sep 25.1 25.1 24.7 23.8 20.1 17.9 13.9 11.1 10.2 9.9	Oct 20.2 20.5 20.3 20.2 19.7 16.6 14.7 11.5 10.1 9.9	Nov 17.1 17.0 16.7 16.6 15.8 14.4 12.4 10.1 9.9	14.2 13.1 13.4 13.6 13.2 13.3 13.1 11.4 10.7 9.8			
ding	< 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945	Jan 10.8 10.5 10.7 10.6 10.7 10.4 10.5 10.6 10.3 10.4 10.1	Feb 10.5 10.2 10.0 9.9 9.8 9.9 9.8 9.7 9.8 9.7 9.8	Mar 11.2 10.6 10.2 10.1 9.9 9.8 9.7 9.6 9.5 9.5 9.4	Apr 15.9 13.8 12.4 11.3 10.8 10.6 10.2 10.0 9.7 9.6 9.5	May 21.0 18.6 16.1 14.8 13.0 11.8 11.0 10.3 10.2 9.9 9.7	Jun 24.5 21.8 19.5 17.3 15.6 12.9 11.7 10.7 10.0 9.8 9.7	Jul 26.8 24.8 22.6 20.5 18.5 14.8 13.1 11.2 10.2 9.9 9.8	Aug 26.1 25.5 24.8 22.4 19.8 16.7 12.5 10.9 10.3 10.0 9.8	Sep 25.1 25.1 24.7 23.8 20.1 17.9 13.9 11.1 10.2 9.9 9.8	Oct 20.2 20.5 20.3 20.2 19.7 16.6 14.7 11.5 10.1 9.9 9.9	Nov 17.1 17.0 16.7 16.6 15.8 14.4 12.4 10.1 9.9 9.8	14.2 13.1 13.4 13.6 13.2 13.3 13.1 11.4 10.7 9.8 9.5			
ding	< 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930	Jan 10.8 10.5 10.7 10.6 10.7 10.4 10.5 10.6 10.3 10.4 10.1 9.9	Feb 10.5 10.2 10.0 9.9 9.8 9.9 9.8 9.7 9.8 9.7	Mar 11.2 10.6 10.2 10.1 9.9 9.8 9.7 9.6 9.5 9.5	Apr 15.9 13.8 12.4 11.3 10.8 10.6 10.2 10.0 9.7 9.6	May 21.0 18.6 16.1 14.8 13.0 11.8 11.0 10.3 10.2 9.9 9.7 9.8	Jun 24.5 21.8 19.5 17.3 15.6 12.9 11.7 10.7 10.0 9.8	Jul 26.8 24.8 22.6 20.5 18.5 14.8 13.1 11.2 10.2 9.9 9.8 9.6	Aug 26.1 25.5 24.8 22.4 19.8 16.7 12.5 10.9 10.3 10.0 9.8 9.9	Sep 25.1 25.1 24.7 23.8 20.1 17.9 13.9 11.1 10.2 9.9 9.8 9.6	Oct 20.2 20.5 20.3 20.2 19.7 16.6 14.7 11.5 10.1 9.9	Nov 17.1 17.0 16.7 16.6 15.8 14.4 12.4 10.1 9.9 9.8 9.5	14.2 13.1 13.4 13.6 13.2 13.3 13.1 11.4 10.7 9.8			
ding	< 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915	Jan 10.8 10.5 10.7 10.6 10.7 10.4 10.5 10.6 10.3 10.4 10.1	Feb 10.5 10.2 10.0 9.9 9.8 9.9 9.8 9.7 9.8 9.7 9.8	Mar 11.2 10.6 10.2 10.1 9.9 9.8 9.7 9.6 9.5 9.5 9.4	Apr 15.9 13.8 12.4 11.3 10.8 10.6 10.2 10.0 9.7 9.6 9.5	May 21.0 18.6 16.1 14.8 13.0 11.8 11.0 10.3 10.2 9.9 9.7	Jun 24.5 21.8 19.5 17.3 15.6 12.9 11.7 10.7 10.0 9.8 9.7	Jul 26.8 24.8 22.6 20.5 18.5 14.8 13.1 11.2 10.2 9.9 9.8	Aug 26.1 25.5 24.8 22.4 19.8 16.7 12.5 10.9 10.3 10.0 9.8	Sep 25.1 25.1 24.7 23.8 20.1 17.9 13.9 11.1 10.2 9.9 9.8	Oct 20.2 20.5 20.3 20.2 19.7 16.6 14.7 11.5 10.1 9.9 9.9	Nov 17.1 17.0 16.7 16.6 15.8 14.4 12.4 10.1 9.9 9.8	14.2 13.1 13.4 13.6 13.2 13.3 13.1 11.4 10.7 9.8 9.5			
ding	< 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900	Jan 10.8 10.5 10.7 10.6 10.7 10.4 10.5 10.6 10.3 10.4 10.1 9.9	Feb 10.5 10.2 10.0 9.9 9.8 9.9 9.8 9.7 9.8 9.7 9.8	Mar 11.2 10.6 10.2 10.1 9.9 9.8 9.7 9.6 9.5 9.5 9.4	Apr 15.9 13.8 12.4 11.3 10.8 10.6 10.2 10.0 9.7 9.6 9.5	May 21.0 18.6 16.1 14.8 13.0 11.8 11.0 10.3 10.2 9.9 9.7 9.8	Jun 24.5 21.8 19.5 17.3 15.6 12.9 11.7 10.7 10.0 9.8 9.7	Jul 26.8 24.8 22.6 20.5 18.5 14.8 13.1 11.2 10.2 9.9 9.8 9.6	Aug 26.1 25.5 24.8 22.4 19.8 16.7 12.5 10.9 10.3 10.0 9.8 9.9	Sep 25.1 25.1 24.7 23.8 20.1 17.9 13.9 11.1 10.2 9.9 9.8 9.6	Oct 20.2 20.5 20.3 20.2 19.7 16.6 14.7 11.5 10.1 9.9 9.9	Nov 17.1 17.0 16.7 16.6 15.8 14.4 12.4 10.1 9.9 9.8 9.5	14.2 13.1 13.4 13.6 13.2 13.3 13.1 11.4 10.7 9.8 9.5			
ding	< 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915	Jan 10.8 10.5 10.7 10.6 10.7 10.4 10.5 10.6 10.3 10.4 10.1 9.9	Feb 10.5 10.2 10.0 9.9 9.8 9.9 9.8 9.7 9.8 9.7 9.8	Mar 11.2 10.6 10.2 10.1 9.9 9.8 9.7 9.6 9.5 9.5 9.4	Apr 15.9 13.8 12.4 11.3 10.8 10.6 10.2 10.0 9.7 9.6 9.5	May 21.0 18.6 16.1 14.8 13.0 11.8 11.0 10.3 10.2 9.9 9.7 9.8	Jun 24.5 21.8 19.5 17.3 15.6 12.9 11.7 10.7 10.0 9.8 9.7	Jul 26.8 24.8 22.6 20.5 18.5 14.8 13.1 11.2 10.2 9.9 9.8 9.6	Aug 26.1 25.5 24.8 22.4 19.8 16.7 12.5 10.9 10.3 10.0 9.8 9.9	Sep 25.1 25.1 24.7 23.8 20.1 17.9 13.9 11.1 10.2 9.9 9.8 9.6	Oct 20.2 20.5 20.3 20.2 19.7 16.6 14.7 11.5 10.1 9.9 9.9	Nov 17.1 17.0 16.7 16.6 15.8 14.4 12.4 10.1 9.9 9.8 9.5	14.2 13.1 13.4 13.6 13.2 13.3 13.1 11.4 10.7 9.8 9.5			
Measurement Reading Range (ft msl)	< 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900	Jan 10.8 10.5 10.7 10.6 10.7 10.4 10.5 10.6 10.3 10.4 10.1 9.9	Feb 10.5 10.2 10.0 9.9 9.8 9.9 9.8 9.7 9.8 9.7 9.8	Mar 11.2 10.6 10.2 10.1 9.9 9.8 9.7 9.6 9.5 9.5 9.4	Apr 15.9 13.8 12.4 11.3 10.8 10.6 10.2 10.0 9.7 9.6 9.5	May 21.0 18.6 16.1 14.8 13.0 11.8 11.0 10.3 10.2 9.9 9.7 9.8 9.9	Jun 24.5 21.8 19.5 17.3 15.6 12.9 11.7 10.7 10.0 9.8 9.7	Jul 26.8 24.8 22.6 20.5 18.5 14.8 13.1 11.2 10.2 9.9 9.8 9.6 10.5	Aug 26.1 25.5 24.8 22.4 19.8 16.7 12.5 10.9 10.3 10.0 9.8 9.9 10.4	Sep 25.1 25.1 24.7 23.8 20.1 17.9 13.9 11.1 10.2 9.9 9.8 9.6	Oct 20.2 20.5 20.3 20.2 19.7 16.6 14.7 11.5 10.1 9.9 9.9	Nov 17.1 17.0 16.7 16.6 15.8 14.4 12.4 10.1 9.9 9.8 9.5	14.2 13.1 13.4 13.6 13.2 13.3 13.1 11.4 10.7 9.8 9.5			

870 to 855 < 855

Legend 8 25

	Joca	ssee D_2_	551.0: Mo	nthly Aver	age Water	Temperati	ures (deg (C) 1975 to	1991 (Pre	Bad Creek	Operation	n)				
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec			
	1110 to 1095	5.3	5.7	8.9	11.9	14.4	19.4	21.1	21.3	17.8	13.6	10.1	6.8			
	1095 to 1080	5.3	7.7	10.0	13.4	15.5	20.0	24.2	21.2	20.0	13.4	10.6	7.4			
Range (ft msl)	1080 to 1065															
ב	1065 to 1050															
e (1	1050 to 1035															
ng	1035 to 1020															
Ra	1020 to 1005															
ng	1005 to 990															
adi	990 to 975															
, K	975 to 960															
<u> </u>	960 to 945					Mii	nimum Rea	ading 1082.	8 ft							
шe	945 to 930															
<u> </u>	930 to 915															
nse	915 to 900	885														
Measurement Reading	900 to 885	85 to 870														
	885 to 870															
	870 to 855															
	< 855	\overline{o}														
	Jocas				1			1	T			1				
	4440 1- 4005	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec			
	1110 to 1095	3.3	6.2	8.9	15.0	20.6	20.2	20.8	22.7	20.1	12.3	16.1	4.0			
<u>=</u>	1095 to 1080		6.2						27.2			18.4				
ШS	1080 to 1065															
Œ,	1065 to 1050															
Range (ft msl)	1050 to 1035															
an	1035 to 1020															
	1020 to 1005															
Ĭ.	1005 to 990 990 to 975															
	990 (0 9/3															
ea																
t Rea	975 to 960					Λ <i>Δ:</i> .	nimum Dos	ndina 1002	7 f f							
ent Rea	975 to 960 960 to 945					Mii	nimum Rea	ading 1083.	7 ft							
ement Rea	975 to 960 960 to 945 945 to 930					Min	nimum Rea	ading 1083.	7 ft							
surement Rea	975 to 960 960 to 945 945 to 930 930 to 915					Mii	nimum Rea	ading 1083.	7 ft							
easurement Rea	975 to 960 960 to 945 945 to 930 930 to 915 915 to 900					Mii	nimum Rea	ading 1083.	7 ft							
Measurement Reading	975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885					Mii	nimum Rea	ading 1083.	7 ft							
Measurement Rea	975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870					Mii	nimum Rea	ading 1083.	7 ft							
Measurement Rea	975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870 870 to 855					Mii	nimum Rea	ading 1083.	7 ft							
Measurement Rea	975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870	Legend	8			Mii	nimum Rea	nding 1083.	7 ft				25			

Range (ft msl)	1110 to 1095	Jan	Feb	Mar	Anr	D.4	I	11	A	C	0.1	N1 -	
		40.4			Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
nsl)	1005 1- 1000	10.4	9.3	10.4	14.8	19.5	24.8	26.5	26.5	25.3	21.6	17.7	13.3
ısı	1095 to 1080	10.4	9.1	10.1	13.5	17.7	22.1	24.5	25.3	25.2	21.6	17.5	13.2
	1080 to 1065	10.3	8.7	9.6	11.9	15.6	19.5	22.4	24.0	24.8	21.5	17.5	13.3
ן בַּי	1065 to 1050	10.2	8.8	9.3	11.2	14.2	18.0	21.1	22.9	24.1	21.4	17.4	13.2
e (1	1050 to 1035	10.3	8.7	8.7	10.4	12.6	16.1	19.3	21.6	22.9	21.0	17.5	13.4
ng	1035 to 1020	10.3	8.6	8.8	10.1	11.6	14.2	17.0	19.4	20.7	19.4	16.5	13.0
	1020 to 1005	10.2	8.6	8.5	9.6	10.5	12.1	14.3	14.9	15.9	16.1	15.0	12.3
bu	1005 to 990	10.2	8.4	8.4	9.3	10.2	10.9	10.9	11.1	11.9	12.1	13.0	11.4
gdi	990 to 975	10.2	8.5	8.6	9.0	9.5	10.1	10.6	9.9	9.9	9.5	10.1	10.6
Ze.	975 to 960	10.0	8.7	9.3	9.2	9.8	9.4	9.8	9.8	9.9	9.9	9.4	9.8
 	960 to 945	9.7	9.1	9.2	9.3	9.6	9.9	10.0	10.0	10.0	9.6	9.8	9.8
nel	945 to 930	9.4	9.1	9.2	9.2	9.4	9.8	10.0	9.7	9.9	9.3	9.6	9.6
rē	930 to 915	9.3	9.0	9.1	9.2	9.3	9.6	9.7	9.7	9.8	9.5	9.5	9.4
nsı	915 to 900	9.1	8.9	9.0	9.1	9.2	9.5	9.7	9.6	9.6	9.4	9.4	9.2
Measurement Reading	900 to 885	9.1	8.8	8.9	9.0	9.1	9.4	9.6	9.6	9.5	9.3	9.2	9.3
-	885 to 870	9.1	8.8	8.9	8.8	9.1	9.1	9.5	9.6	9.6	9.2	9.3	9.1
-	870 to 855	9.4		8.6	8.5	9.0	9.2	9.7	9.2	9.9	9.4	9.8	8.9
_	< 855		ı			Mi	nimum Re	ading 864.7	7 ft				
	Jocas	see D_2_5	564.0: Mon	thly Avera	ge Water	Temperatu	res (deg C) 1991 to 2	2015 (Post	Bad Creel	k Operatio	n)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	11.1	10.4	11.7	15.6	20.4	24.6	26.3	26.2	25.1	21.4	18.2	14.3
	1095 to 1080	10.8	10.1	11.4	14.4	18.2	22.6	25.1	26.5	25.2	21.7	17.8	14.0
[St	1080 to 1065	10.9	10.0	10.8	13.5	16.9	20.9	24.0	26.0	25.0	21.7	17.8	14.1
ft n	1065 to 1050	10.8	10.0	10.6	12.7	16.0	19.7	22.9	24.9	24.9	21.6	17.8	14.1
Range (ft msl)	1050 to 1035	10.8	9.9	10.3	12.0	14.3	17.9	21.3	23.7	23.8	21.5	17.7	14.0
ng	1035 to 1020	10.7	9.9	10.1	11.4	13.2	15.9	18.9	21.7	22.5	20.8	17.5	14.0
	1020 to 1005	10.8	9.8	9.9	10.6	12.0	13.6	15.5	17.1	18.6	19.3	17.0	13.8
ng	1005 to 990	10.8	9.7	9.7	10.2	10.6	11.5	12.4	12.7	13.3	13.6	14.6	13.1
adi	990 to 975	10.5	9.7	9.7	10.0	10.1	10.5	10.5	10.6	10.6	10.8	11.1	11.7
Measurement Reading	975 to 960	10.2	9.6	9.5	9.7	9.7	9.9	9.9	10.0	10.0	10.0	10.0	10.3
	960 to 945	9.9	9.5	9.4	9.6	9.5	9.7	9.7	9.7	9.7	9.8	9.8	9.7
J G	945 to 930	9.6	9.4	9.3	9.5	9.3	9.5	9.5	9.6	9.5	9.6	9.6	9.6
re	930 to 915	9.4	9.3	9.3	9.4	9.2	9.4	9.4	9.5	9.5	9.5	9.5	9.4
nse	915 to 900	9.4	9.2	9.2	9.3	9.0	9.3	9.3	9.4	9.4	9.5	9.4	9.4
/les	900 to 885	9.3	9.1	9.0	9.1	9.2	9.2	9.1	9.3	9.3	9.3	9.4	9.2
	885 to 870	9.1	8.9	9.1	9.0	9.2	9.4	9.2	9.4	9.5	9.2	9.5	9.3
	870 to 855	9.2	8.2	9.5	8.9		10.0	9.1	9.3		9.0	10.3	
	< 855					Mi	nimum Re	ading 864.4	1 ft				
		Legend	8										25

	Jocas	ssee D_2_	564.1: Moi	nthly Aver	age Water	Temperate	ures (deg (C) 1987 to	1991 (Pre	Bad Creek	Operation	1)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	10.9	11.6	12.6	16.0	20.8	24.2	26.1	26.8	25.8	21.6	18.2	13.5
	1095 to 1080	10.6	10.2	11.2	14.2	18.3	21.8	24.6	26.0	25.4	21.8	17.9	13.4
msl)	1080 to 1065	9.8	9.2	10.8	13.3	16.9	20.3	23.1	25.2	25.1	21.3	17.6	13.1
(# n	1065 to 1050	8.8	8.2	9.4	11.9	15.3	18.0	21.5	24.0	23.9	20.3	16.1	11.4
(j	1050 to 1035	8.4	8.2	8.4	10.1	12.6	14.5	18.2	21.5	23.1	19.9	15.6	11.3
Range	1035 to 1020	8.4	8.0	8.1	9.0	10.4	11.1	13.5	16.8	20.6	19.5	15.5	10.8
Ra	1020 to 1005	8.3	7.9	7.6	8.1	8.8	10.0	12.6	15.2	17.5	19.2	15.3	11.0
ng	1005 to 990	8.3	8.0	7.5	7.8	8.3	8.9	9.9	12.2	14.8	16.9	15.3	11.1
adi	990 to 975	8.3	8.2	7.5	7.9	8.6	8.9	9.5	11.3	13.7	14.7	14.7	11.0
Reading	975 to 960	8.2	7.8	6.7	7.2	8.6	8.9	9.6	11.0	13.2	13.0	13.1	9.9
	960 to 945					8.6							
rement	945 to 930						-						
	930 to 915												
Measu	915 to 900												
Μe	900 to 885					M	inimum Rea	ading 959.9	9 ft				
	005 to 070												

	Jocas	see D_2_	564.1: Mon	thly Avera	ige Water	Temperatu	ıres (deg C) 1991 to 2	2017 (Post	Bad Creel	Operatio	n)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	11.1	10.3	11.3	14.8	20.1	23.5	25.4	26.1	24.9	21.3	18.2	14.3
	1095 to 1080	10.7	10.1	11.0	14.0	18.4	22.4	24.7	26.2	25.2	21.5	17.8	13.9
msl)	1080 to 1065	10.7	10.0	10.9	13.7	17.2	21.3	24.3	25.7	25.1	21.7	17.8	13.9
(ft n	1065 to 1050	10.5	9.8	10.7	13.3	16.4	20.8	23.8	24.9	25.0	21.5	17.7	13.8
	1050 to 1035	10.6	9.7	10.8	13.2	15.9	20.3	23.5	25.0	24.9	21.6	17.6	13.7
Range	1035 to 1020	10.4	9.6	10.8	13.1	16.0	19.9	23.3	24.8	24.8	21.5	17.4	13.7
Ra	1020 to 1005	10.3	9.7	10.8	13.0	15.9	19.8	23.1	24.7	24.8	21.5	17.6	13.6
пg	1005 to 990	10.4	9.5	10.4	12.7	15.2	19.0	22.4	24.3	24.5	21.3	17.3	13.6
jp	990 to 975	10.0	9.5	10.5	12.3	15.4	19.0	22.2	24.0	24.3	20.9	17.0	13.4
Readir	975 to 960	10.2	9.4	9.9	12.1	14.5	17.8	21.5	22.4	23.7	20.0	16.8	13.2
	960 to 945												
rement	945 to 930												
ē	930 to 915												
nse	915 to 900					٨	linimum Da	adina 062	£				
Meası	900 to 885					IV	1inimum Re	auiiiy 903	π				
	005 to 070												

Legend

885 to 870 870 to 855 < 855

900 to 885 885 to 870 870 to 855 < 855

8

	Joca	ssee E_2_	557.0: Moi	nthly Aver	age Water	Temperati	ures (deg	C) 1975 to	1991 (Pre	Bad Creek	Operation	n)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	10.3	8.9	10.4	14.2	19.2	24.0	26.3	25.9	24.8	21.4	18.0	13.3
	1095 to 1080	10.3	8.9	10.1	13.5	17.6	21.6	24.0	25.1	24.9	21.4	17.5	13.3
(ft msl)	1080 to 1065	10.3	8.6	9.4	12.2	15.1	18.9	22.1	23.7	24.6	21.4	17.4	13.4
<u> </u>	1065 to 1050	10.1	8.6	9.2	11.4	13.6	17.2	20.6	22.7	23.9	21.2	17.4	13.3
e (1	1050 to 1035	10.1	8.5	8.7	10.4	12.3	15.4	18.8	21.2	22.3	20.9	17.4	13.4
ng	1035 to 1020	10.2	8.5	8.6	9.8	11.2	13.5	16.1	18.7	19.8	19.2	16.5	13.2
Range (1020 to 1005	10.1	8.5	8.4	9.3	10.1	11.3	13.6	14.2	15.2	15.7	14.5	12.4
рu	1005 to 990	10.1	8.3	8.3	9.1	9.9	10.3	10.3	10.6	11.4	12.0	12.2	11.4
ğ	990 to 975	10.1	8.4	8.1	8.9	9.4	9.6	9.6	9.7	9.6	9.3	10.0	10.7
, Ke	975 to 960	9.9	8.7	9.3	8.9	9.7	8.9	9.4	9.4	9.7	9.7	9.5	9.8
<u> </u>	960 to 945	9.7	9.1	9.2	9.2	9.6	9.8	9.7	9.6	9.9	9.5	9.7	9.9
πe	945 to 930	9.5	8.8	9.4	8.8	9.3	9.2	9.5	9.5	9.0	8.8	9.4	9.6
Measurement Reading	930 to 915	9.4	8.9	9.1	9.0	9.3	9.4	9.3	9.5	9.6	9.3	9.4	9.4
nse	915 to 900	9.0	8.1	8.3	8.4	8.7	8.7	8.9	8.7	8.8	8.8	9.0	8.9
/es	900 to 885	9.1	8.5	8.9	8.9	9.1	9.1	9.4	9.4	9.2	9.2	9.1	9.3
	885 to 870	9.1	8.4	8.9	8.7	9.0	9.1	9.4	9.2	9.3	9.1	9.2	9.2
	870 to 855	9.0	8.4	8.6	8.7	8.9	9.0	8.9	9.2	9.1	9.2	9.2	9.2
	< 855	8.9	8.5	8.5	8.6	8.7	8.9	8.7	9.1	9.0	9.0	9.0	9.1
	Jocas	see E_2_	557.0: Mon	thly Avera	age Water	Temperatu	res (deg C	c) 1991 to 2	2015 (Post	Bad Creel	k Operatio	n)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	10.9	9.9	11.6	15.7	20.5	24.7	26.3	26.5	25.0	21.3	17.7	14.2
_	1095 to 1080	10.7	9.9	11.3	14.7	17.7	22.0	24.8	26.3	25.1	21.4	17.4	13.7
ısı	1080 to 1065	10.7	9.8	10.7	13.5	16.4	20.5	23.6	25.5	24.9	21.5	17.4	14.0
1 1 1	1065 to 1050	10.7	9.7	10.4	12.6	15.1	19.2	22.5	24.5	24.7	21.4	17.5	13.9
<u>e</u>	1050 to 1035	10.7	9.6	10.0	11.6	13.7	17.2	20.8	23.3	23.5	21.2	17.3	13.8
Range (ft msl)	1035 to 1020	10.6	9.6	9.9	11.1	12.6	15.2	18.5	21.0	22.1	20.7	17.2	13.9
	1020 to 1005	10.7	9.6	9.7	10.4	11.5	13.0	14.7	16.3	18.0	18.9	16.7	13.8
Measurement Reading	1005 to 990	10.6	9.5	9.5	9.9	10.3	11.1	11.6	12.0	12.5	13.1	14.4	13.0
adi	990 to 975	10.3	9.4	9.5	9.7	9.8	10.1	10.3	10.3	10.4	10.5	10.8	11.4
Re	975 to 960	9.9	9.3	9.3	9.5	9.5	9.7	9.8	9.7	9.8	9.8	9.8	10.2
Ę	960 to 945	9.6	9.2	9.2	9.3	9.3	9.5	9.5	9.5	9.6	9.5	9.6	9.6
me I	945 to 930	9.4	9.0	9.1	9.1	9.2	9.3	9.3	9.4	9.3	9.3	9.4	9.3
Te l	930 to 915	9.2	9.0	9.0	9.1	9.1	9.2	9.3	9.3	9.3	9.3	9.3	9.3
ası	915 to 900	9.1	8.8	9.0	9.0	9.0	9.1	9.2	9.2	9.3	9.2	9.3	9.2
Ĭ Ā	900 to 885	9.0	8.7	8.8	8.9	8.9	9.0	9.1	9.1	9.2	9.1	9.2	9.1
_	885 to 870	8.9	8.6	8.9	8.9	8.9	9.0	9.1	9.1	9.2	9.1	9.1	9.1
	1	0.0	8.6	8.7	8.8	8.9	9.0	9.1	9.1	9.2	9.1	9.2	9.1
	870 to 855	8.9	0.0	0.7	0.0	0.0	0.0	0.1	· · · ·	0.2	· · ·	V	• • •
	870 to 855 < 855	8.9	8.6	8.7	8.6	8.7	8.8	9.1	8.9	9.1	9.0	9.1	9.0

	Jocas	ssee F_2_	554.8: Mo	nthly Avera	age Water	Temperati	ures (deg C	c) 1986 to	1991 (Pre∃	Bad Creek	Operation	າ)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	10.5	10.7	14.0	16.3	22.7	26.2	26.8	26.7	25.0	21.4	18.1	14.3
_	1095 to 1080	10.1	9.5	11.4	14.5	19.5	22.0	25.2	26.5	25.0	21.5	17.2	13.5
)S	1080 to 1065	10.1	9.1	10.6	13.0	16.2	20.2	23.9	25.4	24.8	21.5	17.2	13.4
<u>.</u>	1065 to 1050	9.9	9.2	10.1	12.5	15.3	19.5	22.7	25.0	24.6	21.3	17.0	13.3
e (I	1050 to 1035	10.0	9.1	10.2	11.5	14.3	18.7	21.9	24.4	24.4	21.2	17.1	13.5
Range (ft msl)	1035 to 1020	10.0	9.2	9.9	11.0	13.2	17.1	20.8	23.6	23.9	21.1	17.0	13.4
Ra	1020 to 1005	9.9	9.0	9.6	10.7	12.1	15.0	17.3	20.2	21.2	20.0	16.8	13.2
ng	1005 to 990	9.9	9.0	9.7	10.2	11.1	12.1	13.2	14.2	14.4	14.5	15.7	13.2
adi	990 to 975	9.6	9.1	9.8	9.8	10.2	10.5	11.0	10.9	11.3	10.8	13.4	12.7
Re	975 to 960	9.0	8.5	9.5	9.7	9.6	9.8	10.0	10.2	10.3	10.2	10.1	11.7
Measurement Reading	960 to 945	8.8	9.1	9.1		10.4	9.9	10.2	9.6	10.2	9.9	9.7	10.4
ne	945 to 930												
ē	930 to 915												
asu	915 to 900												
Ле́	900 to 885					M	inimum Rea	nding 946.5	ft				
_	885 to 870												
	883 10 870												
	870 to 855												
	870 to 855 < 855												
	870 to 855 < 855	see F_2_(554.8: Mor	thly Avera	ge Water	Temperatu	ires (deg C		015 (Post	Bad Cree	k Operatio	n)	
	870 to 855 < 855 Jocas	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	870 to 855 < 855 Jocas 1110 to 1095	Jan 10.7	Feb 9.7	Mar 11.8	Apr 16.1	May 20.7	Jun 24.9	Jul 26.8	Aug 26.7	Sep 25.1	Oct 21.3	Nov 17.5	14.0
	870 to 855 < 855 Jocas 1110 to 1095 1095 to 1080	Jan 10.7 10.5	9.7 9.8	Mar 11.8 11.5	Apr 16.1 14.8	May 20.7 17.7	Jun 24.9 22.2	Jul 26.8 24.8	Aug 26.7 26.4	Sep	Oct 21.3 21.4	Nov 17.5 17.2	14.0 13.5
nsl)	870 to 855 < 855 Jocas 1110 to 1095	Jan 10.7 10.5 10.4	Feb 9.7	Mar 11.8 11.5 10.6	Apr 16.1	May 20.7	Jun 24.9	Jul 26.8 24.8 23.6	Aug 26.7 26.4 25.5	Sep 25.1	Oct 21.3 21.4 21.4	Nov 17.5	14.0
ft msl)	870 to 855 < 855 Jocas 1110 to 1095 1095 to 1080	Jan 10.7 10.5 10.4 10.5	9.7 9.8 9.6 9.6	Mar 11.8 11.5 10.6 10.2	Apr 16.1 14.8 13.3 12.3	May 20.7 17.7 16.4 15.2	Jun 24.9 22.2 20.4 19.2	Jul 26.8 24.8 23.6 22.5	Aug 26.7 26.4 25.5 24.5	Sep 25.1 25.1 24.9 24.6	Oct 21.3 21.4 21.4 21.4	Nov 17.5 17.2 17.2 17.3	14.0 13.5 13.7 13.6
je (ft msl)	870 to 855 < 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035	Jan 10.7 10.5 10.4 10.5 10.4	9.7 9.8 9.6 9.6 9.4	Mar 11.8 11.5 10.6 10.2 10.0	Apr 16.1 14.8 13.3 12.3 11.4	May 20.7 17.7 16.4 15.2 13.8	Jun 24.9 22.2 20.4 19.2 17.2	Jul 26.8 24.8 23.6 22.5 20.9	Aug 26.7 26.4 25.5 24.5 23.3	Sep 25.1 25.1 24.9 24.6 23.4	Oct 21.3 21.4 21.4 21.4 21.1	Nov 17.5 17.2 17.2 17.3 17.1	14.0 13.5 13.7 13.6 13.5
inge (ft msl)	870 to 855 < 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050	Jan 10.7 10.5 10.4 10.5	9.7 9.8 9.6 9.6	Mar 11.8 11.5 10.6 10.2	Apr 16.1 14.8 13.3 12.3	May 20.7 17.7 16.4 15.2	Jun 24.9 22.2 20.4 19.2	Jul 26.8 24.8 23.6 22.5	Aug 26.7 26.4 25.5 24.5	Sep 25.1 25.1 24.9 24.6	Oct 21.3 21.4 21.4 21.4	Nov 17.5 17.2 17.2 17.3	14.0 13.5 13.7 13.6
Range (ft msl)	870 to 855 < 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035	Jan 10.7 10.5 10.4 10.5 10.4 10.3 10.4	9.7 9.8 9.6 9.6 9.4 9.5 9.4	Mar 11.8 11.5 10.6 10.2 10.0	Apr 16.1 14.8 13.3 12.3 11.4	May 20.7 17.7 16.4 15.2 13.8	Jun 24.9 22.2 20.4 19.2 17.2	Jul 26.8 24.8 23.6 22.5 20.9	Aug 26.7 26.4 25.5 24.5 23.3	Sep 25.1 25.1 24.9 24.6 23.4	Oct 21.3 21.4 21.4 21.4 21.1	Nov 17.5 17.2 17.2 17.3 17.1	14.0 13.5 13.7 13.6 13.5
ng	870 to 855 < 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990	Jan 10.7 10.5 10.4 10.5 10.4 10.3 10.4 10.2	9.7 9.8 9.6 9.6 9.4 9.5 9.4 9.3	Mar 11.8 11.5 10.6 10.2 10.0 9.8 9.6 9.4	Apr 16.1 14.8 13.3 12.3 11.4 11.0 10.3 9.9	May 20.7 17.7 16.4 15.2 13.8 12.6 11.3 10.3	Jun 24.9 22.2 20.4 19.2 17.2 15.2	Jul 26.8 24.8 23.6 22.5 20.9 18.4	Aug 26.7 26.4 25.5 24.5 23.3 21.1	Sep 25.1 25.1 24.9 24.6 23.4 22.1	Oct 21.3 21.4 21.4 21.4 21.1 20.3	Nov 17.5 17.2 17.2 17.3 17.1 16.8 16.4 14.7	14.0 13.5 13.7 13.6 13.5 13.6 13.4
ng	870 to 855 < 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005	Jan 10.7 10.5 10.4 10.5 10.4 10.3 10.4	9.7 9.8 9.6 9.6 9.4 9.5 9.4	Mar 11.8 11.5 10.6 10.2 10.0 9.8 9.6	Apr 16.1 14.8 13.3 12.3 11.4 11.0 10.3	May 20.7 17.7 16.4 15.2 13.8 12.6 11.3	Jun 24.9 22.2 20.4 19.2 17.2 15.2 12.9	Jul 26.8 24.8 23.6 22.5 20.9 18.4 14.6	Aug 26.7 26.4 25.5 24.5 23.3 21.1 16.3	Sep 25.1 25.1 24.9 24.6 23.4 22.1 18.0	Oct 21.3 21.4 21.4 21.4 21.1 20.3 18.5	Nov 17.5 17.2 17.2 17.3 17.1 16.8 16.4	14.0 13.5 13.7 13.6 13.5 13.6
ng	870 to 855 < 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990	Jan 10.7 10.5 10.4 10.5 10.4 10.3 10.4 10.2	9.7 9.8 9.6 9.6 9.4 9.5 9.4 9.3 9.1 8.9	Mar 11.8 11.5 10.6 10.2 10.0 9.8 9.6 9.4	Apr 16.1 14.8 13.3 12.3 11.4 11.0 10.3 9.9	May 20.7 17.7 16.4 15.2 13.8 12.6 11.3 10.3 9.8 9.5	Jun 24.9 22.2 20.4 19.2 17.2 15.2 12.9 10.9	Jul 26.8 24.8 23.6 22.5 20.9 18.4 14.6 11.5	Aug 26.7 26.4 25.5 24.5 23.3 21.1 16.3 12.1	Sep 25.1 25.1 24.9 24.6 23.4 22.1 18.0 12.4	Oct 21.3 21.4 21.4 21.4 21.1 20.3 18.5 13.0	Nov 17.5 17.2 17.2 17.3 17.1 16.8 16.4 14.7	14.0 13.5 13.7 13.6 13.5 13.6 13.4 12.8
ng	870 to 855 < 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975	Jan 10.7 10.5 10.4 10.5 10.4 10.3 10.4 10.2 9.8	9.7 9.8 9.6 9.6 9.4 9.5 9.4 9.3 9.1	Mar 11.8 11.5 10.6 10.2 10.0 9.8 9.6 9.4 9.4	Apr 16.1 14.8 13.3 12.3 11.4 11.0 10.3 9.9 9.7	May 20.7 17.7 16.4 15.2 13.8 12.6 11.3 10.3 9.8	Jun 24.9 22.2 20.4 19.2 17.2 15.2 12.9 10.9 10.0	Jul 26.8 24.8 23.6 22.5 20.9 18.4 14.6 11.5	Aug 26.7 26.4 25.5 24.5 23.3 21.1 16.3 12.1 10.3	Sep 25.1 25.1 24.9 24.6 23.4 22.1 18.0 12.4 10.3	Oct 21.3 21.4 21.4 21.4 21.1 20.3 18.5 13.0 10.4	Nov 17.5 17.2 17.2 17.3 17.1 16.8 16.4 14.7	14.0 13.5 13.7 13.6 13.5 13.6 13.4 12.8
ng	870 to 855 < 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960	Jan 10.7 10.5 10.4 10.5 10.4 10.3 10.4 10.2 9.8 9.4	9.7 9.8 9.6 9.6 9.4 9.5 9.4 9.3 9.1 8.9	Mar 11.8 11.5 10.6 10.2 10.0 9.8 9.6 9.4 9.4 9.2	Apr 16.1 14.8 13.3 12.3 11.4 11.0 10.3 9.9 9.7 9.5	May 20.7 17.7 16.4 15.2 13.8 12.6 11.3 10.3 9.8 9.5	Jun 24.9 22.2 20.4 19.2 17.2 15.2 12.9 10.9 10.0 9.7	Jul 26.8 24.8 23.6 22.5 20.9 18.4 14.6 11.5 10.2 9.7	Aug 26.7 26.4 25.5 24.5 23.3 21.1 16.3 12.1 10.3 9.8	Sep 25.1 25.1 24.9 24.6 23.4 22.1 18.0 12.4 10.3 9.8	Oct 21.3 21.4 21.4 21.4 21.1 20.3 18.5 13.0 10.4 9.9	Nov 17.5 17.2 17.2 17.3 17.1 16.8 16.4 14.7 11.6	14.0 13.5 13.7 13.6 13.5 13.6 13.4 12.8 11.6
ng	870 to 855 < 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945	Jan 10.7 10.5 10.4 10.5 10.4 10.3 10.4 10.2 9.8 9.4	9.7 9.8 9.6 9.6 9.4 9.5 9.4 9.3 9.1 8.9	Mar 11.8 11.5 10.6 10.2 10.0 9.8 9.6 9.4 9.4 9.2	Apr 16.1 14.8 13.3 12.3 11.4 11.0 10.3 9.9 9.7 9.5	May 20.7 17.7 16.4 15.2 13.8 12.6 11.3 10.3 9.8 9.5	Jun 24.9 22.2 20.4 19.2 17.2 15.2 12.9 10.9 10.0 9.7	Jul 26.8 24.8 23.6 22.5 20.9 18.4 14.6 11.5 10.2 9.7	Aug 26.7 26.4 25.5 24.5 23.3 21.1 16.3 12.1 10.3 9.8	Sep 25.1 25.1 24.9 24.6 23.4 22.1 18.0 12.4 10.3 9.8	Oct 21.3 21.4 21.4 21.4 21.1 20.3 18.5 13.0 10.4 9.9	Nov 17.5 17.2 17.2 17.3 17.1 16.8 16.4 14.7 11.6	14.0 13.5 13.7 13.6 13.5 13.6 13.4 12.8 11.6
ng	870 to 855 < 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930	Jan 10.7 10.5 10.4 10.5 10.4 10.3 10.4 10.2 9.8 9.4	9.7 9.8 9.6 9.6 9.4 9.5 9.4 9.3 9.1 8.9	Mar 11.8 11.5 10.6 10.2 10.0 9.8 9.6 9.4 9.4 9.2	Apr 16.1 14.8 13.3 12.3 11.4 11.0 10.3 9.9 9.7 9.5	May 20.7 17.7 16.4 15.2 13.8 12.6 11.3 10.3 9.8 9.5	Jun 24.9 22.2 20.4 19.2 17.2 15.2 12.9 10.9 10.0 9.7	Jul 26.8 24.8 23.6 22.5 20.9 18.4 14.6 11.5 10.2 9.7	Aug 26.7 26.4 25.5 24.5 23.3 21.1 16.3 12.1 10.3 9.8	Sep 25.1 25.1 24.9 24.6 23.4 22.1 18.0 12.4 10.3 9.8	Oct 21.3 21.4 21.4 21.4 21.1 20.3 18.5 13.0 10.4 9.9	Nov 17.5 17.2 17.2 17.3 17.1 16.8 16.4 14.7 11.6	14.0 13.5 13.7 13.6 13.5 13.6 13.4 12.8 11.6
	870 to 855 < 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915	Jan 10.7 10.5 10.4 10.5 10.4 10.3 10.4 10.2 9.8 9.4	9.7 9.8 9.6 9.6 9.4 9.5 9.4 9.3 9.1 8.9	Mar 11.8 11.5 10.6 10.2 10.0 9.8 9.6 9.4 9.4 9.2	Apr 16.1 14.8 13.3 12.3 11.4 11.0 10.3 9.9 9.7 9.5	May 20.7 17.7 16.4 15.2 13.8 12.6 11.3 10.3 9.8 9.5 9.2	Jun 24.9 22.2 20.4 19.2 17.2 15.2 12.9 10.9 10.0 9.7	Jul 26.8 24.8 23.6 22.5 20.9 18.4 14.6 11.5 10.2 9.7 9.6	Aug 26.7 26.4 25.5 24.5 23.3 21.1 16.3 12.1 10.3 9.8 9.6	Sep 25.1 25.1 24.9 24.6 23.4 22.1 18.0 12.4 10.3 9.8	Oct 21.3 21.4 21.4 21.4 21.1 20.3 18.5 13.0 10.4 9.9	Nov 17.5 17.2 17.2 17.3 17.1 16.8 16.4 14.7 11.6	14.0 13.5 13.7 13.6 13.5 13.6 13.4 12.8 11.6

Legend

8

885 to 870 870 to 855 < 855

	Jocas	ssee F_2_	556.0: Moi	nthly Avera	age Water	Temperati	ures (deg C	c) 1975 to	1991 (Pre	Bad Creek	Operation	1)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	10.4	8.6	11.1	15.5	20.0	24.6	26.5	26.0	24.9	21.5	18.0	13.0
	1095 to 1080	10.2	8.7	10.5	14.3	17.6	21.8	24.1	24.8	24.9	21.4	17.5	12.9
[ISI	1080 to 1065	10.2	8.3	9.6	12.5	15.0	19.1	22.2	23.4	24.5	21.4	17.3	13.0
<u> </u>	1065 to 1050	10.0	8.5	9.3	11.6	13.8	17.1	20.4	22.5	23.8	21.2	17.3	12.9
e (f	1050 to 1035	10.0	8.2	8.6	10.5	12.5	15.4	18.7	20.7	22.4	20.7	17.3	13.1
Range (ft msl)	1035 to 1020	10.1	8.3	8.5	10.2	11.6	13.4	15.7	18.6	19.7	18.5	16.3	12.8
Ra	1020 to 1005	9.9	8.2	8.3	9.6	10.5	11.2	13.6	14.1	15.2	15.3	14.4	12.1
	1005 to 990	9.9	8.0	8.2	9.5	10.1	10.2	10.3	10.8	11.7	12.4	12.8	11.4
ğ	990 to 975	9.7	7.9	8.1	9.2	9.5	9.6	9.7	9.8	9.7	9.5	11.0	10.7
Ze.	975 to 960	9.4	8.4	9.2	9.6	9.9	8.9	9.5	9.5	9.8	10.2	9.7	10.4
Measurement Reading	960 to 945	9.1	8.8	9.2	9.5	9.7	9.8	9.9	10.0	9.9	9.8	9.8	10.1
nel	945 to 930	9.0	8.5	9.2	9.4	9.5	9.5	9.9	9.8	9.7	9.6	9.8	9.8
<u>re</u>	930 to 915	8.6	8.8	9.4	9.3	9.3	10.3	9.7	9.9	9.8	9.4	9.2	10.3
nst	915 to 900					8.9							
Лей	900 to 885						•						
_	885 to 870					A 4.	inina	li: 0111	· #				
	870 to 855					IVII	inimum Rea	aaing 914. i	π				
	< 855												
	Jocas	see F_2_5	556.0: Mon	thly Avera	ge Water	Temperatu	res (deg C) 1991 to 2	2015 (Post	Bad Cree	k Operatio	n)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	
	1110 to 1095	10.8	0.0	447	16.0	20.8	047					1404	Dec
			9.8	11.7			24.7	26.6	26.6	25.0	21.4	17.5	Dec 14.0
_	1095 to 1080	10.6	9.8	11.7	14.8	17.7	24.7	26.6 24.8	26.3		21.4		
(Isu	1095 to 1080 1080 to 1065	10.6 10.5					22.1 20.5			25.0		17.5	14.0
ft msl)		10.6 10.5 10.6	9.8 9.7 9.6	11.4	14.8 13.4 12.3	17.7 16.4 15.1	22.1 20.5 19.2	24.8 23.6 22.5	26.3 25.5 24.5	25.0 25.0 24.9 24.6	21.4 21.4 21.4	17.5 17.2 17.2 17.3	14.0 13.5 13.8 13.7
e (ft msl)	1080 to 1065	10.6 10.5	9.8 9.7 9.6 9.5	11.4 10.6 10.3 10.0	14.8 13.4	17.7 16.4	22.1 20.5	24.8 23.6	26.3 25.5	25.0 25.0 24.9	21.4 21.4	17.5 17.2 17.2	14.0 13.5 13.8 13.7 13.6
inge (ft msl)	1080 to 1065 1065 to 1050	10.6 10.5 10.6	9.8 9.7 9.6	11.4 10.6 10.3	14.8 13.4 12.3	17.7 16.4 15.1	22.1 20.5 19.2	24.8 23.6 22.5	26.3 25.5 24.5	25.0 25.0 24.9 24.6	21.4 21.4 21.4	17.5 17.2 17.2 17.3	14.0 13.5 13.8 13.7
Range	1080 to 1065 1065 to 1050 1050 to 1035	10.6 10.5 10.6 10.5	9.8 9.7 9.6 9.5	11.4 10.6 10.3 10.0	14.8 13.4 12.3 11.4	17.7 16.4 15.1 13.8	22.1 20.5 19.2 17.1	24.8 23.6 22.5 20.8	26.3 25.5 24.5 23.3	25.0 25.0 24.9 24.6 23.5	21.4 21.4 21.4 21.2	17.5 17.2 17.2 17.3 17.2	14.0 13.5 13.8 13.7 13.6
ng Range (ft msl)	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020	10.6 10.5 10.6 10.5 10.4	9.8 9.7 9.6 9.5 9.5	11.4 10.6 10.3 10.0 9.8	14.8 13.4 12.3 11.4 11.1	17.7 16.4 15.1 13.8 12.6	22.1 20.5 19.2 17.1 15.1	24.8 23.6 22.5 20.8 18.5	26.3 25.5 24.5 23.3 21.0	25.0 25.0 24.9 24.6 23.5 22.1	21.4 21.4 21.4 21.2 20.4	17.5 17.2 17.2 17.3 17.2 16.9	14.0 13.5 13.8 13.7 13.6 13.7
ing Range	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005	10.6 10.5 10.6 10.5 10.4 10.5 10.3 9.9	9.8 9.7 9.6 9.5 9.5 9.4	11.4 10.6 10.3 10.0 9.8 9.6	14.8 13.4 12.3 11.4 11.1 10.4	17.7 16.4 15.1 13.8 12.6 11.3	22.1 20.5 19.2 17.1 15.1 12.9	24.8 23.6 22.5 20.8 18.5 14.7	26.3 25.5 24.5 23.3 21.0 16.4	25.0 25.0 24.9 24.6 23.5 22.1 18.0	21.4 21.4 21.4 21.2 20.4 18.7	17.5 17.2 17.2 17.3 17.2 16.9 16.3	14.0 13.5 13.8 13.7 13.6 13.7
ing Range	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990	10.6 10.5 10.6 10.5 10.4 10.5 10.3	9.8 9.7 9.6 9.5 9.5 9.4 9.3	11.4 10.6 10.3 10.0 9.8 9.6 9.4	14.8 13.4 12.3 11.4 11.1 10.4 9.9	17.7 16.4 15.1 13.8 12.6 11.3	22.1 20.5 19.2 17.1 15.1 12.9 11.0	24.8 23.6 22.5 20.8 18.5 14.7 11.6	26.3 25.5 24.5 23.3 21.0 16.4 12.1	25.0 25.0 24.9 24.6 23.5 22.1 18.0 12.4	21.4 21.4 21.4 21.2 20.4 18.7 13.2	17.5 17.2 17.2 17.3 17.2 16.9 16.3	14.0 13.5 13.8 13.7 13.6 13.7 13.4
Reading Range	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975	10.6 10.5 10.6 10.5 10.4 10.5 10.3 9.9	9.8 9.7 9.6 9.5 9.5 9.4 9.3 9.1	11.4 10.6 10.3 10.0 9.8 9.6 9.4 9.4	14.8 13.4 12.3 11.4 11.1 10.4 9.9 9.7	17.7 16.4 15.1 13.8 12.6 11.3 10.2 9.8	22.1 20.5 19.2 17.1 15.1 12.9 11.0	24.8 23.6 22.5 20.8 18.5 14.7 11.6 10.2	26.3 25.5 24.5 23.3 21.0 16.4 12.1 10.3	25.0 25.0 24.9 24.6 23.5 22.1 18.0 12.4 10.3	21.4 21.4 21.2 20.4 18.7 13.2	17.5 17.2 17.2 17.3 17.2 16.9 16.3 14.7	14.0 13.5 13.8 13.7 13.6 13.7 13.4 12.7
Reading Range	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960	10.6 10.5 10.6 10.5 10.4 10.5 10.3 9.9 9.5	9.8 9.7 9.6 9.5 9.5 9.4 9.3 9.1	11.4 10.6 10.3 10.0 9.8 9.6 9.4 9.4 9.3	14.8 13.4 12.3 11.4 11.1 10.4 9.9 9.7 9.5	17.7 16.4 15.1 13.8 12.6 11.3 10.2 9.8 9.5	22.1 20.5 19.2 17.1 15.1 12.9 11.0 10.0 9.7	24.8 23.6 22.5 20.8 18.5 14.7 11.6 10.2 9.7	26.3 25.5 24.5 23.3 21.0 16.4 12.1 10.3 9.8	25.0 25.0 24.9 24.6 23.5 22.1 18.0 12.4 10.3 9.8	21.4 21.4 21.2 20.4 18.7 13.2 10.5 9.8	17.5 17.2 17.2 17.3 17.2 16.9 16.3 14.7 11.3	14.0 13.5 13.8 13.7 13.6 13.7 13.4 12.7 11.6
Reading Range	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945	10.6 10.5 10.6 10.5 10.4 10.5 10.3 9.9 9.5 9.5	9.8 9.7 9.6 9.5 9.5 9.4 9.3 9.1 9.0 8.9	11.4 10.6 10.3 10.0 9.8 9.6 9.4 9.4 9.3 9.1	14.8 13.4 12.3 11.4 11.1 10.4 9.9 9.7 9.5 9.4	17.7 16.4 15.1 13.8 12.6 11.3 10.2 9.8 9.5 9.5	22.1 20.5 19.2 17.1 15.1 12.9 11.0 10.0 9.7 9.5	24.8 23.6 22.5 20.8 18.5 14.7 11.6 10.2 9.7 9.5	26.3 25.5 24.5 23.3 21.0 16.4 12.1 10.3 9.8 9.5	25.0 25.0 24.9 24.6 23.5 22.1 18.0 12.4 10.3 9.8 9.6	21.4 21.4 21.2 20.4 18.7 13.2 10.5 9.8 9.6	17.5 17.2 17.2 17.3 17.2 16.9 16.3 14.7 11.3 10.0 9.6	14.0 13.5 13.8 13.7 13.6 13.7 13.4 12.7 11.6 10.7
Reading Range	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930	10.6 10.5 10.6 10.5 10.4 10.5 10.3 9.9 9.5 9.5 9.2	9.8 9.7 9.6 9.5 9.5 9.4 9.3 9.1 9.0 8.9 8.7	11.4 10.6 10.3 10.0 9.8 9.6 9.4 9.4 9.3 9.1	14.8 13.4 12.3 11.4 11.1 10.4 9.9 9.7 9.5 9.4 9.2	17.7 16.4 15.1 13.8 12.6 11.3 10.2 9.8 9.5 9.3 9.2	22.1 20.5 19.2 17.1 15.1 12.9 11.0 10.0 9.7 9.5 9.3	24.8 23.6 22.5 20.8 18.5 14.7 11.6 10.2 9.7 9.5 9.3	26.3 25.5 24.5 23.3 21.0 16.4 12.1 10.3 9.8 9.5 9.4	25.0 25.0 24.9 24.6 23.5 22.1 18.0 12.4 10.3 9.8 9.6 9.3	21.4 21.4 21.2 20.4 18.7 13.2 10.5 9.8 9.6 9.4	17.5 17.2 17.2 17.3 17.2 16.9 16.3 14.7 11.3 10.0 9.6 9.5	14.0 13.5 13.8 13.7 13.6 13.7 13.4 12.7 11.6 10.7 10.0 9.5
ing Range	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915	10.6 10.5 10.6 10.5 10.4 10.5 10.3 9.9 9.5 9.5 9.2	9.8 9.7 9.6 9.5 9.5 9.4 9.3 9.1 9.0 8.9 8.7	11.4 10.6 10.3 10.0 9.8 9.6 9.4 9.4 9.3 9.1	14.8 13.4 12.3 11.4 11.1 10.4 9.9 9.7 9.5 9.4 9.2	17.7 16.4 15.1 13.8 12.6 11.3 10.2 9.8 9.5 9.3 9.2	22.1 20.5 19.2 17.1 15.1 12.9 11.0 10.0 9.7 9.5 9.3	24.8 23.6 22.5 20.8 18.5 14.7 11.6 10.2 9.7 9.5 9.3	26.3 25.5 24.5 23.3 21.0 16.4 12.1 10.3 9.8 9.5 9.4	25.0 25.0 24.9 24.6 23.5 22.1 18.0 12.4 10.3 9.8 9.6 9.3	21.4 21.4 21.2 20.4 18.7 13.2 10.5 9.8 9.6 9.4	17.5 17.2 17.2 17.3 17.2 16.9 16.3 14.7 11.3 10.0 9.6 9.5	14.0 13.5 13.8 13.7 13.6 13.7 13.4 12.7 11.6 10.7 10.0 9.5

Legend 8

885 to 870 870 to 855 < 855 Minimum Reading 918.4 ft

Lake Jocassee Dissolved Oxygen

	Jocas	see B_2_	558.7: M oi	nthly Aver	aged Diss	olved Oxy	/gen (mg/l) 1987 to 1	991 (Pre E	Bad Creek	Operation	n)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	9.6	9.2	10.1	10.1	9.0	8.3	8.5	8.3	7.6	8.2	8.6	9.2
1 _	1095 to 1080	9.5	8.8	10.1	10.2	9.5	9.1	8.4	8.1	7.6	8.2	8.7	9.1
Įst	1080 to 1065	9.5	8.7	9.8	10.1	9.5	9.1	8.2	8.0	7.6	8.1	8.8	9.0
ב ו	1065 to 1050	9.4	8.8	9.7	9.9	9.4	9.1	8.1	7.7	7.6	8.1	8.7	9.0
(-) (-)	1050 to 1035	9.4	8.8	9.4	9.7	9.4	9.2	8.3	7.6	7.3	8.0	8.6	9.0
Range (ft msl)	1035 to 1020	9.4	8.8	9.3	9.6	9.2	9.1	8.1	7.3	6.5	7.9	8.7	9.0
	1020 to 1005	9.3	8.7	9.2	9.6	9.1	8.8	7.7	6.7	5.5	7.2	8.6	8.9
Вu	1005 to 990	9.4	8.6	9.1	9.5	9.0	8.4	7.6	6.9	6.2	5.5	7.4	8.8
adi	990 to 975	9.4	8.6	9.0	9.2	8.8	8.2	7.6	7.0	6.4	6.3	5.2	7.6
Re	975 to 960	8.9	8.4	8.7	8.9	8.3	7.8	7.2	6.8	6.1	6.1	5.4	5.1
 	960 to 945	6.2	8.6	8.6	8.7	8.0	7.4	6.8	6.3	5.7	5.4	4.9	3.5
ше	945 to 930	3.5	8.1	8.5	8.6	7.6	7.1	6.4	5.9	5.2	5.1	4.7	3.3
<u> </u>	930 to 915	4.0	7.7	8.3	7.9	6.9	6.4	6.0	5.5	4.8	4.7	4.2	3.0
asn	915 to 900	2.8	6.2	7.9	7.4	6.4	5.7	5.2	4.9	4.5	4.2	3.7	2.9
Measurement Reading	900 to 885	1.4	6.1	7.1	6.8	5.9	5.5	4.8	4.4	3.9	3.5	3.3	2.3
	885 to 870	0.5	6.7	6.3	6.4	5.3	4.9	4.1	4.0	3.2	2.9	2.7	1.7
	870 to 855	0.3	7.0	6.7	5.9	4.9	4.5	4.0	3.1	2.4	2.3	2.6	1.3
	< 855	0.3	4.6	7.5	5.6	4.0	3.8	3.1	2.5	1.6	1.4	1.7	0.9
	Jocas	see B_2_5	58.7: Mon	thly Avera	ged Disso	olved Oxy	gen (mg/l)	1991 to 20	015 (Post	Bad Creek	Operatio	n)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	9.3	9.3	10.0	9.9	9.0	8.4	8.2	7.9	7.7	7.8	8.3	8.8
I <u></u>	1095 to 1080	9.2	9.2	9.9	9.9	9.3	8.8	8.3	7.8	7.6	7.9	8.4	8.7
(ft msl)	1080 to 1065	9.1	9.1	9.9	9.7	9.2	8.8	8.2	7.7	7.5	7.8	8.3	8.7
l £	1065 to 1050	9.1	9.0	9.8	9.6	9.2	8.7	8.2	7.6	7.4	7.8	8.3	8.7
) ge	1050 to 1035	9.1	8.9	9.5	9.5	9.1	8.7	8.1	7.2	6.8	7.7	8.2	8.7
Range	1035 to 1020	9.0	8.9	9.3	9.5	9.0	8.6	7.9	6.9	6.3	7.4	8.2	8.6
N N N	1020 to 1005	9.0	8.8	9.2	9.3	9.0	8.6	8.0	7.0	6.0	6.3	7.8	8.6
ing	1005 to 990	9.0	8.7	9.2	9.1	8.8	8.4	8.0	7.3	6.7	6.2	6.6	8.1
Measurement Reading	990 to 975	8.3	8.6	8.9	8.8	8.4	8.0	7.6	7.1	6.8	6.3	5.9	6.0
Re	975 to 960	6.8	8.4	8.5	8.4	7.9	7.5	7.1	6.8	6.5	6.0	5.7	4.9
•nt	960 to 945	5.7	7.6	7.8	7.9	7.3	7.0	6.7	6.4	6.1	5.6	5.3	4.7
l ğ	945 to 930	4.6	7.3	7.3	7.2	6.9	6.5	6.2	5.9	5.7	5.1	4.9	4.3
nre	930 to 915	4.0	6.7	6.9	6.5	6.4	6.0	5.6	5.3	5.2	4.8	4.7	3.9
as	915 to 900	3.3	6.1	6.6	6.3	6.1	5.6	5.4	5.1	5.1	4.4	4.2	3.6
9	900 to 885	3.0	5.7	6.3	5.9	6.1	5.2	5.0	4.9	4.6	3.9	3.8	3.6
2	005 (050		5.7	6.2	5.6	5.5	5.3	4.9	4.2	4.2	3.7	3.7	2.9
2	885 to 870	3.0					4.0			4.0		0.0	
2	870 to 855	2.5	6.0	6.1	5.6	5.6	4.9	4.4	4.1	4.0	3.4	3.2	2.7
2						5.6 5.2	4.9 4.7	4.4 4.2	4.1 3.8	4.0 3.4	3.4 3.0	3.2 2.7 10.0	2.7 2.5

	Jocas	see B_3_	558.0: Moi	nthly Aver	aged Diss	olved Oxy	gen (mg/l)) 1975 to 1	991 (Pre E	Bad Creek	Operatio	1)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	9.9	9.4	10.1	9.9	9.2	8.3	8.6	8.0	7.3	8.1	8.6	9.1
1 _	1095 to 1080	9.8	9.4	9.8	10.2	9.3	8.5	8.4	7.8	7.4	8.1	8.4	9.1
Įst	1080 to 1065	9.8	9.3	9.6	10.4	9.2	8.8	8.1	7.8	7.4	8.1	8.3	9.1
ב. ו	1065 to 1050	9.8	9.2	9.5	10.1	9.1	8.8	8.3	7.7	7.3	8.2	8.4	9.1
Range (ft msl)	1050 to 1035	9.8	9.0	9.5	9.5	9.1	8.8	8.3	7.7	7.2	8.1	8.4	9.1
ng	1035 to 1020	9.8	9.0	9.6	9.5	9.1	8.7	8.1	7.3	6.6	8.1	8.3	9.0
	1020 to 1005	9.8	9.0	9.5	9.5	9.0	8.6	8.0	7.1	5.6	7.3	8.2	9.0
ng	1005 to 990	9.7	8.9	9.3	9.5	8.9	8.4	7.9	7.2	6.3	6.4	7.7	8.9
gdi	990 to 975	9.7	9.0	9.1	9.3	8.8	8.1	7.9	7.2	6.6	6.8	6.1	8.0
Re	975 to 960	9.5	9.1	8.9	9.0	8.6	7.8	7.4	7.2	6.5	6.8	5.8	6.7
벌	960 to 945	9.2	8.9	8.6	8.4	8.0	7.3	6.9	6.6	6.2	6.2	5.5	5.4
Measurement Reading	945 to 930	8.7	8.5	8.2	8.0	7.1	6.5	6.2	5.8	5.5	5.5	4.7	4.0
<u>re</u>	930 to 915	7.4	7.6	7.1	6.5	6.1	5.7	5.2	4.8	4.6	4.6	3.9	3.1
asu	915 to 900	4.5	6.4	6.0	5.6	4.9	4.5	4.2	4.0	3.6	3.7	3.2	2.4
ďeį	900 to 885	2.2	5.7	5.0	4.7	4.0	3.7	3.5	3.2	2.9	2.9	2.6	1.9
	885 to 870	0.6	4.3	4.0	3.3	3.3	2.8	2.9	2.4	2.2	2.3	1.8	1.5
	870 to 855	0.0	2.6	2.5	2.7	2.6	2.3	2.3	2.1	1.6	1.8	1.2	1.0
	< 855	0.0	0.4	1.3	1.8	1.9	1.6	1.5	0.8	0.5	0.4	0.2	0.1
	Jocas	see B_3_5	58.0: Mon	thly Avera	ged Disso	olved Oxy	gen (mg/l)	1991 to 20	020 (Post	Bad Creek	Operatio	n)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	9.5	9.3	9.9	9.9	9.0	8.4	8.0	7.8	7.7	7.7	8.3	8.8
	1095 to 1080	9.3	9.2	9.8	9.8	9.1	8.5	8.0	7.7	7.6	7.9	8.4	8.8
Isl	1080 to 1065	9.1	9.1	9.7	9.6	9.1	8.6	8.1	7.7	7.5	7.8	8.3	8.8
(ft msl)	1065 to 1050	9.1	9.1	9.7	9.5	9.1	8.6	8.1	7.5	7.4	7.8	8.3	8.8
<u>e</u>	1050 to 1035	9.2	9.1	9.5	9.4	9.1	8.6	8.0	7.3	7.1	7.7	8.3	8.7
Range	1035 to 1020	9.1	9.0	9.3	9.3	9.1	8.6	7.9	7.0	6.6	7.5	8.2	8.7
8	1020 to 1005	9.1	8.9	9.2	9.2	9.0	8.6	8.0	7.1	6.3	6.8	7.9	8.6
ng	1005 to 990	8.9	8.8	9.1	9.0	8.8	8.5	8.0	7.5	6.9	6.5	7.0	8.1
adi	990 to 975	8.6	8.6	8.8	8.7	8.4	8.1	7.8	7.4	7.1	6.6	6.2	6.7
Re	975 to 960	7.0	8.2	8.5	8.3	8.0	7.7	7.2	7.0	6.7	6.3	6.0	5.6
'n	960 to 945	6.2	7.2	7.8	7.8	7.5	7.1	6.8	6.5	6.3	5.8	5.7	5.3
l e	945 to 930	4.9	6.5	7.2	7.4	7.0	6.7	6.4	6.0	5.9	5.2	5.2	4.9
		4 4	5.9	6.5	6.7	6.5	6.2	5.7	5.5	5.3	5.0	4.9	4.4
ren	930 to 915	4.1								_ 4	4.0		1 1
asuren	915 to 900	3.7	5.4	6.0	6.5	6.2	5.8	5.5	5.3	5.1	4.6	4.4	4.1
Measurement Reading	915 to 900 900 to 885	3.7 3.4	5.4 5.0	6.0 5.8	6.2	6.1	5.4	5.3	5.2	4.9	4.4	4.3	4.2
Measuren	915 to 900 900 to 885 885 to 870	3.7 3.4 3.4	5.4 5.0 5.3	6.0 5.8 5.6	6.2 5.9	6.1 5.6	5.4 5.7	5.3 5.2	5.2 4.6	4.9 4.7	4.4 4.3	4.3 4.4	4.2 3.7
Measuren	915 to 900 900 to 885 885 to 870 870 to 855	3.7 3.4 3.4 3.3	5.4 5.0 5.3 5.4	6.0 5.8 5.6 5.6	6.2 5.9 6.0	6.1 5.6 5.7	5.4 5.7 5.2	5.3 5.2 4.8	5.2 4.6 4.6	4.9 4.7 4.5	4.4 4.3 4.1	4.3 4.4 3.9	4.2 3.7 3.6
Measuren	915 to 900 900 to 885 885 to 870	3.7 3.4 3.4	5.4 5.0 5.3	6.0 5.8 5.6	6.2 5.9	6.1 5.6	5.4 5.7	5.3 5.2	5.2 4.6	4.9 4.7	4.4 4.3	4.3 4.4	4.2 3.7

	Jocas	see C_2_	559.0: Moi	nthly Aver	aged Diss	olved Oxy	/gen (mg/l)) 1987 to 1	991 (Pre E	Bad Creek	Operatio	1)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	9.7	9.8	9.7	10.0	9.0	8.4	8.5	8.1	7.7	8.2	8.4	9.1
	1095 to 1080	9.7	9.2	10.0	10.2	9.5	9.1	8.5	8.1	7.8	8.1	8.5	9.0
Range (ft msl)	1080 to 1065	9.6	9.0	9.9	10.1	9.5	9.0	8.3	7.9	7.7	8.0	8.5	9.0
<u> </u>	1065 to 1050	9.5	9.1	9.8	9.8	9.4	9.0	8.3	7.6	7.6	8.0	8.4	8.9
e (1	1050 to 1035	9.5	9.1	9.6	9.7	9.3	9.1	8.4	7.4	7.3	8.0	8.5	9.0
ng	1035 to 1020	9.4	8.8	9.3	9.6	9.3	9.1	8.0	7.2	6.6	7.9	8.4	9.0
	1020 to 1005	9.4	8.8	9.2	9.6	9.1	8.7	7.8	6.6	5.6	7.2	8.4	8.9
Вu	1005 to 990	9.3	8.7	8.9	9.5	9.0	8.5	7.7	6.8	6.3	5.5	6.6	8.5
ğ	990 to 975	9.3	8.7	8.8	9.1	8.7	8.2	7.5	6.8	6.4	6.2	5.4	7.2
, Se	975 to 960	8.3	8.5	8.5	8.7	8.2	7.7	6.9	6.3	5.9	5.8	5.1	5.0
ᆵ	960 to 945	5.0	8.1	8.5	8.4	7.8	7.1	6.3	5.8	5.4	5.2	4.7	4.4
πe	945 to 930	4.1	7.7	8.0	7.9	7.3	6.5	5.7	5.3	4.8	4.7	4.1	3.7
Ē	930 to 915	3.0	6.7	7.0	7.0	6.5	5.9	5.2	4.7	4.2	3.9	3.5	3.2
asu	915 to 900	2.4	3.7	6.3	6.5	5.8	5.0	4.4	3.8	3.7	3.5	2.9	2.4
Measurement Reading	900 to 885	1.5	3.2	5.5	5.8	5.4	4.6	3.9	3.3	3.0	2.5	2.2	1.6
	885 to 870	8.0	2.6	4.6	5.1	3.7	4.0	3.2	2.9	2.4	1.7	1.3	0.9
	870 to 855	0.7	3.3	4.9	4.5	3.8	3.6	3.0	2.1	1.7	1.0	1.0	0.7
	< 855	0.4	4.1	4.3	4.1	3.7	3.2	2.5	2.2	1.7	8.0	0.7	0.5
	Jocas	see C_2_5	59.0: Mon	thly Avera	iged Disso	olved Oxy	gen (mg/l)	1991 to 20	015 (Post I	Bad Creek	Operatio	n)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	9.3	9.3	10.0	9.9	9.0	8.3	8.1	7.9	7.9	7.7	8.2	8.7
	1095 to 1080	9.2	9.2	10.0	10.0	9.2	8.8	8.3	7.8	7.7	7.8	8.3	8.7
ısı	1080 to 1065	9.1	9.1	9.9	9.8	9.3	8.8	8.3	7.7	7.6	7.8	8.3	8.7
±	1065 to 1050	9.1	9.1	9.8	9.7	9.2	8.8	8.2	7.6	7.4	7.7	8.3	8.7
e (.	1050 to 1035	9.1	9.0	9.6	9.5	9.1	8.8	8.1	7.2	6.9	7.7	8.2	8.6
Range (ft msl)	1035 to 1020	9.0	9.0	9.4	9.4	9.0	8.7	7.9	6.9	6.3	7.4	8.2	8.6
	1020 to 1005	9.0	8.9	9.2	9.3	9.0	8.6	8.0	7.1	6.1	6.2	7.7	8.5
ling	1005 to 990	8.9	8.8	9.1	9.0	8.7	8.4	8.0	7.3	6.7	6.0	6.6	7.8
adi	990 to 975	8.4	8.6	8.7	8.7	8.3	7.9	7.4	6.9	6.5	6.0	5.6	5.9
Measurement Read	975 to 960	6.5	8.0	8.4	8.1	7.7	7.2	6.7	6.3	5.9	5.4	5.1	4.7
n t	960 to 945	5.0	7.3	7.5	7.5	7.0	6.6	6.0	5.7	5.4	4.8	4.6	4.3
πe	945 to 930	3.9	6.2	6.9	6.8	6.6	6.0	5.5	5.1	4.9	4.3	4.1	3.7
<u>re</u>	930 to 915	3.2	5.4	6.2	5.9	5.9	5.4	4.8	4.5	4.4	3.8	3.7	3.2
nst	915 to 900	2.6	5.1	5.7	5.6	5.6	5.0	4.5	4.3	4.1	3.4	3.2	2.9
Лег	900 to 885	2.2	4.3	5.4	5.1	5.5	4.5	4.2	4.1	3.8	3.0	2.9	2.8
	885 to 870	2.5	4.6	5.4	4.8	5.0	4.7	4.2	3.6	3.5	3.0	2.9	2.2
	870 to 855	2.1	5.1	5.5	4.8	5.0	4.3	3.9	3.7	3.5	2.7	2.5	2.1
	< 855	2.3	5.2	5.3	4.6	4.7	4.3	3.9	3.6	3.4	2.6	2.4	2.2
	Legend	0.0										10.0	

	Jocas	see C_2_	560.0: Moi	nthly Aver	aged Diss	olved Oxy	gen (mg/l)	1975 to 1	991 (Pre E	Bad Creek	Operation	າ)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	9.5	9.7	10.3	10.6	9.7	8.8	8.7	8.4	8.3	8.3	8.6	9.0
1 _	1095 to 1080	9.5	9.5	10.1	10.6	10.1	9.3	9.6	8.6	8.3	8.2	8.5	9.0
Įst	1080 to 1065	9.4	9.3	10.0	10.5	9.9	9.9	9.8	8.6	8.2	8.1	8.6	9.0
ב ו	1065 to 1050	9.3	9.2	9.8	10.2	9.7	9.6	9.6	8.3	7.6	8.0	8.5	9.0
(-) (-)	1050 to 1035	9.3	9.0	9.5	9.8	9.6	9.4	9.2	8.1	7.2	7.7	8.7	9.0
Range (ft msl)	1035 to 1020	9.3	8.9	9.4	9.4	9.1	9.0	8.7	7.6	7.0	7.1	8.5	9.0
	1020 to 1005	9.2	8.8	9.1	9.2	8.6	8.3	8.1	7.2	6.5	6.5	7.2	8.6
Вu	1005 to 990	9.1	8.8	8.9	9.0	8.4	7.7	7.6	6.7	6.2	5.3	6.2	7.4
gdi	990 to 975	8.3	8.8	8.4	8.9	7.8	7.4	7.2	6.3	6.2	5.7	5.1	6.3
Re	975 to 960	7.8	8.1	8.4	8.4	7.6	7.8	7.1	6.6	5.7	5.5	5.3	5.2
 	960 to 945	6.8	8.2	8.2	8.3	7.9	7.2	6.7	6.0	5.9	5.4	5.3	4.6
ne	945 to 930	5.3	7.2	8.3	7.8	7.2	6.8	6.1	5.6	5.6	5.1	5.0	4.0
<u> </u>	930 to 915	4.4	6.6	8.2	6.9	7.0	6.2	5.7	5.1	5.0	4.2	4.3	3.6
asu	915 to 900	1.8	5.7	7.4	6.6	6.0	5.7	4.6	4.2	4.4	3.7	4.0	3.3
Measurement Reading	900 to 885	1.6	4.6	6.7	6.0	6.1	5.1	4.6	3.6	3.6	2.5	3.0	2.7
	885 to 870	1.1	3.8	5.5	4.9	4.8	4.5	3.9	3.2	3.2	1.9	2.4	1.9
	870 to 855	1.4	5.3	5.4	4.3	4.4	3.9	3.6	2.8	2.1	1.2	1.7	1.4
	< 855	0.9	5.2	5.1	4.0	5.6	3.5	3.4	2.4	2.5	0.7	1.2	1.4
	Jocass	see C_2_5	60.0: Mon	thly Avera	ged Disso	olved Oxy	gen (mg/l)	1991 to 20)15 (Post	Bad Creek	Operatio	n)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	9.2	9.3	10.0	9.9	9.0	8.3	8.1	7.9	7.7	7.6	8.1	8.7
_	1095 to 1080	9.0	9.2	9.9	9.9	9.1	8.5	8.1	7.7	7.5	7.6	8.2	8.6
(ft msl)	1080 to 1065	8.9	9.1	9.9	9.8	9.1	8.7	8.2	7.6	7.3	7.6	8.2	8.6
# #	1065 to 1050												8.6
		8.9	9.0	9.7	9.7	9.2	8.7	8.2	7.6	7.2	7.6	8.1	
) ef	1050 to 1035	8.9	9.0	9.6	9.5	9.1	8.7	8.1	7.2	6.8	7.5	8.1	8.5
ange (1050 to 1035 1035 to 1020	8.9 8.8	9.0 8.9	9.6 9.4	9.5 9.4	9.1 9.0	8.7 8.5	8.1 7.9	7.2 6.9	6.8 6.3	7.5 7.2	8.1 8.0	8.5 8.5
Range	1050 to 1035 1035 to 1020 1020 to 1005	8.9 8.8 8.8	9.0 8.9 8.7	9.6 9.4 9.3	9.5 9.4 9.3	9.1 9.0 8.9	8.7 8.5 8.5	8.1 7.9 7.9	7.2 6.9 7.0	6.8 6.3 6.1	7.5 7.2 6.1	8.1 8.0 7.6	8.5 8.5 8.4
Range	1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990	8.9 8.8 8.8 8.8	9.0 8.9 8.7 8.7	9.6 9.4 9.3 9.1	9.5 9.4 9.3 9.0	9.1 9.0 8.9 8.7	8.7 8.5 8.5 8.3	8.1 7.9 7.9 7.9	7.2 6.9 7.0 7.2	6.8 6.3 6.1 6.5	7.5 7.2 6.1 5.8	8.1 8.0 7.6 6.1	8.5 8.5 8.4 7.5
Range	1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975	8.9 8.8 8.8 8.8	9.0 8.9 8.7 8.7 8.6	9.6 9.4 9.3 9.1 8.8	9.5 9.4 9.3 9.0 8.6	9.1 9.0 8.9 8.7 8.2	8.7 8.5 8.5 8.3 7.7	8.1 7.9 7.9 7.9 7.2	7.2 6.9 7.0 7.2 6.7	6.8 6.3 6.1 6.5 6.3	7.5 7.2 6.1 5.8 5.8	8.1 8.0 7.6 6.1 5.4	8.5 8.5 8.4 7.5 5.5
Range	1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960	8.9 8.8 8.8 8.8 8.0 6.7	9.0 8.9 8.7 8.7 8.6 8.1	9.6 9.4 9.3 9.1 8.8 8.4	9.5 9.4 9.3 9.0 8.6 8.1	9.1 9.0 8.9 8.7 8.2 7.6	8.7 8.5 8.5 8.3 7.7 6.9	8.1 7.9 7.9 7.9 7.2 6.4	7.2 6.9 7.0 7.2 6.7 5.9	6.8 6.3 6.1 6.5 6.3 5.5	7.5 7.2 6.1 5.8 5.8 5.0	8.1 8.0 7.6 6.1 5.4 4.6	8.5 8.5 8.4 7.5 5.5 4.2
Range	1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945	8.9 8.8 8.8 8.0 6.7 4.8	9.0 8.9 8.7 8.7 8.6 8.1	9.6 9.4 9.3 9.1 8.8 8.4 7.7	9.5 9.4 9.3 9.0 8.6 8.1 7.4	9.1 9.0 8.9 8.7 8.2 7.6 7.0	8.7 8.5 8.5 8.3 7.7 6.9 6.1	8.1 7.9 7.9 7.9 7.2 6.4 5.7	7.2 6.9 7.0 7.2 6.7 5.9 5.3	6.8 6.3 6.1 6.5 6.3 5.5 5.0	7.5 7.2 6.1 5.8 5.8 5.0 4.4	8.1 8.0 7.6 6.1 5.4 4.6 4.1	8.5 8.5 8.4 7.5 5.5 4.2 3.6
Range	1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930	8.9 8.8 8.8 8.0 6.7 4.8 3.6	9.0 8.9 8.7 8.7 8.6 8.1 7.2 6.2	9.6 9.4 9.3 9.1 8.8 8.4 7.7	9.5 9.4 9.3 9.0 8.6 8.1 7.4 6.6	9.1 9.0 8.9 8.7 8.2 7.6 7.0 6.4	8.7 8.5 8.5 8.3 7.7 6.9 6.1 5.5	8.1 7.9 7.9 7.9 7.2 6.4 5.7 5.3	7.2 6.9 7.0 7.2 6.7 5.9 5.3 4.8	6.8 6.3 6.1 6.5 6.3 5.5 5.0 4.7	7.5 7.2 6.1 5.8 5.8 5.0 4.4 4.0	8.1 8.0 7.6 6.1 5.4 4.6 4.1 3.8	8.5 8.5 8.4 7.5 5.5 4.2 3.6 3.0
Range	1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915	8.9 8.8 8.8 8.0 6.7 4.8 3.6 2.8	9.0 8.9 8.7 8.7 8.6 8.1 7.2 6.2 5.6	9.6 9.4 9.3 9.1 8.8 8.4 7.7 7.1 6.2	9.5 9.4 9.3 9.0 8.6 8.1 7.4 6.6 5.7	9.1 9.0 8.9 8.7 8.2 7.6 7.0 6.4 5.9	8.7 8.5 8.5 8.3 7.7 6.9 6.1 5.5	8.1 7.9 7.9 7.9 7.2 6.4 5.7 5.3 4.7	7.2 6.9 7.0 7.2 6.7 5.9 5.3 4.8	6.8 6.3 6.1 6.5 6.3 5.5 5.0 4.7	7.5 7.2 6.1 5.8 5.8 5.0 4.4 4.0 3.7	8.1 8.0 7.6 6.1 5.4 4.6 4.1 3.8 3.5	8.5 8.5 8.4 7.5 5.5 4.2 3.6 3.0 2.6
Range	1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900	8.9 8.8 8.8 8.0 6.7 4.8 3.6 2.8	9.0 8.9 8.7 8.6 8.1 7.2 6.2 5.6 5.1	9.6 9.4 9.3 9.1 8.8 8.4 7.7 7.1 6.2 5.4	9.5 9.4 9.3 9.0 8.6 8.1 7.4 6.6 5.7 5.4	9.1 9.0 8.9 8.7 8.2 7.6 7.0 6.4 5.9 5.6	8.7 8.5 8.5 8.3 7.7 6.9 6.1 5.5 5.1	8.1 7.9 7.9 7.9 7.2 6.4 5.7 5.3 4.7 4.5	7.2 6.9 7.0 7.2 6.7 5.9 5.3 4.8 4.2 4.0	6.8 6.3 6.1 6.5 6.3 5.5 5.0 4.7 4.1 3.9	7.5 7.2 6.1 5.8 5.8 5.0 4.4 4.0 3.7 3.3	8.1 8.0 7.6 6.1 5.4 4.6 4.1 3.8 3.5 3.0	8.5 8.5 8.4 7.5 5.5 4.2 3.6 3.0 2.6 2.4
Measurement Reading Range (1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885	8.9 8.8 8.8 8.0 6.7 4.8 3.6 2.8 2.2	9.0 8.9 8.7 8.6 8.1 7.2 6.2 5.6 5.1 4.5	9.6 9.4 9.3 9.1 8.8 8.4 7.7 7.1 6.2 5.4 5.1	9.5 9.4 9.3 9.0 8.6 8.1 7.4 6.6 5.7 5.4 5.0	9.1 9.0 8.9 8.7 8.2 7.6 7.0 6.4 5.9 5.6 5.5	8.7 8.5 8.5 8.3 7.7 6.9 6.1 5.5 5.1 4.7	8.1 7.9 7.9 7.9 7.2 6.4 5.7 5.3 4.7 4.5	7.2 6.9 7.0 7.2 6.7 5.9 5.3 4.8 4.2 4.0 3.8	6.8 6.3 6.1 6.5 6.3 5.5 5.0 4.7 4.1 3.9 3.5	7.5 7.2 6.1 5.8 5.8 5.0 4.4 4.0 3.7 3.3 2.8	8.1 8.0 7.6 6.1 5.4 4.6 4.1 3.8 3.5 3.0 2.8	8.5 8.5 8.4 7.5 5.5 4.2 3.6 3.0 2.6 2.4 2.7
Range	1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870	8.9 8.8 8.8 8.0 6.7 4.8 3.6 2.8 2.2 2.0 2.4	9.0 8.9 8.7 8.6 8.1 7.2 6.2 5.6 5.1 4.5 4.6	9.6 9.4 9.3 9.1 8.8 8.4 7.7 7.1 6.2 5.4 5.1 4.6	9.5 9.4 9.3 9.0 8.6 8.1 7.4 6.6 5.7 5.4 5.0 4.6	9.1 9.0 8.9 8.7 8.2 7.6 7.0 6.4 5.9 5.6 5.5	8.7 8.5 8.5 8.3 7.7 6.9 6.1 5.5 5.1 4.7 4.3	8.1 7.9 7.9 7.9 7.2 6.4 5.7 5.3 4.7 4.5 4.2	7.2 6.9 7.0 7.2 6.7 5.9 5.3 4.8 4.2 4.0 3.8 3.3	6.8 6.3 6.1 6.5 6.3 5.5 5.0 4.7 4.1 3.9 3.5 3.4	7.5 7.2 6.1 5.8 5.8 5.0 4.4 4.0 3.7 3.3 2.8 2.8	8.1 8.0 7.6 6.1 5.4 4.6 4.1 3.8 3.5 3.0 2.8 2.8	8.5 8.5 8.4 7.5 5.5 4.2 3.6 3.0 2.6 2.4 2.7
Range	1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870 870 to 855	8.9 8.8 8.8 8.0 6.7 4.8 3.6 2.8 2.2 2.0 2.4 1.8	9.0 8.9 8.7 8.6 8.1 7.2 6.2 5.6 5.1 4.5 4.6 4.9	9.6 9.4 9.3 9.1 8.8 8.4 7.7 7.1 6.2 5.4 5.1 4.6 5.1	9.5 9.4 9.3 9.0 8.6 8.1 7.4 6.6 5.7 5.4 5.0 4.6 4.6	9.1 9.0 8.9 8.7 8.2 7.6 7.0 6.4 5.9 5.6 5.5 4.8	8.7 8.5 8.5 8.3 7.7 6.9 6.1 5.5 5.1 4.7 4.3 4.4	8.1 7.9 7.9 7.9 7.2 6.4 5.7 5.3 4.7 4.5 4.2 4.2	7.2 6.9 7.0 7.2 6.7 5.9 5.3 4.8 4.2 4.0 3.8 3.3 3.2	6.8 6.3 6.1 6.5 6.3 5.5 5.0 4.7 4.1 3.9 3.5 3.4 3.0	7.5 7.2 6.1 5.8 5.8 5.0 4.4 4.0 3.7 3.3 2.8 2.8 2.1	8.1 8.0 7.6 6.1 5.4 4.6 4.1 3.8 3.5 3.0 2.8 2.8 2.0	8.5 8.5 8.4 7.5 5.5 4.2 3.6 3.0 2.6 2.4 2.7 1.9
Range	1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870	8.9 8.8 8.8 8.0 6.7 4.8 3.6 2.8 2.2 2.0 2.4	9.0 8.9 8.7 8.6 8.1 7.2 6.2 5.6 5.1 4.5 4.6	9.6 9.4 9.3 9.1 8.8 8.4 7.7 7.1 6.2 5.4 5.1 4.6	9.5 9.4 9.3 9.0 8.6 8.1 7.4 6.6 5.7 5.4 5.0 4.6	9.1 9.0 8.9 8.7 8.2 7.6 7.0 6.4 5.9 5.6 5.5	8.7 8.5 8.5 8.3 7.7 6.9 6.1 5.5 5.1 4.7 4.3	8.1 7.9 7.9 7.9 7.2 6.4 5.7 5.3 4.7 4.5 4.2	7.2 6.9 7.0 7.2 6.7 5.9 5.3 4.8 4.2 4.0 3.8 3.3	6.8 6.3 6.1 6.5 6.3 5.5 5.0 4.7 4.1 3.9 3.5 3.4	7.5 7.2 6.1 5.8 5.8 5.0 4.4 4.0 3.7 3.3 2.8 2.8	8.1 8.0 7.6 6.1 5.4 4.6 4.1 3.8 3.5 3.0 2.8 2.8	8.5 8.5 8.4 7.5 5.5 4.2 3.6 3.0 2.6 2.4 2.7

	Jocas	see C_2_	56∠.U: IVIO	ntniy Aver	ayeu Diss	oiveu Oxy	gen (mg/i)	1900 10 1	331 (FIG F	bau Creek	Operation	1)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	9.9	10.4	10.1	10.6	9.7	8.3	8.8	8.5	7.9	8.3	8.2	9.2
_	1095 to 1080	9.7	9.9	10.0	10.4	9.5	8.6	8.9	8.8	8.1	8.1	8.5	9.1
(Ist	1080 to 1065	9.6	9.7	9.9	10.4	9.5	8.7	8.4	8.2	7.9	8.0	8.5	9.1
بر	1065 to 1050	9.7	9.7	9.9	10.3	9.5	8.5	8.1	7.9	7.6	7.9	8.3	9.0
Range (ft msl)	1050 to 1035	9.6	9.7	9.9	10.1	9.3	8.2	7.8	7.3	7.4	7.9	8.4	9.0
ng	1035 to 1020	9.7	9.6	9.7	9.7	9.0	7.7	7.0	5.7	6.7	7.5	8.4	9.0
Ra	1020 to 1005	9.7	9.6	9.5	9.3	8.1	6.5	5.6	3.1	2.6	5.9	8.3	9.0
	1005 to 990	10.1	9.8	9.4	8.1	7.1	4.8	2.5	0.3	0.1	1.4	5.6	9.1
ādi	990 to 975	10.4	10.0	9.7	7.6	4.8		1.0	0.6	0.0	0.3	0.0	
Re	975 to 960									0.0			
컽	960 to 945												
πe	945 to 930												
ē	930 to 915												
Measurement Reading	915 to 900												
Me:	900 to 885												
	00-1					Λ/ii	nimum Pas	ding 964.	5 ft				
	885 to 870					IVIII	IIIIIIIIII ING	iding 304.	,,,				
	885 to 870 870 to 855					IVIII	illinaili ixee	iding 504.					
	870 to 855 < 855												
	870 to 855 < 855	see C_2_5				olved Oxy		1991 to 2			(Operatio	n)	
	870 to 855 < 855 Jocass	Jan	Feb	Mar	Apr	olved Oxy	gen (mg/l) Jun	1991 to 2	015 (Post Aug	Sep	Oct	Nov	Dec
	870 to 855 < 855 Jocass 1110 to 1095	Jan 9.4	Feb 9.7	Mar 10.1	Apr 10.0	olved Oxyg May 9.1	gen (mg/l) Jun 8.6	1991 to 2 Jul 8.5	015 (Post Aug 8.1	Sep 7.9	Oct 7.8	Nov 8.3	8.8
(1	870 to 855 < 855 Jocass 1110 to 1095 1095 to 1080	Jan 9.4 9.3	9.7 9.6	Mar 10.1 10.1	Apr 10.0 10.1	May 9.1 9.1	gen (mg/l) Jun 8.6 8.6	1991 to 2 Jul 8.5 8.6	015 (Post Aug 8.1 8.1	Sep 7.9 7.7	Oct 7.8 7.8	8.3 8.4	8.8 8.7
nsl)	870 to 855 < 855 Jocass 1110 to 1095 1095 to 1080 1080 to 1065	Jan 9.4 9.3 9.2	9.7 9.6 9.6	Mar 10.1 10.1 10.0	Apr 10.0 10.1 9.9	9.1 9.1 9.1 9.1	gen (mg/l) Jun 8.6 8.6 8.3	1991 to 2 Jul 8.5 8.6 8.1	015 (Post Aug 8.1 8.1 7.9	7.9 7.7 7.5	7.8 7.8 7.8 7.8	8.3 8.4 8.3	8.8 8.7 8.7
(ft msl)	870 to 855 < 855 Jocass 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050	9.4 9.3 9.2 9.2	9.7 9.6 9.6 9.5	Mar 10.1 10.1 10.0 10.0	Apr 10.0 10.1 9.9 9.8	9.1 9.1 9.1 9.1 9.0	gen (mg/l) Jun 8.6 8.6 8.3 8.1	1991 to 2 Jul 8.5 8.6 8.1 7.8	015 (Post Aug 8.1 8.1 7.9 7.7	7.9 7.7 7.5 7.4	7.8 7.8 7.8 7.8 7.8	8.3 8.4 8.3 8.2	8.8 8.7 8.7 8.7
ge (ft msl)	870 to 855 < 855 Jocass 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035	9.4 9.3 9.2 9.2 9.2	9.7 9.6 9.6 9.5 9.4	Mar 10.1 10.1 10.0 10.0 9.8	Apr 10.0 10.1 9.9 9.8 9.6	9.1 9.1 9.1 9.1 9.1 9.0 8.8	gen (mg/l) Jun 8.6 8.6 8.3 8.1 7.9	1991 to 2 Jul 8.5 8.6 8.1 7.8 7.2	015 (Post Aug 8.1 8.1 7.9 7.7 6.9	7.9 7.7 7.5 7.4 7.1	7.8 7.8 7.8 7.8 7.8 7.7	8.3 8.4 8.3 8.2 8.2	8.8 8.7 8.7 8.7 8.7
ange (ft msl)	870 to 855 < 855 Jocass 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020	Jan 9.4 9.3 9.2 9.2 9.2 9.2	9.7 9.6 9.6 9.5 9.4 9.4	Mar 10.1 10.1 10.0 10.0 9.8 9.5	Apr 10.0 10.1 9.9 9.8 9.6 9.4	9.1 9.1 9.1 9.0 8.8 8.5	gen (mg/l) Jun 8.6 8.6 8.3 8.1 7.9 7.3	1991 to 2 Jul 8.5 8.6 8.1 7.8 7.2 6.2	8.1 8.1 7.9 7.7 6.9 5.4	Sep 7.9 7.7 7.5 7.4 7.1 5.6	7.8 7.8 7.8 7.8 7.7 7.3	Nov 8.3 8.4 8.3 8.2 8.2 8.0	8.8 8.7 8.7 8.7 8.7 8.7
Range (ft msl)	870 to 855 < 855 Jocass 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005	9.4 9.3 9.2 9.2 9.2 9.2 9.2	9.7 9.6 9.6 9.5 9.4 9.4 9.4	Mar 10.1 10.1 10.0 10.0 9.8 9.5 9.3	Apr 10.0 10.1 9.9 9.8 9.6 9.4 8.6	9.1 9.1 9.1 9.1 9.0 8.8 8.5 7.6	gen (mg/l) Jun 8.6 8.6 8.3 8.1 7.9 7.3 6.4	Jul 8.5 8.6 8.1 7.8 7.2 6.2 4.8	8.1 8.1 7.9 7.7 6.9 5.4 3.5	7.9 7.7 7.5 7.4 7.1 5.6 2.7	7.8 7.8 7.8 7.8 7.8 7.7 7.3	8.3 8.4 8.3 8.2 8.2 8.0 7.9	8.8 8.7 8.7 8.7 8.7 8.7 8.6
ing Range (ft msl)	870 to 855 < 855 Jocass 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990	Jan 9.4 9.3 9.2 9.2 9.2 9.2	9.7 9.6 9.6 9.5 9.4 9.4	Mar 10.1 10.1 10.0 10.0 9.8 9.5	Apr 10.0 10.1 9.9 9.8 9.6 9.4	9.1 9.1 9.1 9.0 8.8 8.5	gen (mg/l) Jun 8.6 8.6 8.3 8.1 7.9 7.3	1991 to 2 Jul 8.5 8.6 8.1 7.8 7.2 6.2	8.1 8.1 7.9 7.7 6.9 5.4	Sep 7.9 7.7 7.5 7.4 7.1 5.6	7.8 7.8 7.8 7.8 7.7 7.3	Nov 8.3 8.4 8.3 8.2 8.2 8.0	8.8 8.7 8.7 8.7 8.7 8.7
ading Range (ft msl)	870 to 855 < 855 Jocass 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975	9.4 9.3 9.2 9.2 9.2 9.2 9.2	9.7 9.6 9.6 9.5 9.4 9.4 9.4	Mar 10.1 10.1 10.0 10.0 9.8 9.5 9.3	Apr 10.0 10.1 9.9 9.8 9.6 9.4 8.6	9.1 9.1 9.1 9.1 9.0 8.8 8.5 7.6	gen (mg/l) Jun 8.6 8.6 8.3 8.1 7.9 7.3 6.4	Jul 8.5 8.6 8.1 7.8 7.2 6.2 4.8	8.1 8.1 7.9 7.7 6.9 5.4 3.5	7.9 7.7 7.5 7.4 7.1 5.6 2.7	7.8 7.8 7.8 7.8 7.8 7.7 7.3	8.3 8.4 8.3 8.2 8.2 8.0 7.9	8.8 8.7 8.7 8.7 8.7 8.7 8.6
Reading Range (ft msl)	870 to 855 < 855 Jocass 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960	9.4 9.3 9.2 9.2 9.2 9.2 9.2	9.7 9.6 9.6 9.5 9.4 9.4 9.4	Mar 10.1 10.1 10.0 10.0 9.8 9.5 9.3	Apr 10.0 10.1 9.9 9.8 9.6 9.4 8.6	9.1 9.1 9.1 9.1 9.0 8.8 8.5 7.6	gen (mg/l) Jun 8.6 8.6 8.3 8.1 7.9 7.3 6.4	Jul 8.5 8.6 8.1 7.8 7.2 6.2 4.8	8.1 8.1 7.9 7.7 6.9 5.4 3.5	7.9 7.7 7.5 7.4 7.1 5.6 2.7	7.8 7.8 7.8 7.8 7.8 7.7 7.3	8.3 8.4 8.3 8.2 8.2 8.0 7.9	8.8 8.7 8.7 8.7 8.7 8.7 8.6
ent Reading Range (ft msl)	870 to 855 < 855 Jocass 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945	9.4 9.3 9.2 9.2 9.2 9.2 9.2	9.7 9.6 9.6 9.5 9.4 9.4 9.4	Mar 10.1 10.1 10.0 10.0 9.8 9.5 9.3	Apr 10.0 10.1 9.9 9.8 9.6 9.4 8.6	9.1 9.1 9.1 9.1 9.0 8.8 8.5 7.6	gen (mg/l) Jun 8.6 8.6 8.3 8.1 7.9 7.3 6.4	Jul 8.5 8.6 8.1 7.8 7.2 6.2 4.8	8.1 8.1 7.9 7.7 6.9 5.4 3.5	7.9 7.7 7.5 7.4 7.1 5.6 2.7	7.8 7.8 7.8 7.8 7.8 7.7 7.3	8.3 8.4 8.3 8.2 8.2 8.0 7.9	8.8 8.7 8.7 8.7 8.7 8.7 8.6
ment Reading Range (ft msl)	870 to 855 < 855 Jocass 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930	9.4 9.3 9.2 9.2 9.2 9.2 9.2	9.7 9.6 9.6 9.5 9.4 9.4 9.4	Mar 10.1 10.1 10.0 10.0 9.8 9.5 9.3	Apr 10.0 10.1 9.9 9.8 9.6 9.4 8.6	9.1 9.1 9.1 9.1 9.0 8.8 8.5 7.6	gen (mg/l) Jun 8.6 8.6 8.3 8.1 7.9 7.3 6.4	Jul 8.5 8.6 8.1 7.8 7.2 6.2 4.8	8.1 8.1 7.9 7.7 6.9 5.4 3.5	7.9 7.7 7.5 7.4 7.1 5.6 2.7	7.8 7.8 7.8 7.8 7.8 7.7 7.3	8.3 8.4 8.3 8.2 8.2 8.0 7.9	8.8 8.7 8.7 8.7 8.7 8.7 8.6
urement Reading Range (ft msl)	870 to 855 < 855 Jocass 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915	9.4 9.3 9.2 9.2 9.2 9.2 9.2	9.7 9.6 9.6 9.5 9.4 9.4 9.4	Mar 10.1 10.1 10.0 10.0 9.8 9.5 9.3	Apr 10.0 10.1 9.9 9.8 9.6 9.4 8.6	9.1 9.1 9.1 9.1 9.0 8.8 8.5 7.6	gen (mg/l) Jun 8.6 8.6 8.3 8.1 7.9 7.3 6.4	Jul 8.5 8.6 8.1 7.8 7.2 6.2 4.8	8.1 8.1 7.9 7.7 6.9 5.4 3.5	7.9 7.7 7.5 7.4 7.1 5.6 2.7	7.8 7.8 7.8 7.8 7.8 7.7 7.3	8.3 8.4 8.3 8.2 8.2 8.0 7.9	8.8 8.7 8.7 8.7 8.7 8.7 8.6
asurement Reading Range (ft msl)	870 to 855 < 855 Jocass 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900	9.4 9.3 9.2 9.2 9.2 9.2 9.2	9.7 9.6 9.6 9.5 9.4 9.4 9.4	Mar 10.1 10.1 10.0 10.0 9.8 9.5 9.3	Apr 10.0 10.1 9.9 9.8 9.6 9.4 8.6	9.1 9.1 9.1 9.1 9.0 8.8 8.5 7.6	gen (mg/l) Jun 8.6 8.6 8.3 8.1 7.9 7.3 6.4	Jul 8.5 8.6 8.1 7.8 7.2 6.2 4.8	8.1 8.1 7.9 7.7 6.9 5.4 3.5	7.9 7.7 7.5 7.4 7.1 5.6 2.7	7.8 7.8 7.8 7.8 7.8 7.7 7.3 5.6	8.3 8.4 8.3 8.2 8.2 8.0 7.9	8.8 8.7 8.7 8.7 8.7 8.7 8.6
Measurement Reading Range (ft msl)	870 to 855 < 855 Jocass 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885	9.4 9.3 9.2 9.2 9.2 9.2 9.2	9.7 9.6 9.6 9.5 9.4 9.4 9.4	Mar 10.1 10.1 10.0 10.0 9.8 9.5 9.3	Apr 10.0 10.1 9.9 9.8 9.6 9.4 8.6	9.1 9.1 9.1 9.0 8.8 8.5 7.6 6.2	gen (mg/l) Jun 8.6 8.6 8.3 8.1 7.9 7.3 6.4 4.2	Jul 8.5 8.6 8.1 7.8 7.2 6.2 4.8 2.5	Aug 8.1 8.1 7.9 7.7 6.9 5.4 3.5 0.9	7.9 7.7 7.5 7.4 7.1 5.6 2.7	7.8 7.8 7.8 7.8 7.8 7.7 7.3 5.6	8.3 8.4 8.3 8.2 8.2 8.0 7.9	8.8 8.7 8.7 8.7 8.7 8.7 8.6
Measurement Reading Range (ft msl)	870 to 855 < 855 Jocass 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900	9.4 9.3 9.2 9.2 9.2 9.2 9.2	9.7 9.6 9.6 9.5 9.4 9.4 9.4	Mar 10.1 10.1 10.0 10.0 9.8 9.5 9.3	Apr 10.0 10.1 9.9 9.8 9.6 9.4 8.6	9.1 9.1 9.1 9.0 8.8 8.5 7.6 6.2	gen (mg/l) Jun 8.6 8.6 8.3 8.1 7.9 7.3 6.4	Jul 8.5 8.6 8.1 7.8 7.2 6.2 4.8 2.5	Aug 8.1 8.1 7.9 7.7 6.9 5.4 3.5 0.9	7.9 7.7 7.5 7.4 7.1 5.6 2.7	7.8 7.8 7.8 7.8 7.8 7.7 7.3 5.6	8.3 8.4 8.3 8.2 8.2 8.0 7.9	8.8 8.7 8.7 8.7 8.7 8.7 8.6

10.0

< 855 **Legend**

0.0

	Jocas	,,,,			<u> </u>		0 1 0 /				- p - a - a - a - a - a - a - a - a - a	'/	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	9.8	10.1	10.0	10.1	9.4	8.2	8.5	8.2	7.9	8.0	7.9	9.5
	1095 to 1080	9.8	9.3	10.0	10.3	9.8	9.3	8.9	8.4	7.8	7.9	8.4	9.1
ISL	1080 to 1065	9.6	9.1	9.8	10.3	9.9	9.6	9.0	8.2	7.6	7.9	8.5	9.1
<u>+</u>	1065 to 1050	9.6	9.1	9.6	10.1	9.9	9.2	9.0	7.9	7.4	7.8	8.3	9.1
e (1	1050 to 1035	9.5	9.0	9.3	9.9	9.7	8.9	8.6	7.7	7.2	7.9	8.4	9.0
ng	1035 to 1020	9.6	8.8	9.1	9.8	9.2	8.1	7.7	6.9	6.4	7.8	8.3	9.0
Range (ft msl)	1020 to 1005	9.7	8.8	9.0	9.7	8.7	7.7	6.7	5.4	4.5	6.9	8.3	9.0
	1005 to 990	9.7	8.8	9.0	9.5	8.5	7.1	6.0	4.8	3.8	3.1	6.7	8.9
ラ	990 to 975	9.8	9.1	8.7	9.0	8.0	6.5	5.6	4.2	3.6	3.3	1.7	5.8
Se?	975 to 960	9.9	9.1	8.6	8.3	7.3	5.7	4.6	3.3	2.4	1.2	0.3	2.1
7	960 to 945	10.1	9.4	8.6	8.0	6.6	5.0	3.6	2.2	0.9	0.2	0.1	0.4
neı	945 to 930	10.4	9.4	8.6	7.8	6.1	4.6	3.7	1.8	0.4	0.0	0.0	0.1
Measurement Reading	930 to 915			8.1		5.5	3.8		0.9	0.2			
ısı	915 to 900										•		
J ea	900 to 885												
_	885 to 870												
	870 to 855					Mii	nimum Rea	ading 918.	1 ft				
	07010000												
	< 855												
	< 855	see C_2_5	65.4: Mor	nthly Avera	aged Disso	olved Oxy	gen (mg/l)	1991 to 1	994 (Post	Bad Creek	C Operation	n)	
	< 855	see C_2_5	65.4: Mor Feb	nthly Avera	aged Disso	olved Oxyg	gen (mg/l) Jun	1991 to 1	994 (Post	Bad Creek Sep	Operation Oct	n) Nov	Dec
	< 855			1	1		T - T - T		1	1	_	_	Dec 8.9
	< 855 Jocas	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	
(Isu	< 855 Jocas 1110 to 1095	Jan 8.9	Feb 9.4	Mar 9.7	Apr 10.2	May 9.1	Jun 8.3	Jul 8.9	Aug 7.9	Sep 8.0	Oct 7.8	Nov 8.2	8.9
ft msl)	< 855 Jocas 1110 to 1095 1095 to 1080	Jan 8.9 8.8	9.4 9.3	9.7 9.8	Apr 10.2 10.3	May 9.1 9.7	Jun 8.3 8.7	Jul 8.9 9.3	Aug 7.9 7.9	Sep 8.0 7.7	Oct 7.8 7.9	Nov 8.2 8.5	8.9 8.8
e (ft msl)	< 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065	Jan 8.9 8.8 8.8	9.4 9.3 9.2	9.7 9.8 9.6	Apr 10.2 10.3 9.9	9.1 9.7 9.6	Jun 8.3 8.7 8.7	Jul 8.9 9.3 9.4	Aug 7.9 7.9 7.7	Sep 8.0 7.7 7.5	7.8 7.9 7.9	Nov 8.2 8.5 8.4	8.9 8.8 8.8
nge (ft msl)	< 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050	Jan 8.9 8.8 8.8 8.8	9.4 9.3 9.2 9.0	9.7 9.8 9.6 9.5	Apr 10.2 10.3 9.9 9.6	9.1 9.7 9.6 9.3	Jun 8.3 8.7 8.7 8.5	Jul 8.9 9.3 9.4 9.0	Aug 7.9 7.9 7.7 7.6	Sep 8.0 7.7 7.5 7.1	7.8 7.9 7.9 7.8	8.2 8.5 8.4 8.3	8.9 8.8 8.8 8.7
Range (ft msl)	< 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035	Jan 8.9 8.8 8.8 8.8 8.7	9.4 9.3 9.2 9.0 9.1	9.7 9.8 9.6 9.5 9.4	Apr 10.2 10.3 9.9 9.6 9.6	9.1 9.7 9.6 9.3 9.0	Jun 8.3 8.7 8.7 8.5 8.2	Jul 8.9 9.3 9.4 9.0 8.6	Aug 7.9 7.9 7.7 7.6 7.0	8.0 7.7 7.5 7.1 6.4	7.8 7.9 7.9 7.8 7.6	8.2 8.5 8.4 8.3 8.4	8.9 8.8 8.8 8.7 8.8
ng Range (ft msl)	< 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020	Jan 8.9 8.8 8.8 8.8 8.7 8.7	9.4 9.3 9.2 9.0 9.1 9.0	9.7 9.8 9.6 9.5 9.4 9.2	Apr 10.2 10.3 9.9 9.6 9.6 9.5	May 9.1 9.7 9.6 9.3 9.0 8.8	Jun 8.3 8.7 8.7 8.5 8.2 7.7	Jul 8.9 9.3 9.4 9.0 8.6 7.8	Aug 7.9 7.9 7.7 7.6 7.0 6.6	Sep 8.0 7.7 7.5 7.1 6.4 5.8	7.8 7.9 7.9 7.8 7.6 6.8	Nov 8.2 8.5 8.4 8.3 8.4 7.7	8.9 8.8 8.8 8.7 8.8
ıding	< 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005	Jan 8.9 8.8 8.8 8.8 8.7 8.7	9.4 9.3 9.2 9.0 9.1 9.0 8.9	9.7 9.8 9.6 9.5 9.4 9.2 9.1	Apr 10.2 10.3 9.9 9.6 9.6 9.5 9.2	9.1 9.7 9.6 9.3 9.0 8.8 8.7	Jun 8.3 8.7 8.7 8.5 8.2 7.7 7.6	Jul 8.9 9.3 9.4 9.0 8.6 7.8	Aug 7.9 7.9 7.7 7.6 7.0 6.6 6.2	8.0 7.7 7.5 7.1 6.4 5.8 5.5	7.8 7.9 7.9 7.8 7.6 6.8 5.8	8.2 8.5 8.4 8.3 8.4 7.7 7.1	8.9 8.8 8.7 8.8 8.8
ıding	< 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990	Jan 8.9 8.8 8.8 8.7 8.7 8.7	9.4 9.3 9.2 9.0 9.1 9.0 8.9 8.8	9.7 9.8 9.6 9.5 9.4 9.2 9.1 9.0	Apr 10.2 10.3 9.9 9.6 9.6 9.5 9.2 8.9	May 9.1 9.7 9.6 9.3 9.0 8.8 8.7 8.3	Jun 8.3 8.7 8.7 8.5 8.2 7.7 7.6 7.2	Jul 8.9 9.3 9.4 9.0 8.6 7.8 7.5	Aug 7.9 7.9 7.7 7.6 7.0 6.6 6.2 5.8	8.0 7.7 7.5 7.1 6.4 5.8 5.5 5.0	7.8 7.9 7.9 7.8 7.6 6.8 5.8 4.2	8.2 8.5 8.4 8.3 8.4 7.7 7.1 5.0	8.9 8.8 8.7 8.8 8.8 8.6 6.4
ıding	< 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975	Jan 8.9 8.8 8.8 8.7 8.7 8.7 8.7	9.4 9.3 9.2 9.0 9.1 9.0 8.9 8.8 9.0	9.7 9.8 9.6 9.5 9.4 9.2 9.1 9.0 8.9	Apr 10.2 10.3 9.9 9.6 9.6 9.5 9.2 8.9 8.6	9.1 9.7 9.6 9.3 9.0 8.8 8.7 8.3 7.6	Jun 8.3 8.7 8.7 8.5 8.2 7.7 7.6 7.2 6.3	9.3 9.4 9.0 8.6 7.8 7.5 6.2	7.9 7.9 7.7 7.6 7.0 6.6 6.2 5.8 4.4	8.0 7.7 7.5 7.1 6.4 5.8 5.5 5.0	7.8 7.9 7.9 7.8 7.6 6.8 5.8 4.2 3.0	8.2 8.5 8.4 8.3 8.4 7.7 7.1 5.0 3.1	8.9 8.8 8.7 8.8 8.6 6.4 4.6
ıding	< 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960	Jan 8.9 8.8 8.8 8.7 8.7 8.7 8.7 8.7 8.7	9.4 9.3 9.2 9.0 9.1 9.0 8.9 8.8 9.0	9.7 9.8 9.6 9.5 9.4 9.2 9.1 9.0 8.9	Apr 10.2 10.3 9.9 9.6 9.6 9.5 9.2 8.9 8.6 8.2	9.1 9.7 9.6 9.3 9.0 8.8 8.7 8.3 7.6 6.9	Jun 8.3 8.7 8.7 8.5 8.2 7.7 7.6 7.2 6.3 5.6	Jul 8.9 9.3 9.4 9.0 8.6 7.8 7.5 6.2 5.4	7.9 7.9 7.7 7.6 7.0 6.6 6.2 5.8 4.4 3.7	8.0 7.7 7.5 7.1 6.4 5.8 5.5 5.0 3.7 2.8	7.8 7.9 7.9 7.8 7.6 6.8 5.8 4.2 3.0 2.3	8.2 8.5 8.4 8.3 8.4 7.7 7.1 5.0 3.1 1.9	8.9 8.8 8.7 8.8 8.8 8.6 6.4 4.6
ıding	< 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945	Jan 8.9 8.8 8.8 8.7 8.7 8.7 8.7 8.7 8.8 8.8	9.4 9.3 9.2 9.0 9.1 9.0 8.9 8.8 9.0 9.1	9.7 9.8 9.6 9.5 9.4 9.2 9.1 9.0 8.9 8.9	Apr 10.2 10.3 9.9 9.6 9.5 9.2 8.9 8.6 8.2 7.8	May 9.1 9.7 9.6 9.3 9.0 8.8 8.7 8.3 7.6 6.9 6.5	Jun 8.3 8.7 8.7 8.5 8.2 7.7 7.6 7.2 6.3 5.6 5.0	Jul 8.9 9.3 9.4 9.0 8.6 7.8 7.5 6.2 5.4 4.8	Aug 7.9 7.9 7.7 7.6 7.0 6.6 6.2 5.8 4.4 3.7 3.0	Sep 8.0 7.7 7.5 7.1 6.4 5.8 5.5 5.0 3.7 2.8 2.2	7.8 7.9 7.9 7.8 7.6 6.8 5.8 4.2 3.0 2.3 1.8	Nov 8.2 8.5 8.4 8.3 8.4 7.7 7.1 5.0 3.1 1.9	8.9 8.8 8.7 8.8 8.8 6.4 4.6 1.8
ıding	< 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930	Jan 8.9 8.8 8.8 8.7 8.7 8.7 8.7 8.7 8.8 8.4 5.8	9.4 9.3 9.2 9.0 9.1 9.0 8.9 8.8 9.0 9.1	9.7 9.8 9.6 9.5 9.4 9.2 9.1 9.0 8.9 8.9	Apr 10.2 10.3 9.9 9.6 9.5 9.2 8.9 8.6 8.2 7.8	May 9.1 9.7 9.6 9.3 9.0 8.8 8.7 8.3 7.6 6.9 6.5 5.9	Jun 8.3 8.7 8.7 8.5 8.2 7.7 7.6 7.2 6.3 5.6 5.0	Jul 8.9 9.3 9.4 9.0 8.6 7.8 7.5 6.2 5.4 4.8 4.1	Aug 7.9 7.9 7.7 7.6 7.0 6.6 6.2 5.8 4.4 3.7 3.0 2.5	Sep 8.0 7.7 7.5 7.1 6.4 5.8 5.5 5.0 3.7 2.8 2.2 1.8	7.8 7.9 7.9 7.8 7.6 6.8 5.8 4.2 3.0 2.3 1.8	Nov 8.2 8.5 8.4 8.3 8.4 7.7 7.1 5.0 3.1 1.9 1.4 1.1	8.9 8.8 8.7 8.8 8.8 6.4 4.6 1.8
ıding	< 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915	Jan 8.9 8.8 8.8 8.7 8.7 8.7 8.7 8.7 8.8 8.4 5.8	9.4 9.3 9.2 9.0 9.1 9.0 8.9 8.8 9.0 9.1	9.7 9.8 9.6 9.5 9.4 9.2 9.1 9.0 8.9 8.9	Apr 10.2 10.3 9.9 9.6 9.5 9.2 8.9 8.6 8.2 7.8	May 9.1 9.7 9.6 9.3 9.0 8.8 8.7 8.3 7.6 6.9 6.5 5.9	Jun 8.3 8.7 8.7 8.5 8.2 7.7 7.6 7.2 6.3 5.6 5.0	Jul 8.9 9.3 9.4 9.0 8.6 7.8 7.5 6.2 5.4 4.8 4.1	Aug 7.9 7.9 7.7 7.6 7.0 6.6 6.2 5.8 4.4 3.7 3.0 2.5	Sep 8.0 7.7 7.5 7.1 6.4 5.8 5.5 5.0 3.7 2.8 2.2 1.8	7.8 7.9 7.9 7.8 7.6 6.8 5.8 4.2 3.0 2.3 1.8	Nov 8.2 8.5 8.4 8.3 8.4 7.7 7.1 5.0 3.1 1.9 1.4 1.1	8.9 8.8 8.7 8.8 8.6 6.4 4.6 1.8
Measurement Reading Range (ft msl)	< 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900	Jan 8.9 8.8 8.8 8.7 8.7 8.7 8.7 8.7 8.8 8.4 5.8	9.4 9.3 9.2 9.0 9.1 9.0 8.9 8.8 9.0 9.1	9.7 9.8 9.6 9.5 9.4 9.2 9.1 9.0 8.9 8.9	Apr 10.2 10.3 9.9 9.6 9.5 9.2 8.9 8.6 8.2 7.8	May 9.1 9.7 9.6 9.3 9.0 8.8 8.7 8.3 7.6 6.9 6.5 5.9 5.2	Jun 8.3 8.7 8.7 8.5 8.2 7.7 7.6 7.2 6.3 5.6 5.0 3.8	Jul 8.9 9.3 9.4 9.0 8.6 7.8 7.5 6.2 5.4 4.8 4.1 0.9	Aug 7.9 7.9 7.7 7.6 7.0 6.6 6.2 5.8 4.4 3.7 3.0 2.5 0.1	Sep 8.0 7.7 7.5 7.1 6.4 5.8 5.5 5.0 3.7 2.8 2.2 1.8	7.8 7.9 7.9 7.8 7.6 6.8 5.8 4.2 3.0 2.3 1.8	Nov 8.2 8.5 8.4 8.3 8.4 7.7 7.1 5.0 3.1 1.9 1.4 1.1	8.9 8.8 8.7 8.8 8.6 6.4 4.6 1.8
ıding	< 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885	Jan 8.9 8.8 8.8 8.7 8.7 8.7 8.7 8.7 8.8 8.4 5.8	9.4 9.3 9.2 9.0 9.1 9.0 8.9 8.8 9.0 9.1	9.7 9.8 9.6 9.5 9.4 9.2 9.1 9.0 8.9 8.9	Apr 10.2 10.3 9.9 9.6 9.5 9.2 8.9 8.6 8.2 7.8	May 9.1 9.7 9.6 9.3 9.0 8.8 8.7 8.3 7.6 6.9 6.5 5.9 5.2	Jun 8.3 8.7 8.7 8.5 8.2 7.7 7.6 7.2 6.3 5.6 5.0	Jul 8.9 9.3 9.4 9.0 8.6 7.8 7.5 6.2 5.4 4.8 4.1 0.9	Aug 7.9 7.9 7.7 7.6 7.0 6.6 6.2 5.8 4.4 3.7 3.0 2.5 0.1	Sep 8.0 7.7 7.5 7.1 6.4 5.8 5.5 5.0 3.7 2.8 2.2 1.8	7.8 7.9 7.9 7.8 7.6 6.8 5.8 4.2 3.0 2.3 1.8	Nov 8.2 8.5 8.4 8.3 8.4 7.7 7.1 5.0 3.1 1.9 1.4 1.1	8.9 8.8 8.7 8.8 8.6 6.4 4.6 1.8
ıding	< 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870	Jan 8.9 8.8 8.8 8.7 8.7 8.7 8.7 8.7 8.8 8.4 5.8	9.4 9.3 9.2 9.0 9.1 9.0 8.9 8.8 9.0 9.1	9.7 9.8 9.6 9.5 9.4 9.2 9.1 9.0 8.9 8.9	Apr 10.2 10.3 9.9 9.6 9.5 9.2 8.9 8.6 8.2 7.8	May 9.1 9.7 9.6 9.3 9.0 8.8 8.7 8.3 7.6 6.9 6.5 5.9 5.2	Jun 8.3 8.7 8.7 8.5 8.2 7.7 7.6 7.2 6.3 5.6 5.0 3.8	Jul 8.9 9.3 9.4 9.0 8.6 7.8 7.5 6.2 5.4 4.8 4.1 0.9	Aug 7.9 7.9 7.7 7.6 7.0 6.6 6.2 5.8 4.4 3.7 3.0 2.5 0.1	Sep 8.0 7.7 7.5 7.1 6.4 5.8 5.5 5.0 3.7 2.8 2.2 1.8	7.8 7.9 7.9 7.8 7.6 6.8 5.8 4.2 3.0 2.3 1.8	Nov 8.2 8.5 8.4 8.3 8.4 7.7 7.1 5.0 3.1 1.9 1.4 1.1	8.9 8.8 8.7 8.8 8.8 6.4 4.6 1.8

	Jocas	see D_2_5	51.0: Moi	nthly Aver	aged Diss	solved Ox	ygen (mg/l) 1975 to <i>1</i>	1991 (Pre E	Bad Creek	Operation	າ)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	12.1	12.1	11.0	10.4	8.9	8.6	8.4	8.5	8.8	9.4	10.2	11.3
	1095 to 1080	11.5	11.2	10.9	9.8	9.8	8.7	8.1	8.1	8.6	10.1	10.6	11.4
ısı	1080 to 1065												
<u> </u>	1065 to 1050												
е (1050 to 1035												
ng	1035 to 1020												
Ra	1020 to 1005												
ng	1005 to 990												
adi	990 to 975												
Re	975 to 960												
nt	960 to 945					Mi	nimum Rea	ding 1082	.8 ft				
me	945 to 930												
<u>ie</u>	930 to 915												
asn	915 to 900												
Measurement Reading Range (ft msl)	900 to 885												
	885 to 870												
	870 to 855												
	< 855												
	Jocas	see D_2_5	51.0: Mon	ithly Avera	ged Diss	olved Oxy	gen (mg/l)	1991 to 2	2010 (Post	Bad Cree	k Operatio	<u>n)</u>	
	11121 122	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	Jan 13.3	11.4	Mar 10.5	Apr 8.9	May 8.9	Jun 8.2	Jul 8.3	8.7	Sep 8.9	Oct 10.7	8.4	Dec 10.8
<u>-</u>	1095 to 1080												
msl)	1095 to 1080 1080 to 1065		11.4						8.7			8.4	
(ft msl)	1095 to 1080 1080 to 1065 1065 to 1050		11.4						8.7			8.4	
ge (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035		11.4						8.7			8.4	
ange (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020		11.4						8.7			8.4	
յ Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005		11.4						8.7			8.4	
ling Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990		11.4						8.7			8.4	
ading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975		11.4						8.7			8.4	
Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960		11.4			8.9	8.2	8.3	8.7 7.7			8.4	
ent Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945		11.4			8.9		8.3	8.7 7.7			8.4	
ement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930		11.4			8.9	8.2	8.3	8.7 7.7			8.4	
urement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915		11.4			8.9	8.2	8.3	8.7 7.7			8.4	
asurement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900		11.4			8.9	8.2	8.3	8.7 7.7			8.4	
Measurement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885		11.4			8.9	8.2	8.3	8.7 7.7			8.4	
Measurement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870		11.4			8.9	8.2	8.3	8.7 7.7			8.4	
Measurement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870 870 to 855		11.4			8.9	8.2	8.3	8.7 7.7			8.4	
Measurement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870		11.4			8.9	8.2	8.3	8.7 7.7			8.4	

	Jocas	see D_2_	564.0: Moi	nthly Aver	aged Diss	olved Oxy	gen (mg/l)) 1976 to 1	991 (Pre E	Bad Creek	Operation	1)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	9.7	10.0	10.4	10.5	9.9	8.7	8.6	7.8	8.4	8.3	8.6	9.0
	1095 to 1080	9.6	9.6	10.1	10.6	10.1	9.3	9.0	8.1	8.3	8.2	8.6	9.0
ls!	1080 to 1065	9.5	9.5	10.0	10.5	10.3	9.8	9.2	7.6	8.3	8.1	8.6	9.0
ـ ا	1065 to 1050	9.5	9.4	9.9	10.3	10.0	9.4	9.0	7.4	7.8	8.1	8.5	9.0
e (.	1050 to 1035	9.4	9.3	9.9	10.2	9.4	9.0	8.6	7.1	7.1	8.0	8.7	9.0
Range (ft msl)	1035 to 1020	9.5	9.1	9.6	10.0	8.9	8.5	7.6	6.1	6.2	7.4	8.2	9.1
Ra	1020 to 1005	9.5	9.2	9.5	9.6	8.2	7.6	6.7	4.6	4.0	4.8	7.1	8.9
bu	1005 to 990	9.5	9.3	9.4	9.2	7.9	7.3	6.1	3.1	3.3	2.6	4.8	7.5
jg	990 to 975	9.5	9.4	9.2	8.9	7.7	7.3	6.8	3.1	3.5	2.3	2.7	5.6
Re	975 to 960	9.6	9.3	8.6	8.6	7.9	6.6	6.0	3.8	4.1	3.9	3.0	4.3
Έ	960 to 945	8.8	9.2	8.7	8.3	7.8	7.0	6.3	4.1	4.9	3.7	3.5	3.4
Measurement Reading	945 to 930	6.7	9.4	8.5	8.0	7.2	6.2	5.7	3.7	4.2	3.0	2.4	2.2
<u>E</u>	930 to 915	5.5	8.0	8.3	7.0	6.4	4.9	4.6	2.9	2.9	2.1	1.8	1.5
asn	915 to 900	4.7	5.7	7.4	6.6	5.6	3.8	3.3	2.1	2.1	1.6	1.5	1.1
Αe	900 to 885	4.0	4.9	7.4	5.9	5.2	3.2	2.5	1.2	1.5	0.9	1.1	0.6
_	885 to 870	3.3	4.3	6.1	4.0	3.8	3.1	2.3	0.8	0.7	0.4	0.6	0.7
	870 to 855	0.0		7.9	7.2	4.6	1.5	1.7	2.2	0.0	0.0	0.0	0.7
	< 855						nimum Rea						
	Jocas	see D_2_5					gen (mg/l)					1	ı
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	9.1	9.3	9.9	9.8	9.0	8.2	8.2	7.9	7.7	7.6	8.1	8.8
<u>~</u>	1095 to 1080	8.9	9.2	9.8	9.8	9.1	8.5	8.1	7.7	7.4	7.6	8.2	8.6
s □	1080 to 1065	8.9	9.1	9.7	9.6	9.1	8.7	8.2	7.6	7.3	7.6	8.2	8.6
(ft msl)	1065 to 1050	8.9	9.0	9.6	9.5	9.1	8.7	8.2	7.6	7.1	7.5	8.1	8.6
ge	1050 to 1035	8.8	9.0	9.5	9.4	9.0	8.6	8.1	7.3	6.9	7.5	8.1	8.6
Range	1035 to 1020	8.8	8.9	9.3	9.3	9.0	8.5	7.8	7.0	6.4	7.3	8.0	8.6
	1020 to 1005	8.8	8.8	9.1	9.1	8.9	8.4	7.8	6.9	5.9	6.4	7.6	8.4
ii.	1005 to 990	8.8	8.8	8.9	8.8	8.6	8.1	7.6	6.7	5.8	5.3	6.1	7.6
∍ad	990 to 975	8.3	8.7	8.7	8.4	8.1	7.6	6.8	6.1	5.4	5.0	4.6	5.5
ă	975 to 960	6.8	8.2	8.3	7.9	7.5	6.7	6.0	5.4	4.7	4.1	3.8	3.7
ent	960 to 945	5.7	7.6	7.8	7.3	6.8	5.8	5.3	4.9	4.1	3.3	3.0	2.9
Measurement Reading	945 to 930	3.6	6.8	7.2	6.5	6.3	5.1	4.8	4.2	3.6	2.7	2.3	2.1
בות מחק	930 to 915	2.7	6.0	6.4	5.3	5.6	4.5	4.0	3.5	2.8	2.3	1.9	1.8
as	915 to 900	2.1	5.7	5.3	5.0	5.4	4.0	3.9	3.1	2.7	1.9	1.6	1.7
Ĕ	900 to 885	1.7	5.3	4.8	4.1	3.7	2.8	3.4	2.6	2.1	1.5	1.2	1.9
	885 to 870	2.3	3.9	3.3	4.4	2.9	2.7	3.0	2.2	2.0	2.2	1.0	1.4
	870 to 855	0.1	4.3	3.1	5.2	A 4:	0.0	0.4	2.8		2.3	0.0	l
	< 855					MII	nimum Rea	auing 864.4	+ IT			10.0	1
	Legend	0.0										10.0	

	Jocas	see D_2_	564.1: Mo	nthly Aver	aged Diss	olved Oxy	gen (mg/l) 1987 to 1	991 (Pre E	Bad Creek	Operation	1)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	10.0	10.6	9.8	10.2	9.3	8.7	8.6	5.4	7.9	8.2	8.3	9.2
_	1095 to 1080	9.8	9.5	10.0	10.2	9.5	8.9	8.7	6.3	7.7	8.0	8.5	9.2
JSI)	1080 to 1065	10.0	9.7	10.0	10.1	9.5	9.0	8.6	5.9	7.6	8.1	8.6	9.2
بر	1065 to 1050	10.6	10.6	10.2	10.3	9.4	8.5	8.2	5.5	7.5	8.0	8.7	9.7
e (1	1050 to 1035	10.7	10.4	10.1	10.3	9.2	7.7	6.8	4.7	7.0	7.8	8.6	9.8
ng	1035 to 1020	10.7	10.2	10.0	9.8	8.7	6.2	5.3	2.7	4.6	7.7	8.5	9.9
Ra	1020 to 1005	10.6	10.4	9.8	9.1	7.7	5.1	3.8	2.2	1.0	6.2	8.4	9.8
Measurement Reading Range (ft msl)	1005 to 990	10.6	10.2	9.3	8.0	5.8	2.9	1.5	0.9	0.1	1.7	8.1	9.7
ädi	990 to 975	10.6	10.0	9.0	7.3	4.1	2.1	0.3	0.3	0.0	0.0	5.4	9.7
Re	975 to 960	10.5	9.9	9.5	8.7	2.8	1.5	0.0	0.4	0.0	0.0	1.9	10.1
뒫	960 to 945					2.7							
ne	945 to 930												
ē	930 to 915												
ısı	915 to 900												
Леа	900 to 885												
_	885 to 870					Mil	nimum Rea	ading 959.9	9 ft				
	870 to 855												
	< 855												
	Jocas	see D_2_5	64.1: Mor	nthly Avera	aged Disso	olved Oxy	gen (mg/l)	1991 to 2	017 (Post	Bad Creel	k Operatio	n)	
		lan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	
		Jan	100					Jui	7 1.5.8			INOV	Dec
	1110 to 1095	9.2	9.5	9.7	9.7	8.9	8.3	8.2	7.8	7.3	7.5	8.1	Dec 8.8
	1110 to 1095 1095 to 1080			9.7 9.7	9.7 9.7	8.9 9.0	8.3 8.4						
nsl)		9.2	9.5					8.2	7.8	7.3	7.5	8.1	8.8
ft msl)	1095 to 1080	9.2 9.0	9.5 9.4	9.7	9.7	9.0	8.4	8.2 8.1	7.8 7.6	7.3 7.2	7.5 7.5	8.1 8.1	8.8 8.6
e (ft msl)	1095 to 1080 1080 to 1065	9.2 9.0 9.1	9.5 9.4 9.3	9.7 9.6	9.7 9.6	9.0 9.0	8.4 8.5	8.2 8.1 8.2	7.8 7.6 7.6	7.3 7.2 7.2	7.5 7.5 7.5	8.1 8.1 8.1	8.8 8.6 8.6
nge (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050	9.2 9.0 9.1 9.1	9.5 9.4 9.3 9.4	9.7 9.6 9.6	9.7 9.6 9.6	9.0 9.0 9.0	8.4 8.5 8.5	8.2 8.1 8.2 8.3	7.8 7.6 7.6 7.6	7.3 7.2 7.2 7.1	7.5 7.5 7.5 7.5	8.1 8.1 8.1 8.1	8.8 8.6 8.6 8.7
Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035	9.2 9.0 9.1 9.1 9.1	9.5 9.4 9.3 9.4 9.4	9.7 9.6 9.6 9.6	9.7 9.6 9.6 9.5	9.0 9.0 9.0 9.0	8.4 8.5 8.5 8.6	8.2 8.1 8.2 8.3 8.2	7.8 7.6 7.6 7.6 7.5	7.3 7.2 7.2 7.1 7.1	7.5 7.5 7.5 7.5 7.4	8.1 8.1 8.1 8.1 8.1	8.8 8.6 8.6 8.7 8.6
ng Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020	9.2 9.0 9.1 9.1 9.1 9.2	9.5 9.4 9.3 9.4 9.4 9.4	9.7 9.6 9.6 9.6 9.6	9.7 9.6 9.6 9.5 9.5	9.0 9.0 9.0 9.0 9.0	8.4 8.5 8.5 8.6 8.6	8.2 8.1 8.2 8.3 8.2 8.1	7.8 7.6 7.6 7.6 7.5 7.6	7.3 7.2 7.2 7.1 7.1 7.1	7.5 7.5 7.5 7.5 7.4 7.4	8.1 8.1 8.1 8.1 8.1	8.8 8.6 8.6 8.7 8.6 8.7
ading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005	9.2 9.0 9.1 9.1 9.1 9.2 9.1	9.5 9.4 9.3 9.4 9.4 9.4 9.3	9.7 9.6 9.6 9.6 9.6 9.6	9.7 9.6 9.6 9.5 9.5 9.4	9.0 9.0 9.0 9.0 9.0 8.9	8.4 8.5 8.5 8.6 8.6	8.2 8.1 8.2 8.3 8.2 8.1	7.8 7.6 7.6 7.6 7.5 7.6	7.3 7.2 7.2 7.1 7.1 7.1 7.1	7.5 7.5 7.5 7.5 7.4 7.4 7.4	8.1 8.1 8.1 8.1 8.1 8.1	8.8 8.6 8.6 8.7 8.6 8.7
	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990	9.2 9.0 9.1 9.1 9.1 9.2 9.1	9.5 9.4 9.3 9.4 9.4 9.4 9.3 9.4	9.7 9.6 9.6 9.6 9.6 9.6 9.6	9.7 9.6 9.6 9.5 9.5 9.4 9.4	9.0 9.0 9.0 9.0 9.0 8.9	8.4 8.5 8.5 8.6 8.6 8.6	8.2 8.1 8.2 8.3 8.2 8.1 8.1 8.4	7.8 7.6 7.6 7.6 7.5 7.6 7.6	7.3 7.2 7.2 7.1 7.1 7.1 7.1 7.1	7.5 7.5 7.5 7.5 7.4 7.4 7.4 7.4	8.1 8.1 8.1 8.1 8.1 8.0 8.1	8.8 8.6 8.6 8.7 8.6 8.7 8.7
	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975	9.2 9.0 9.1 9.1 9.1 9.2 9.1 9.2	9.5 9.4 9.3 9.4 9.4 9.4 9.3 9.4 9.5	9.7 9.6 9.6 9.6 9.6 9.6 9.6 9.6	9.7 9.6 9.6 9.5 9.5 9.4 9.4	9.0 9.0 9.0 9.0 9.0 8.9 8.9 8.7	8.4 8.5 8.6 8.6 8.6 8.6 8.6	8.2 8.1 8.2 8.3 8.2 8.1 8.1 8.4	7.8 7.6 7.6 7.5 7.6 7.6 7.6 7.6	7.3 7.2 7.2 7.1 7.1 7.1 7.1 7.1 6.9	7.5 7.5 7.5 7.5 7.4 7.4 7.4 7.4 7.4	8.1 8.1 8.1 8.1 8.1 8.0 8.1 8.2	8.8 8.6 8.6 8.7 8.6 8.7 8.7 8.7
	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960	9.2 9.0 9.1 9.1 9.1 9.2 9.1 9.2	9.5 9.4 9.3 9.4 9.4 9.4 9.3 9.4 9.5	9.7 9.6 9.6 9.6 9.6 9.6 9.6 9.6	9.7 9.6 9.6 9.5 9.5 9.4 9.4	9.0 9.0 9.0 9.0 9.0 8.9 8.9 8.7	8.4 8.5 8.6 8.6 8.6 8.6 8.6	8.2 8.1 8.2 8.3 8.2 8.1 8.1 8.4	7.8 7.6 7.6 7.5 7.6 7.6 7.6 7.6	7.3 7.2 7.2 7.1 7.1 7.1 7.1 7.1 6.9	7.5 7.5 7.5 7.5 7.4 7.4 7.4 7.4 7.4	8.1 8.1 8.1 8.1 8.1 8.0 8.1 8.2	8.8 8.6 8.6 8.7 8.6 8.7 8.7 8.7
	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945	9.2 9.0 9.1 9.1 9.1 9.2 9.1 9.2	9.5 9.4 9.3 9.4 9.4 9.4 9.3 9.4 9.5	9.7 9.6 9.6 9.6 9.6 9.6 9.6 9.6	9.7 9.6 9.6 9.5 9.5 9.4 9.4	9.0 9.0 9.0 9.0 9.0 8.9 8.9 8.7	8.4 8.5 8.6 8.6 8.6 8.6 8.6	8.2 8.1 8.2 8.3 8.2 8.1 8.1 8.4	7.8 7.6 7.6 7.5 7.6 7.6 7.6 7.6	7.3 7.2 7.2 7.1 7.1 7.1 7.1 7.1 6.9	7.5 7.5 7.5 7.5 7.4 7.4 7.4 7.4 7.4	8.1 8.1 8.1 8.1 8.1 8.0 8.1 8.2	8.8 8.6 8.6 8.7 8.6 8.7 8.7 8.7
	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930	9.2 9.0 9.1 9.1 9.1 9.2 9.1 9.2	9.5 9.4 9.3 9.4 9.4 9.4 9.3 9.4 9.5	9.7 9.6 9.6 9.6 9.6 9.6 9.6 9.6	9.7 9.6 9.6 9.5 9.5 9.4 9.4	9.0 9.0 9.0 9.0 9.0 8.9 8.9 8.7	8.4 8.5 8.6 8.6 8.6 8.6 8.6	8.2 8.1 8.2 8.3 8.2 8.1 8.1 8.4	7.8 7.6 7.6 7.5 7.6 7.6 7.6 7.6	7.3 7.2 7.2 7.1 7.1 7.1 7.1 7.1 6.9	7.5 7.5 7.5 7.5 7.4 7.4 7.4 7.4 7.4	8.1 8.1 8.1 8.1 8.1 8.0 8.1 8.2	8.8 8.6 8.6 8.7 8.6 8.7 8.7 8.7
	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915	9.2 9.0 9.1 9.1 9.1 9.2 9.1 9.2	9.5 9.4 9.3 9.4 9.4 9.4 9.3 9.4 9.5	9.7 9.6 9.6 9.6 9.6 9.6 9.6 9.6	9.7 9.6 9.6 9.5 9.5 9.4 9.4	9.0 9.0 9.0 9.0 9.0 8.9 8.9 8.7	8.4 8.5 8.6 8.6 8.6 8.6 8.6	8.2 8.1 8.2 8.3 8.2 8.1 8.1 8.4	7.8 7.6 7.6 7.5 7.6 7.6 7.6 7.6	7.3 7.2 7.2 7.1 7.1 7.1 7.1 7.1 6.9	7.5 7.5 7.5 7.5 7.4 7.4 7.4 7.4 7.4	8.1 8.1 8.1 8.1 8.1 8.0 8.1 8.2	8.8 8.6 8.6 8.7 8.6 8.7 8.7 8.7
Measurement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900	9.2 9.0 9.1 9.1 9.1 9.2 9.1 9.2	9.5 9.4 9.3 9.4 9.4 9.4 9.3 9.4 9.5	9.7 9.6 9.6 9.6 9.6 9.6 9.6 9.6	9.7 9.6 9.6 9.5 9.5 9.4 9.4	9.0 9.0 9.0 9.0 9.0 8.9 8.9 8.7 8.8	8.4 8.5 8.6 8.6 8.6 8.6 8.6 8.3	8.2 8.1 8.2 8.3 8.2 8.1 8.1 8.4	7.8 7.6 7.6 7.5 7.6 7.6 7.6 7.6 7.1	7.3 7.2 7.2 7.1 7.1 7.1 7.1 7.1 6.9	7.5 7.5 7.5 7.5 7.4 7.4 7.4 7.4 7.4	8.1 8.1 8.1 8.1 8.1 8.0 8.1 8.2	8.8 8.6 8.6 8.7 8.6 8.7 8.7 8.7

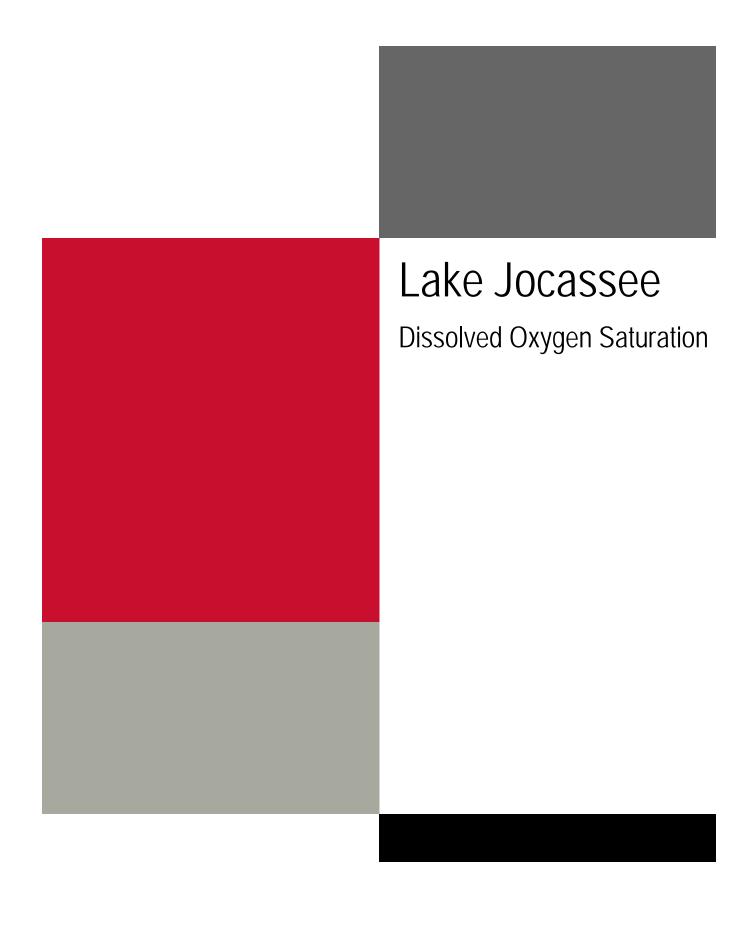
Legend 0.0 10.0

870 to 855 < 855

	Jocas	see E_2_	557.0: Mor	nthly Aver	aged Diss	olved Oxy	gen (mg/l)	1975 to 1	991 (Pre B	ad Creek	Operation	1)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	9.8	9.9	10.6	10.4	9.7	8.8	8.7	8.5	8.3	8.2	8.7	9.1
	1095 to 1080	9.8	9.8	10.3	10.4	10.1	9.3	9.4	8.6	8.4	8.1	8.7	9.1
ısı	1080 to 1065	9.7	9.5	10.1	10.3	10.0	9.9	9.6	8.5	8.1	8.1	8.6	9.1
(ft msl)	1065 to 1050	9.6	9.4	9.9	10.1	9.8	9.4	9.4	7.9	7.3	7.9	8.6	9.1
e (.	1050 to 1035	9.6	9.3	9.6	9.7	9.5	9.3	8.6	7.5	6.3	7.5	8.7	9.1
Range	1035 to 1020	9.7	9.3	9.5	9.3	8.8	8.8	7.9	6.8	5.9	6.7	8.4	9.1
Ra	1020 to 1005	9.6	9.3	9.3	9.2	8.3	8.2	7.3	6.3	5.1	5.8	6.8	8.5
ng	1005 to 990	9.6	9.3	9.2	9.0	8.2	7.7	6.8	5.9	4.9	3.9	5.3	6.8
ğ	990 to 975	9.2	9.4	8.9	9.0	7.8	7.3	6.4	5.1	4.7	3.8	3.2	6.4
Ze.	975 to 960	9.2	9.3	9.2	8.6	7.5	7.5	6.2	5.0	4.2	3.4	3.0	3.8
<u> </u>	960 to 945	9.0	9.5	9.1	8.9	7.9	7.0	5.7	4.4	3.6	2.8	2.4	2.6
ne	945 to 930	7.9	8.8	9.5	8.7	7.7	6.6	5.4	4.0	3.7	2.8	2.2	1.2
Measurement Reading	930 to 915	6.0	9.5	9.5	8.6	7.6	6.5	5.1	3.7	2.9	2.1	1.7	8.0
ns _k	915 to 900	3.9	8.3	9.2	8.2	7.2	6.0	4.7	3.7	3.4	2.7	1.8	1.4
Лег	900 to 885	4.5	8.3	9.5	8.1	7.3	6.1	4.9	3.4	2.9	1.8	1.4	0.7
=	885 to 870	2.7	8.3	9.4	7.9	7.0	5.9	4.6	3.2	2.7	1.4	1.1	0.5
	870 to 855	0.1	8.1	9.3	7.4	6.7	5.5	4.9	2.9	2.4	0.9	0.8	0.5
	< 855	0.1	8.1	9.0	7.3	6.6	5.3	4.8	2.6	2.1	0.8	0.7	0.3
	Jocas	see E_2_5	57.0: Mon	thly Avera	ged Disso	lved Oxy	gen (mg/l)	1991 to 20)15 (Post I	Bad Creek	Operatio	n)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	9.6	9.6	10.2	9.9	9.1	8.4	8.3	8.1	8.0	7.7	8.4	8.9
	1095 to 1080	9.4	9.6	10.1	9.9	9.5	9.1	8.5	8.0	7.7	7.8	8.5	8.9
S	1080 to 1065	9.4	9.5	10.0	9.8	9.5	9.1	8.6	7.9	7.6	7.8	8.4	8.8
ב. ו	1065 to 1050	9.4	9.5	9.9	9.7	9.4	9.0	8.4	7.5	7.1	7.7	8.4	8.8
e (1	1050 to 1035	9.3	9.3	9.7	9.6	9.2	8.8	7.9	6.8	6.4	7.6	8.3	8.8
Range (ft msl)	1035 to 1020	9.3	9.3	9.5	9.5	9.0	8.3	7.3	6.0	5.4	7.4	8.2	8.8
	1020 to 1005	9.3	9.2	9.4	9.3	8.9	8.1	7.1	6.0	5.1	6.0	7.8	8.6
ling	1005 to 990	9.3	9.3	9.3	9.1	8.7	8.1	7.3	6.4	5.6	4.8	6.4	7.9
ğdi	990 to 975	9.1	9.3	9.2	8.9	8.4	7.7	7.0	6.2	5.6	4.9	4.5	6.2
Ze,	975 to 960	8.3	9.1	9.1	8.7	8.1	7.4	6.7	6.0	5.5	4.8	4.2	4.3
Measurement Read	960 to 945	6.6	8.7	9.1	8.4	7.8	7.0	6.3	5.5	5.2	4.5	3.7	3.1
nei	945 to 930	5.4	8.8	8.7	8.0	7.4	6.5	5.9	5.0	4.7	3.9	3.3	2.4
<u>re</u>	930 to 915	4.6	8.4	8.5	7.5	7.1	6.1	5.5	4.6	4.3	3.7	3.1	2.0
ısı	915 to 900	3.7	8.2	8.2	7.4	6.8	5.9	5.4	4.6	4.2	3.5	3.0	2.1
Леа	900 to 885	3.8	7.3	7.9	7.2	6.7	5.6	5.2	4.5	3.9	3.3	2.9	2.3
=	885 to 870	3.3	7.0	8.0	6.8	6.2	5.5	5.0	4.0	3.5	3.1	2.8	1.8
	870 to 855	3.2	6.8	7.6	6.6	5.9	4.9	4.4	3.6	3.3	2.7	2.2	1.6
	< 855	2.4	6.6	6.8	6.1	5.6	4.6	4.5	3.4	2.8	2.3	2.1	1.5
_	Legend	0.0										10.0	

	Jocas	see F_2_	554.8: Mo	nthly Aver	aged Diss	oivea Oxy	/gen (mg/i)	1986 to 1	991 (Pre E	sad Creek	Operation	1)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	10.5	10.5	10.4	10.4	9.1	8.4	8.9	8.7	7.9	8.1	8.2	9.3
	1095 to 1080	10.4	10.4	10.9	10.6	9.9	9.8	9.2	8.9	7.8	7.8	8.6	9.2
lsl)	1080 to 1065	10.2	10.2	10.9	10.4	9.9	9.9	9.4	9.1	7.6	7.8	8.6	9.1
it n	1065 to 1050	10.1	10.1	10.8	10.3	9.7	9.6	9.1	7.9	7.4	7.7	8.6	9.0
Range (ft msl)	1050 to 1035	10.2	10.1	10.3	10.2	9.2	8.9	8.1	6.4	7.3	7.6	8.5	9.1
ng	1035 to 1020	10.2	10.0	10.3	10.0	8.7	7.5	6.8	5.7	6.8	7.5	8.6	9.0
Ra	1020 to 1005	10.1	10.0	10.1	9.9	8.4	6.8	4.8	3.4	3.8	6.6	8.4	9.0
ng	1005 to 990	10.2	10.2	10.0	9.6	8.2	6.2	4.5	3.0	1.9	2.3	8.6	9.1
ibe	990 to 975	10.4	10.4	10.0	9.3	7.6	5.7	4.6	2.6	1.5	0.5	5.5	9.1
Ř	975 to 960	10.7	10.4	10.0	8.2	6.0	3.5	2.1	0.8	0.2	0.1	0.4	7.8
゠゠゙	960 to 945	10.7	10.6	9.9		5.9	1.8	0.8	0.8	0.0	0.0	0.0	1.4
Measurement Reading	945 to 930												
<u> </u>	930 to 915												
ası	915 to 900												
Mea	900 to 885												
_	885 to 870					A 4:		odina 046 l	5 ff				
							nımıım Dar)				
	870 to 855					MII	nimum Rea	duing 940.	,,,				
	870 to 855 < 855												
	870 to 855 < 855					olved Oxy	gen (mg/l)	1991 to 20	015 (Post	1			
	870 to 855 < 855 Jocass	Jan	Feb	Mar	Apr	olved Oxyg	gen (mg/l) Jun	1991 to 20	015 (Post Aug	Sep	Oct	Nov	Dec
	870 to 855 < 855 Jocas : 1110 to 1095	Jan 9.8	Feb 10.1	Mar 10.4	Apr 9.9	olved Oxyg May 9.0	gen (mg/l) Jun 8.7	1991 to 20 Jul 8.4	015 (Post Aug 8.3	Sep 8.1	Oct 7.7	Nov 8.4	8.9
(1	870 to 855 < 855 Jocas 1110 to 1095 1095 to 1080	Jan 9.8 9.7	Feb 10.1 10.2	Mar 10.4 10.4	9.9 10.0	May 9.0 9.5	gen (mg/l) Jun 8.7 8.9	1991 to 20 Jul 8.4 9.0	015 (Post Aug 8.3 8.5	Sep 8.1 7.7	Oct 7.7 7.8	8.4 8.4	8.9 8.9
nsl)	870 to 855 < 855 Jocas: 1110 to 1095 1095 to 1080 1080 to 1065	Jan 9.8 9.7 9.7	Feb 10.1 10.2 10.0	Mar 10.4 10.4 10.2	9.9 10.0 9.9	9.0 9.5 9.4	gen (mg/l) Jun 8.7 8.9 8.7	1991 to 20 Jul 8.4 9.0 8.5	015 (Post Aug 8.3 8.5 8.0	Sep 8.1 7.7 7.4	7.7 7.8 7.7	8.4 8.4 8.3	8.9 8.9 8.9
(ft msl)	870 to 855 < 855 Jocas: 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050	9.8 9.7 9.7 9.6	Feb 10.1 10.2 10.0 9.9	Mar 10.4 10.4 10.2 10.1	9.9 10.0 9.9 9.8	9.0 9.5 9.4 8.9	gen (mg/l) Jun 8.7 8.9 8.7 8.3	1991 to 20 Jul 8.4 9.0 8.5 7.3	015 (Post Aug 8.3 8.5 8.0 7.3	Sep 8.1 7.7 7.4 7.1	7.7 7.8 7.7 7.6	8.4 8.4 8.3 8.3	8.9 8.9 8.9 8.8
ge (ft msl)	870 to 855 < 855 Jocas: 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035	9.8 9.7 9.7 9.6 9.6	Feb 10.1 10.2 10.0 9.9 9.9	Mar 10.4 10.4 10.2 10.1 10.0	9.9 10.0 9.9 9.8 9.6	9.0 9.5 9.4 8.9 8.7	gen (mg/l) Jun 8.7 8.9 8.7 8.3 7.6	1991 to 20 Jul 8.4 9.0 8.5 7.3 6.7	Aug 8.3 8.5 8.0 7.3 6.4	Sep 8.1 7.7 7.4 7.1 6.9	7.7 7.8 7.7 7.6 7.5	Nov 8.4 8.4 8.3 8.3	8.9 8.9 8.9 8.8
ange (ft msl)	870 to 855 < 855 Jocas: 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020	Jan 9.8 9.7 9.7 9.6 9.6 9.6	Feb 10.1 10.2 10.0 9.9 9.9 9.8	Mar 10.4 10.4 10.2 10.1 10.0 9.8	9.9 10.0 9.9 9.8 9.6 9.4	9.0 9.5 9.4 8.9 8.7 8.6	gen (mg/l) Jun 8.7 8.9 8.7 8.3 7.6 7.3	1991 to 20 Jul 8.4 9.0 8.5 7.3 6.7 5.8	Aug 8.3 8.5 8.0 7.3 6.4 4.9	Sep 8.1 7.7 7.4 7.1 6.9 5.4	Oct 7.7 7.8 7.7 7.6 7.5 7.2	Nov 8.4 8.4 8.3 8.3 8.3 8.1	8.9 8.9 8.9 8.8 8.8
g Range (ft msl)	870 to 855 < 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005	9.8 9.7 9.7 9.6 9.6 9.6	Feb 10.1 10.2 10.0 9.9 9.9 9.8 9.7	Mar 10.4 10.4 10.2 10.1 10.0 9.8 9.8	9.9 10.0 9.9 9.8 9.6 9.4 9.2	9.0 9.5 9.4 8.9 8.7 8.6 8.4	gen (mg/l) Jun 8.7 8.9 8.7 8.3 7.6 7.3 7.2	1991 to 20 Jul 8.4 9.0 8.5 7.3 6.7 5.8 5.6	Aug 8.3 8.5 8.0 7.3 6.4 4.9 4.1	Sep 8.1 7.7 7.4 7.1 6.9 5.4 3.9	7.7 7.8 7.7 7.6 7.5 7.2 6.0	Nov 8.4 8.4 8.3 8.3 8.3 8.1 8.0	8.9 8.9 8.8 8.8 8.8
ing Range (ft msl)	870 to 855 < 855 Jocas: 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990	9.8 9.7 9.7 9.6 9.6 9.6 9.6 9.6	Feb 10.1 10.2 10.0 9.9 9.9 9.8 9.7 9.8	Mar 10.4 10.4 10.2 10.1 10.0 9.8 9.8 9.8	9.9 10.0 9.9 9.8 9.6 9.4 9.2 8.9	9.0 9.5 9.4 8.9 8.7 8.6 8.4 8.1	gen (mg/l) Jun 8.7 8.9 8.7 8.3 7.6 7.3 7.2 6.9	Jul 8.4 9.0 8.5 7.3 6.7 5.8 5.6 5.5	Aug 8.3 8.5 8.0 7.3 6.4 4.9 4.1 4.1	Sep 8.1 7.7 7.4 7.1 6.9 5.4 3.9 3.1	Oct 7.7 7.8 7.7 7.6 7.5 7.2 6.0 2.7	Nov 8.4 8.4 8.3 8.3 8.3 8.1 8.0 6.7	8.9 8.9 8.8 8.8 8.8 8.8
ading Range (ft msl)	870 to 855 < 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975	9.8 9.7 9.7 9.6 9.6 9.6 9.6 9.7	Feb 10.1 10.2 10.0 9.9 9.9 9.8 9.7 9.8 10.0	Mar 10.4 10.4 10.2 10.1 10.0 9.8 9.8 9.8 9.7	9.9 10.0 9.9 9.8 9.6 9.4 9.2 8.9 8.5	9.0 9.0 9.5 9.4 8.9 8.7 8.6 8.4 8.1 7.6	gen (mg/l) Jun 8.7 8.9 8.7 8.3 7.6 7.3 7.2 6.9 6.2	1991 to 20 Jul 8.4 9.0 8.5 7.3 6.7 5.8 5.6 5.5 4.7	Aug 8.3 8.5 8.0 7.3 6.4 4.9 4.1 4.1 3.3	Sep 8.1 7.7 7.4 7.1 6.9 5.4 3.9 3.1 1.9	7.7 7.8 7.7 7.6 7.5 7.2 6.0 2.7	8.4 8.4 8.3 8.3 8.3 8.1 8.0 6.7 2.9	8.9 8.9 8.8 8.8 8.8 8.8 8.7 7.4
Reading Range (ft msl)	870 to 855 < 855 Jocas: 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960	9.8 9.7 9.7 9.6 9.6 9.6 9.6 9.6 9.5	Feb 10.1 10.2 10.0 9.9 9.9 9.8 9.7 9.8 10.0	Mar 10.4 10.4 10.2 10.1 10.0 9.8 9.8 9.8 9.7 9.6	9.9 10.0 9.9 9.8 9.6 9.4 9.2 8.9 8.5 7.8	9.0 9.5 9.4 8.9 8.7 8.6 8.4 8.1 7.6 6.4	gen (mg/l) Jun 8.7 8.9 8.7 8.3 7.6 7.3 7.2 6.9 6.2 4.3	Jul 8.4 9.0 8.5 7.3 6.7 5.8 5.6 5.5 4.7 2.3	Aug 8.3 8.5 8.0 7.3 6.4 4.9 4.1 4.1 3.3	Sep 8.1 7.7 7.4 7.1 6.9 5.4 3.9 3.1 1.9 0.3	Oct 7.7 7.8 7.7 7.6 7.5 7.2 6.0 2.7 1.1 0.2	Nov 8.4 8.4 8.3 8.3 8.3 8.1 8.0 6.7 2.9	8.9 8.9 8.8 8.8 8.8 8.7 7.4
ant Reading Range (ft msl)	870 to 855 < 855 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945	9.8 9.7 9.7 9.6 9.6 9.6 9.6 9.7	Feb 10.1 10.2 10.0 9.9 9.9 9.8 9.7 9.8 10.0	Mar 10.4 10.4 10.2 10.1 10.0 9.8 9.8 9.8 9.7	9.9 10.0 9.9 9.8 9.6 9.4 9.2 8.9 8.5	9.0 9.0 9.5 9.4 8.9 8.7 8.6 8.4 8.1 7.6	gen (mg/l) Jun 8.7 8.9 8.7 8.3 7.6 7.3 7.2 6.9 6.2	1991 to 20 Jul 8.4 9.0 8.5 7.3 6.7 5.8 5.6 5.5 4.7	Aug 8.3 8.5 8.0 7.3 6.4 4.9 4.1 4.1 3.3	Sep 8.1 7.7 7.4 7.1 6.9 5.4 3.9 3.1 1.9	7.7 7.8 7.7 7.6 7.5 7.2 6.0 2.7	8.4 8.4 8.3 8.3 8.3 8.1 8.0 6.7 2.9	8.9 8.9 8.8 8.8 8.8 8.8 8.7 7.4
ment Reading Range (ft msl)	870 to 855 < 855 Jocas: 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930	9.8 9.7 9.7 9.6 9.6 9.6 9.6 9.6 9.5	Feb 10.1 10.2 10.0 9.9 9.9 9.8 9.7 9.8 10.0	Mar 10.4 10.4 10.2 10.1 10.0 9.8 9.8 9.8 9.7 9.6	9.9 10.0 9.9 9.8 9.6 9.4 9.2 8.9 8.5 7.8	9.0 9.5 9.4 8.9 8.7 8.6 8.4 8.1 7.6 6.4	gen (mg/l) Jun 8.7 8.9 8.7 8.3 7.6 7.3 7.2 6.9 6.2 4.3	Jul 8.4 9.0 8.5 7.3 6.7 5.8 5.6 5.5 4.7 2.3	Aug 8.3 8.5 8.0 7.3 6.4 4.9 4.1 4.1 3.3	Sep 8.1 7.7 7.4 7.1 6.9 5.4 3.9 3.1 1.9 0.3	Oct 7.7 7.8 7.7 7.6 7.5 7.2 6.0 2.7 1.1 0.2	Nov 8.4 8.4 8.3 8.3 8.3 8.1 8.0 6.7 2.9	8.9 8.9 8.8 8.8 8.8 8.7 7.4
urement Reading Range (ft msl)	870 to 855 < 855 Jocas: 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915	9.8 9.7 9.7 9.6 9.6 9.6 9.6 9.6 9.5	Feb 10.1 10.2 10.0 9.9 9.9 9.8 9.7 9.8 10.0	Mar 10.4 10.4 10.2 10.1 10.0 9.8 9.8 9.8 9.7 9.6	9.9 10.0 9.9 9.8 9.6 9.4 9.2 8.9 8.5 7.8	9.0 9.5 9.4 8.9 8.7 8.6 8.4 8.1 7.6 6.4	gen (mg/l) Jun 8.7 8.9 8.7 8.3 7.6 7.3 7.2 6.9 6.2 4.3	Jul 8.4 9.0 8.5 7.3 6.7 5.8 5.6 5.5 4.7 2.3	Aug 8.3 8.5 8.0 7.3 6.4 4.9 4.1 4.1 3.3	Sep 8.1 7.7 7.4 7.1 6.9 5.4 3.9 3.1 1.9 0.3	Oct 7.7 7.8 7.7 7.6 7.5 7.2 6.0 2.7 1.1 0.2	Nov 8.4 8.4 8.3 8.3 8.3 8.1 8.0 6.7 2.9	8.9 8.9 8.8 8.8 8.8 8.7 7.4
asurement Reading Range (ft msl)	870 to 855 < 855 Jocas: 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900	9.8 9.7 9.7 9.6 9.6 9.6 9.6 9.6 9.5	Feb 10.1 10.2 10.0 9.9 9.9 9.8 9.7 9.8 10.0	Mar 10.4 10.4 10.2 10.1 10.0 9.8 9.8 9.8 9.7 9.6	9.9 10.0 9.9 9.8 9.6 9.4 9.2 8.9 8.5 7.8	9.0 9.5 9.4 8.9 8.7 8.6 8.4 8.1 7.6 6.4	gen (mg/l) Jun 8.7 8.9 8.7 8.3 7.6 7.3 7.2 6.9 6.2 4.3	Jul 8.4 9.0 8.5 7.3 6.7 5.8 5.6 5.5 4.7 2.3	Aug 8.3 8.5 8.0 7.3 6.4 4.9 4.1 4.1 3.3	Sep 8.1 7.7 7.4 7.1 6.9 5.4 3.9 3.1 1.9 0.3	Oct 7.7 7.8 7.7 7.6 7.5 7.2 6.0 2.7 1.1 0.2	Nov 8.4 8.4 8.3 8.3 8.3 8.1 8.0 6.7 2.9	8.9 8.9 8.8 8.8 8.8 8.7 7.4
Measurement Reading Range (ft msl)	870 to 855 < 855 Jocas: 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885	9.8 9.7 9.7 9.6 9.6 9.6 9.6 9.6 9.5	Feb 10.1 10.2 10.0 9.9 9.9 9.8 9.7 9.8 10.0	Mar 10.4 10.4 10.2 10.1 10.0 9.8 9.8 9.8 9.7 9.6	9.9 10.0 9.9 9.8 9.6 9.4 9.2 8.9 8.5 7.8	9.0 9.5 9.4 8.9 8.7 8.6 8.4 8.1 7.6 6.4	gen (mg/l) Jun 8.7 8.9 8.7 8.3 7.6 7.3 7.2 6.9 6.2 4.3	Jul 8.4 9.0 8.5 7.3 6.7 5.8 5.6 5.5 4.7 2.3	Aug 8.3 8.5 8.0 7.3 6.4 4.9 4.1 4.1 3.3	Sep 8.1 7.7 7.4 7.1 6.9 5.4 3.9 3.1 1.9 0.3	Oct 7.7 7.8 7.7 7.6 7.5 7.2 6.0 2.7 1.1 0.2	Nov 8.4 8.4 8.3 8.3 8.3 8.1 8.0 6.7 2.9	8.9 8.9 8.8 8.8 8.8 8.7 7.4
Measurement Reading Range (ft msl)	870 to 855 < 855 Jocas: 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870	9.8 9.7 9.7 9.6 9.6 9.6 9.6 9.6 9.5	Feb 10.1 10.2 10.0 9.9 9.9 9.8 9.7 9.8 10.0	Mar 10.4 10.4 10.2 10.1 10.0 9.8 9.8 9.8 9.7 9.6	9.9 10.0 9.9 9.8 9.6 9.4 9.2 8.9 8.5 7.8	9.0 9.5 9.4 8.9 8.7 8.6 8.4 8.1 7.6 6.4 5.8	gen (mg/l) Jun 8.7 8.9 8.7 8.3 7.6 7.3 7.2 6.9 6.2 4.3 3.3	1991 to 20 Jul 8.4 9.0 8.5 7.3 6.7 5.8 5.6 5.5 4.7 2.3 1.3	Aug 8.3 8.5 8.0 7.3 6.4 4.9 4.1 4.1 3.3 1.2 0.4	Sep 8.1 7.7 7.4 7.1 6.9 5.4 3.9 3.1 1.9 0.3	Oct 7.7 7.8 7.7 7.6 7.5 7.2 6.0 2.7 1.1 0.2	Nov 8.4 8.4 8.3 8.3 8.3 8.1 8.0 6.7 2.9	8.9 8.9 8.8 8.8 8.8 8.7 7.4
Measurement Reading Range (ft msl)	870 to 855 < 855 Jocas: 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885	9.8 9.7 9.7 9.6 9.6 9.6 9.6 9.6 9.5	Feb 10.1 10.2 10.0 9.9 9.9 9.8 9.7 9.8 10.0	Mar 10.4 10.4 10.2 10.1 10.0 9.8 9.8 9.8 9.7 9.6	9.9 10.0 9.9 9.8 9.6 9.4 9.2 8.9 8.5 7.8	9.0 9.5 9.4 8.9 8.7 8.6 8.4 8.1 7.6 6.4 5.8	gen (mg/l) Jun 8.7 8.9 8.7 8.3 7.6 7.3 7.2 6.9 6.2 4.3	1991 to 20 Jul 8.4 9.0 8.5 7.3 6.7 5.8 5.6 5.5 4.7 2.3 1.3	Aug 8.3 8.5 8.0 7.3 6.4 4.9 4.1 4.1 3.3 1.2 0.4	Sep 8.1 7.7 7.4 7.1 6.9 5.4 3.9 3.1 1.9 0.3	Oct 7.7 7.8 7.7 7.6 7.5 7.2 6.0 2.7 1.1 0.2	Nov 8.4 8.4 8.3 8.3 8.3 8.1 8.0 6.7 2.9	8.9 8.9 8.8 8.8 8.8 8.7 7.4

10.0


Legend

0.0

	Jocas	see F_2_	556.0: Mor	nthly Aver	aged Diss	olved Oxy	gen (mg/l)	1975 to 1	991 (Pre E	ad Creek	Operation	1)			
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
	1110 to 1095	10.3	9.4	10.9	9.6	9.9	8.9	9.0	8.8	8.5	8.1	8.7	9.2		
	1095 to 1080	10.1	9.7	10.6	10.5	10.1	9.6	10.0	9.4	8.6	8.1	8.7	9.1		
ls!	1080 to 1065	10.0	9.7	10.6	10.5	9.9	9.8	9.7	9.0	8.2	8.0	8.7	9.1		
ינ ע	1065 to 1050	10.0	9.5	10.4	10.1	9.6	9.2	8.8	8.0	6.7	8.0	8.6	9.1		
Range (ft msl)	1050 to 1035	9.9	9.5	10.0	9.9	9.3	8.9	8.0	6.7	5.8	7.5	8.7	9.1		
ng	1035 to 1020	10.0	9.6	9.8	9.4	8.7	8.1	7.1	6.1	5.2	6.9	8.3	9.1		
Ra	1020 to 1005	10.0	9.6	9.7	9.3	8.3	7.5	6.5	5.4	4.4	5.5	7.1	8.8		
ng	1005 to 990	10.0	9.6	9.7	9.2	8.3	7.2	6.3	5.0	3.8	3.9	5.5	7.7		
gdi	990 to 975	10.1	9.9	9.5	9.4	8.0	7.0	5.9	4.5	3.7	2.9	3.2	7.3		
Re	975 to 960	10.1	9.8	9.8	8.9	7.5	6.7	5.2	4.4	2.8	2.1	1.3	5.7		
Έ	960 to 945	10.3	10.0	9.8	8.8	7.3	5.6	4.0	2.8	1.5	0.7	0.1	2.9		
ne	945 to 930	10.4	10.1	9.7	8.2	6.3	4.3	3.2	1.7	0.6	0.1	0.0	2.0		
<u>re</u>	930 to 915	10.5	10.1	8.7	7.2	5.5	3.1	2.5	1.9	0.1	0.0	0.0	4.9		
Measurement Reading	915 to 900					4.6									
Ие́	900 to 885														
	885 to 870														
	870 to 855		Minimum Reading 914.1 ft												
	< 855														
	Jocas				T	olved Oxy	gen (mg/l)		015 (Post I						
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
	1110 to 1095	9.7	10.0	10.4	9.9	9.2	8.6	8.4	8.2	8.0	7.7	8.4	8.9		
<u> </u>	1095 to 1080	9.6	10.0	10.3	10.0	9.7	9.2	9.0	8.4	7.7	7.8	8.4	8.9		
(ft msl)	1080 to 1065	9.6	9.9	10.2	9.9	9.7	9.2	8.9	8.2	7.5	7.7	8.4	8.9		
<u>#</u>	1065 to 1050	9.6	9.8	10.0	9.8	9.3	8.7	8.1	7.3	7.0	7.7	8.3	8.8		
Range (1050 to 1035	9.6	9.7	9.8	9.6	8.8	7.9	6.8	6.2	6.4	7.5	8.3	8.8		
anç	1035 to 1020	9.5	9.7	9.7	9.5	8.7	7.6	6.3	5.3	5.2	7.1	8.1	8.8		
ă.	1020 to 1005	9.5	9.7	9.6	9.3	8.7	7.6	6.2	5.0	4.4	6.1	7.8	8.6		
						OE	77			17	19	6.8	8.2		
<u>2</u>	1005 to 990	9.5	9.7	9.6	9.2	8.5	7.7	6.7	5.7	4.7	4.2				
adin	990 to 975	9.5	9.8	9.5	9.0	8.2	7.4	6.5	5.6	4.8	3.8	3.9	7.2		
Readin	990 to 975 975 to 960	9.5 9.3	9.8 9.8	9.5 9.5	9.0 8.7	8.2 7.7	7.4 6.6	6.5 5.7	5.6 4.7	4.8 3.9	3.8 2.8	3.9 2.0	7.2 4.4		
ent Readine	990 to 975 975 to 960 960 to 945	9.5 9.3 9.2	9.8 9.8 9.7	9.5 9.5 9.4	9.0 8.7 8.1	8.2 7.7 7.0	7.4 6.6 5.7	6.5 5.7 4.6	5.6 4.7 3.6	4.8 3.9 2.6	3.8 2.8 1.6	3.9 2.0 0.9	7.2 4.4 2.7		
ment Readin	990 to 975 975 to 960 960 to 945 945 to 930	9.5 9.3 9.2 8.4	9.8 9.8 9.7 9.4	9.5 9.5 9.4 9.0	9.0 8.7 8.1 7.3	8.2 7.7 7.0 6.1	7.4 6.6 5.7 4.4	6.5 5.7 4.6 3.4	5.6 4.7 3.6 2.3	4.8 3.9 2.6 1.5	3.8 2.8 1.6 0.7	3.9 2.0 0.9 0.4	7.2 4.4 2.7 1.0		
ırement Readin	990 to 975 975 to 960 960 to 945 945 to 930 930 to 915	9.5 9.3 9.2	9.8 9.8 9.7	9.5 9.5 9.4	9.0 8.7 8.1	8.2 7.7 7.0	7.4 6.6 5.7	6.5 5.7 4.6	5.6 4.7 3.6	4.8 3.9 2.6	3.8 2.8 1.6	3.9 2.0 0.9	7.2 4.4 2.7		
asurement Readin	990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900	9.5 9.3 9.2 8.4	9.8 9.8 9.7 9.4	9.5 9.5 9.4 9.0	9.0 8.7 8.1 7.3	8.2 7.7 7.0 6.1	7.4 6.6 5.7 4.4	6.5 5.7 4.6 3.4	5.6 4.7 3.6 2.3	4.8 3.9 2.6 1.5	3.8 2.8 1.6 0.7	3.9 2.0 0.9 0.4	7.2 4.4 2.7 1.0		
Measurement Readin	990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885	9.5 9.3 9.2 8.4	9.8 9.8 9.7 9.4	9.5 9.5 9.4 9.0	9.0 8.7 8.1 7.3	8.2 7.7 7.0 6.1	7.4 6.6 5.7 4.4	6.5 5.7 4.6 3.4	5.6 4.7 3.6 2.3	4.8 3.9 2.6 1.5	3.8 2.8 1.6 0.7	3.9 2.0 0.9 0.4	7.2 4.4 2.7 1.0		
Measurement Reading	990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870	9.5 9.3 9.2 8.4	9.8 9.8 9.7 9.4	9.5 9.5 9.4 9.0	9.0 8.7 8.1 7.3	8.2 7.7 7.0 6.1 5.4	7.4 6.6 5.7 4.4 4.0	6.5 5.7 4.6 3.4 2.4	5.6 4.7 3.6 2.3 2.1	4.8 3.9 2.6 1.5	3.8 2.8 1.6 0.7	3.9 2.0 0.9 0.4	7.2 4.4 2.7 1.0		
Measurement Readin	990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885	9.5 9.3 9.2 8.4	9.8 9.8 9.7 9.4	9.5 9.5 9.4 9.0	9.0 8.7 8.1 7.3	8.2 7.7 7.0 6.1 5.4	7.4 6.6 5.7 4.4	6.5 5.7 4.6 3.4 2.4	5.6 4.7 3.6 2.3 2.1	4.8 3.9 2.6 1.5	3.8 2.8 1.6 0.7	3.9 2.0 0.9 0.4	7.2 4.4 2.7 1.0		

Legend 0.0 10.0

< 855

	Jocass	see B_2_55	8.7: Mont	ly Averag	ed Dissolv	ed Oxyge	n Percent	Saturatio	n (%) (Pre	Bad Cree	k Operation	on)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095												
	1095 to 1080												
ls!	1080 to 1065												
ב	1065 to 1050												
е Э	1050 to 1035												
ng	1035 to 1020												
Range (ft msl)	1020 to 1005												
	1005 to 990												
g	990 to 975					DO Catu	ration Door	dinas Doso	n in 1000				
Ze.	975 to 960					DO Salui	ration Read	dings Bega	n in 1996				
=	960 to 945												
пе	945 to 930												
Ē	930 to 915												
nse	915 to 900												
Measurement Reading	900 to 885												
_	885 to 870												
	870 to 855												
	< 855												
	Jocassee B_2	2_558.7: Mc	ontly Ave	aged Diss	solved Oxy	ygen Perc	ent Satura	tion (%) 1	998 to 201	5 (Post Ba	ad Creek C	peration)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	86.7	84.8	92.7	98.2	98.3	102.2	99.4	100.4	95.6	90.5	90.9	88.0
	1095 to 1080	84.7	84.2	91.9	97.0	95.6	101.3	98.2	98.4	93.8	91.6	90.0	86.9
πs	1080 to 1065	84.2	82.0	90.6	94.0	94.3	98.7	96.2	96.3	92.9	91.3	89.6	86.9
Range (ft msl)	1065 to 1050	84.3	81.5	88.6	90.8	91.5	96.3	93.5	93.6	91.2	90.7	89.4	86.4
) e	1050 to 1035	83.6	79.5	86.1	88.0	87.9	93.7	90.0	88.3	88.1	89.9	88.9	85.8
auć	1035 to 1020	83.6	79.2	83.3	86.8	86.6	89.6	84.6	80.6	78.7	88.7	88.6	85.8
<u> </u>	1020 to 1005	83.4	77.9	82.4	84.1	83.7	83.6	77.7	73.2	65.5	74.0	83.9	85.3
inç	1005 to 990	82.9	76.3	80.8	81.2	79.4	78.6	72.6	69.3	64.9	59.7	68.7	80.4
≽ad	990 to 975	76.3	75.8	79.0	78.4	75.1	73.0	67.5	65.2	63.2	59.4	55.8	59.6
Measurement Reading	975 to 960	63.0	72.9	76.7	74.7	71.1	66.9	63.0	61.9	59.7	55.4	53.1	46.2
ent	960 to 945	52.4	66.5	71.8	70.2	65.7	62.3	58.5	57.4	55.9	52.3	49.8	43.4
Ĭ	945 to 930	45.9	65.5	67.7	66.6	63.7	58.0	55.7	54.5	53.0	48.5	47.9	40.9
n re	930 to 915	39.3	64.4	65.0	59.2	59.5	53.7	48.7	48.6	50.1	45.6	45.6	37.2
as	915 to 900	31.2	61.0	62.5	58.7	57.7	49.9	47.9	46.7	48.6	41.4	42.0	34.5
Ĕ	900 to 885	28.6	58.3	62.1	57.7	57.3	48.4	45.3	46.4	44.4	38.8	40.3	34.0
	885 to 870	29.3	54.8	59.3	52.2	54.3	47.9	44.2	40.0	41.4	36.1	38.7	28.4
	870 to 855	25.0	59.1	60.2	54.4	54.1	44.0	38.7	38.7	39.4	33.0	33.3	25.6
	< 855	25.2	59.4	59.3	52.2	51.5	43.3	38.7	37.1	34.9	28.9	30.3	24.3
		Legend	0.0										100.00

	Jocass	ee B_3_55	8.0: Mont	ly Averag	ed Dissol	ved Oxyge	en Percent	Saturatio	n (%) (Pre	Bad Cree	k Operation	on)			
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
	1110 to 1095														
	1095 to 1080														
ls!	1080 to 1065														
ب ا	1065 to 1050														
e (f	1050 to 1035														
ng	1035 to 1020														
Ra	1020 to 1005														
ng	1005 to 990														
g	990 to 975					DO 0040	ration Dag	dinas Dona	n in 1000						
Ze.	975 to 960					DO Satu	ration Read	aings Bega	an in 1998						
 	960 to 945														
nei	945 to 930														
Measurement Reading Range (ft msl)	930 to 915														
nse	915 to 900														
Леã	900 to 885														
	885 to 870														
	870 to 855														
	< 855														
	Jocassee B_3	_558.0: Mo	ontly Aver	raged Diss	solved Ox	ygen Perc	ent Satura	ation (%) 1	998 to 202	20 (Post Ba	ad Creek C	Operation)			
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
	1110 to 1095	87.2	83.8	92.8	97.8	97.5	101.3	97.4	99.3	94.6	90.3	91.0	88.2		
	1095 to 1080	85.3	84.0	92.0	96.3	95.2	99.0	95.8	96.9	93.9	91.3	90.1	87.5		
ıısı	1080 to 1065	84.3	82.7	89.9	93.7	93.9	97.2	95.1	94.6	93.2	91.0	89.5	87.4		
#	1065 to 1050	84.3	82.6	88.3	90.7	91.2	95.2	92.1	92.6	91.7	90.5	89.4	87.0		
Range (ft msl)	1050 to 1035	83.6	82.5	86.4	88.2	88.4	93.4	89.8	88.5	89.3	89.9	88.9	86.4		
ang Bug	1035 to 1020	83.7	81.1	84.5	87.1	87.2	89.8	84.9	81.9	82.3	89.2	88.4	86.3		
, a	1020 to 1005	83.2	79.8	83.3	84.5	84.1	85.1	78.7	74.6	68.8	81.4	86.7	86.0		
ding	1005 to 990	82.7	79.3	82.0	81.7	80.1	79.8	73.8	71.3	66.6	62.4	74.5	83.5		
adi	990 to 975	79.8	78.7	80.8	79.7	76.3	74.8	69.7	68.0	65.2	61.4	59.0	67.3		
Rea	975 to 960	70.0	75.3	77.5	76.5	72.7	70.0	65.5	64.4	61.3	59.1	56.4	52.9		
înt	960 to 945	61.6	72.7	74.2	73.2	69.3	67.2	62.4	61.2	57.1	55.6	54.9	49.7		
Measurement	945 to 930	52.2	64.3	68.3	71.6	66.0	64.0	59.9	58.2	53.7	52.7	52.9	47.0		
<u>re</u>	930 to 915	45.2	58.6	63.6	66.0	62.6	59.1	53.6	53.1	49.2	49.9	49.7	44.2		
ası	915 to 900	41.6	56.6	60.2	64.0	60.5	56.5	53.0	52.7	47.4	46.8	46.8	41.9		
Ĭ	900 to 885	37.6	56.1	58.7	63.2	61.3	56.2	51.5	52.0	45.1	44.3	45.8	41.7		
	885 to 870	38.6	53.3	56.5	59.5	57.5	54.6	51.4	47.8	44.1	44.5	46.9	37.9		
	870 to 855	35.9	57.9	55.7	60.1	57.7	51.2	47.7	47.4	41.0	42.3	42.2	37.7		
	< 855	32.5	58.2	57.1	57.6	56.0	50.0	45.8	42.4	36.6	34.5	35.4	31.0		
		Legend	0.0										100.00		

	Jocass	ee C_2_55	9.0: Mont	ly Averag	ed Dissol	ved Oxyge	n Percent	Saturatio	n (%) (Pre	Bad Cree	k Operation	on)			
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
	1110 to 1095														
	1095 to 1080														
JSI)	1080 to 1065														
ي ا	1065 to 1050														
(j	1050 to 1035														
ng	1035 to 1020														
Range (ft msl)	1020 to 1005														
ng	1005 to 990														
adi	990 to 975					DO Satu	ration Read	dinas Roga	n in 1009						
Re	975 to 960					DO Salui	ialion Real	illigs bega	11111 1990						
Ħ	960 to 945														
шe	945 to 930														
Measurement Reading	930 to 915														
ası	915 to 900														
Α̈́	900 to 885														
	885 to 870														
	870 to 855														
	< 855														
	Jocassee C_2	_559.0: Mo			ı	ygen Perc	ent Satura	T T	998 to 201	5 (Post Ba	1	peration)	T		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
	1110 to 1095	86.3	84.2	94.1	98.9	99.2	101.6	99.3	101.0	97.5	89.1	90.2	87.2		
<u>-</u>	1095 to 1080	84.1	84.1	93.6	98.1	96.6	102.3	98.8	99.6	94.7	90.6	89.6	86.2		
ms	1080 to 1065	83.5	82.5	91.6	95.2	95.0	99.6	97.4	97.1	93.8	90.4	89.3	86.1		
<u>_</u>	1065 to 1050	83.2	82.1	89.4	91.3	92.1	97.0	93.5	93.7	91.7	90.2	89.0	85.8		
) Ge	1050 to 1035	82.6	80.7	86.7	88.1	88.5	94.4	90.1	88.7	87.9	89.5	88.8	85.3		
Range (ft msl)	1035 to 1020	82.8	80.1	83.3	86.8	87.1	90.2	84.1	80.8	78.7	87.4	88.5	85.2		
8	1020 to 1005	82.4	78.7	82.2	84.2	83.6	84.6	77.5	73.9	64.4	74.1	84.6	84.0		
ing	1005 to 990	82.2	76.8	80.2	80.4	78.9	78.8	72.5	70.3	64.3	58.4	68.9	79.0		
Measurement Reading	990 to 975	75.3	75.6	77.8	77.0	74.2	72.7	65.6	64.0	60.5	56.5	53.0	59.1		
ä	975 to 960	60.1	70.7	74.5	72.9	69.8	65.4	59.2	57.8	54.9	50.0	48.7	44.7		
ent	960 to 945	47.6	64.2	68.2	68.0	63.9	59.6	53.4	52.9	50.2	45.4	44.7	40.5		
Ĕ	945 to 930	37.2	55.9	64.2	63.9	61.7	54.4	50.9	49.3	47.4	41.6	41.7	36.6		
n E	930 to 915	30.5	53.1	58.1	54.0	56.4	48.7	42.6	42.7	43.1	37.1	38.7	31.1		
as	915 to 900	25.6	51.8	55.4	53.2	54.1	45.2	40.9	40.7	40.1	33.8	34.1	27.9		
Ĕ	900 to 885	22.0	44.5	55.1	51.9	54.2	42.2	38.9	40.5	36.7	30.6	33.0	27.8		
	885 to 870	24.9	45.0	52.3	44.4	51.1	43.0	39.9	37.0	35.3	29.6	31.9	22.0		
	870 to 855	19.9	50.6	54.4	47.3	51.1	39.7	35.6	35.7	33.7	26.3	27.7	19.8		
	< 855	23.5	51.1	55.1	46.2	49.1	41.4	36.8	35.9	33.0	24.8	26.4	21.4		
		Legend	0.0										100.00		

	Jocass	see C_2_56	0.0: Mont	ly Averag	ed Dissolv	ed Oxyge	n Percent	Saturatio	n (%) (Pre	Bad Cree	k Operation	on)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
	1110 to 1095													
	1095 to 1080													
S	1080 to 1065													
Range (ft msl)	1065 to 1050													
e (1	1050 to 1035													
ng	1035 to 1020													
Ra	1020 to 1005													
	1005 to 990													
g	990 to 975					DO Cotu	ration Dage	dinas Doss	n in 1000					
Ze,	975 to 960					DO Satul	ration Read	ungs Bega	n in 1998					
=	960 to 945													
nel	945 to 930													
Measurement Reading	930 to 915													
nsı	915 to 900													
Лег	900 to 885													
=	885 to 870													
	870 to 855													
	< 855													
	Jocassee C_2	_560.0: Mc	ntly Aver	aged Diss	solved Oxy	ygen Perc	ent Satura	tion (%) 1	998 to 201	5 (Post Ba	d Creek C	Operation)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
	1110 to 1095	85.8	84.8	94.3	98.7	99.4	101.7	98.5	100.6	95.8	87.4	89.2	88.0	
	1095 to 1080	83.3	84.3	92.9	97.4	96.2	100.1	96.2	98.7	92.9	88.8	88.4	85.7	
Isl	1080 to 1065	82.8	82.1	90.9	94.8	94.5	99.0	95.6	95.8	90.9	88.3	87.8	85.7	
ן ב	1065 to 1050	83.1	81.6	88.6	92.2	92.2	96.8	93.4	93.3	89.0	88.3	87.5	85.2	
<u>e</u>	1050 to 1035	82.0	80.9	86.7	88.9	88.8	94.2	90.1	88.5	86.3	87.6	87.3	84.9	
Range (ft msl)	1035 to 1020	82.1	80.1	84.0	87.5	87.5	90.1	84.2	81.0	78.3	84.6	86.9	84.9	
Ra	1020 to 1005	81.9	77.9	82.3	84.6	84.1	84.8	78.3	74.8	66.1	72.1	83.1	83.7	
Measurement Reading	1005 to 990	81.7	76.6	80.3	81.0	80.0	78.3	72.0	69.5	61.8	56.1	62.8	76.3	
adi	990 to 975	73.2	76.4	78.0	76.1	74.3	70.9	63.9	61.9	57.2	53.4	49.8	54.5	
Re	975 to 960	58.6	69.8	74.5	71.8	69.1	62.3	55.6	54.2	50.0	45.8	43.1	40.0	
Ħ	960 to 945	40.4	61.3	68.5	66.5	63.4	55.5	49.0	48.9	45.7	40.5	39.2	32.6	
me	945 to 930	30.1	54.3	64.4	61.4	60.4	50.8	46.9	45.6	44.0	37.5	37.5	29.4	
<u>le</u>	930 to 915	23.3	50.8	58.1	52.3	56.3	47.2	39.7	39.5	39.3	34.2	33.9	24.9	
ası	915 to 900	18.8	47.5	51.0	51.1	54.3	44.1	39.1	38.6	37.2	30.6	29.7	22.4	
Μe	900 to 885	18.2	41.5	49.8	49.2	53.9	42.3	37.9	38.4	33.2	27.4	29.4	25.0	
	885 to 870	22.7	39.7	42.8	40.5	50.9	42.7	39.2	34.7	33.2	26.4	28.3	19.9	
	870 to 855	17.9	43.3	46.4	41.7	42.9	38.3	33.1	33.3	27.7	19.7	20.3	18.1	
	< 855	14.4	57.1	72.7	54.1	55.8	45.6	36.3	43.6	35.7	19.2	24.3	15.3	
		Legend	0.0										100.00	

	Jocass	ee C_2_5	62.0: Mont	tly Averag	ed Dissolv	ved Oxyge	n Percent	Saturatio	n (%) (Pre	Bad Cree	k Operation	on)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
	1110 to 1095													
	1095 to 1080													
ISI	1080 to 1065													
ב.	1065 to 1050													
e (t	1050 to 1035													
ng	1035 to 1020													
Ra	1020 to 1005													
ng	1005 to 990													
ggi	990 to 975					DO Satur	ration Dags	dinas Psa	on in 1000					
Ze.	975 to 960					DO Satul	ration Read	iings bega	an in 1996					
 	960 to 945													
це	945 to 930													
<u>re</u>	930 to 915													
nsı	915 to 900													
Measurement Reading Range (ft msl)	900 to 885													
=	885 to 870													
	870 to 855													
	< 855													
	Jocassee C_2	_562.0: N	lontly Ave	raged Diss	solved Ox	ygen Perc	ent Satura	tion (%) 1	998 to 201	5 (Post Ba	ad Creek C	peration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
	1110 to 1095	87.9	88.3	96.8	100.7	101.5	106.5	104.1	105.0	98.0	91.2	90.6	90.0	
	1095 to 1080	85.8	88.1	94.9	99.5	96.7	103.1	103.6	104.0	95.8	91.6	89.2	87.0	
ısı	1080 to 1065	85.6	86.2	92.8	97.0	95.1	97.0	96.7	100.5	93.6	91.2	88.6	87.1	
±	1065 to 1050	85.4	85.1	91.5	94.2	90.9	91.8	91.4	96.9	91.3	90.7	88.2	86.8	
) e	1050 to 1035	84.7	84.3	90.0	90.8	87.1	86.1	81.6	86.8	90.6	89.6	87.5	86.3	
lug	1035 to 1020	84.8	84.2	86.3	87.8	83.3	77.4	65.8	65.5	75.7	88.4	87.7	86.3	
Ra	1020 to 1005	84.9	83.7	82.1	79.5	72.9	64.2	45.5	34.9	32.2	72.3	87.2	85.6	
ng	1005 to 990	81.8	82.0	75.4	68.5	60.5	43.3	22.7	7.8	3.4	12.6	70.5	78.5	
adi	990 to 975													
R P	975 to 960													
<u> </u>	960 to 945													
ment	960 to 945 945 to 930													
ırement						<i>∧ </i>	nimum Po	adina 002	Q ff					
asurement	945 to 930					Mi	nimum Rea	ading 992.	9 ft					
Veasurement	945 to 930 930 to 915					Mi	nimum Rea	ading 992.	9 ft					
Measurement Reading Range (ft msl)	945 to 930 930 to 915 915 to 900					Mi	nimum Rea	ading 992.	9 ft					
Measurement	945 to 930 930 to 915 915 to 900 900 to 885					Mi	nimum Rea	ading 992.	9 ft					
Measurement	945 to 930 930 to 915 915 to 900 900 to 885 885 to 870					Mi	nimum Rea	ading 992.	9 ft					

	Jocass	ee D_2_55	1.0: Mont	ly Averag	ed Disso	lved Oxyge	en Percent	Saturatio	n (%) (Pre	Bad Cre	ek Operat	ion)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095												
_	1095 to 1080												
Isu	1080 to 1065												
<u> </u>	1065 to 1050												
<u>•</u>	1050 to 1035												
L B	1035 to 1020												
8	1020 to 1005												
ng	1005 to 990												
adi	990 to 975					DO Satu	ration Rea	dinas Rea	an in 2000				
Re	975 to 960					DO Salu	ration Nea	unigs bego	311 111 2009				
Ħ	960 to 945												
me	945 to 930												
<u>e</u>	930 to 915												
Measurement Reading Range (ft msl)	915 to 900												
Μe	900 to 885												
	885 to 870												
	870 to 855												
	< 855												
	Jocassee D_2	_551.0: Mc	ontly Ave	raged Dis	solved Ox	kygen Perc	ent Satura	ation (%) 2	2009 to 201	11 (Post E	Bad Creek	Operation)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095		90.1			100.5			99.0			88.4	
_	1095 to 1080		97.0						99.2			85.8	
πs	1080 to 1065												
<u>_</u>	1065 to 1050												
) e	1050 to 1035												
anç	1035 to 1020												
<u> </u>	1020 to 1005												
ing	1005 to 990												
ad	990 to 975												
Re	975 to 960								_				
'n	960 to 945					Mi	nimum Rea	ading 1083	3.7 ft				
E E	945 to 930												
n e	930 to 915												
	915 to 900												
as													
Meas	900 to 885												
Measurement Reading Range (ft msl)	900 to 885 885 to 870												
Meas	900 to 885 885 to 870 870 to 855												
Meas	900 to 885 885 to 870												

	Jocass	ee D_2_56	4.0: Mont	ly Average	ed Dissolv	ed Oxyge	n Percent	Saturation	n (%) (Pre	Bad Cree	ek Operati	on)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095												
	1095 to 1080												
Range (ft msl)	1080 to 1065												
ٿ ا	1065 to 1050												
(-)	1050 to 1035												
ng	1035 to 1020												
Ra	1020 to 1005												
рu	1005 to 990												
ğ	990 to 975					DO 004	ation Door	dinas Dono	n in 1000				
Ze,	975 to 960					DO Salui	ration Read	ılrıgs bega	m m 1999				
 	960 to 945												
Measurement Reading	945 to 930												
Ē	930 to 915												
asu.	915 to 900												
۸e	900 to 885												
	885 to 870												
	870 to 855												
	< 855												
	Jocassee D_2	_564.0: Mc	ntly Aver	aged Diss	solved Oxy	gen Perc	ent Satura	tion (%) 1	999 to 201	5 (Post B	ad Creek (Operation)	
													T
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	87.0	86.4	94.6	99.0	99.8	101.8	98.9	101.0	95.8	87.5	88.7	Dec 88.7
	1095 to 1080	87.0 83.8	86.4 84.2	94.6 92.3	99.0 96.8	99.8 96.1	101.8 100.4	98.9 96.5	101.0 98.2	95.8 92.4	87.5 88.4	88.7 87.8	Dec 88.7 85.9
nsl)	1095 to 1080 1080 to 1065	87.0 83.8 83.3	86.4 84.2 82.3	94.6 92.3 89.8	99.0 96.8 94.4	99.8 96.1 94.5	101.8 100.4 99.2	98.9 96.5 95.1	101.0 98.2 95.9	95.8 92.4 90.7	87.5 88.4 88.1	88.7 87.8 87.5	88.7 85.9 85.9
ft msl)	1095 to 1080 1080 to 1065 1065 to 1050	87.0 83.8 83.3 83.3	86.4 84.2 82.3 82.2	94.6 92.3 89.8 88.3	99.0 96.8 94.4 92.0	99.8 96.1 94.5 92.7	101.8 100.4 99.2 97.2	98.9 96.5 95.1 93.7	101.0 98.2 95.9 93.7	95.8 92.4 90.7 88.9	87.5 88.4 88.1 87.8	88.7 87.8 87.5 87.0	88.7 85.9 85.9 85.5
je (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035	87.0 83.8 83.3 83.3 82.5	86.4 84.2 82.3 82.2 81.2	94.6 92.3 89.8 88.3 86.7	99.0 96.8 94.4 92.0 89.5	99.8 96.1 94.5 92.7 89.3	101.8 100.4 99.2 97.2 94.3	98.9 96.5 95.1 93.7 90.3	101.0 98.2 95.9 93.7 89.2	95.8 92.4 90.7 88.9 87.1	87.5 88.4 88.1 87.8 86.9	88.7 87.8 87.5 87.0 87.0	Dec 88.7 85.9 85.9 85.5 85.1
ange (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020	87.0 83.8 83.3 83.3 82.5 82.4	86.4 84.2 82.3 82.2 81.2 80.5	94.6 92.3 89.8 88.3 86.7 83.9	99.0 96.8 94.4 92.0 89.5 87.2	99.8 96.1 94.5 92.7 89.3 87.4	101.8 100.4 99.2 97.2 94.3 89.7	98.9 96.5 95.1 93.7 90.3 83.2	101.0 98.2 95.9 93.7 89.2 81.7	95.8 92.4 90.7 88.9 87.1 78.8	87.5 88.4 88.1 87.8 86.9 84.8	88.7 87.8 87.5 87.0 87.0 86.5	Dec 88.7 85.9 85.9 85.5 85.1 85.3
Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005	87.0 83.8 83.3 83.3 82.5 82.4 82.2	86.4 84.2 82.3 82.2 81.2 80.5 79.3	94.6 92.3 89.8 88.3 86.7 83.9 81.9	99.0 96.8 94.4 92.0 89.5 87.2 83.4	99.8 96.1 94.5 92.7 89.3 87.4 83.6	101.8 100.4 99.2 97.2 94.3 89.7 83.6	98.9 96.5 95.1 93.7 90.3 83.2 77.1	101.0 98.2 95.9 93.7 89.2 81.7 73.3	95.8 92.4 90.7 88.9 87.1 78.8 65.3	87.5 88.4 88.1 87.8 86.9 84.8 72.9	88.7 87.8 87.5 87.0 87.0 86.5	Dec 88.7 85.9 85.9 85.5 85.1 85.3 83.6
ing Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990	87.0 83.8 83.3 83.3 82.5 82.4 82.2 82.4	86.4 84.2 82.3 82.2 81.2 80.5 79.3 78.6	94.6 92.3 89.8 88.3 86.7 83.9 81.9 79.5	99.0 96.8 94.4 92.0 89.5 87.2 83.4 79.5	99.8 96.1 94.5 92.7 89.3 87.4 83.6 78.9	101.8 100.4 99.2 97.2 94.3 89.7 83.6 76.6	98.9 96.5 95.1 93.7 90.3 83.2 77.1 69.0	101.0 98.2 95.9 93.7 89.2 81.7 73.3 64.4	95.8 92.4 90.7 88.9 87.1 78.8 65.3 56.9	87.5 88.4 88.1 87.8 86.9 84.8 72.9 50.9	88.7 87.8 87.5 87.0 87.0 86.5 82.7 63.0	Dec 88.7 85.9 85.9 85.5 85.1 85.3 83.6 78.1
ading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975	87.0 83.8 83.3 83.3 82.5 82.4 82.2 82.4 74.7	86.4 84.2 82.3 82.2 81.2 80.5 79.3 78.6 77.6	94.6 92.3 89.8 88.3 86.7 83.9 81.9 79.5 77.1	99.0 96.8 94.4 92.0 89.5 87.2 83.4 79.5 74.6	99.8 96.1 94.5 92.7 89.3 87.4 83.6 78.9 72.9	101.8 100.4 99.2 97.2 94.3 89.7 83.6 76.6 69.8	98.9 96.5 95.1 93.7 90.3 83.2 77.1 69.0 59.3	101.0 98.2 95.9 93.7 89.2 81.7 73.3 64.4 55.8	95.8 92.4 90.7 88.9 87.1 78.8 65.3 56.9 50.2	87.5 88.4 88.1 87.8 86.9 84.8 72.9 50.9 45.6	88.7 87.8 87.5 87.0 87.0 86.5 82.7 63.0 42.8	88.7 85.9 85.9 85.5 85.1 85.3 83.6 78.1
Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960	87.0 83.8 83.3 83.3 82.5 82.4 82.2 82.4 74.7 55.3	86.4 84.2 82.3 82.2 81.2 80.5 79.3 78.6 77.6 71.9	94.6 92.3 89.8 88.3 86.7 83.9 81.9 79.5 77.1	99.0 96.8 94.4 92.0 89.5 87.2 83.4 79.5 74.6 69.7	99.8 96.1 94.5 92.7 89.3 87.4 83.6 78.9 72.9 67.7	101.8 100.4 99.2 97.2 94.3 89.7 83.6 76.6 69.8 60.0	98.9 96.5 95.1 93.7 90.3 83.2 77.1 69.0 59.3 50.7	101.0 98.2 95.9 93.7 89.2 81.7 73.3 64.4 55.8 48.9	95.8 92.4 90.7 88.9 87.1 78.8 65.3 56.9 50.2 42.1	87.5 88.4 88.1 87.8 86.9 84.8 72.9 50.9 45.6 36.0	88.7 87.8 87.5 87.0 87.0 86.5 82.7 63.0 42.8 34.0	Dec 88.7 85.9 85.9 85.5 85.1 85.3 83.6 78.1 55.2 34.6
int Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945	87.0 83.8 83.3 83.3 82.5 82.4 82.2 82.4 74.7 55.3 44.7	86.4 84.2 82.3 82.2 81.2 80.5 79.3 78.6 77.6 71.9 65.2	94.6 92.3 89.8 88.3 86.7 83.9 81.9 79.5 77.1 73.6 67.8	99.0 96.8 94.4 92.0 89.5 87.2 83.4 79.5 74.6 69.7 63.8	99.8 96.1 94.5 92.7 89.3 87.4 83.6 78.9 72.9 67.7 60.8	101.8 100.4 99.2 97.2 94.3 89.7 83.6 76.6 69.8 60.0 51.1	98.9 96.5 95.1 93.7 90.3 83.2 77.1 69.0 59.3 50.7 44.3	101.0 98.2 95.9 93.7 89.2 81.7 73.3 64.4 55.8 48.9 43.8	95.8 92.4 90.7 88.9 87.1 78.8 65.3 56.9 50.2 42.1 36.1	87.5 88.4 88.1 87.8 86.9 84.8 72.9 50.9 45.6 36.0 28.4	88.7 87.8 87.5 87.0 87.0 86.5 82.7 63.0 42.8 34.0 26.7	Dec 88.7 85.9 85.9 85.5 85.1 85.3 83.6 78.1 55.2 34.6 26.0
ment Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930	87.0 83.8 83.3 82.5 82.4 82.2 82.4 74.7 55.3 44.7 31.2	86.4 84.2 82.3 82.2 81.2 80.5 79.3 78.6 77.6 71.9 65.2 57.2	94.6 92.3 89.8 88.3 86.7 83.9 81.9 79.5 77.1 73.6 67.8 61.7	99.0 96.8 94.4 92.0 89.5 87.2 83.4 79.5 74.6 69.7 63.8 56.7	99.8 96.1 94.5 92.7 89.3 87.4 83.6 78.9 72.9 67.7 60.8 56.8	101.8 100.4 99.2 97.2 94.3 89.7 83.6 76.6 69.8 60.0 51.1 45.2	98.9 96.5 95.1 93.7 90.3 83.2 77.1 69.0 59.3 50.7 44.3 40.0	101.0 98.2 95.9 93.7 89.2 81.7 73.3 64.4 55.8 48.9 43.8 38.0	95.8 92.4 90.7 88.9 87.1 78.8 65.3 56.9 50.2 42.1 36.1 32.0	87.5 88.4 88.1 87.8 86.9 84.8 72.9 50.9 45.6 36.0 28.4 22.7	88.7 87.8 87.5 87.0 86.5 82.7 63.0 42.8 34.0 26.7 20.4	Dec 88.7 85.9 85.9 85.5 85.1 85.3 83.6 78.1 55.2 34.6 26.0 18.2
urement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915	87.0 83.8 83.3 82.5 82.4 82.2 82.4 74.7 55.3 44.7 31.2 25.6	86.4 84.2 82.3 82.2 81.2 80.5 79.3 78.6 77.6 71.9 65.2 57.2 49.9	94.6 92.3 89.8 88.3 86.7 83.9 81.9 79.5 77.1 73.6 67.8 61.7 55.2	99.0 96.8 94.4 92.0 89.5 87.2 83.4 79.5 74.6 69.7 63.8 56.7 45.7	99.8 96.1 94.5 92.7 89.3 87.4 83.6 78.9 72.9 67.7 60.8 56.8 51.8	101.8 100.4 99.2 97.2 94.3 89.7 83.6 76.6 69.8 60.0 51.1 45.2 39.6	98.9 96.5 95.1 93.7 90.3 83.2 77.1 69.0 59.3 50.7 44.3 40.0 32.1	101.0 98.2 95.9 93.7 89.2 81.7 73.3 64.4 55.8 48.9 43.8 38.0 31.2	95.8 92.4 90.7 88.9 87.1 78.8 65.3 56.9 50.2 42.1 36.1 32.0 25.5	87.5 88.4 88.1 87.8 86.9 84.8 72.9 50.9 45.6 36.0 28.4 22.7 18.8	88.7 87.8 87.5 87.0 87.0 86.5 82.7 63.0 42.8 34.0 26.7 20.4 17.0	Dec 88.7 85.9 85.9 85.5 85.1 85.3 83.6 78.1 55.2 34.6 26.0 18.2 15.2
asurement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900	87.0 83.8 83.3 83.3 82.5 82.4 82.2 82.4 74.7 55.3 44.7 31.2 25.6 21.4	86.4 84.2 82.3 82.2 81.2 80.5 79.3 78.6 77.6 71.9 65.2 57.2 49.9 47.8	94.6 92.3 89.8 88.3 86.7 83.9 81.9 79.5 77.1 73.6 67.8 61.7 55.2 46.9	99.0 96.8 94.4 92.0 89.5 87.2 83.4 79.5 74.6 69.7 63.8 56.7 45.7 44.2	99.8 96.1 94.5 92.7 89.3 87.4 83.6 78.9 72.9 67.7 60.8 56.8 51.8 50.0	101.8 100.4 99.2 97.2 94.3 89.7 83.6 76.6 69.8 60.0 51.1 45.2 39.6 35.6	98.9 96.5 95.1 93.7 90.3 83.2 77.1 69.0 59.3 50.7 44.3 40.0 32.1 31.9	101.0 98.2 95.9 93.7 89.2 81.7 73.3 64.4 55.8 48.9 43.8 38.0 31.2 27.4	95.8 92.4 90.7 88.9 87.1 78.8 65.3 56.9 50.2 42.1 36.1 32.0 25.5 25.1	87.5 88.4 88.1 87.8 86.9 84.8 72.9 50.9 45.6 36.0 28.4 22.7 18.8 15.5	88.7 87.8 87.5 87.0 87.0 86.5 82.7 63.0 42.8 34.0 26.7 20.4 17.0 13.8	Dec 88.7 85.9 85.9 85.5 85.1 85.3 83.6 78.1 55.2 34.6 26.0 18.2 15.2 14.4
Measurement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885	87.0 83.8 83.3 82.5 82.4 82.2 82.4 74.7 55.3 44.7 31.2 25.6 21.4 19.7	86.4 84.2 82.3 82.2 81.2 80.5 79.3 78.6 77.6 71.9 65.2 57.2 49.9 47.8 35.7	94.6 92.3 89.8 88.3 86.7 83.9 81.9 79.5 77.1 73.6 67.8 61.7 55.2 46.9 38.9	99.0 96.8 94.4 92.0 89.5 87.2 83.4 79.5 74.6 69.7 63.8 56.7 44.2 32.8	99.8 96.1 94.5 92.7 89.3 87.4 83.6 78.9 72.9 67.7 60.8 56.8 51.8 50.0 20.4	101.8 100.4 99.2 97.2 94.3 89.7 83.6 76.6 69.8 60.0 51.1 45.2 39.6 35.6 20.0	98.9 96.5 95.1 93.7 90.3 83.2 77.1 69.0 59.3 50.7 44.3 40.0 32.1 31.9 7.3	101.0 98.2 95.9 93.7 89.2 81.7 73.3 64.4 55.8 48.9 43.8 38.0 31.2 27.4 22.1	95.8 92.4 90.7 88.9 87.1 78.8 65.3 56.9 50.2 42.1 36.1 32.0 25.5 25.1 11.2	87.5 88.4 88.1 87.8 86.9 84.8 72.9 50.9 45.6 36.0 28.4 22.7 18.8 15.5 4.1	88.7 87.8 87.5 87.0 87.0 86.5 82.7 63.0 42.8 34.0 26.7 20.4 17.0 13.8	Dec 88.7 85.9 85.9 85.5 85.1 85.3 83.6 78.1 55.2 34.6 26.0 18.2 15.2 14.4
Measurement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870	87.0 83.8 83.3 83.3 82.5 82.4 82.2 82.4 74.7 55.3 44.7 31.2 25.6 21.4 19.7 20.9	86.4 84.2 82.3 82.2 81.2 80.5 79.3 78.6 77.6 71.9 65.2 57.2 49.9 47.8 35.7 31.2	94.6 92.3 89.8 88.3 86.7 83.9 81.9 79.5 77.1 73.6 67.8 61.7 55.2 46.9	99.0 96.8 94.4 92.0 89.5 87.2 83.4 79.5 74.6 69.7 63.8 56.7 45.7 44.2	99.8 96.1 94.5 92.7 89.3 87.4 83.6 78.9 72.9 67.7 60.8 56.8 51.8 50.0	101.8 100.4 99.2 97.2 94.3 89.7 83.6 76.6 69.8 60.0 51.1 45.2 39.6 35.6	98.9 96.5 95.1 93.7 90.3 83.2 77.1 69.0 59.3 50.7 44.3 40.0 32.1 31.9 7.3 6.6	101.0 98.2 95.9 93.7 89.2 81.7 73.3 64.4 55.8 48.9 43.8 38.0 31.2 27.4	95.8 92.4 90.7 88.9 87.1 78.8 65.3 56.9 50.2 42.1 36.1 32.0 25.5 25.1	87.5 88.4 88.1 87.8 86.9 84.8 72.9 50.9 45.6 36.0 28.4 22.7 18.8 15.5	88.7 87.8 87.5 87.0 87.0 86.5 82.7 63.0 42.8 34.0 26.7 20.4 17.0 13.8	Dec 88.7 85.9 85.9 85.5 85.1 85.3 83.6 78.1 55.2 34.6 26.0 18.2 15.2 14.4
Measurement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870 870 to 855	87.0 83.8 83.3 82.5 82.4 82.2 82.4 74.7 55.3 44.7 31.2 25.6 21.4 19.7	86.4 84.2 82.3 82.2 81.2 80.5 79.3 78.6 77.6 71.9 65.2 57.2 49.9 47.8 35.7	94.6 92.3 89.8 88.3 86.7 83.9 81.9 79.5 77.1 73.6 67.8 61.7 55.2 46.9 38.9	99.0 96.8 94.4 92.0 89.5 87.2 83.4 79.5 74.6 69.7 63.8 56.7 44.2 32.8	99.8 96.1 94.5 92.7 89.3 87.4 83.6 78.9 72.9 67.7 60.8 56.8 51.8 50.0 20.4 21.1	101.8 100.4 99.2 97.2 94.3 89.7 83.6 76.6 69.8 60.0 51.1 45.2 39.6 35.6 20.0 52.4	98.9 96.5 95.1 93.7 90.3 83.2 77.1 69.0 59.3 50.7 44.3 40.0 32.1 31.9 7.3 6.6 3.1	101.0 98.2 95.9 93.7 89.2 81.7 73.3 64.4 55.8 48.9 43.8 38.0 31.2 27.4 22.1 25.3	95.8 92.4 90.7 88.9 87.1 78.8 65.3 56.9 50.2 42.1 36.1 32.0 25.5 25.1 11.2	87.5 88.4 88.1 87.8 86.9 84.8 72.9 50.9 45.6 36.0 28.4 22.7 18.8 15.5 4.1	88.7 87.8 87.5 87.0 87.0 86.5 82.7 63.0 42.8 34.0 26.7 20.4 17.0 13.8	Dec 88.7 85.9 85.9 85.5 85.1 85.3 83.6 78.1 55.2 34.6 26.0 18.2 15.2 14.4
Measurement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870	87.0 83.8 83.3 83.3 82.5 82.4 82.2 82.4 74.7 55.3 44.7 31.2 25.6 21.4 19.7 20.9	86.4 84.2 82.3 82.2 81.2 80.5 79.3 78.6 77.6 71.9 65.2 57.2 49.9 47.8 35.7 31.2	94.6 92.3 89.8 88.3 86.7 83.9 81.9 79.5 77.1 73.6 67.8 61.7 55.2 46.9 38.9	99.0 96.8 94.4 92.0 89.5 87.2 83.4 79.5 74.6 69.7 63.8 56.7 44.2 32.8	99.8 96.1 94.5 92.7 89.3 87.4 83.6 78.9 72.9 67.7 60.8 56.8 51.8 50.0 20.4 21.1	101.8 100.4 99.2 97.2 94.3 89.7 83.6 76.6 69.8 60.0 51.1 45.2 39.6 35.6 20.0	98.9 96.5 95.1 93.7 90.3 83.2 77.1 69.0 59.3 50.7 44.3 40.0 32.1 31.9 7.3 6.6 3.1	101.0 98.2 95.9 93.7 89.2 81.7 73.3 64.4 55.8 48.9 43.8 38.0 31.2 27.4 22.1 25.3	95.8 92.4 90.7 88.9 87.1 78.8 65.3 56.9 50.2 42.1 36.1 32.0 25.5 25.1 11.2	87.5 88.4 88.1 87.8 86.9 84.8 72.9 50.9 45.6 36.0 28.4 22.7 18.8 15.5 4.1	88.7 87.8 87.5 87.0 87.0 86.5 82.7 63.0 42.8 34.0 26.7 20.4 17.0 13.8	Dec 88.7 85.9 85.9 85.5 85.1 85.3 83.6 78.1 55.2 34.6 26.0 18.2 15.2 14.4

	Jocass	ee D_2_5	64.1: Mont	lly Averag	ed Dissolv	ved Oxyge	n Percent	Saturation	on (%) (Pre	Bad Cree	ek Operati	on)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095												
	1095 to 1080												
ISI	1080 to 1065												
ב	1065 to 1050												
e (1	1050 to 1035												
ng	1035 to 1020												
Range (ft msl)	1020 to 1005												
ng	1005 to 990												
adi	990 to 975					DO Satu	ration Poor	dinas Boa	an in 1999				
Re	975 to 960					DO Salui	allon Neat	ulligs beg	ali ili 1999				
Έ	960 to 945												
пе	945 to 930												
<u>ē</u>	930 to 915												
asn	915 to 900												
Measurement Reading	900 to 885												
	885 to 870												
	870 to 855												
	< 855												
	Jocassee D_2	_564.1: N	lontly Ave	raged Diss	solved Ox	ygen Perc	ent Satura	tion (%)	1999 to 201	7 (Post Ba	ad Creek C	Operation)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	88.1	88.0	92.0	96.7	98.2	99.7	96.3	98.0	90.4	85.5	88.6	88.9
	1095 to 1080	88.1 84.9	88.0 85.0	92.0 90.2	96.7 95.1	98.2 95.3	99.7 98.9	96.3 94.5	98.0 96.3	90.4 89.7	85.5 87.2	88.6 86.9	88.9 85.8
nsl)	1095 to 1080 1080 to 1065	88.1 84.9 84.9	88.0 85.0 84.1	92.0 90.2 89.3	96.7 95.1 93.6	98.2 95.3 93.9	99.7 98.9 98.2	96.3 94.5 95.2	98.0 96.3 94.7	90.4 89.7 89.5	85.5 87.2 87.2	88.6 86.9 86.5	88.9 85.8 86.0
ft msl)	1095 to 1080 1080 to 1065 1065 to 1050	88.1 84.9 84.9 85.2	88.0 85.0 84.1 83.8	92.0 90.2 89.3 89.1	96.7 95.1 93.6 92.8	98.2 95.3 93.9 92.7	99.7 98.9 98.2 98.0	96.3 94.5 95.2 94.5	98.0 96.3 94.7 93.4	90.4 89.7 89.5 88.5	85.5 87.2 87.2 87.0	88.6 86.9 86.5 86.0	88.9 85.8 86.0 85.8
ge (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035	88.1 84.9 84.9 85.2 84.6	88.0 85.0 84.1 83.8 83.7	92.0 90.2 89.3 89.1 88.9	96.7 95.1 93.6 92.8 91.4	98.2 95.3 93.9 92.7 91.1	99.7 98.9 98.2 98.0 97.8	96.3 94.5 95.2 94.5 92.4	98.0 96.3 94.7 93.4 92.8	90.4 89.7 89.5 88.5 88.4	85.5 87.2 87.2 87.0 86.4	88.6 86.9 86.5 86.0 85.4	88.9 85.8 86.0 85.8 85.2
ange (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020	88.1 84.9 84.9 85.2 84.6 84.8	88.0 85.0 84.1 83.8 83.7 83.7	92.0 90.2 89.3 89.1 88.9 88.2	96.7 95.1 93.6 92.8 91.4 90.9	98.2 95.3 93.9 92.7 91.1 91.4	99.7 98.9 98.2 98.0 97.8 97.6	96.3 94.5 95.2 94.5 92.4 90.9	98.0 96.3 94.7 93.4 92.8 93.1	90.4 89.7 89.5 88.5 88.4 88.3	85.5 87.2 87.2 87.0 86.4 86.2	88.6 86.9 86.5 86.0 85.4 85.7	88.9 85.8 86.0 85.8 85.2 85.5
Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005	88.1 84.9 84.9 85.2 84.6 84.8	88.0 85.0 84.1 83.8 83.7 83.7	92.0 90.2 89.3 89.1 88.9 88.2 88.5	96.7 95.1 93.6 92.8 91.4 90.9 89.5	98.2 95.3 93.9 92.7 91.1 91.4 90.7	99.7 98.9 98.2 98.0 97.8 97.6	96.3 94.5 95.2 94.5 92.4 90.9 90.9	98.0 96.3 94.7 93.4 92.8 93.1 92.9	90.4 89.7 89.5 88.5 88.4 88.3 87.7	85.5 87.2 87.2 87.0 86.4 86.2 86.2	88.6 86.9 86.5 86.0 85.4 85.7	88.9 85.8 86.0 85.8 85.2 85.5 85.7
ing Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990	88.1 84.9 84.9 85.2 84.6 84.8 84.2	88.0 85.0 84.1 83.8 83.7 83.7 83.0 83.1	92.0 90.2 89.3 89.1 88.9 88.2 88.5 88.1	96.7 95.1 93.6 92.8 91.4 90.9 89.5 88.9	98.2 95.3 93.9 92.7 91.1 91.4 90.7 89.4	99.7 98.9 98.2 98.0 97.8 97.6 96.8 96.2	96.3 94.5 95.2 94.5 92.4 90.9 90.9	98.0 96.3 94.7 93.4 92.8 93.1 92.9 92.2	90.4 89.7 89.5 88.5 88.4 88.3 87.7 87.6	85.5 87.2 87.2 87.0 86.4 86.2 86.2 85.8	88.6 86.9 86.5 86.0 85.4 85.7 85.4	88.9 85.8 86.0 85.8 85.2 85.5 85.7
ading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975	88.1 84.9 84.9 85.2 84.6 84.8 84.2 84.5	88.0 85.0 84.1 83.8 83.7 83.7 83.0 83.1 84.2	92.0 90.2 89.3 89.1 88.9 88.2 88.5 88.1 88.2	96.7 95.1 93.6 92.8 91.4 90.9 89.5 88.9 87.4	98.2 95.3 93.9 92.7 91.1 91.4 90.7 89.4 87.4	99.7 98.9 98.2 98.0 97.8 97.6 96.8 96.2 97.0	96.3 94.5 95.2 94.5 92.4 90.9 90.9 90.2 86.8	98.0 96.3 94.7 93.4 92.8 93.1 92.9 92.2 93.9	90.4 89.7 89.5 88.5 88.4 88.3 87.7 87.6 87.4	85.5 87.2 87.2 87.0 86.4 86.2 86.2 85.8 86.0	88.6 86.9 86.5 86.0 85.4 85.7 85.4 85.0 85.9	88.9 85.8 86.0 85.8 85.2 85.5 85.7 84.8
Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960	88.1 84.9 84.9 85.2 84.6 84.8 84.2	88.0 85.0 84.1 83.8 83.7 83.7 83.0 83.1	92.0 90.2 89.3 89.1 88.9 88.2 88.5 88.1	96.7 95.1 93.6 92.8 91.4 90.9 89.5 88.9	98.2 95.3 93.9 92.7 91.1 91.4 90.7 89.4	99.7 98.9 98.2 98.0 97.8 97.6 96.8 96.2	96.3 94.5 95.2 94.5 92.4 90.9 90.9	98.0 96.3 94.7 93.4 92.8 93.1 92.9 92.2	90.4 89.7 89.5 88.5 88.4 88.3 87.7 87.6	85.5 87.2 87.2 87.0 86.4 86.2 86.2 85.8	88.6 86.9 86.5 86.0 85.4 85.7 85.4	88.9 85.8 86.0 85.8 85.2 85.5 85.7
int Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945	88.1 84.9 84.9 85.2 84.6 84.8 84.2 84.5	88.0 85.0 84.1 83.8 83.7 83.7 83.0 83.1 84.2	92.0 90.2 89.3 89.1 88.9 88.2 88.5 88.1 88.2	96.7 95.1 93.6 92.8 91.4 90.9 89.5 88.9 87.4	98.2 95.3 93.9 92.7 91.1 91.4 90.7 89.4 87.4	99.7 98.9 98.2 98.0 97.8 97.6 96.8 96.2 97.0	96.3 94.5 95.2 94.5 92.4 90.9 90.9 90.2 86.8	98.0 96.3 94.7 93.4 92.8 93.1 92.9 92.2 93.9	90.4 89.7 89.5 88.5 88.4 88.3 87.7 87.6 87.4	85.5 87.2 87.2 87.0 86.4 86.2 86.2 85.8 86.0	88.6 86.9 86.5 86.0 85.4 85.7 85.4 85.0 85.9	88.9 85.8 86.0 85.8 85.2 85.5 85.7 84.8
ment Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930	88.1 84.9 84.9 85.2 84.6 84.8 84.2 84.5	88.0 85.0 84.1 83.8 83.7 83.7 83.0 83.1 84.2	92.0 90.2 89.3 89.1 88.9 88.2 88.5 88.1 88.2	96.7 95.1 93.6 92.8 91.4 90.9 89.5 88.9 87.4	98.2 95.3 93.9 92.7 91.1 91.4 90.7 89.4 87.4	99.7 98.9 98.2 98.0 97.8 97.6 96.8 96.2 97.0	96.3 94.5 95.2 94.5 92.4 90.9 90.9 90.2 86.8	98.0 96.3 94.7 93.4 92.8 93.1 92.9 92.2 93.9	90.4 89.7 89.5 88.5 88.4 88.3 87.7 87.6 87.4	85.5 87.2 87.2 87.0 86.4 86.2 86.2 85.8 86.0	88.6 86.9 86.5 86.0 85.4 85.7 85.4 85.0 85.9	88.9 85.8 86.0 85.8 85.2 85.5 85.7 84.8
urement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915	88.1 84.9 84.9 85.2 84.6 84.8 84.2 84.5	88.0 85.0 84.1 83.8 83.7 83.7 83.0 83.1 84.2	92.0 90.2 89.3 89.1 88.9 88.2 88.5 88.1 88.2	96.7 95.1 93.6 92.8 91.4 90.9 89.5 88.9 87.4	98.2 95.3 93.9 92.7 91.1 91.4 90.7 89.4 87.4	99.7 98.9 98.2 98.0 97.8 97.6 96.8 96.2 97.0	96.3 94.5 95.2 94.5 92.4 90.9 90.9 90.2 86.8	98.0 96.3 94.7 93.4 92.8 93.1 92.9 92.2 93.9	90.4 89.7 89.5 88.5 88.4 88.3 87.7 87.6 87.4	85.5 87.2 87.2 87.0 86.4 86.2 86.2 85.8 86.0	88.6 86.9 86.5 86.0 85.4 85.7 85.4 85.0 85.9	88.9 85.8 86.0 85.8 85.2 85.5 85.7 84.8
asurement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900	88.1 84.9 84.9 85.2 84.6 84.8 84.2 84.5	88.0 85.0 84.1 83.8 83.7 83.7 83.0 83.1 84.2	92.0 90.2 89.3 89.1 88.9 88.2 88.5 88.1 88.2	96.7 95.1 93.6 92.8 91.4 90.9 89.5 88.9 87.4	98.2 95.3 93.9 92.7 91.1 91.4 90.7 89.4 87.4 92.4	99.7 98.9 98.2 98.0 97.8 97.6 96.8 96.2 97.0 93.7	96.3 94.5 95.2 94.5 92.4 90.9 90.2 86.8 92.3	98.0 96.3 94.7 93.4 92.8 93.1 92.9 92.2 93.9 86.3	90.4 89.7 89.5 88.5 88.4 88.3 87.7 87.6 87.4	85.5 87.2 87.2 87.0 86.4 86.2 86.2 85.8 86.0	88.6 86.9 86.5 86.0 85.4 85.7 85.4 85.0 85.9	88.9 85.8 86.0 85.8 85.2 85.5 85.7 84.8
Measurement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885	88.1 84.9 84.9 85.2 84.6 84.8 84.2 84.5	88.0 85.0 84.1 83.8 83.7 83.7 83.0 83.1 84.2	92.0 90.2 89.3 89.1 88.9 88.2 88.5 88.1 88.2	96.7 95.1 93.6 92.8 91.4 90.9 89.5 88.9 87.4	98.2 95.3 93.9 92.7 91.1 91.4 90.7 89.4 87.4 92.4	99.7 98.9 98.2 98.0 97.8 97.6 96.8 96.2 97.0	96.3 94.5 95.2 94.5 92.4 90.9 90.2 86.8 92.3	98.0 96.3 94.7 93.4 92.8 93.1 92.9 92.2 93.9 86.3	90.4 89.7 89.5 88.5 88.4 88.3 87.7 87.6 87.4	85.5 87.2 87.2 87.0 86.4 86.2 86.2 85.8 86.0	88.6 86.9 86.5 86.0 85.4 85.7 85.4 85.0 85.9	88.9 85.8 86.0 85.8 85.2 85.5 85.7 84.8
Measurement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870	88.1 84.9 84.9 85.2 84.6 84.8 84.2 84.5	88.0 85.0 84.1 83.8 83.7 83.7 83.0 83.1 84.2	92.0 90.2 89.3 89.1 88.9 88.2 88.5 88.1 88.2	96.7 95.1 93.6 92.8 91.4 90.9 89.5 88.9 87.4	98.2 95.3 93.9 92.7 91.1 91.4 90.7 89.4 87.4 92.4	99.7 98.9 98.2 98.0 97.8 97.6 96.8 96.2 97.0 93.7	96.3 94.5 95.2 94.5 92.4 90.9 90.2 86.8 92.3	98.0 96.3 94.7 93.4 92.8 93.1 92.9 92.2 93.9 86.3	90.4 89.7 89.5 88.5 88.4 88.3 87.7 87.6 87.4	85.5 87.2 87.2 87.0 86.4 86.2 86.2 85.8 86.0	88.6 86.9 86.5 86.0 85.4 85.7 85.4 85.0 85.9	88.9 85.8 86.0 85.8 85.2 85.5 85.7 84.8
Measurement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870 870 to 855	88.1 84.9 84.9 85.2 84.6 84.8 84.2 84.5	88.0 85.0 84.1 83.8 83.7 83.7 83.0 83.1 84.2	92.0 90.2 89.3 89.1 88.9 88.2 88.5 88.1 88.2	96.7 95.1 93.6 92.8 91.4 90.9 89.5 88.9 87.4	98.2 95.3 93.9 92.7 91.1 91.4 90.7 89.4 87.4 92.4	99.7 98.9 98.2 98.0 97.8 97.6 96.8 96.2 97.0 93.7	96.3 94.5 95.2 94.5 92.4 90.9 90.2 86.8 92.3	98.0 96.3 94.7 93.4 92.8 93.1 92.9 92.2 93.9 86.3	90.4 89.7 89.5 88.5 88.4 88.3 87.7 87.6 87.4	85.5 87.2 87.2 87.0 86.4 86.2 86.2 85.8 86.0	88.6 86.9 86.5 86.0 85.4 85.7 85.4 85.0 85.9	88.9 85.8 86.0 85.8 85.2 85.5 85.7 84.8
Measurement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870	88.1 84.9 84.9 85.2 84.6 84.8 84.2 84.5	88.0 85.0 84.1 83.8 83.7 83.7 83.0 83.1 84.2	92.0 90.2 89.3 89.1 88.9 88.2 88.5 88.1 88.2	96.7 95.1 93.6 92.8 91.4 90.9 89.5 88.9 87.4	98.2 95.3 93.9 92.7 91.1 91.4 90.7 89.4 87.4 92.4	99.7 98.9 98.2 98.0 97.8 97.6 96.8 96.2 97.0 93.7	96.3 94.5 95.2 94.5 92.4 90.9 90.2 86.8 92.3	98.0 96.3 94.7 93.4 92.8 93.1 92.9 92.2 93.9 86.3	90.4 89.7 89.5 88.5 88.4 88.3 87.7 87.6 87.4	85.5 87.2 87.2 87.0 86.4 86.2 86.2 85.8 86.0	88.6 86.9 86.5 86.0 85.4 85.7 85.4 85.0 85.9	88.9 85.8 86.0 85.8 85.2 85.5 85.7 84.8

	Jocass	ee E_2_55	7.0: Mont	ly Average	ed Dissolv	ed Oxyge	n Percent	Saturation	า (%) (Pre	Bad Cree	k Operation	on)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095												
	1095 to 1080												
) S	1080 to 1065												
<u> </u>	1065 to 1050												
e (†	1050 to 1035												
Range (ft msl)	1035 to 1020												
Ra	1020 to 1005												
ng	1005 to 990												
adi	990 to 975					DO Satur	ration Page	dings Bega	n in 1009				
, Se	975 to 960					DO Salui	alion Read	illiys beya	11111 1990				
둩	960 to 945												
шe	945 to 930												
Measurement Reading	930 to 915												
asn	915 to 900												
ě	900 to 885												
	885 to 870												
	870 to 855												
	< 855												
	Jocassee E_2	2_557.0: Mc			olved Oxy	gen Perc	ent Satura	tion (%) 19	998 to 201	5 (Post Ba	d Creek C	peration)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	90.0	87.8	96.6	100.1	100.9	103.8	102.0	103.4	98.5	89.6	91.4	90.1
<u> </u>	1095 to 1080	87.8	88.2	94.6	98.5	98.2	105.7	102.0	101.0	95.6	91.7	90.2	88.1
ms	1080 to 1065	87.4	86.5	92.0	95.1	97.1	103.7	100.5	98.2	94.2	91.3	89.9	88.1
<u> </u>	1065 to 1050	87.3	85.5	89.4	92.1	94.1	101.5	96.8	95.2	90.2	90.6	89.6	87.5
e B	1050 to 1035	86.7	83.9	87.0	89.2	89.8	95.7	89.3	84.6	84.2	89.7	89.0	87.2
Range (ft msl)	1035 to 1020	86.7	83.0	85.4	87.7	86.7	87.1	78.8	69.9	70.1	89.1	88.6	87.4
8	1020 to 1005	86.5	82.5	84.2	84.6	83.4	80.0	70.0	61.7	55.5	74.2	84.7	86.7
j j	1005 to 990	85.9	81.9	82.5	81.0	78.8	74.9	66.3	59.7	51.3	45.4	68.5	80.6
Measurement Reading	990 to 975	83.7	82.9	81.6	78.5	74.9	70.2	61.4	56.4	50.8	44.6	41.4	63.3
ď	975 to 960	74.7	80.3	80.5	76.1	71.8	65.9	58.4	53.2	49.7	44.1	38.2	43.7
ent	960 to 945	54.8	76.2	79.7	73.0	68.6	62.0	54.6	49.1	46.4	41.5	34.0	29.2
Ĕ	945 to 930	42.8	76.9	75.2	70.2	65.7	57.8	51.8	46.1	42.4	37.4	31.1	23.1
ת ביי	930 to 915	34.6	74.3	73.8	65.3	63.0	54.2	47.2	41.9	39.6	34.7	29.8	18.7
eas	915 to 900	29.3	72.6	71.0	65.5	61.0	53.2	45.5 45.3	42.2	40.0	33.6	30.4	20.5
Ž	900 to 885 885 to 870	31.7	66.7	71.1	64.4	59.3	50.2	45.3	42.5	38.2	32.2	29.7	22.7
	870 to 855	28.4 24.8	60.0 63.0	72.2 68.5	58.9 59.7	57.1 53.5	49.3	43.6	38.3	34.9	30.5	28.9	19.9
	< 855	24.6 25.2	64.9	64.0	59.7 55.0	53.5 54.9	44.7 42.4	37.8 39.0	34.6 35.0	33.8 27.8	26.3 22.3	22.9 21.7	15.9 15.2
	\ 000			04.0	55.0	54.9	42.4	39.0	33.0	21.0	22.3	21.7	
		Legend	0.0										100.00

	Jocass	ee F_2_5	54.8: Mont	tly Averag	ed Dissolv	ved Oxyge	n Percent	Saturatio	n (%) (Pre	Bad Cree	k Operation	on)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095												
	1095 to 1080												
S	1080 to 1065												
ي ا	1065 to 1050												
e (1	1050 to 1035												
ng	1035 to 1020												
Range (ft msl)	1020 to 1005												
gu	1005 to 990												
ij	990 to 975					DO 0-4	matian Daar	dia a a Da au	- :- 1000				
Ses	975 to 960					DO Satul	ration Read	ungs Bega	an in 1998				
 	960 to 945												
Je I	945 to 930												
ē	930 to 915												
nsı	915 to 900												
Measurement Reading	900 to 885												
2	885 to 870												
	870 to 855												
	< 855												
	Jocassee F_2	_554.8: M	ontly Ave	raged Diss	olved Oxy	ygen Perc	ent Satura	tion (%) 1	998 to 201	5 (Post Ba	ad Creek C	Operation)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	91.0	91.9	99.5	101.7	100.2	106.3	104.9	107.6	99.7	72.6	91.2	90.6
	1095 to 1080	89.2	92.4	97.7	100.1	99.3	105.9	109.5	107.2	95.7	86.6	89.7	88.3
S	1080 to 1065	89.1	90.3	94.2	95.8	96.3	103.3	102.9	103.4	91.5	85.9	89.0	88.2
(ft msl)	1065 to 1050	88.7	88.9	91.6	92.4	89.6	95.3	87.5	93.5	88.8	84.5	88.6	87.7
е (1050 to 1035	88.6	87.7	89.8	89.2	85.3	83.6	79.0	83.3	87.0	81.3	88.0	87.4
ng	1035 to 1020	88.2	86.8	88.2	87.1	82.3	75.7	62.3	59.2	76.3	81.5	87.7	87.1
Ra	1020 to 1005	87.9	86.1	87.7	83.0	77.6	68.9	53.2	40.1	46.9	68.8	86.4	87.1
D D	1005 to 990	88.1	86.3	86.7	78.9	72.4	62.7	48.2	36.1	28.0	23.7	74.4	85.8
ğ	990 to 975	88.2	88.1	85.8	74.2	66.8	55.5	39.7	28.3	14.8	7.6	35.1	72.0
Še	975 to 960	88.1	87.3	84.0	67.8	56.5	36.4	18.2	9.2	1.5	1.2	4.4	48.4
t	960 to 945	88.6	80.7	81.1	64.3	51.7	29.0	9.8	3.2	0.8	0.8	1.3	33.6
Measurement Reading Range	945 to 930												
Tē.	930 to 915												
ısı	915 to 900												
Лез	900 to 885					Mi	inimum Rea	ading 948.	4 ft				
2	885 to 870							-					
	870 to 855												
	< 855												
	•		0.0										400.00
		Legend	0.0										100.00

	Jocass	ee F_2_55	6.0: Mont	tly Averag	ed Dissolv	ed Oxyge	n Percent	Saturatio	n (%) (Pre	Bad Cre	ek Operati	on)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095												
	1095 to 1080												
Range (ft msl)	1080 to 1065												
ي ا	1065 to 1050												
e (1	1050 to 1035												
ng	1035 to 1020												
Ra	1020 to 1005												
Вu	1005 to 990												
gdi	990 to 975					DO Satu	ration Dag	dinas Psa	on in 1000				
Ze.	975 to 960					DO Salui	ration Read	ungs bega	arı iri 1996				
<u> </u>	960 to 945												
neı	945 to 930												
rer	930 to 915												
Measurement Reading	915 to 900												
le a	900 to 885												
=	885 to 870												
	870 to 855												
	< 855												
	Jocassee F_2	_556.0: Mo	ntly Ave	raged Diss	solved Oxy	ygen Perc	ent Satura	tion (%) 1	998 to 201	5 (Post B	ad Creek (Operation)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	91.1	90.6	98.9	101.7	102.3	106.6	105.1	106.2	98.9	90.1	91.5	90.2
	1095 to 1080	89.2	91.1	96.8	99.5	101.2	107.5	107.6	105.0	95.3	90.7	89.7	88.3
ns	1080 to 1065	88.7	89.4	93.7	96.1	99.4	105.9	105.4	104.6	92.2	90.2	89.3	88.3
בי	1065 to 1050	88.5	87.8	90.7	92.9	93.6	99.9	93.9	95.9	88.3	89.6	88.8	87.7
<u>.</u>	1050 to 1035	88.1	86.5	88.6	89.7	86.6	85.2	79.2	78.8	83.0	88.7	88.1	87.3
ng	1035 to 1020	88.3	86.0	87.0	87.8	83.4	77.9	68.5	62.6	69.5	84.9	87.6	87.0
Range (ft msl)	1020 to 1005	87.8	85.5	86.1	84.1	80.1	73.5	60.1	49.2	49.3	74.9	84.0	85.7
ng	1005 to 990	86.7	85.3	84.7	81.2	76.3	71.0	60.4	51.8	41.0	40.8	73.7	82.7
adi	990 to 975	85.6	86.1	84.0	78.8	72.6	66.4	56.6	50.0	41.5	32.9	38.2	68.9
Ze.	975 to 960	84.8	85.8	83.7	74.8	68.1	57.7	48.1	41.0	33.6	24.4	19.1	46.2
T T	960 to 945	84.0	83.7	82.3	69.2	62.1	48.6	38.1	31.3	22.6	12.7	7.8	31.1
πe	945 to 930	74.1	80.4	77.2	61.5	54.4	37.3	29.3	21.1	13.1	5.3	3.4	8.0
Measurement Reading	930 to 915	62.3	56.3	81.2	65.1	51.4	37.7	18.8	19.6	7.3	1.8	2.2	11.5
nsk	915 to 900												
1 0													
J e	900 to 885												
Me	900 to 885 885 to 870					Mi	nimum Re	ading 919.	.4 ft				
ΜΘ						Mi	inimum Rea	ading 919.	.4 ft				
Me	885 to 870					Mi	inimum Rea	ading 919.	4 ft				

Lake Jocassee pH Concentration

	Jocas	see B_2_	558.7: Mor	thly pH (S	I) (Top: P	re Bad Cr	eek Opera	ation, Botte	om: Post E	Bad Creek	Operation	n)	
	1987 to 1991	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	6.5	6.1	6.5	6.6	6.7	6.9	7.2	7.1	6.6	6.6	6.6	6.4
	1095 to 1080	6.5	6.5	6.7	6.7	6.7	6.9	7.0	7.0	6.8	6.8	6.9	6.4
JS.	1080 to 1065	6.5	6.5	6.6	6.7	6.7	6.9	6.7	6.8	6.7	6.7	6.9	6.3
<u> </u>	1065 to 1050	6.5	6.4	6.7	6.7	6.7	6.8	6.7	6.7	6.7	6.8	6.8	6.3
e (+	1050 to 1035	6.4	6.4	6.5	6.6	6.6	6.8	6.6	6.6	6.6	6.7	6.8	6.3
Range (ft msl)	1035 to 1020	6.4	6.4	6.5	6.6	6.7	6.6	6.5	6.5	6.3	6.6	6.8	6.3
Ra	1020 to 1005	6.4	6.3	6.6	6.5	6.6	6.7	6.5	6.3	6.1	6.5	6.7	6.4
ng	1005 to 990	6.4	6.3	6.4	6.5	6.6	6.7	6.6	6.3	6.2	6.2	6.6	6.3
J j	990 to 975	6.3	6.2	6.4	6.5	6.5	6.6	6.6	6.3	6.2	6.2	6.1	6.2
Ř	975 to 960	6.2	6.3	6.3	6.5	6.5	6.5	6.6	6.3	6.2	6.1	6.1	5.9
Έ	960 to 945	6.0	6.2	6.4	6.4	6.4	6.5	6.5	6.2	6.2	6.1	6.0	5.7
Measurement Reading	945 to 930	5.8	6.1	6.3	6.3	6.3	6.4	6.4	6.2	6.2	6.1	5.9	5.6
Ē	930 to 915	5.8	6.1	6.2	6.3	6.3	6.3	6.4	6.1	6.1	6.0	6.0	5.5
asu	915 to 900	5.8	5.9	6.2	6.2	6.2	6.2	6.4	6.1	6.1	6.0	5.9	5.6
/eŝ	900 to 885	5.7	5.9	6.1	6.2	6.2	6.2	6.4	6.1	6.0	6.0	5.8	5.4
~	885 to 870	5.6	5.9	6.0	6.1	6.1	6.1	6.3	6.0	6.0	6.1	5.8	5.4
	870 to 855	5.7	5.9	6.0	6.1	6.1	6.1	6.4	5.9	5.9	5.9	5.8	5.4
	< 855	5.8	5.8	6.2	6.1	6.0	6.0	6.3	6.0	5.9	6.0	5.8	5.6
	1991 to 2015	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	6.3	6.1	6.5	6.6	6.9	6.8	6.8	6.8	6.7	6.4	6.6	6.3
	1095 to 1080	6.4	6.3	6.5	6.7	6.9	6.8	6.8	6.9	6.8	6.7	6.7	6.5
ısı	1080 to 1065	6.4	6.2	6.5	6.6	6.8	6.6	6.6	6.8	6.8	6.7	6.7	6.5
f n	1065 to 1050	6.4	6.2	6.4	6.5	6.7	6.5	6.5	6.6	6.7	6.7	6.7	6.5
Range (ft msl)	1050 to 1035	6.3	6.2	6.4	6.4	6.5	6.5	6.4	6.5	6.5	6.6	6.7	6.5
lug	1035 to 1020	6.3	6.2	6.4	6.4	6.4	6.4	6.3	6.3	6.3	6.6	6.7	6.5
Ra	1020 to 1005	6.3	6.2	6.3	6.3	6.4	6.3	6.2	6.2	6.1	6.3	6.6	6.5
ng	1005 to 990	6.3	6.1	6.3	6.2	6.3	6.1	6.1	6.2	6.0	6.0	6.3	6.4
ading	990 to 975	6.2	6.2	6.2	6.2	6.2	6.1	6.0	6.1	6.0	6.0	6.0	6.0
Re	975 to 960	6.0	6.1	6.2	6.1	6.1	6.0	5.9	6.0	6.0	5.9	6.0	5.8
<u> </u>	960 to 945	5.9	6.0	6.1	6.0	6.1	5.9	5.9	6.0	5.9	5.9	5.9	5.8
ше	945 to 930	5.8	5.9	6.0	5.9	6.0	5.9	5.8	6.0	5.9	5.8	5.9	5.7
Measurement	930 to 915	5.7	5.9	6.0	5.9	6.0	5.9	5.8	5.9	5.9	5.8	5.9	5.7
asn	915 to 900	5.7	5.9	6.0	5.9	6.0	5.8	5.8	5.9	5.8	5.8	5.8	5.7
Ž Ž	900 to 885	5.7	5.8	6.0	5.8	6.0	5.8	5.7	5.9	5.8	5.8	5.8	5.7
	885 to 870	5.7	5.9	6.0	5.8	5.9	5.8	5.7	5.9	5.8	5.8	5.8	5.7
	870 to 855	5.7	5.9	6.0	5.8	5.9	5.7	5.7	5.9	5.8	5.8	5.8	5.7
	< 855	5.7	5.9	5.9	5.8	5.9	5.7	5.7	5.9	5.8	5.8	5.9	5.7
	< Acidic					Neutral					E	Basic >	
1	2	3	4	5	6	7	8	9	10	11	12	13	14

	Jocas	see B_3_5	558.0: Mon	thly pH (S	I) (Top: P	re Bad Cr	eek Opera	tion, Botto	om: Post E	Bad Creek	Operation	n)	
	1975 to 1991	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	6.0	6.1	6.4	6.4	6.6	6.6	6.9	6.7	6.3	6.1	6.5	6.2
	1095 to 1080	6.1	6.1	6.3	6.4	6.7	6.5	6.8	6.6	6.4	6.2	6.4	6.2
ls!	1080 to 1065	6.1	6.0	6.3	6.4	6.7	6.5	6.5	6.5	6.4	6.2	6.3	6.3
_ ا	1065 to 1050	6.0	6.0	6.2	6.4	6.7	6.5	6.4	6.4	6.4	6.2	6.4	6.2
) e	1050 to 1035	6.0	6.0	6.2	6.2	6.5	6.5	6.3	6.4	6.3	6.2	6.3	6.2
Range (ft msl)	1035 to 1020	6.0	6.0	6.2	6.1	6.6	6.4	6.2	6.3	6.1	6.2	6.3	6.2
Ra	1020 to 1005	6.0	6.0	6.2	6.1	6.5	6.5	6.2	6.1	5.8	5.9	6.3	6.2
bu	1005 to 990	6.0	6.0	6.2	6.1	6.4	6.5	6.2	6.1	5.9	5.6	6.1	6.2
Reading	990 to 975	5.9	6.0	6.2	6.1	6.4	6.3	6.3	6.1	5.9	5.7	5.7	6.1
Še	975 to 960	6.0	6.0	6.1	6.0	6.3	6.3	6.1	6.1	5.9	5.7	5.6	5.9
<u>=</u>	960 to 945	5.9	6.0	6.0	6.0	6.3	6.2	6.1	6.0	5.9	5.7	5.6	5.7
πe	945 to 930	5.8	5.9	5.9	5.9	6.1	6.2	6.1	5.9	5.9	5.6	5.5	5.5
<u>re</u>	930 to 915	5.7	5.8	5.8	5.8	6.1	6.0	6.0	5.8	5.8	5.5	5.5	5.4
asu	915 to 900	5.5	5.7	5.7	5.7	6.0	6.0	5.9	5.8	5.7	5.5	5.4	5.4
Measurement	900 to 885	5.4	5.7	5.6	5.6	5.9	5.9	6.0	5.8	5.7	5.5	5.4	5.4
-	885 to 870	5.3	5.6	5.6	5.6	5.9	5.8	5.9	5.7	5.7	5.5	5.4	5.3
	870 to 855	5.3	5.6	5.6	5.6	5.8	5.9	5.9	5.7	5.6	5.5	5.4	5.3
	< 855	5.5	5.6	5.5	5.7	5.8	5.8	5.9	5.8	5.6	5.6	5.5	5.4
	1991 to 2020	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	6.3	6.1	6.3	6.5	6.7	6.6	6.6	6.7	6.6	6.3	6.4	6.5
	1095 to 1080	6.4	6.1	6.4	6.5	6.7	6.5	6.5	6.7	6.7	6.6	6.6	6.5
ısı	1080 to 1065	6.4	6.1	6.4	6.5	6.6	6.4	6.5	6.6	6.7	6.7	6.6	6.5
T 1	1065 to 1050	6.3	6.1	6.3	6.4	6.5	6.3	6.4	6.5	6.6	6.6	6.7	6.5
Range (ft msl)	1050 to 1035	6.3	6.1	6.3	6.3	6.4	6.3	6.3	6.3	6.4	6.6	6.6	6.6
lug	1035 to 1020	6.3	6.1	6.3	6.3	6.3	6.3	6.2	6.2	6.3	6.6	6.7	6.5
	1020 to 1005	6.3	6.1	6.3	6.2	6.3	6.1	6.1	6.1	6.1	6.3	6.6	6.5
Measurement Reading	1005 to 990	6.3	6.1	6.2	6.1	6.2	6.1	6.0	6.1	6.0	6.0	6.4	6.4
adi	990 to 975	6.2	6.1	6.2	6.1	6.1	6.0	6.0	6.1	5.9	6.0	6.0	6.1
Re	975 to 960	6.1	6.1	6.1	6.1	6.0	5.9	5.9	6.0	5.9	5.9	5.9	5.9
Ę	960 to 945	6.0	6.0	6.1	6.0	6.0	5.8	5.9	6.0	5.8	5.9	5.9	5.8
l e	945 to 930	5.8	5.9	6.0	5.9	5.9	5.8	5.8	5.9	5.8	5.8	5.9	5.8
<u> </u>	930 to 915	5.7	5.8	6.0	5.9	5.9	5.8	5.8	5.9	5.8	5.8	5.9	5.8
ası	915 to 900	5.7	5.8	5.9	5.9	5.9	5.7	5.8	5.9	5.8	5.8	5.8	5.8
Z Š	900 to 885	5.7	5.7	5.9	5.8	5.9	5.7	5.7	5.9	5.8	5.8	5.8	5.8
	885 to 870	5.7	5.8	5.9	5.8	5.8	5.8	5.7	5.8	5.8	5.8	5.8	5.8
	870 to 855	5.7	5.8	5.9	5.8	5.8	5.7	5.7	5.8	5.8	5.8	5.8	5.7
	< 855	5.7	5.9	5.9	5.8	5.8	5.7	5.7	5.8	5.8	5.8	5.8	5.8
	< Acidic					Neutral					E	Basic >	
1	2	3	4	5	6	7	8	9	10	11	12	13	14

	Jocas	see C_2_	559.0: Mon	thly pH (S	l) (Top: F	re Bad Cr	eek Opera	tion, Bott	om: Post E	Bad Creek	Operation	n)	
	1987 to 1991	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	6.2	6.0	6.3	6.8	6.8	6.7	7.3	7.0	6.7	6.4	6.6	6.3
	1095 to 1080	6.3	6.3	6.6	6.7	6.7	7.0	7.2	7.0	6.8	6.6	6.8	6.3
ls!	1080 to 1065	6.4	6.4	6.5	6.7	6.7	6.9	6.8	6.9	6.8	6.5	6.8	6.3
ـ ا	1065 to 1050	6.4	6.3	6.6	6.7	6.6	6.8	6.7	6.7	6.7	6.6	6.7	6.3
e (1	1050 to 1035	6.3	6.3	6.5	6.6	6.6	6.7	6.6	6.5	6.6	6.6	6.7	6.3
Range (ft msl)	1035 to 1020	6.2	6.4	6.4	6.6	6.6	6.6	6.5	6.5	6.4	6.4	6.7	6.3
Ra	1020 to 1005	6.3	6.2	6.5	6.6	6.5	6.6	6.5	6.2	6.2	6.3	6.7	6.4
bu	1005 to 990	6.3	6.2	6.4	6.5	6.5	6.6	6.5	6.3	6.2	6.1	6.4	6.3
gdi	990 to 975	6.2	6.1	6.4	6.5	6.4	6.5	6.5	6.2	6.2	6.2	6.1	6.1
Re	975 to 960	6.2	6.2	6.3	6.4	6.4	6.5	6.5	6.2	6.2	6.0	6.0	5.8
Ę	960 to 945	5.8	6.0	6.4	6.4	6.3	6.4	6.4	6.2	6.2	6.1	6.0	5.8
Measurement Reading	945 to 930	5.7	6.0	6.2	6.3	6.2	6.3	6.3	6.1	6.1	6.0	5.9	5.6
<u>l</u>	930 to 915	5.6	6.0	6.1	6.2	6.2	6.2	6.3	6.1	6.0	5.8	5.8	5.5
asu	915 to 900	5.7	5.7	6.1	6.1	6.1	6.1	6.3	5.9	6.1	5.9	5.8	5.6
٨e٤	900 to 885	5.6	5.7	6.0	6.1	6.1	6.1	6.3	5.9	6.0	6.0	5.8	5.5
	885 to 870	5.6	5.7	5.9	6.1	5.9	6.1	6.2	5.9	6.0	6.0	5.7	5.5
	870 to 855	5.7	5.8	6.0	6.0	6.0	6.1	6.2	5.8	5.9	5.9	5.7	5.5
	< 855	5.8	5.8	6.0	6.0	6.0	6.0	6.2	5.9	6.0	6.0	5.8	5.7
	1991 to 2015	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	6.2	6.1	6.5	6.7	7.0	6.8	6.8	6.9	6.7	6.3	6.5	6.4
	1095 to 1080	6.3	6.3	6.6	6.8	6.9	6.9	6.8	7.0	6.8	6.6	6.7	6.5
ısı	1080 to 1065	6.3	6.2	6.5	6.7	6.8	6.7	6.7	6.8	6.8	6.7	6.7	6.5
Range (ft msl)	1065 to 1050	6.3	6.2	6.5	6.6	6.7	6.5	6.6	6.7	6.7	6.7	6.7	6.5
• e	1050 to 1035	6.3	6.2	6.4	6.4	6.5	6.5	6.4	6.5	6.5	6.6	6.7	6.5
lng	1035 to 1020	6.3	6.2	6.4	6.4	6.5	6.4	6.3	6.3	6.3	6.6	6.7	6.5
Ra	1020 to 1005	6.3	6.2	6.3	6.4	6.4	6.3	6.2	6.2	6.1	6.3	6.6	6.5
ading	1005 to 990	6.3	6.1	6.3	6.3	6.3	6.1	6.1	6.1	6.0	6.0	6.3	6.4
adi	990 to 975	6.2	6.1	6.2	6.2	6.2	6.1	6.0	6.1	6.0	5.9	6.0	6.0
	975 to 960	6.0	6.1	6.2	6.2	6.1	6.0	5.9	6.0	5.9	5.9	5.9	5.8
Ę	960 to 945	5.8	6.0	6.1	6.1	6.1	5.9	5.8	5.9	5.8	5.8	5.9	5.8
me I	945 to 930	5.7	5.9	6.0	5.9	6.0	5.9	5.8	5.9	5.8	5.8	5.8	5.7
<u>F</u>	930 to 915	5.7	5.8	6.0	5.9	5.9	5.8	5.8	5.9	5.8	5.8	5.8	5.7
Measurement R	915 to 900	5.7	5.8	5.9	5.9	5.9	5.8	5.7	5.8	5.8	5.7	5.8	5.7
Μe	900 to 885	5.7	5.7	5.9	5.8	5.9	5.7	5.7	5.8	5.7	5.7	5.8	5.7
	885 to 870	5.6	5.8	5.9	5.8	5.9	5.8	5.7	5.8	5.8	5.7	5.8	5.7
	870 to 855	5.7	5.9	5.9	5.8	5.9	5.7	5.7	5.8	5.8	5.7	5.8	5.7
	< 855	5.7	5.8	5.9	5.8	5.8	5.7	5.7	5.8	5.8	5.7	5.8	5.7
	< Acidic					Neutral						Basic >	
1	2	3	4	5	6	7	8	9	10	11	12	13	14

	Jocas	see C_2_5	560.0: Mor	thly pH (S	l) (Top: F	re Bad Cr	eek Opera	ation, Bott	om: Post E	Bad Creek	Operation	n)	
	1975 to 1991	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	6.1	6.2	6.3	6.6	6.8	7.0	7.3	7.3	6.9	6.4	6.6	6.1
	1095 to 1080	6.3	6.3	6.5	6.6	6.7	7.0	7.3	7.1	6.9	6.5	6.6	6.1
ls l	1080 to 1065	6.3	6.2	6.4	6.6	6.5	7.0	7.1	6.7	6.7	6.4	6.6	6.2
<u> </u>	1065 to 1050	6.2	6.1	6.4	6.5	6.5	6.8	6.7	6.5	6.4	6.4	6.4	6.2
e (t	1050 to 1035	6.2	6.0	6.3	6.4	6.4	6.6	6.5	6.3	6.3	6.2	6.5	6.2
Range (ft msl)	1035 to 1020	6.2	6.0	6.3	6.3	6.3	6.5	6.3	6.2	6.2	6.1	6.3	6.1
	1020 to 1005	6.3	6.0	6.3	6.2	6.2	6.4	6.2	6.1	6.1	6.0	6.1	6.0
ng	1005 to 990	6.1	5.9	6.2	6.3	6.3	6.4	6.2	6.1	6.2	5.9	6.0	5.9
adi	990 to 975	6.0	5.9	6.1	6.2	6.2	6.4	6.2	6.0	6.2	5.9	5.8	5.8
Re	975 to 960	6.1	6.0	6.2	6.2	6.2	6.4	6.2	6.1	6.1	6.0	6.0	5.7
゠	960 to 945	6.0	6.1	6.2	6.2	6.3	6.5	6.2	6.1	6.2	6.0	5.9	5.7
Measurement Reading	945 to 930	5.9	5.9	6.2	6.1	6.1	6.4	6.2	6.0	6.2	5.9	5.9	5.6
<u> </u>	930 to 915	5.7	6.0	6.1	6.1	6.2	6.4	6.2	6.1	6.1	6.0	5.8	5.5
ası	915 to 900	5.8	5.8	6.1	6.0	6.1	6.3	6.2	6.0	6.2	6.0	5.9	5.6
Αe	900 to 885	5.6	5.8	6.0	6.1	6.1	6.2	6.3	6.0	6.1	5.9	5.8	5.5
_	885 to 870	5.6	5.8	5.9	6.0	6.0	6.2	6.2	5.9	6.1	6.0	5.7	5.5
	870 to 855	5.8	6.0	5.9	6.0	6.0	6.2	6.2	5.9	5.9	5.9	5.7	5.5
	< 855	5.7	5.9	6.0	6.0	6.2	6.2	6.2	6.0	6.2	6.2	5.7	5.6
	1991 to 2015	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	6.3	6.2	6.6	6.7	7.0	6.8	6.8	6.8	6.6	6.3	6.6	6.4
_	1095 to 1080	6.4	6.3	6.6	6.8	6.9	6.8	6.7	6.9	6.7	6.6	6.7	6.5
Range (ft msl)	1080 to 1065	6.4	6.3	6.5	6.7	6.8	6.7	6.6	6.8	6.7	6.7	6.7	6.5
<u>#</u>	1065 to 1050	6.4	6.3	6.5	6.6	6.7	6.6	6.5	6.6	6.6	6.6	6.7	6.5
) ge	1050 to 1035	6.4	6.2	6.4	6.5	6.6	6.5	6.4	6.5	6.4	6.6	6.7	6.5
anç	1035 to 1020	6.3	6.3	6.4	6.4	6.5	6.4	6.3	6.3	6.3	6.5	6.7	6.5
Ž.	1020 to 1005	6.3	6.2	6.4	6.4	6.4	6.3	6.2	6.2	6.1	6.3	6.6	6.5
ading	1005 to 990	6.4	6.2	6.3	6.3	6.3	6.2	6.1	6.2	6.0	6.0	6.2	6.3
ad	990 to 975	6.2	6.2	6.3	6.2	6.2	6.1	6.0	6.1	6.0	5.9	6.0	5.9
Re	975 to 960	6.1	6.2	6.2	6.1	6.1	6.0	5.9	6.0	5.9	5.9	6.0	5.8
Measurement R	960 to 945	5.9	6.1	6.2	6.0	6.1	5.9	5.8	5.9	5.8	5.8	5.9	5.7
, i	945 to 930	5.8	6.0	6.1	5.9	6.0	5.8	5.8	5.9	5.8	5.8	5.9	5.7
ure	930 to 915	5.7	5.9	6.1	5.9	6.0	5.8	5.8	5.9	5.8	5.8	5.9	5.7
as	915 to 900	5.7	5.9	6.0	5.9	6.0	5.8	5.7	5.8	5.8	5.8	5.9	5.7
¥	900 to 885	5.7	5.8	5.9	5.8	6.0	5.8	5.7	5.8	5.8	5.7	5.9	5.7
	885 to 870	5.7	5.9	6.0	5.8	5.9	5.8	5.7	5.8	5.8	5.7	5.9	5.7
	870 to 855	5.7	5.9	6.0	5.9	5.8	5.8	5.7	5.8	5.8	5.8	5.9	5.7
	< 855	5.5	5.7	5.8	5.6	5.6	5.6	5.7	5.8	5.7	5.6	6.0	5.9
	< Acidic					Neutral						Basic >	
1	2	3	4	5	6	7	8	9	10	11	12	13	14

	Jocass	see C_2_5	62.0: Mor	nthly pH (S	SI) (Top: F	re Bad Cr	eek Opera	tion, Bott	om: Post E	Bad Creek	Operation	1)	
	1980 to 1991	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	6.3	6.4	6.4	6.7	7.0	7.2	7.5	7.4	6.7	6.5	6.5	6.3
	1095 to 1080	6.4	6.4	6.6	6.7	6.7	7.1	7.3	7.4	7.0	6.6	6.7	6.3
lsl)	1080 to 1065	6.4	6.4	6.5	6.6	6.5	7.0	6.9	6.9	6.8	6.5	6.7	6.4
ي ا	1065 to 1050	6.3	6.3	6.6	6.5	6.5	6.8	6.6	6.6	6.6	6.4	6.6	6.4
Range (ft msl)	1050 to 1035	6.3	6.3	6.5	6.4	6.5	6.7	6.5	6.5	6.5	6.4	6.6	6.3
ng	1035 to 1020	6.4	6.3	6.5	6.4	6.4	6.6	6.3	6.2	6.4	6.3	6.6	6.3
Ra	1020 to 1005	6.5	6.3	6.5	6.3	6.3	6.4	6.0	5.9	6.0	6.2	6.5	6.4
ng	1005 to 990	6.3	6.2	6.4	6.1	6.2	6.3	5.9	5.8	6.1	6.0	6.4	6.2
ğdi	990 to 975	6.3	6.2	6.7	5.9	5.5		5.6	6.2	6.5	6.1	6.6	
Reć	975 to 960												
<u> </u>	960 to 945												
πe	945 to 930												
ire	930 to 915												
Measurement Reading	915 to 900					Mir	nimum Rea	ading 964.	5 ft				
Ие́	900 to 885												
	885 to 870												
	870 to 855												
	< 855												
	1991 to 2015	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	6.3	6.3	6.6	6.7	7.1	6.9	6.9	6.9	6.7	6.4	6.6	6.4
_	1095 to 1080	6.5	6.5	6.7	6.8	7.0	6.9	7.0	7.1	6.8	6.7	6.8	6.5
Isu	1080 to 1065	6.4	6.4	6.6	6.7	6.9	6.6	6.7	6.8	6.8	6.7	6.8	6.5
Ħ r	1065 to 1050	6.4	6.4	6.6	6.6	6.7	6.4	6.5	6.6	6.7	6.6	6.7	6.5
Range (ft msl)	1050 to 1035	6.4	6.3	6.5	6.4	6.5	6.3	6.3	6.4	6.6	6.6	6.7	6.5
l gr	1035 to 1020	6.4	6.4	6.5	6.4	6.4	6.2	6.1	6.1	6.3	6.6	6.8	6.5
æ	1020 to 1005	6.4	6.4	6.4	6.3	6.3	6.1	5.9	5.9	5.9	6.3	6.7	6.5
eading	1005 to 990	6.4	6.3	6.3	6.1	6.1	5.9	5.8	5.9	5.9	5.9	6.5	6.4
adi	990 to 975												
<u>~</u>	975 to 960												
'nt	960 to 945												
Measurement	945 to 930												
ıre	930 to 915					Mir	nimum Re	ading 992.	2 ft				
ası	915 to 900					14111	IGIII I (O						
Ğe	900 to 885												
_	885 to 870												
	870 to 855												
	< 855												
	< Acidic					Neutral						asic >	
1	2	3	4	5	6	7	8	9	10	11	12	13	14

	Jocass	see C_2_5	65.4: Mor	nthly pH (S	I) (Top: P	re Bad Cr	eek Opera	tion, Bott	om: Post E	Bad Creek	Operation	1)	
	1987 to 1991	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	6.6	6.2	6.2	6.5	7.2	7.3	7.4	6.9	6.7	6.7	6.3	6.3
_	1095 to 1080	6.5	6.4	6.5	6.6	6.8	7.6	7.2	7.2	6.8	6.8	6.7	6.4
ls!	1080 to 1065	6.5	6.4	6.4	6.6	6.8	7.5	7.2	7.0	6.7	6.8	6.7	6.4
ي. ا	1065 to 1050	6.4	6.2	6.5	6.6	6.7	7.4	7.1	6.8	6.6	6.6	6.6	6.5
(-) (-)	1050 to 1035	6.4	6.2	6.4	6.5	6.7	7.1	6.9	6.7	6.5	6.7	6.7	6.4
Range (ft msl)	1035 to 1020	6.3	6.2	6.3	6.4	6.5	6.8	6.7	6.5	6.3	6.7	6.6	6.5
Ra	1020 to 1005	6.4	6.1	6.3	6.4	6.5	6.6	6.5	6.3	5.9	6.5	6.6	6.5
рu	1005 to 990	6.3	6.1	6.3	6.4	6.4	6.6	6.5	6.2	5.9	6.2	6.4	6.3
ggi	990 to 975	6.3	6.0	6.2	6.3	6.2	6.5	6.4	6.0	6.0	6.2	6.0	6.1
Ze.	975 to 960	6.3	6.1	6.1	6.2	6.2	6.4	6.4	6.0	5.9	6.2	6.0	5.8
l Ē	960 to 945	6.3	6.1	6.2	6.1	6.2	6.3	6.3	6.0	5.9	6.0	5.7	5.7
ne	945 to 930	6.5	6.2	5.9	6.0	6.1	6.2	6.2	5.9	5.9	6.1	5.5	5.7
Measurement Reading	930 to 915			5.9		6.1	5.8		5.6	5.9			
nse	915 to 900				•								
٧e٤	900 to 885												
	885 to 870					Mir	nimum Rea	ading 918.	1 ft				
	870 to 855												
	< 855												
	1991 to 1994	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	6.1	5.9	6.2	6.5	6.6	6.7	6.7	6.7	6.6	6.0	6.3	6.2
_	1095 to 1080	6.1	6.0	6.2	6.5	6.6	6.7	6.7	6.6	6.4	6.2	6.3	6.2
Isu	1080 to 1065	6.1	6.0	6.2	6.3	6.6	6.6	6.5	6.5	6.4	6.1	6.3	6.3
Range (ft msl)	1065 to 1050	6.0	6.0	6.1	6.2	6.4	6.4	6.3	6.3	6.2	6.1	6.3	6.2
<u>e</u>	1050 to 1035	6.0	5.9	6.1	6.2	6.3	6.3	6.1	6.0	5.9	6.0	6.3	6.2
l gr	1035 to 1020	6.0	5.9	6.0	6.1	6.2	6.2	6.0	5.9	5.8	5.9	6.2	6.2
8	1020 to 1005	6.0	5.9	6.0	6.1	6.2	6.1	6.0	5.9	5.7	5.8	6.0	6.2
eading	1005 to 990	6.0	5.9	6.0	6.0	6.1	6.1	5.9	5.9	5.7	5.7	5.8	5.9
adi	990 to 975	6.0	5.9	5.9	5.9	6.0	6.0	5.9	5.8	5.7	5.6	5.6	5.8
Re	975 to 960	6.0	5.9	5.9	5.8	5.9	5.9	5.8	5.8	5.6	5.6	5.6	5.5
ř	960 to 945	5.9	5.9	5.9	5.8	5.9	5.9	5.8	5.8	5.6	5.5	5.5	5.5
шe	945 to 930	5.7	5.9	5.9	5.7	5.8	5.9	5.7	5.7	5.6	5.5	5.6	5.6
Measurement R	930 to 915	6.0				5.8		5.7	5.8	5.6		5.3	
ası	915 to 900												
Me	900 to 885												
	885 to 870					Mir	nimum Rea	ading 926.	6 ft				
	870 to 855												
	< 855												
	< Acidic					Neutral					В	asic >	
1	2	3	4	5	6	7	8	9	10	11	12	13	14

	Jocas	see D_2_5	51.0: Mor	thly pH (S	l) (Top:	Pre Bad Cr	eek Opera	tion, Botto	om: Post I	Bad Creek	Operation	n)	
	1975 to 1991	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	6.4	6.3	6.3	6.4	6.4	6.5	6.8	6.5	6.7	6.6	6.4	6.2
	1095 to 1080	7.1	6.3	6.6	6.7	6.7	7.0	7.0	7.0	6.9	6.9	6.9	6.6
S	1080 to 1065												
<u> </u>	1065 to 1050												
e (†	1050 to 1035												
ng	1035 to 1020												
Ra	1020 to 1005												
ng	1005 to 990												
gdi	990 to 975												
Re	975 to 960					Mir	imum Poo	dina 1000	0 #				
 	960 to 945					IVIII	iiiiiuiii Rea	ding 1082.	ο π				
πe	945 to 930												
re	930 to 915												
Measurement Reading Range (ft msl)	915 to 900												
J eÿ	900 to 885												
-	885 to 870												
	870 to 855												
	< 855												
	1991 to 2010	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	5.8	6.5	6.4	6.9	6.7	5.7	6.7	6.6	6.6	6.7	6.8	6.2
_	1095 to 1080		6.7						7.1			6.9	
lsu	1080 to 1065												
<u>≠</u>	1065 to 1050												
<u>e</u>	1050 to 1035												
Jug	1035 to 1020												
Ĕ	1020 to 1005												
<u> </u>													
⊒ .	1005 to 990												
adin	990 to 975												
Reading Range (ft msl)	990 to 975 975 to 960					Mir	imum Rea	nding 1083.	7 ft				
ent Readin	990 to 975 975 to 960 960 to 945					Mir	imum Rea	nding 1083.	7 ft				
ment Readin	990 to 975 975 to 960 960 to 945 945 to 930					Mir	imum Rea	nding 1083.	7 ft				
urement Readin	990 to 975 975 to 960 960 to 945 945 to 930 930 to 915					Mir	imum Rea	nding 1083.	7 ft				
asurement Readin	990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900					Mir	imum Rea	nding 1083.	7 ft				
Measurement Readin	990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885					Mir	imum Rea	nding 1083.	7 ft				
Measurement Readin	990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870					Mir	imum Rea	nding 1083.	7 ft				
Measurement Readin	990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870 870 to 855					Mir	imum Rea	nding 1083.	7 ft				
Measurement Readin	990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870 870 to 855 < 855						imum Rea	nding 1083.	7 ft				
Measurement Readin	990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870 870 to 855	3	4	5	6	Mir Neutral	nimum Rea	nding 1083.	7 ft	11	E 12	Basic >	14

	Jocas	see D_2_5	64.0: Mon	thly pH (S	l) (Top: F	Pre Bad Cro	eek Opera	tion, Botte	om: Post E	Bad Creek	Operation	n)	
	1976 to 1991	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	6.2	6.2	6.2	6.6	6.9	7.1	7.4	7.3	7.0	6.5	6.5	6.1
	1095 to 1080	6.4	6.3	6.4	6.6	6.8	7.2	7.3	7.1	7.0	6.6	6.6	6.2
ls.	1080 to 1065	6.5	6.2	6.4	6.5	6.5	7.0	6.9	6.8	6.7	6.5	6.6	6.2
Range (ft msl)	1065 to 1050	6.3	6.1	6.4	6.5	6.5	6.8	6.6	6.4	6.4	6.5	6.5	6.2
e (1	1050 to 1035	6.4	6.0	6.3	6.3	6.4	6.7	6.5	6.3	6.2	6.3	6.5	6.1
пg	1035 to 1020	6.3	6.0	6.2	6.3	6.3	6.5	6.3	6.2	6.2	6.2	6.3	6.1
Ra	1020 to 1005	6.4	6.0	6.2	6.2	6.2	6.4	6.2	6.0	6.0	6.0	6.3	6.1
ng	1005 to 990	6.3	6.0	6.2	6.2	6.3	6.4	6.1	6.0	6.0	5.9	6.1	6.0
gdi	990 to 975	6.3	6.0	6.2	6.2	6.2	6.4	6.3	6.0	6.1	5.9	5.9	5.9
Re	975 to 960	6.5	6.1	6.2	6.2	6.3	6.3	6.2	6.1	6.1	6.0	6.1	5.8
뒽	960 to 945	6.3	6.1	6.3	6.2	6.3	6.4	6.2	6.2	6.2	5.9	5.9	5.7
ше	945 to 930	6.2	6.1	6.1	6.2	6.2	6.3	6.3	6.1	6.1	6.0	5.9	5.6
Measurement Reading	930 to 915	6.1	6.1	6.1	6.2	6.2	6.3	6.3	6.1	6.0	6.0	5.8	5.5
asu	915 to 900	6.1	5.8	6.1	6.1	6.1	6.2	6.2	6.0	6.0	6.0	5.8	5.6
Μe	900 to 885	6.1	5.8	6.1	6.1	6.2	6.1	6.1	5.9	6.0	6.0	5.8	5.5
	885 to 870	6.0	5.8	6.0	6.2	6.0	6.3	6.1	5.9	5.9	6.1	5.7	5.6
	870 to 855	5.4		5.9	6.4	6.1	6.0	6.1	6.2	5.6	5.9	5.5	5.6
	< 855					Mir	nimum Re	ading 864.	7 ft				
	1991 to 2015	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	6.4	6.3	6.6	6.8	7.1	6.9	6.9	7.0	6.8	6.5	6.6	6.6
	1095 to 1080	6.5	6.5	6.6	6.8	7.0	6.9	6.8	7.0	6.8	6.7	6.8	6.6
ms	1080 to 1065	6.4	6.4	6.6	6.7	6.9	6.8	6.7	6.9	6.7	6.7	6.8	6.6
(ft msl)	1065 to 1050	6.5	6.4	6.5	6.6	6.8	6.7	6.6	6.7	6.7	6.7	6.7	6.6
je (1050 to 1035	6.5	6.4	6.5	6.6	6.7	6.6	6.5	6.6	6.6	6.6	6.8	6.6
Range	1035 to 1020	6.4	6.4	6.5	6.5	6.6	6.5	6.4	6.5	6.4	6.6	6.7	6.6
<u>~</u>	1020 to 1005	6.4	6.4	6.4	6.4	6.5	6.4	6.3	6.3	6.2	6.4	6.6	6.6
eading	1005 to 990	6.5	6.3	6.4	6.3	6.4	6.2	6.1	6.2	6.1	6.0	6.3	6.4
ad	990 to 975	6.4	6.4	6.4	6.3	6.3	6.1	6.0	6.0	6.0	5.9	6.0	6.1
<u> </u>	975 to 960	6.2	6.3	6.3	6.2	6.2	6.0	5.9	6.0	5.9	5.9	5.9	5.9
	960 to 945	6.1	6.2	6.3	6.1	6.2	5.9	5.8	6.0	5.8	5.8	5.9	5.8
Measurement	945 to 930	5.9	6.1	6.2	6.0	6.1	5.9	5.8	5.9	5.9	5.8	5.9	5.8
ure	930 to 915	5.8	6.1	6.2	6.0	6.0	5.9	5.8	5.9	5.8	5.8	5.9	5.8
ası	915 to 900	5.9	6.1	6.1	6.0	6.1	5.8	5.8	5.9	5.8	5.8	5.9	5.8
Μe	900 to 885	5.7	5.8	6.0	5.8	5.8	5.8	5.7	5.9	5.7	5.7	5.7	5.5
	885 to 870	5.7	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.7	5.9	5.7
	870 to 855	5.6	5.7	5.7	5.6		5.8	6.3	6.0		5.7	6.1	
	< 855						nimum Re	ading 864.4	4 ft				
	< Acidic					Neutral						Basic >	
1	2	3	4	5	6	7	8	9	10	11	12	13	14

	Jocas			1									
	1987 to 1991	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	6.3	6.2	6.3	6.3	6.3	6.8	7.4	7.2	6.9	6.5	6.5	6.3
	1095 to 1080	6.5	6.5	6.6	6.6	6.6	6.8	7.2	7.3	6.8	6.7	6.7	6.4
Range (ft msl)	1080 to 1065	6.6	6.5	6.7	6.6	6.7	6.8	6.9	6.9	6.7	6.8	6.8	6.4
Ħ)	1065 to 1050	6.5	6.4	6.6	6.5	6.5	6.6	6.6	6.6	6.6	6.6	6.6	6.4
ge	1050 to 1035	6.7	6.4	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.6	6.4	6.3
anç	1035 to 1020	6.7	6.3	6.4	6.4	6.3	6.3	6.3	6.3	6.2	6.4	6.4	6.3
	1020 to 1005	7.1	6.3	6.4	6.4	6.4	6.4	6.2	6.1	6.0	6.3	6.3	6.3
<u>:</u>	1005 to 990	6.9	6.3	6.4	6.2	6.2	6.3	6.2	6.1	6.1	6.3	6.3	6.1
Reading	990 to 975	6.9	6.3	6.4	6.2	5.9	6.1	6.2	6.0	6.0	6.5	6.2	6.1
Re	975 to 960	7.3	6.4	7.0	6.6	5.7	6.1	6.2	6.1	6.1	7.0	6.2	6.2
ŗ	960 to 945					5.8							
me	945 to 930												
<u>r</u>	930 to 915												
ası	915 to 900												
Measurement	900 to 885					Mir	nimum Rea	ading 959.	9 ft				
_	885 to 870												
	870 to 855												
	< 855		_										
	1991 to 2017	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	
	1991 to 2017 <i>1110 to 1095</i>	6.5	6.3	6.6	6.6	7.0	6.8	6.8	6.9	6.6	6.4	6.7	6.5
<u> </u>	1991 to 2017 1110 to 1095 1095 to 1080	6.5 6.5	6.3 6.4	6.6 6.6	6.6 6.6	7.0 6.9	6.8 6.8	6.8 6.7	6.9 6.9	6.6 6.7	6.4 6.6	6.7 6.7	6.5 6.6
nsl)	1991 to 2017 1110 to 1095 1095 to 1080 1080 to 1065	6.5 6.5 6.5	6.3 6.4 6.4	6.6 6.6 6.6	6.6 6.6 6.6	7.0 6.9 6.8	6.8 6.8 6.7	6.8 6.7 6.7	6.9 6.9 6.8	6.6 6.7 6.7	6.4 6.6 6.7	6.7 6.7 6.7	6.6 6.6
ft msl)	1991 to 2017 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050	6.5 6.5 6.5 6.5	6.3 6.4 6.4 6.3	6.6 6.6 6.6 6.5	6.6 6.6 6.6 6.6	7.0 6.9 6.8 6.8	6.8 6.8 6.7 6.6	6.8 6.7 6.7 6.6	6.9 6.9 6.8 6.6	6.6 6.7 6.7 6.6	6.4 6.6 6.7 6.6	6.7 6.7 6.7 6.7	6.6 6.6 6.5
le (ft msl)	1991 to 2017 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035	6.5 6.5 6.5 6.5	6.3 6.4 6.4 6.3 6.4	6.6 6.6 6.5 6.5	6.6 6.6 6.6 6.6 6.5	7.0 6.9 6.8 6.8 6.7	6.8 6.8 6.7 6.6 6.6	6.8 6.7 6.7 6.6 6.6	6.9 6.9 6.8 6.6 6.6	6.6 6.7 6.7 6.6 6.6	6.4 6.6 6.7 6.6 6.6	6.7 6.7 6.7 6.7 6.7	6.5 6.6 6.5 6.5
inge (ft msl)	1991 to 2017 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020	6.5 6.5 6.5 6.5 6.5 6.4	6.3 6.4 6.4 6.3	6.6 6.6 6.5 6.5 6.5	6.6 6.6 6.6 6.5 6.5	7.0 6.9 6.8 6.8 6.7 6.7	6.8 6.8 6.7 6.6	6.8 6.7 6.7 6.6	6.9 6.9 6.8 6.6	6.6 6.7 6.7 6.6	6.4 6.6 6.7 6.6	6.7 6.7 6.7 6.7	6.6 6.6 6.6 6.6
Range	1991 to 2017 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035	6.5 6.5 6.5 6.5	6.3 6.4 6.4 6.3 6.4	6.6 6.6 6.5 6.5	6.6 6.6 6.6 6.6 6.5	7.0 6.9 6.8 6.8 6.7	6.8 6.8 6.7 6.6 6.6	6.8 6.7 6.7 6.6 6.6	6.9 6.9 6.8 6.6 6.6	6.6 6.7 6.7 6.6 6.6	6.4 6.6 6.7 6.6 6.6	6.7 6.7 6.7 6.7 6.7	6.6 6.6 6.5 6.6
Range	1991 to 2017 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990	6.5 6.5 6.5 6.5 6.4 6.5 6.4	6.3 6.4 6.4 6.3 6.4 6.3 6.4 6.3	6.6 6.6 6.5 6.5 6.6 6.6 6.5	6.6 6.6 6.6 6.5 6.5 6.5 6.5	7.0 6.9 6.8 6.8 6.7 6.7 6.8 6.7	6.8 6.8 6.7 6.6 6.6 6.6 6.6 6.5	6.8 6.7 6.7 6.6 6.6 6.6 6.6 6.5	6.9 6.8 6.6 6.6 6.6 6.6 6.6	6.6 6.7 6.7 6.6 6.6 6.6 6.6	6.4 6.6 6.7 6.6 6.6 6.6 6.6 6.5	6.7 6.7 6.7 6.7 6.7 6.7 6.7	6.5 6.6 6.6 6.6 6.6 6.6
Range	1991 to 2017 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975	6.5 6.5 6.5 6.5 6.4 6.5 6.4 6.4	6.3 6.4 6.3 6.4 6.3 6.4 6.3 6.3	6.6 6.6 6.5 6.5 6.6 6.6 6.5	6.6 6.6 6.6 6.5 6.5 6.5 6.4 6.4	7.0 6.9 6.8 6.8 6.7 6.7 6.8 6.7	6.8 6.8 6.7 6.6 6.6 6.6 6.6 6.5 6.6	6.8 6.7 6.7 6.6 6.6 6.6 6.6 6.5 6.5	6.9 6.8 6.6 6.6 6.6 6.6 6.6 6.5	6.6 6.7 6.7 6.6 6.6 6.6 6.6 6.6 6.5	6.4 6.6 6.7 6.6 6.6 6.6 6.5 6.5	6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7	6.6 6.6 6.6 6.6 6.6 6.6
eading Range	1991 to 2017 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990	6.5 6.5 6.5 6.5 6.4 6.5 6.4	6.3 6.4 6.4 6.3 6.4 6.3 6.4 6.3	6.6 6.6 6.5 6.5 6.6 6.6 6.5	6.6 6.6 6.6 6.5 6.5 6.5 6.5	7.0 6.9 6.8 6.8 6.7 6.7 6.8 6.7	6.8 6.8 6.7 6.6 6.6 6.6 6.6 6.5	6.8 6.7 6.7 6.6 6.6 6.6 6.6 6.5	6.9 6.8 6.6 6.6 6.6 6.6 6.6	6.6 6.7 6.7 6.6 6.6 6.6 6.6	6.4 6.6 6.7 6.6 6.6 6.6 6.6 6.5	6.7 6.7 6.7 6.7 6.7 6.7 6.7	6.6 6.6 6.6 6.6 6.6 6.6
eading Range	1991 to 2017 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975	6.5 6.5 6.5 6.5 6.4 6.5 6.4 6.4	6.3 6.4 6.3 6.4 6.3 6.4 6.3 6.3	6.6 6.6 6.5 6.5 6.6 6.6 6.5	6.6 6.6 6.6 6.5 6.5 6.5 6.4 6.4	7.0 6.9 6.8 6.8 6.7 6.7 6.8 6.7	6.8 6.8 6.7 6.6 6.6 6.6 6.6 6.5 6.6	6.8 6.7 6.7 6.6 6.6 6.6 6.6 6.5 6.5	6.9 6.8 6.6 6.6 6.6 6.6 6.6 6.5	6.6 6.7 6.7 6.6 6.6 6.6 6.6 6.6 6.5	6.4 6.6 6.7 6.6 6.6 6.6 6.5 6.5	6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7	6.6 6.6 6.6 6.6 6.6 6.6
eading Range	1991 to 2017 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960	6.5 6.5 6.5 6.5 6.4 6.5 6.4 6.4	6.3 6.4 6.3 6.4 6.3 6.4 6.3 6.3	6.6 6.6 6.5 6.5 6.6 6.6 6.5	6.6 6.6 6.6 6.5 6.5 6.5 6.4 6.4	7.0 6.9 6.8 6.8 6.7 6.7 6.8 6.7	6.8 6.8 6.7 6.6 6.6 6.6 6.6 6.5 6.6	6.8 6.7 6.7 6.6 6.6 6.6 6.6 6.5 6.5	6.9 6.8 6.6 6.6 6.6 6.6 6.6 6.5	6.6 6.7 6.7 6.6 6.6 6.6 6.6 6.6 6.5	6.4 6.6 6.7 6.6 6.6 6.6 6.5 6.5	6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7	6.6 6.6 6.6 6.6 6.6 6.6
eading Range	1991 to 2017 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945	6.5 6.5 6.5 6.5 6.4 6.5 6.4 6.4	6.3 6.4 6.3 6.4 6.3 6.4 6.3 6.3	6.6 6.6 6.5 6.5 6.6 6.6 6.5	6.6 6.6 6.6 6.5 6.5 6.5 6.4 6.4	7.0 6.9 6.8 6.8 6.7 6.7 6.8 6.7	6.8 6.8 6.7 6.6 6.6 6.6 6.6 6.5 6.6	6.8 6.7 6.7 6.6 6.6 6.6 6.6 6.5 6.5	6.9 6.8 6.6 6.6 6.6 6.6 6.6 6.5	6.6 6.7 6.7 6.6 6.6 6.6 6.6 6.6 6.5	6.4 6.6 6.7 6.6 6.6 6.6 6.5 6.5	6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7	6.6 6.6 6.6 6.6 6.6 6.6
eading Range	1991 to 2017 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930	6.5 6.5 6.5 6.5 6.4 6.5 6.4 6.4	6.3 6.4 6.3 6.4 6.3 6.4 6.3 6.3	6.6 6.6 6.5 6.5 6.6 6.6 6.5	6.6 6.6 6.6 6.5 6.5 6.5 6.4 6.4	7.0 6.9 6.8 6.8 6.7 6.7 6.8 6.7 6.7	6.8 6.8 6.7 6.6 6.6 6.6 6.5 6.6 6.4	6.8 6.7 6.7 6.6 6.6 6.6 6.5 6.5 6.3	6.9 6.9 6.8 6.6 6.6 6.6 6.6 6.5 6.1	6.6 6.7 6.7 6.6 6.6 6.6 6.6 6.6 6.5	6.4 6.6 6.7 6.6 6.6 6.6 6.5 6.5	6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7	6.5 6.6 6.5 6.6 6.6 6.6
eading Range	1991 to 2017 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915	6.5 6.5 6.5 6.5 6.4 6.5 6.4 6.4	6.3 6.4 6.3 6.4 6.3 6.4 6.3 6.3	6.6 6.6 6.5 6.5 6.6 6.6 6.5	6.6 6.6 6.6 6.5 6.5 6.5 6.4 6.4	7.0 6.9 6.8 6.8 6.7 6.7 6.8 6.7 6.7	6.8 6.8 6.7 6.6 6.6 6.6 6.5 6.6 6.4	6.8 6.7 6.7 6.6 6.6 6.6 6.6 6.5 6.5	6.9 6.9 6.8 6.6 6.6 6.6 6.6 6.5 6.1	6.6 6.7 6.7 6.6 6.6 6.6 6.6 6.6 6.5	6.4 6.6 6.7 6.6 6.6 6.6 6.5 6.5	6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7	6.5 6.6 6.5 6.6 6.6 6.6
Range	1991 to 2017 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900	6.5 6.5 6.5 6.5 6.4 6.5 6.4 6.4	6.3 6.4 6.3 6.4 6.3 6.4 6.3 6.3	6.6 6.6 6.5 6.5 6.6 6.6 6.5	6.6 6.6 6.6 6.5 6.5 6.5 6.4 6.4	7.0 6.9 6.8 6.8 6.7 6.7 6.8 6.7 6.7	6.8 6.8 6.7 6.6 6.6 6.6 6.5 6.6 6.4	6.8 6.7 6.7 6.6 6.6 6.6 6.5 6.5 6.3	6.9 6.9 6.8 6.6 6.6 6.6 6.6 6.5 6.1	6.6 6.7 6.7 6.6 6.6 6.6 6.6 6.6 6.5	6.4 6.6 6.7 6.6 6.6 6.6 6.5 6.5	6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7	6.6 6.6 6.6 6.6 6.6 6.6
eading Range	1991 to 2017 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885	6.5 6.5 6.5 6.5 6.4 6.5 6.4 6.4	6.3 6.4 6.3 6.4 6.3 6.4 6.3 6.3	6.6 6.6 6.5 6.5 6.6 6.6 6.5	6.6 6.6 6.6 6.5 6.5 6.5 6.4 6.4	7.0 6.9 6.8 6.8 6.7 6.7 6.8 6.7 6.7	6.8 6.8 6.7 6.6 6.6 6.6 6.5 6.6 6.4	6.8 6.7 6.7 6.6 6.6 6.6 6.5 6.5 6.3	6.9 6.9 6.8 6.6 6.6 6.6 6.6 6.5 6.1	6.6 6.7 6.7 6.6 6.6 6.6 6.6 6.6 6.5	6.4 6.6 6.7 6.6 6.6 6.6 6.5 6.5	6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7	6.5 6.6 6.5 6.6 6.6 6.6
eading Range	1991 to 2017 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870	6.5 6.5 6.5 6.5 6.4 6.5 6.4 6.4	6.3 6.4 6.3 6.4 6.3 6.4 6.3 6.3	6.6 6.6 6.5 6.5 6.6 6.6 6.5	6.6 6.6 6.6 6.5 6.5 6.5 6.4 6.4	7.0 6.9 6.8 6.8 6.7 6.7 6.8 6.7 6.7	6.8 6.8 6.7 6.6 6.6 6.6 6.5 6.6 6.4	6.8 6.7 6.7 6.6 6.6 6.6 6.5 6.5 6.3	6.9 6.9 6.8 6.6 6.6 6.6 6.6 6.5 6.1	6.6 6.7 6.7 6.6 6.6 6.6 6.6 6.6 6.5	6.4 6.6 6.7 6.6 6.6 6.6 6.5 6.5	6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7	6.5 6.6 6.5 6.6 6.6 6.6
eading Range	1991 to 2017 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870 870 to 855	6.5 6.5 6.5 6.5 6.4 6.5 6.4 6.2	6.3 6.4 6.3 6.4 6.3 6.4 6.3 6.3	6.6 6.6 6.5 6.5 6.6 6.6 6.5	6.6 6.6 6.6 6.5 6.5 6.5 6.4 6.4	7.0 6.9 6.8 6.8 6.7 6.7 6.8 6.7 6.7	6.8 6.8 6.7 6.6 6.6 6.6 6.5 6.6 6.4	6.8 6.7 6.7 6.6 6.6 6.6 6.5 6.5 6.3	6.9 6.9 6.8 6.6 6.6 6.6 6.6 6.5 6.1	6.6 6.7 6.7 6.6 6.6 6.6 6.6 6.6 6.5	6.4 6.6 6.7 6.6 6.6 6.6 6.5 6.5 6.3	6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7	Dec 6.5 6.6 6.6 6.6 6.6 6.5 6.3

	Jocas	see E_2_5	557.0: Mor	thly pH (S	l) (Top: F	re Bad Cr	eek Opera	ation, Bott	om: Post E	Bad Creek	Operation	n)	
	1975 to 1991	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	6.3	6.3	6.5	6.7	6.7	7.0	7.2	7.2	6.8	6.4	6.6	6.2
	1095 to 1080	6.4	6.4	6.6	6.7	6.7	7.0	7.2	7.0	6.9	6.5	6.7	6.2
ls.	1080 to 1065	6.4	6.3	6.5	6.6	6.5	6.9	7.0	6.7	6.7	6.4	6.7	6.2
<u> </u>	1065 to 1050	6.3	6.2	6.5	6.5	6.5	6.6	6.7	6.4	6.4	6.5	6.6	6.2
e (†	1050 to 1035	6.3	6.1	6.4	6.4	6.4	6.6	6.5	6.2	6.2	6.2	6.6	6.2
Range (ft msl)	1035 to 1020	6.3	6.1	6.4	6.3	6.3	6.4	6.3	6.1	6.1	6.1	6.4	6.2
	1020 to 1005	6.4	6.1	6.4	6.2	6.3	6.3	6.2	6.0	6.0	6.0	6.2	6.1
ng	1005 to 990	6.3	6.0	6.3	6.3	6.3	6.3	6.2	6.0	6.0	5.8	6.1	5.9
adi	990 to 975	6.3	6.1	6.3	6.3	6.3	6.3	6.1	6.0	6.1	5.8	5.8	5.8
Re	975 to 960	6.3	6.2	6.4	6.3	6.3	6.2	6.2	6.0	6.0	5.8	5.9	5.7
゠	960 to 945	6.4	6.4	6.4	6.3	6.4	6.4	6.2	6.0	6.0	5.9	5.9	5.7
Measurement Reading	945 to 930	6.2	6.3	6.4	6.2	6.3	6.3	6.2	6.0	6.0	5.8	5.8	5.5
<u> </u>	930 to 915	6.1	6.4	6.3	6.2	6.3	6.2	6.2	6.0	5.9	5.8	5.8	5.5
ası	915 to 900	6.1	6.1	6.3	6.2	6.2	6.2	6.1	6.0	6.2	5.8	5.7	5.5
Ăe	900 to 885	6.0	6.2	6.3	6.2	6.2	6.2	6.2	5.9	6.0	5.9	5.8	5.5
_	885 to 870	5.9	6.2	6.2	6.2	6.2	6.1	6.1	5.9	6.0	6.0	5.6	5.5
	870 to 855	5.8	6.2	6.2	6.2	6.2	6.1	6.3	5.9	6.0	5.9	5.7	5.5
	< 855	5.9	6.1	6.1	6.1	6.2	6.1	6.2	6.0	6.0	6.1	5.8	5.5
	1991 to 2015	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	6.4	6.2	6.6	6.7	7.1	6.9	6.9	7.1	6.8	6.4	6.5	6.5
_	1095 to 1080	6.5	6.4	6.7	6.8	7.0	7.1	7.0	7.1	6.8	6.7	6.7	6.6
lsπ	1080 to 1065	6.5	6.4	6.6	6.7	7.0	6.9	6.9	6.9	6.8	6.8	6.7	6.6
Range (ft msl)	1065 to 1050	6.5	6.4	6.5	6.6	6.8	6.7	6.7	6.7	6.6	6.7	6.7	6.6
<u>e</u>	1050 to 1035	6.5	6.3	6.4	6.5	6.6	6.5	6.4	6.4	6.3	6.6	6.7	6.6
anç	1035 to 1020	6.5	6.3	6.4	6.4	6.5	6.4	6.2	6.2	6.1	6.6	6.7	6.6
8	1020 to 1005	6.5	6.3	6.4	6.4	6.4	6.2	6.1	6.0	5.9	6.3	6.6	6.6
ading	1005 to 990	6.5	6.3	6.4	6.2	6.3	6.1	6.0	6.0	5.9	5.9	6.3	6.4
äd	990 to 975	6.4	6.3	6.4	6.2	6.2	6.1	5.9	6.0	5.9	5.8	5.9	6.1
	975 to 960	6.3	6.3	6.3	6.2	6.2	6.0	5.9	5.9	5.8	5.8	5.9	5.8
ınt	960 to 945	6.1	6.3	6.3	6.1	6.2	6.0	5.8	5.9	5.8	5.8	5.8	5.7
me	945 to 930	6.1	6.2	6.2	6.0	6.1	5.9	5.8	5.9	5.8	5.7	5.8	5.7
Measurement R	930 to 915	6.0	6.2	6.2	6.0	6.1	5.9	5.8	5.9	5.8	5.8	5.8	5.7
ası	915 to 900	5.9	6.2	6.2	6.0	6.1	5.9	5.8	5.9	5.8	5.8	5.8	5.7
¥	900 to 885	5.9	6.1	6.2	5.9	6.1	5.8	5.7	5.8	5.7	5.7	5.8	5.7
	885 to 870	5.9	6.1	6.2	5.9	6.0	5.9	5.8	5.8	5.7	5.7	5.8	5.7
	870 to 855	6.0	6.1	6.1	5.9	6.0	5.8	5.7	5.8	5.7	5.7	5.8	5.7
	< 855	6.0	6.1	6.1	5.8	6.0	5.8	5.8	5.8	5.7	5.7	5.8	5.8
	< Acidic					Neutral					E	Basic >	
1	2	3	4	5	6	7	8	9	10	11	12	13	14

		see F_2_5		1		1		T	1			1	I _
	1986 to 1991	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	6.7	6.2	6.5	6.7	7.0	7.1	7.3	7.3	6.9	6.8	6.4	6.4
	1095 to 1080	6.7	6.6	6.8	6.8	7.1	7.6	7.3	7.4	6.9	6.8	6.9	6.4
ШS	1080 to 1065	6.7	6.6	6.8	6.8	6.9	7.5	7.4	7.5	6.8	6.7	6.8	6.5
Ħ)	1065 to 1050	6.6	6.5	6.9	6.7	6.8	7.3	7.3	7.0	6.6	6.8	6.9	6.5
ge	1050 to 1035	6.6	6.5	6.7	6.6	6.7	7.1	6.9	6.7	6.6	6.7	6.8	6.5
Range (ft msl)	1035 to 1020	6.6	6.5	6.7	6.5	6.5	6.6	6.7	6.4	6.4	6.6	6.8	6.5
	1020 to 1005	6.6	6.4	6.7	6.5	6.5	6.5	6.3	6.1	6.0	6.5	6.7	6.5
<u>i.</u>	1005 to 990	6.6	6.4	6.6	6.4	6.4	6.3	6.3	6.0	5.9	6.2	6.6	6.5
ad	990 to 975	6.5	6.3	6.5	6.4	6.3	6.2	6.3	6.0	5.9	6.1	6.4	6.5
8	975 to 960	6.5	6.4	6.5	6.2	6.3	6.1	6.3	6.0	6.0	6.1	6.1	6.3
ì	960 to 945	6.5	6.0	6.6		5.8	6.0	6.0	6.3	6.0	6.3	6.3	6.1
Measurement Reading	945 to 930												
nre	930 to 915												
ası	915 to 900								_				
ĕ	900 to 885					Mir	nimum Rea	ading 946.	5 ft				
	885 to 870												
	870 to 855												
	< 855		1	Ī	1	1		1	1	-		1	1
	1991 to 2015	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	6.5	6.4	6.6	6.7	7.0	7.1	7.2	7.4	6.9	6.4	6.6	6.5
=	1095 to 1080	6.6	6.5	6.7	6.8	7.0	7.2	7.6	7.6	6.8	6.6	6.8	6.6
SE .	1080 to 1065	6.6	6.5	6.6	6.7	6.8	6.9	7.2	7.2	6.7	6.7	6.8	6.6
(ft msl)	1065 to 1050	6.6	6.5	6.6	6.5	6.6	6.6	6.5	6.7	6.6	6.6	6.7	6.6
Range	1050 to 1035	6.6	6.4	6.5	6.4	6.4	6.3	6.2	6.4	6.4	6.5	6.7	6.6
an	1035 to 1020	6.6	6.4	6.5	6.4	6.3	6.2	6.0	6.1	6.2	6.5	6.7	6.6
X	1020 to 1005	6.5	6.4	6.4	6.3	6.2	6.1	5.9	5.9	5.9	6.3	6.6	6.6
ing	1005 to 990	6.6	6.4	6.4	6.2	6.2	6.0	5.8	5.9	5.8	5.8	6.5	6.5
ad	990 to 975	6.5	6.4	6.4	6.1	6.1	5.9	5.8	5.9	5.8	5.7	6.1	6.3
~	1 0/6 to 06()	6.5	6.4	6.3	6.1	6.0	5.8	5.7	5.9	5.8	5.8	6.1	6.1
Re	975 to 960			0.0	- -					~ ~			
ent Re	960 to 945	6.3	6.3	6.2	5.9	6.0	5.8	5.8	5.9	6.0	5.9	6.1	6.1
ment Re	960 to 945 945 to 930			6.2	5.9	6.0	5.8	5.8	5.9	6.0	5.9	6.1	6.1
urement Re	960 to 945 945 to 930 930 to 915			6.2	5.9	6.0	5.8	5.8	5.9	6.0	5.9	6.1	6.1
asurement Re	960 to 945 945 to 930 930 to 915 915 to 900			6.2	5.9					6.0	5.9	6.1	6.1
Measurement Reading	960 to 945 945 to 930 930 to 915 915 to 900 900 to 885			6.2	5.9			5.8 ading 945.3		6.0	5.9	6.1	6.1
Measurement Re	960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870			6.2	5.9					6.0	5.9	6.1	6.1
Measurement Re	960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870 870 to 855			6.2	5.9					6.0	5.9	6.1	6.1
Measurement Re	960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870 870 to 855 < 855	6.3		6.2	5.9	Mir				6.0			6.1
Measurement Re	960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870 870 to 855	6.3		6.2 5	5.9					6.0		6.1 Basic >	6.1

		see F_2_5	56.0: Mor	nthly pH (S	i) (Iop: P	re Bad Cre	ek Opera	tion, Bott	om: Post E	sad Creek	Operation	1)	
	1975 to 1991	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	6.6	6.3	6.4	6.7	6.8	7.2	7.2	7.3	6.9	6.3	6.6	6.3
	1095 to 1080	6.5	6.5	6.6	6.8	6.8	7.3	7.4	7.3	6.9	6.5	6.7	6.3
(ft msl)	1080 to 1065	6.6	6.3	6.6	6.9	6.6	6.8	7.1	6.8	6.6	6.4	6.6	6.3
<u></u>	1065 to 1050	6.6	6.4	6.5	6.7	6.6	6.6	6.6	6.5	6.2	6.5	6.5	6.3
e (1	1050 to 1035	6.5	6.2	6.4	6.6	6.5	6.6	6.5	6.2	6.1	6.3	6.5	6.2
Range	1035 to 1020	6.5	6.2	6.4	6.6	6.4	6.3	6.3	6.1	6.1	6.1	6.4	6.2
Ra	1020 to 1005	6.6	6.2	6.4	6.5	6.3	6.2	6.3	6.0	5.9	6.0	6.2	6.2
ng	1005 to 990	6.5	6.1	6.3	6.5	6.4	6.2	6.2	6.0	5.9	5.9	6.1	6.1
Reading	990 to 975	6.5	6.1	6.3	6.5	6.3	6.2	6.1	6.0	6.0	5.8	5.9	6.0
Ze.	975 to 960	6.5	6.3	6.4	6.4	6.3	6.2	6.1	6.0	5.9	5.8	5.9	5.9
=	960 to 945	6.5	6.4	6.5	6.4	6.3	6.2	6.2	5.9	5.9	6.0	5.9	5.9
nei	945 to 930	6.5	6.3	6.3	6.2	6.2	6.2	6.1	5.9	6.0	5.9	5.8	5.9
Measurement	930 to 915	6.6	6.4	6.4	6.4	6.1	5.7	6.1	5.9	5.9	6.1	6.2	5.9
nsĸ	915 to 900					6.3							
Je?	900 to 885												
~	885 to 870					A 4:.	airean Dan	- din -: 011	<i>1</i>				
	870 to 855					IVIII	nimum Rea	aaing 914.	1 π				
	< 855												
	1991 to 2015	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	6.5	6.3	6.6	6.7	7.2	7.1	7.2	7.3	6.8	6.5	6.6	6.5
	1095 to 1080	6.6	6.5	6.7	6.9	7.3	7.3	7.5	7.5	6.9	6.7	6.8	6.6
(ft msl)	1080 to 1065	6.6	6.5	6.7	6.8	7.1	7.1	7.3	7.3	6.7	6.7	6.8	6.6
# <u></u>	1065 to 1050	6.6	6.4	6.6	6.6	6.8	6.8	6.8	6.8	6.6	6.6	6.8	6.6
<u>.</u>	1050 to 1035	6.6	6.4	6.5	6.4	6.5	6.4	6.2	6.3	6.3	6.6	6.7	6.6
Range	1035 to 1020	6.6	6.4	6.5	6.4	6.4	6.2	6.1	6.1	6.1	6.5	6.7	6.6
æ	1020 to 1005	6.5	6.4	6.4	6.3	6.3	6.1	6.0	6.0	5.9	6.3	6.6	6.6
eading	1005 to 990	6.5	6.4	6.4	6.3	6.3	6.1	5.9	6.0	5.8	5.9	6.4	6.4
adi	990 to 975	6.5	6.4	6.4	6.2	6.2	6.0	5.9	6.0	5.8	5.8	6.0	6.2
Re	975 to 960	6.4	6.4	6.4	6.2	6.1	5.9	5.8	5.9	5.8	5.8	5.8	6.0
<u>t</u>	960 to 945	6.4	6.4	6.3	6.1	6.1	5.9	5.7	5.9	5.7	5.7	5.8	5.9
пе	945 to 930	6.4	6.3	6.3	6.0	6.0	5.8	5.7	5.8	5.8	5.8	5.9	5.8
Measurement	930 to 915	6.2	6.2	6.5	5.9	6.0	5.7	5.8	5.8	5.7	5.8	5.9	5.9
nse	915 to 900												
۸e٤	900 to 885												
~	885 to 870					Mir	nimum Rea	ading 918.	4 ft				
	870 to 855												
	< 855												
	< Acidic					Neutral					В	Basic >	

Lake Jocassee Phosphorus

	Joo	cassee B_	2_558.7: N	Ionthly Av	eraged Pl	nosphorus	s (mg/L) 19	987 to 199	1 (Pre Bac	l Creek Op	peration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.008	0.005	0.011	0.028	0.008	0.005	0.005	0.006	0.008	0.005	0.039	
	1095 to 1080	0.015	0.015	0.015	0.019	0.015	0.015		0.015	0.015	0.015	0.015	0.015
ıısı	1080 to 1065		0.005	0.011	0.017	0.008	0.005	0.005	0.016	0.006	0.005	0.029	
Range (ft msl)	1065 to 1050	0.015	0.015	0.015	0.015	0.015	0.015	0.037	0.015	0.015	0.015	0.015	0.017
() ()	1050 to 1035				0.016	0.017	0.005	0.005	0.007	0.006	0.015		
l Bu	1035 to 1020	0.015	0.010	0.013	0.015	0.015	0.015	0.015	0.015	0.015		0.038	
Ra	1020 to 1005							0.005		0.005	0.015	0.015	0.040
ng	1005 to 990	0.015	0.010	0.013	0.014	0.008	0.005		0.010		0.005	0.027	
adi	990 to 975				0.015	0.015	0.032	0.015	0.015	0.015	0.015	0.015	0.015
Re	975 to 960		0.010	0.009	0.018	0.006	0.005	0.005	0.034	0.007	0.005	0.042	
Ħ	960 to 945	0.015		0.015	0.015	0.015	0.034	0.015	0.015	0.015	0.015	0.015	0.015
ле	945 to 930		0.005	0.011	0.015	0.008	0.005	0.005	0.009	0.005	0.005	0.036	
<u>ē</u>	930 to 915	0.015	0.015	0.015	0.020	0.020	0.015	0.019	0.015	0.015	0.015	0.015	0.015
asn	915 to 900		0.005	0.010	0.014	0.006	0.005	0.005	0.024	0.005	0.023	0.032	
Measurement Reading	900 to 885	0.015	0.015	0.015	0.015	0.015			0.015	0.015	0.015	0.015	0.026
	885 to 870			0.010		0.020	0.005	0.005	0.013	0.005	0.016		
	870 to 855	0.015	0.010	0.015	0.015	0.015	0.015	0.015	0.015	0.015			
	< 855		0.005	0.012	0.019	0.016	0.011	0.005	0.013	0.006	0.016	0.015	0.015
	Joc	assee B_2	2_558.7: M	onthly Av	eraged Ph	osphorus	(mg/L) 19	91 to 2013	(Post Ba	d Creek O	peration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.003	0.006	0.006	0.006	0.006	0.003	0.005	0.005	0.004	0.005	0.006	0.008
_	1095 to 1080	0.005	0.005	0.005	0.006	0.006	0.006	0.006	0.005	0.005	0.006	0.006	0.005
ns	1080 to 1065	0.005	0.005	0.005	0.006	0.005	0.006	0.005	0.006	0.005	0.006	0.006	0.005
# <u>#</u>	1065 to 1050	0.005	0.005	0.005	0.006	0.005	0.005	0.006	0.005	0.005	0.005	0.005	0.005
<u>e</u>	1050 to 1035												
ding Range (ft msl)	1035 to 1020												
8	1020 to 1005												
ng	1005 to 990												
	990 to 975												
Re	975 to 960												
Ę	960 to 945												
шe	945 to 930												
Measurement Rea	930 to 915												
ası	915 to 900												
Ĭ Ž	900 to 885												
	885 to 870												
	870 to 855												
	< 855											0.004	
		Legend	0.000										0.020

	Joo	cassee B_	3_558.0: N	Ionthly Av	/eraged P	hosphorus	s (mg/L) 19	975 to 199 [.]	1 (Pre Bac	d Creek Op	peration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.008	0.007	0.008	0.011	0.010	0.010	0.008	0.011	0.008	0.011	0.014	0.005
	1095 to 1080	0.010	0.015	0.009	0.008	0.012	0.013	0.011	0.013	0.011	0.012	0.027	0.011
ısı	1080 to 1065	0.005	0.007	0.008	0.010	0.009	0.008	0.009	0.010	0.007	0.011	0.010	0.005
Range (ft msl)	1065 to 1050	0.011	0.013	0.014	0.014	0.014	0.009	0.012	0.012	0.010	0.012	0.011	0.017
() ()	1050 to 1035	0.009	0.008	0.005	0.009	0.006	0.009	0.008	0.008	0.006	0.012	0.009	0.005
l l	1035 to 1020	0.010	0.009	0.011	0.018	0.017	0.010	0.011	0.011	0.008	0.019	0.013	0.011
	1020 to 1005	0.007	0.011	0.006	0.006	0.008	0.013	0.008	0.007	0.007	0.009	0.014	0.011
ng	1005 to 990	0.015	0.009	0.010	0.012	0.012	0.008	0.008	0.009	0.006	0.009	0.019	0.008
adi	990 to 975	0.006	0.008	0.006	0.008	0.017	0.025	0.019	0.009	0.008	0.009	0.010	0.026
Re	975 to 960	0.005	0.008	0.010	0.009	0.013	0.007	0.006	0.010	0.006	0.007	0.009	0.006
Ħ	960 to 945	0.021	0.015	0.015	0.015	0.015	0.015	0.034	0.015	0.015	0.015	0.015	0.015
me	945 to 930	0.006	0.005	0.008	0.010	0.007	0.005	0.005	0.007	0.007	0.007	0.014	0.005
<u>ē</u>	930 to 915	0.015	0.015	0.015	0.016	0.015	0.015	0.038	0.015	0.015	0.015	0.029	0.017
ası	915 to 900	0.005	0.009	0.007	0.013	0.014	0.010	0.009	0.013	0.008	0.011	0.014	0.007
Measurement Reading	900 to 885	0.027	0.019	0.015	0.015	0.015	0.015	0.029	0.015	0.012	0.010	0.010	0.013
_	885 to 870	0.009	0.005	0.008	0.010	0.006	0.006	0.006	0.025	0.007	0.022	0.005	0.005
	870 to 855	0.017	0.010	0.015	0.016	0.015	0.056	0.015	0.015	0.010	0.005	0.022	0.008
	< 855	0.021	0.010	0.010	0.012	0.017	0.012	0.009	0.011	0.012	0.011	0.016	0.011
	Joc	assee B_3	T .	onthly Av	eraged Ph	osphorus	(mg/L) 19	91 to 2013	(Post Ba	d Creek O	peration)	r	1
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.006	0.008	0.009	0.007	0.007	0.007	0.005	0.008	0.006	0.007	0.007	0.010
	1095 to 1080	0.005	0.005	0.005	0.006	0.006	0.005	0.005	0.006	0.005	0.007	0.012	0.008
πs	1080 to 1065	0.009	0.012	0.008	0.008	0.007	0.010	0.006	0.009	0.009	0.006	0.008	0.019
(ft msl)	1065 to 1050	0.005	0.006	0.008	0.006	0.005	0.005	0.005	0.005	0.006	0.006	0.005	0.004
) ge	1050 to 1035	0.014	0.014	0.008	0.008	0.007	0.010	0.006	0.007	0.011	0.012	0.006	0.019
Range	1035 to 1020	0.002	0.006	0.006					0.005	0.004	0.004	0.005	0.005
<u> </u>	1020 to 1005	0.013	0.011	0.010	0.009	0.010	0.010	0.007	0.007	0.012	0.011	0.007	0.018
ding	1005 to 990	0.002	0.655	0.005	0.515	0.665	0.000	0.005	0.005	0.004	0.002	0.002	0.004
ad	990 to 975	0.014	0.006	0.009	0.010	0.008	0.009	0.008	0.012	0.011	0.010	0.007	0.017
Rea	975 to 960	0.002	0.005	0.023					0.004	0.002	0.002	0.002	0.002
ř	960 to 945	0.005	0.004	0.005	0.655	0.003	0.615	0.000	0.002	0.000	0.005	0.65=	0.002
Measurement	945 to 930	0.013	0.007	0.011	0.009	0.010	0.013	0.006	0.011	0.006	0.014	0.007	0.019
nre	930 to 915		0.00	0.005		0.05=	0.07	0.000	0.015	0.01	0.002	0.05=	
as	915 to 900	0.011	0.006	0.009	0.010	0.007	0.012	0.006	0.010	0.011	0.011	0.007	0.020
¥	900 to 885	0.011	0.041	0.027	0.640	0.00=	0.011	0.000	0.000	0.002	0.002	0.002	0.002
	885 to 870	0.014	0.007	0.009	0.010	0.007	0.011	0.006	0.008	0.011	0.012	0.007	0.025
	870 to 855	0.002	0.00=	0.010	0.044	0.000	0.040	0.00=	0.011	0.002	0.002	0.002	0.002
	< 855	0.012	0.007	0.012	0.011	0.006	0.012	0.007	0.011	0.009	0.011	0.008	0.016
		Legend	0.000										0.020

	Joo	cassee C_	2_559.0: N	Ionthly Av	eraged Pl	nosphorus	s (mg/L) 19	987 to 199 [.]	1 (Pre Bad	l Creek Op	eration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.006	0.007	0.010	0.014	0.007	0.007	0.006	0.006	0.006	0.006	0.005	0.006
	1095 to 1080	0.016	0.015	0.015	0.016	0.036	0.027	0.032	0.015	0.015	0.015	0.032	0.013
ısı	1080 to 1065	0.005	0.006	0.010	0.010	0.005	0.006	0.006	0.005	0.006	0.005	0.005	0.005
Range (ft msl)	1065 to 1050	0.040	0.020	0.015	0.055	0.015	0.020	0.038		0.015	0.010	0.010	0.012
() ()	1050 to 1035	0.009	0.005	0.006	0.024	0.006	0.006	0.005	0.005	0.007	0.005	0.005	0.005
ng	1035 to 1020	0.015	0.010	0.014	0.018	0.015	0.031	0.020	0.015	0.012	0.005	0.030	0.008
	1020 to 1005	0.005	0.015	0.005	0.005	0.006	0.006	0.005	0.005	0.005	0.015	0.010	0.015
ng	1005 to 990	0.015	0.010	0.013	0.017	0.012	0.005		0.074	0.006	0.020	0.005	0.006
adi	990 to 975	0.006	0.010	0.005	0.012	0.006	0.020	0.018	0.010	0.015	0.015	0.010	0.015
Re	975 to 960		0.010	0.010	0.016	0.014	0.005	0.005	0.033	0.007	0.007	0.030	0.006
=	960 to 945	0.015	0.015	0.015	0.015	0.015	0.016	0.016	0.015	0.015	0.015	0.015	0.015
Measurement Reading	945 to 930	0.022	0.005	0.009	0.010	0.006	0.005	0.005	0.016	0.006	0.005	0.016	0.005
<u>e</u>	930 to 915	0.015	0.015	0.015	0.015	0.015	0.035	0.015	0.015	0.015	0.015	0.015	0.011
asu	915 to 900	0.014	0.006	0.008	0.010	0.006	0.005	0.005	0.010	0.005	0.006	0.005	0.005
Μe	900 to 885	0.015	0.015	0.015	0.018	0.015	0.015		0.015	0.015	0.015	0.016	0.011
	885 to 870	0.006	0.006	0.006	0.032	0.010	0.005	0.005	0.008	0.006	0.033	0.005	0.005
	870 to 855	0.015	0.010	0.014	0.015	0.015	0.016	0.015	0.015	0.010	0.005	0.006	0.005
	< 855	0.023	0.011	0.011	0.013	0.010	0.010	0.020	0.023	0.009	0.015	0.013	0.011
	Joc	assee C_2	2_559.0: M	onthly Av	eraged Ph	osphorus	(mg/L) 19	91 to 2013	(Post Ba	d Creek O	peration)	_	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.006	0.007	0.007	0.008	0.006	0.009	0.003	0.007	0.005	0.005	0.007	0.013
	1095 to 1080	0.005	0.005	0.005	0.006	0.006	0.005	0.006	0.006	0.004	0.005	0.006	0.004
ns	1080 to 1065	0.009	0.008	0.010	0.009	0.007	0.009	0.005	0.008	0.009	0.007	0.005	0.013
(ft msl)	1065 to 1050	0.005	0.005	0.005	0.006	0.005	0.005	0.005	0.005	0.004	0.004	0.004	0.004
<u>e</u>	1050 to 1035	0.013	0.010	0.011	0.009	0.009	0.011	0.006	0.010	0.012	0.008	0.013	0.018
Range	1035 to 1020	0.002								0.002	0.004	0.004	0.002
8	1020 to 1005	0.014	0.009	0.011	0.010	0.007	0.008	0.004	0.012	0.011	0.008	0.013	0.019
. 5	1005 to 990	0.015								0.002	0.002	0.002	0.002
<u> </u>		0.015											
ading	990 to 975	0.019	0.010	0.010	0.009	0.008	0.011	0.004	0.010	0.010	0.004	0.015	0.018
Rea	990 to 975 975 to 960			0.010 0.031		0.008	0.011	0.004	0.002		0.004 0.002	0.002	0.002
Rea	990 to 975 975 to 960 960 to 945	0.019 0.004	0.005	0.031	0.005				0.002 0.004	0.010 0.002	0.004 0.002 0.005	0.002 0.035	0.002 0.002
Rea	990 to 975 975 to 960 960 to 945 945 to 930	0.019				0.008	0.011	0.004	0.002	0.010	0.004 0.002 0.005 0.010	0.002	0.002
Rea	990 to 975 975 to 960 960 to 945 945 to 930 930 to 915	0.019 0.004 0.011	0.005 0.011	0.031	0.005 0.010	0.008	0.015	0.005	0.002 0.004 0.014	0.010 0.002 0.008	0.004 0.002 0.005 0.010 0.002	0.002 0.035 0.003	0.002 0.002 0.016
Rea	990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900	0.019 0.004	0.005	0.031 0.009 0.010	0.005				0.002 0.004	0.010 0.002 0.008 0.011	0.004 0.002 0.005 0.010 0.002 0.007	0.002 0.035 0.003 0.015	0.002 0.002 0.016
Measurement Reading	990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885	0.019 0.004 0.011 0.011	0.005 0.011 0.013	0.031 0.009 0.010 0.013	0.005 0.010 0.010	0.008	0.015	0.005	0.002 0.004 0.014 0.013	0.010 0.002 0.008 0.011 0.002	0.004 0.002 0.005 0.010 0.002 0.007 0.002	0.002 0.035 0.003 0.015 0.002	0.002 0.002 0.016 0.011 0.002
Rea	990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870	0.019 0.004 0.011	0.005 0.011	0.031 0.009 0.010	0.005 0.010	0.008	0.015	0.005	0.002 0.004 0.014	0.010 0.002 0.008 0.011 0.002 0.011	0.004 0.002 0.005 0.010 0.002 0.007 0.002 0.007	0.002 0.035 0.003 0.015 0.002 0.015	0.002 0.002 0.016 0.011 0.002 0.010
Rea	990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870 870 to 855	0.019 0.004 0.011 0.011	0.005 0.011 0.013 0.011	0.031 0.009 0.010 0.013 0.011	0.005 0.010 0.010 0.009	0.008 0.008 0.009	0.015 0.012 0.013	0.005 0.007 0.005	0.002 0.004 0.014 0.013 0.012	0.010 0.002 0.008 0.011 0.002 0.011 0.002	0.004 0.002 0.005 0.010 0.002 0.007 0.002 0.007 0.002	0.002 0.035 0.003 0.015 0.002 0.015 0.003	0.002 0.002 0.016 0.011 0.002 0.010 0.002
Rea	990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870	0.019 0.004 0.011 0.011	0.005 0.011 0.013	0.031 0.009 0.010 0.013	0.005 0.010 0.010	0.008	0.015	0.005	0.002 0.004 0.014 0.013	0.010 0.002 0.008 0.011 0.002 0.011	0.004 0.002 0.005 0.010 0.002 0.007 0.002 0.007	0.002 0.035 0.003 0.015 0.002 0.015	0.002 0.002 0.016 0.011 0.002 0.010

	Joo	cassee C_	2_560.0: N	Ionthly Av	/eraged Pl	hosphorus	s (mg/L) 19	975 to 199 [,]	1 (Pre Bac	d Creek Op	peration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.011	0.009	0.008	0.009	0.012	0.007	0.009	0.008	0.007	0.010	0.009	0.005
	1095 to 1080	0.017	0.015	0.009	0.020	0.016	0.011	0.014	0.012	0.012	0.012	0.017	0.010
nsl	1080 to 1065	0.008	0.007	0.008	0.008	0.009	0.008	0.011	0.010	0.006	0.013	0.008	0.005
Range (ft msl)	1065 to 1050	0.017	0.010	0.010	0.051	0.012	0.011	0.013	0.010	0.011	0.011	0.016	0.009
() ()	1050 to 1035	0.008	0.007	0.006	0.008	0.006	0.008	0.010	0.011	0.008	0.008	0.008	0.005
l B	1035 to 1020	0.014	0.008	0.011	0.010	0.014	0.013	0.011	0.010	0.010	0.008	0.011	0.013
	1020 to 1005	0.008	0.008	0.006	0.007	0.008	0.006	0.009	0.007	0.005	0.009	0.010	0.008
ng	1005 to 990	0.010	0.008	0.010	0.017	0.014	0.007	0.009	0.012	0.008	0.008	0.010	0.006
adi	990 to 975	0.009	0.010	0.006	0.006	0.008	0.009	0.014	0.011	0.010	0.010	0.009	0.010
Re	975 to 960	0.011	0.008	0.011	0.010	0.012	0.005	0.009	0.011	0.010	0.007	0.007	0.005
Ħ	960 to 945		0.024	0.015	0.033	0.015	0.015	0.015	0.015	0.015	0.015		0.010
шe	945 to 930	0.005	0.007	0.010	0.010	0.005	0.005	0.005	0.010	0.006	0.006	0.015	0.005
<u>e</u>	930 to 915	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.012
as r	915 to 900	0.008	0.007	0.007	0.010	0.010	0.008	0.009	0.012	0.010	0.008	0.010	0.005
Measurement Reading	900 to 885	0.015	0.016	0.015	0.018	0.022	0.015	0.015	0.015	0.015	0.010	0.014	0.011
	885 to 870	0.007	0.006	0.006	0.010	0.011	0.005	0.005	0.017	0.005	0.007	0.005	0.008
	870 to 855	0.015	0.009	0.014		0.011	0.015	0.015	0.015	0.009	0.005	0.019	0.005
	< 855	0.011	0.012	0.012	0.012	0.013	0.008	0.008	0.011	0.011	0.008	0.013	0.022
	Joc	assee C_2	2_560.0: M	onthly Av	eraged Ph	osphorus	(mg/L) 19	91 to 2013	(Post Ba	d Creek O	peration)	_	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.007	0.007	0.009	0.009	0.006	0.009	0.005	0.008	0.007	0.00E	$\sim \sim \sim \sim$	0.013
	-										0.005	0.007	
	1095 to 1080	0.005	0.009	0.006	0.006	0.005	0.006	0.007	0.005	0.005	0.004	0.005	0.005
nsl)	1095 to 1080 1080 to 1065	0.005 0.009	0.009 0.009	0.006 0.011	0.006 0.009	0.005 0.007	0.006 0.009	0.007 0.007	0.005 0.008	0.005 0.009	0.004 0.007	0.005 0.009	0.005 0.008
ft msl)	1095 to 1080 1080 to 1065 1065 to 1050	0.005 0.009 0.005	0.009 0.009 0.005	0.006 0.011 0.005	0.006 0.009 0.006	0.005 0.007 0.005	0.006 0.009 0.005	0.007 0.007 0.007	0.005 0.008 0.005	0.005 0.009 0.005	0.004 0.007 0.004	0.005 0.009 0.004	0.005 0.008 0.005
Je (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035	0.005 0.009 0.005 0.013	0.009 0.009	0.006 0.011	0.006 0.009	0.005 0.007	0.006 0.009	0.007 0.007	0.005 0.008	0.005 0.009 0.005 0.013	0.004 0.007 0.004 0.007	0.005 0.009 0.004 0.009	0.005 0.008 0.005 0.010
ange (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020	0.005 0.009 0.005 0.013 0.002	0.009 0.009 0.005 0.009	0.006 0.011 0.005 0.010	0.006 0.009 0.006 0.010	0.005 0.007 0.005 0.006	0.006 0.009 0.005 0.012	0.007 0.007 0.007 0.006	0.005 0.008 0.005 0.013	0.005 0.009 0.005 0.013 0.002	0.004 0.007 0.004 0.007 0.002	0.005 0.009 0.004 0.009 0.004	0.005 0.008 0.005 0.010 0.002
Range	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005	0.005 0.009 0.005 0.013 0.002 0.013	0.009 0.009 0.005	0.006 0.011 0.005	0.006 0.009 0.006	0.005 0.007 0.005	0.006 0.009 0.005	0.007 0.007 0.007	0.005 0.008 0.005	0.005 0.009 0.005 0.013 0.002 0.010	0.004 0.007 0.004 0.007 0.002 0.007	0.005 0.009 0.004 0.009 0.004 0.010	0.005 0.008 0.005 0.010 0.002 0.010
Range	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990	0.005 0.009 0.005 0.013 0.002 0.013 0.002	0.009 0.009 0.005 0.009	0.006 0.011 0.005 0.010	0.006 0.009 0.006 0.010	0.005 0.007 0.005 0.006	0.006 0.009 0.005 0.012	0.007 0.007 0.007 0.006	0.005 0.008 0.005 0.013	0.005 0.009 0.005 0.013 0.002 0.010 0.002	0.004 0.007 0.004 0.007 0.002 0.007 0.002	0.005 0.009 0.004 0.009 0.004 0.010 0.003	0.005 0.008 0.005 0.010 0.002 0.010 0.002
ding Range	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975	0.005 0.009 0.005 0.013 0.002 0.013 0.002 0.017	0.009 0.009 0.005 0.009	0.006 0.011 0.005 0.010 0.010	0.006 0.009 0.006 0.010	0.005 0.007 0.005 0.006	0.006 0.009 0.005 0.012	0.007 0.007 0.007 0.006	0.005 0.008 0.005 0.013 0.014	0.005 0.009 0.005 0.013 0.002 0.010 0.002 0.011	0.004 0.007 0.004 0.007 0.002 0.007 0.002 0.009	0.005 0.009 0.004 0.009 0.004 0.010 0.003 0.010	0.005 0.008 0.005 0.010 0.002 0.010 0.002 0.011
Reading Range	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960	0.005 0.009 0.005 0.013 0.002 0.013 0.002	0.009 0.009 0.005 0.009 0.008	0.006 0.011 0.005 0.010	0.006 0.009 0.006 0.010 0.010	0.005 0.007 0.005 0.006	0.006 0.009 0.005 0.012	0.007 0.007 0.007 0.006	0.005 0.008 0.005 0.013 0.014 0.010 0.002	0.005 0.009 0.005 0.013 0.002 0.010 0.002	0.004 0.007 0.004 0.007 0.002 0.007 0.002 0.009 0.002	0.005 0.009 0.004 0.009 0.004 0.010 0.003 0.010 0.003	0.005 0.008 0.005 0.010 0.002 0.010 0.002 0.011 0.002
Reading Range	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945	0.005 0.009 0.005 0.013 0.002 0.013 0.002 0.017 0.004	0.009 0.009 0.005 0.009 0.008 0.010	0.006 0.011 0.005 0.010 0.010 0.011 0.003	0.006 0.009 0.006 0.010 0.010 0.011	0.005 0.007 0.005 0.006 0.007	0.006 0.009 0.005 0.012 0.012	0.007 0.007 0.007 0.006 0.005	0.005 0.008 0.005 0.013 0.014 0.010 0.002 0.004	0.005 0.009 0.005 0.013 0.002 0.010 0.002 0.011 0.002	0.004 0.007 0.004 0.007 0.002 0.007 0.002 0.009 0.002 0.005	0.005 0.009 0.004 0.009 0.004 0.010 0.003 0.010 0.003	0.005 0.008 0.005 0.010 0.002 0.010 0.002 0.011 0.002 0.002
Reading Range	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930	0.005 0.009 0.005 0.013 0.002 0.013 0.002 0.017	0.009 0.009 0.005 0.009 0.008	0.006 0.011 0.005 0.010 0.010	0.006 0.009 0.006 0.010 0.010	0.005 0.007 0.005 0.006	0.006 0.009 0.005 0.012	0.007 0.007 0.007 0.006	0.005 0.008 0.005 0.013 0.014 0.010 0.002	0.005 0.009 0.005 0.013 0.002 0.010 0.002 0.011	0.004 0.007 0.004 0.007 0.002 0.007 0.002 0.009 0.002 0.005 0.009	0.005 0.009 0.004 0.009 0.004 0.010 0.003 0.010 0.003	0.005 0.008 0.005 0.010 0.002 0.010 0.002 0.011 0.002
Reading Range	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915	0.005 0.009 0.005 0.013 0.002 0.013 0.002 0.017 0.004	0.009 0.009 0.005 0.009 0.008 0.010 0.004 0.008	0.006 0.011 0.005 0.010 0.010 0.011 0.003	0.006 0.009 0.006 0.010 0.010 0.011 0.007 0.012	0.005 0.007 0.005 0.006 0.007	0.006 0.009 0.005 0.012 0.012 0.011	0.007 0.007 0.007 0.006 0.005 0.005	0.005 0.008 0.005 0.013 0.014 0.010 0.002 0.004 0.014	0.005 0.009 0.005 0.013 0.002 0.010 0.002 0.011 0.002	0.004 0.007 0.004 0.007 0.002 0.007 0.002 0.009 0.002 0.005 0.009 0.002	0.005 0.009 0.004 0.009 0.004 0.010 0.003 0.010 0.003 0.023 0.003	0.005 0.008 0.005 0.010 0.002 0.010 0.002 0.011 0.002 0.002 0.002
Reading Range	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900	0.005 0.009 0.005 0.013 0.002 0.013 0.002 0.017 0.004	0.009 0.009 0.005 0.009 0.008 0.010	0.006 0.011 0.005 0.010 0.010 0.011 0.003	0.006 0.009 0.006 0.010 0.010 0.011	0.005 0.007 0.005 0.006 0.007	0.006 0.009 0.005 0.012 0.012	0.007 0.007 0.007 0.006 0.005	0.005 0.008 0.005 0.013 0.014 0.010 0.002 0.004	0.005 0.009 0.005 0.013 0.002 0.010 0.002 0.011 0.002	0.004 0.007 0.004 0.007 0.002 0.007 0.002 0.009 0.005 0.009 0.002 0.009	0.005 0.009 0.004 0.009 0.004 0.010 0.003 0.010 0.003 0.023 0.003	0.005 0.008 0.005 0.010 0.002 0.010 0.002 0.011 0.002 0.002 0.008
Reading Range	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885	0.005 0.009 0.005 0.013 0.002 0.013 0.002 0.017 0.004	0.009 0.009 0.005 0.009 0.008 0.010 0.004 0.008	0.006 0.011 0.005 0.010 0.010 0.011 0.003	0.006 0.009 0.006 0.010 0.010 0.011 0.007 0.012	0.005 0.007 0.005 0.006 0.007 0.006	0.006 0.009 0.005 0.012 0.012 0.011	0.007 0.007 0.007 0.006 0.005 0.005	0.005 0.008 0.005 0.013 0.014 0.010 0.002 0.004 0.014	0.005 0.009 0.005 0.013 0.002 0.010 0.002 0.011 0.002 0.009	0.004 0.007 0.004 0.007 0.002 0.007 0.002 0.009 0.002 0.009 0.002 0.009 0.002	0.005 0.009 0.004 0.009 0.004 0.010 0.003 0.010 0.003 0.023 0.003	0.005 0.008 0.005 0.010 0.002 0.010 0.002 0.011 0.002 0.002 0.008
ding Range	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870	0.005 0.009 0.005 0.013 0.002 0.013 0.002 0.017 0.004 0.011	0.009 0.009 0.005 0.009 0.008 0.010 0.004 0.008 0.010	0.006 0.011 0.005 0.010 0.010 0.011 0.003 0.011 0.011	0.006 0.009 0.006 0.010 0.010 0.011 0.007 0.012 0.010	0.005 0.007 0.005 0.006 0.007 0.006 0.006	0.006 0.009 0.005 0.012 0.012 0.011 0.011	0.007 0.007 0.007 0.006 0.005 0.005	0.005 0.008 0.005 0.013 0.014 0.010 0.002 0.004 0.014 0.011	0.005 0.009 0.005 0.013 0.002 0.010 0.002 0.011 0.002 0.013 0.002 0.010	0.004 0.007 0.004 0.007 0.002 0.007 0.002 0.009 0.002 0.009 0.002 0.009 0.002 0.009	0.005 0.009 0.004 0.009 0.004 0.010 0.003 0.010 0.003 0.003 0.009 0.009 0.003	0.005 0.008 0.005 0.010 0.002 0.010 0.002 0.011 0.002 0.002 0.008
Reading Range	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870 870 to 855	0.005 0.009 0.005 0.013 0.002 0.013 0.002 0.017 0.004 0.011	0.009 0.009 0.005 0.009 0.008 0.010 0.004 0.008 0.010	0.006 0.011 0.005 0.010 0.010 0.011 0.003 0.011 0.011	0.006 0.009 0.006 0.010 0.010 0.011 0.007 0.012 0.010 0.010	0.005 0.007 0.005 0.006 0.006 0.006 0.006	0.006 0.009 0.005 0.012 0.012 0.011 0.013	0.007 0.007 0.007 0.006 0.005 0.005 0.006 0.004 0.004	0.005 0.008 0.005 0.013 0.014 0.010 0.002 0.004 0.014 0.011	0.005 0.009 0.005 0.013 0.002 0.010 0.002 0.011 0.002 0.013 0.002 0.010 0.003	0.004 0.007 0.004 0.007 0.002 0.007 0.002 0.009 0.002 0.009 0.002 0.009 0.002 0.009	0.005 0.009 0.004 0.009 0.004 0.010 0.003 0.010 0.003 0.023 0.003 0.009 0.003 0.009 0.008 0.011	0.005 0.008 0.005 0.010 0.002 0.010 0.002 0.011 0.002 0.002 0.008 0.009 0.009 0.002
Reading Range	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870	0.005 0.009 0.005 0.013 0.002 0.013 0.002 0.017 0.004 0.011	0.009 0.009 0.005 0.009 0.008 0.010 0.004 0.008 0.010	0.006 0.011 0.005 0.010 0.010 0.011 0.003 0.011 0.011	0.006 0.009 0.006 0.010 0.010 0.011 0.007 0.012 0.010	0.005 0.007 0.005 0.006 0.007 0.006 0.006	0.006 0.009 0.005 0.012 0.012 0.011 0.011	0.007 0.007 0.007 0.006 0.005 0.005	0.005 0.008 0.005 0.013 0.014 0.010 0.002 0.004 0.014 0.011	0.005 0.009 0.005 0.013 0.002 0.010 0.002 0.011 0.002 0.013 0.002 0.010	0.004 0.007 0.004 0.007 0.002 0.007 0.002 0.009 0.002 0.009 0.002 0.009 0.002 0.009	0.005 0.009 0.004 0.009 0.004 0.010 0.003 0.010 0.003 0.003 0.009 0.009 0.003	0.005 0.008 0.005 0.010 0.002 0.010 0.002 0.011 0.002 0.002 0.008

	Jo	cassee C_	2_562.0: N	Ionthly A	/eraged Pl	hosphorus	s (mg/L) 19	980 to 199	1 (Pre Bac	Creek O	peration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.011	0.009	0.012	0.011	0.010	0.006	0.008	0.011	0.007	0.009	0.007	0.005
	1095 to 1080	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.013	0.015	0.015	0.013
ls!	1080 to 1065	0.005	0.009	0.011	0.015	0.014	0.015	0.010	0.012	0.011	0.008	0.006	0.005
ב	1065 to 1050	0.015	0.012	0.015	0.015	0.019	0.015	0.042	0.015	0.013	0.012	0.017	0.011
e (.	1050 to 1035	0.007	0.010	0.013	0.012	0.007	0.020	0.011	0.017	0.007	0.008	0.007	0.005
ng	1035 to 1020	0.023	0.010	0.014	0.019	0.015		0.019	0.020	0.010	0.009	0.016	0.009
Ra	1020 to 1005		0.010	0.010	0.015	0.006		0.012	0.009		0.011		0.015
ng	1005 to 990	0.017	0.013	0.014	0.023	0.011	0.020	0.019	0.016	0.013	0.015	0.010	0.009
<u>a</u> di	990 to 975	0.005	0.009	0.021	0.015	0.008		0.013	0.012		0.009	0.010	
Ř	975 to 960												
둩	960 to 945												
шe	945 to 930												
<u> </u>	930 to 915												
asr	915 to 900												
Measurement Reading Range (ft msl)	900 to 885												
-	885 to 870					Mi	nimum Rea	ading 964.	5 ft				
	870 to 855												
	< 855												
	Joc	assee C_2			1	_	1		_		ī		
	1110 to 1005	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.008	0.009	0.009	0.011	0.007	0.009	0.006	0.007	0.006	0.007	0.009	0.015
<u> </u>	1095 to 1080	0.005	0.005	0.006	0.007	0.007	0.007	0.006	0.005	0.004	0.004	0.005	0.004
E SE	1080 to 1065	0.009	0.010	0.010	0.011	0.008	0.014	0.008	0.009	0.008	0.008	0.011	0.008
Ħ,	1065 to 1050 1050 to 1035	0.005 0.013	0.006 0.011	0.007	0.008	0.009	0.008 0.014	0.010	0.005 0.016	0.004	0.004	0.005	0.004 0.004
ge	1035 to 1020	0.013	0.011	0.011	0.010	0.008	0.014	0.008	0.010	0.013 0.003	0.009	0.009	0.004
an	1020 to 1005	0.002	0.007			0.006			0.012	0.003	0.003	0.004	0.002
5	1005 to 990	0.010	0.007	0.011	0.013	0.000	0.021	0.012	0.012	0.012	0.010	0.009	0.008
븕	990 to 975	0.010	0.010	0.011	0.013	0.010	0.021	0.012	0.012	0.012	0.010	0.010	0.000
ea	975 to 960												
 	960 to 945												
len l	945 to 930												
ſeπ	930 to 915												
Measurement Reading Range (ft msl)	915 to 900												
<u>ea</u>	900 to 885								_ ~				
≥	885 to 870					Mi	nimum Rea	ading 993.	5 ft				
	870 to 855												
-													
	< 855												

	Jo	cassee C_	2_565.4: N	Ionthly Av	eraged Pl	hosphorus	s (mg/L) 1	987 to 199 [.]	1 (Pre Bac	l Creek Op	peration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.010	0.016	0.011	0.012	0.007	0.007	0.008	0.006	0.009	0.009	0.008	0.006
	1095 to 1080	0.031	0.015	0.015	0.034	0.015	0.017	0.015	0.015	0.015	0.015	0.012	0.013
ısı	1080 to 1065	0.037	0.010	0.010	0.011	0.007	0.006	0.007	0.017	0.007	0.006		0.005
±	1065 to 1050	0.015	0.013	0.015	0.015	0.015	0.015	0.048	0.015	0.015	0.011	0.016	0.011
<u>.)</u>	1050 to 1035	0.012	0.007	0.009	0.011	0.006	0.006	0.006	0.025	0.008	0.005		0.005
ng	1035 to 1020	0.015	0.015	0.013	0.021	0.015	0.015	0.034	0.015	0.011	0.006	0.011	0.008
Ra	1020 to 1005	0.006	0.017	0.008	0.005	0.005	0.005	0.007	0.005	0.007	0.015	0.043	0.015
ng	1005 to 990	0.015	0.010	0.014	0.031	0.011	0.005		0.070	0.006	0.008	0.039	0.012
adi	990 to 975	0.011	0.016	0.009	0.006	0.005	0.010	0.013	0.010	0.015	0.015	0.019	0.015
Re	975 to 960	0.016	0.015	0.013	0.017	0.013	0.005	0.005	0.062	0.007	0.006	0.012	0.005
゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠゠	960 to 945		0.005	0.015	0.026		0.015	0.015	0.015	0.015	0.015		0.014
пе	945 to 930	0.017	0.018	0.011	0.012	0.015	0.011	0.006	0.015	0.008	0.010	0.023	0.009
<u>ē</u>	930 to 915			0.009		0.006	0.007		0.006	0.015			
asn	915 to 900												
Measurement Reading Range (ft msl)	900 to 885												
	885 to 870												
	870 to 855					Mi	nimum Rea	ading 918.1	ft ft				
	< 855												
	Joc	assee C_2	2_565.4: M	onthly Av	eraged Ph	osphorus	(mg/L) 19	91 to 1994	(Post Ba	d Creek O	peration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.013	0.015	0.010	0.011	0.009	0.012	0.008	0.010	0.013	0.009	0.012	0.011
_	1095 to 1080									0.003	0.002	0.004	0.002
πs	1080 to 1065	0.011	0.011	0.006	0.011	0.009	0.011	0.006	0.009	0.011	0.009	0.014	0.010
 	1065 to 1050									0.004	0.002	0.002	0.002
<u>e</u>	1050 to 1035	0.014	0.009	0.009	0.013	0.009	0.013	0.008	0.014	0.013	0.010	0.010	0.009
Range (ft msl)	1035 to 1020	0.002								0.004	0.002	0.003	0.002
<u> </u>	1020 to 1005	0.016	0.010	0.007	0.009	0.008	0.013	0.006	0.012	0.012	0.004	0.014	0.010
ing	1005 to 990	0.002								0.002	0.002	0.005	0.002
ad	990 to 975	0.021	0.010	0.011	0.009	0.008	0.013	0.007	0.013	0.012	0.009	0.014	0.009
Re	975 to 960	0.004							0.002	0.003	0.002	0.004	0.002
Ĭ	960 to 945												0.002
me	945 to 930	0.014	0.011	0.010	0.004	0.014	0.011	0.003	0.012	0.002	0.009	0.016	0.010
<u> </u>	930 to 915	0.002				0.004		0.012	0.005	0.012		0.002	
asn	915 to 900	0.00											
Measu	915 to 900 900 to 885	0.00_											
Measurement Reading	915 to 900 900 to 885 885 to 870					ΛΛi	nimum Re:	adina 926 f	S #				
Measu	915 to 900 900 to 885 885 to 870 870 to 855	0.00				Mi	nimum Rea	ading 926.6	6 ft				
Measu	915 to 900 900 to 885 885 to 870					Mi	nimum Rea	ading 926.6	6 ft				

	Joo	cassee D_2	2_551.0: N	Ionthly Av	eraged P	hosphorus	s (mg/L) 19	975 to 199	1 (Pre Bac	Creek O	peration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.010	0.008	0.010	0.013	0.011	0.019	0.014	0.013	0.012	0.012	0.016	0.006
	1095 to 1080	0.028	0.042	0.023	0.019	0.015	0.017	0.017	0.015	0.014	0.015	0.009	0.035
ısı	1080 to 1065												
T 7	1065 to 1050												
<u>•</u>	1050 to 1035												
l gu	1035 to 1020												
Ř	1020 to 1005												
ng	1005 to 990												
adi	990 to 975												
Re	975 to 960												
Ę	960 to 945					Mir	imum Rea	ding 1082.	8 ft				
l e	945 to 930												
re	930 to 915												
ası	915 to 900												
Measurement Reading Range (ft msl)	900 to 885												
	885 to 870												
	870 to 855												
	< 855												
	Joc	assee D_2	2_551.0: M	onthly Av	eraged Ph	<u>iosphorus</u>	(mg/L) 19	91 to 2011	l (Post Ba	d Creek O	peration)	ı	T.
										_			_
	1110 to 1005	Jan	Feb	Mar	Apr	May	Jun	Jul 0.017	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	Jan 0.020	0.011	Mar 0.005	Apr 0.006	0.008	Jun 0.020	Jul 0.017	0.020	Sep 0.034	Oct 0.033	0.011	0.058
<u> </u>	1095 to 1080												
msl)	1095 to 1080 1080 to 1065		0.011						0.020			0.011	
(ft msl)	1095 to 1080 1080 to 1065 1065 to 1050		0.011						0.020			0.011	
ıge (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035		0.011						0.020			0.011	
Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020		0.011						0.020			0.011	
ig Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005		0.011						0.020			0.011	
ding Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990		0.011						0.020			0.011	
teading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975		0.011						0.020			0.011	
ıt Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960		0.011			0.008	0.020	0.017	0.020 0.005			0.011	
กent Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945		0.011			0.008	0.020		0.020 0.005			0.011	
rement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960		0.011			0.008	0.020	0.017	0.020 0.005			0.011	
surement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930		0.011			0.008	0.020	0.017	0.020 0.005			0.011	
leasurement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915		0.011			0.008	0.020	0.017	0.020 0.005			0.011	
Measurement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900		0.011			0.008	0.020	0.017	0.020 0.005			0.011	
Measurement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885		0.011			0.008	0.020	0.017	0.020 0.005			0.011	
Measurement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870		0.011			0.008	0.020	0.017	0.020 0.005			0.011	

	Jo	cassee D_2	2_564.0: N	Ionthly A	eraged Pl	hosphorus	s (mg/L) 19	976 to 199	1 (Pre Bac	l Creek Op	peration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.007	0.007	0.008	0.010	0.007	0.005	0.008	0.010	0.007	0.008	0.007	0.014
	1095 to 1080	0.015	0.013	0.010	0.020	0.014	0.015	0.015	0.014	0.010	0.010	0.009	0.010
msl)	1080 to 1065	0.016	0.008	0.008	0.010	0.005	0.006	0.009	0.009	0.007	0.008	0.007	0.006
(ft n	1065 to 1050	0.015	0.010	0.018	0.029	0.012	0.008	0.015	0.015	0.011	0.010	0.027	0.016
e (<u>.</u>	1050 to 1035	0.005	0.007	0.011	0.010	0.006	0.006	0.012	0.013	0.009	0.011	0.007	0.005
Range (1035 to 1020	0.015	0.007	0.013	0.015	0.012	0.008	0.013	0.010	0.013	0.006	0.008	0.009
Ra	1020 to 1005	0.010	0.010	0.010	0.012	0.008	0.005	0.014	0.008	0.008	0.012	0.008	0.011
ng	1005 to 990	0.010	0.007	0.008	0.019	0.011	0.005	0.009	0.020	0.010	0.014	0.017	0.008
adi	990 to 975	0.037	0.010	0.010	0.010	0.007	0.008	0.007	0.012	0.010	0.013	0.015	0.012
Re l	975 to 960	0.010	0.014	0.010	0.011	0.014	0.005	0.012	0.022	0.012	0.007	0.012	0.005
Ħ	960 to 945	0.015	0.015	0.015	0.016	0.015	0.011	0.015	0.015	0.015	0.015	0.015	0.011
J e	945 to 930	0.007	0.009	0.006	0.011	0.006	0.005	0.005	0.007	0.007	0.005	0.015	0.007
Measurement Reading	930 to 915	0.015	0.016	0.027	0.015	0.015	0.011	0.015	0.015	0.015	0.015	0.015	0.012
asr	915 to 900	0.008	0.009	0.011	0.005	0.007	0.005	0.005	0.007	0.006	0.005	0.007	0.005
Α̈́Θ	900 to 885	0.021	0.017	0.015	0.016	0.015	0.011	0.012	0.025	0.015	0.010	0.037	0.014
	885 to 870	0.025	0.016	0.012	0.015	0.015	0.008	0.005	0.022	0.006	0.015	0.033	0.014
	870 to 855	0.015		0.065	0.015	0.009		0.006	0.005	0.007	0.006	0.007	0.009
	< 855					Mi	nimum Rea	ading 864.7	7 ft				
	Joc	assee D_2	_564.0: M	onthly Av	eraged Ph	osphorus	(mg/L) 19	91 to 2013	(Post Ba	d Creek O	peration)	_	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.013	0.011	0.011	0.010	0.008	0.010	0.006	0.008	0.009	0.015	0.012	0.010
	1095 to 1080	0.005	0.005	0.005	0.007	0.006	0.005	0.006	0.005	0.005	0.004	0.005	0.004
πs	1080 to 1065	0.010	0.008	0.010	0.013	0.007	0.012	0.007	0.018	0.009	0.005	0.010	0.008
(ft msl)	1065 to 1050	0.005	0.006	0.006	0.007	0.005	0.005	0.008	0.005	0.004	0.004	0.005	0.004
) ge	1050 to 1035	0.014	0.010	0.011	0.010	0.009	0.012	0.005	0.013	0.012	0.007	0.014	0.009
Range	1035 to 1020	0.002								0.002	0.003	0.003	0.002
<u>~</u>	1020 to 1005	0.013	0.009	0.008	0.010	0.008	0.013	0.006	0.011	0.011	0.009	0.015	0.010
ding	1005 to 990	0.006	0.045	0.015	0.044	0.000	0.075	0.000	0.075	0.002	0.002	0.004	0.002
ad	990 to 975	0.019	0.010	0.010	0.011	0.008	0.010	0.006	0.012	0.011	0.007	0.015	0.010
8	975 to 960	0.008	0.00=	ı	0.00=	I			0.002	0.002	0.002	0.003	0.002
ent	960 to 945	0.040	0.005	0.000	0.007	0.000	0.040	0.000	0.004	0.040	0.005	0.038	0.002
Measurement Rea	945 to 930	0.012	0.010	0.009	0.012	0.008	0.012	0.006	0.015	0.010	0.009	0.003	0.011
nre	930 to 915	0.040	0.011	0.000	0.644	0.000	0.010	0.000	0.010	0.011	0.002	0.04=	0.000
as	915 to 900	0.012	0.011	0.009	0.014	0.020	0.013	0.006	0.010	0.011	0.009	0.015	0.008
ĕ	900 to 885	0.005	0.005	0.000	0.000	0.006	0.003	0.00=	0.010	0.005	0.002	0.003	0.014
	885 to 870	0.004	0.029	0.002	0.006	0.028	0.017	0.007	0.016	0.018	0.004	0.008	0.005
	870 to 855	0.037	0.006	0.016	0.011	ļ	0.018	 	0.004		0.014	0.005	
	< 855					Mi	nımum Rea	ading 864.4	1 ft				
		Legend	0.000										0.020

	Joo	cassee D_	2_564.1: N	<i>l</i> ionthly Av	veraged Pi	nospnorus	s (mg/L) 1	988 to 199	1 (Pre Bad	l Creek Op	peration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.005	0.014	0.008	0.005	0.006	0.006	0.010	0.010	0.009	0.006	0.007	0.006
	1095 to 1080	0.014	0.013	0.024	0.017	0.012	0.011	0.009	0.011	0.010	0.009	0.009	0.009
ısı	1080 to 1065	0.018	0.013	0.012	0.012	0.013	0.015	0.019	0.019	0.014	0.011	0.014	0.020
Range (ft msl)	1065 to 1050	0.022	0.030	0.025	0.014	0.012	0.014	0.011	0.021	0.013	0.009	0.013	0.009
	1050 to 1035	0.012	0.012	0.013	0.018	0.020	0.009	0.010	0.033	0.022	0.009	0.009	0.035
ıng	1035 to 1020	0.006	0.014	0.015	0.016	0.016	0.016	0.010	0.031	0.025	0.006	0.010	0.011
Ra	1020 to 1005	0.017	0.015	0.018	0.018	0.012	0.016	0.014	0.034	0.041	0.012	0.034	0.027
ng	1005 to 990	0.013	0.026	0.025	0.037	0.019	0.012	0.012	0.033	0.027	0.022	0.018	0.006
adi	990 to 975	0.011	0.056	0.038	0.016	0.019	0.014	0.018	0.033	0.046	0.043	0.031	0.008
Reading	975 to 960	0.013	0.024	0.041	0.044		0.020	0.017	0.051	0.054	0.032	0.021	0.005
nt	960 to 945					0.008							
пе	945 to 930												
Ē	930 to 915												
Measurement	915 to 900												
Me.	900 to 885												
_	885 to 870					Mil	nimum Rea	ading 959.9	9 ft				
	885 10 870												
	870 to 855												
	870 to 855 < 855	assee D_2	2_564.1: M	onthly Av	eraged Ph			91 to 2013	3 (Post Ba	d Creek O	peration)		
	870 to 855 < 855 Joc	Jan	Feb	Mar	Apr	osphorus May	(mg/L) 19 Jun	Jul	Aug	Sep	Oct	Nov	Dec
	870 to 855 < 855 Joc 1110 to 1095	Jan 0.011	Feb 0.010	Mar 0.009	Apr 0.011	osphorus May 0.008	(mg/L) 19 Jun 0.014	Jul 0.006	Aug 0.008	Sep 0.026	Oct 0.007	0.012	0.009
(1	870 to 855 < 855 Joc 1110 to 1095 1095 to 1080	Jan 0.011 0.009	Feb 0.010 0.009	Mar 0.009 0.008	Apr 0.011 0.008	0.008 0.009	Jun 0.014 0.012	Jul 0.006 0.006	Aug 0.008 0.008	Sep 0.026 0.009	Oct 0.007 0.004	0.012 0.009	0.009 0.007
nsl)	870 to 855 < 855 Joc 1110 to 1095 1095 to 1080 1080 to 1065	Jan 0.011 0.009 0.009	Feb 0.010 0.009 0.009	0.009 0.008 0.009	Apr 0.011 0.008 0.009	0.008 0.009 0.008	Jun 0.014 0.012 0.012	Jul 0.006 0.006 0.007	Aug 0.008 0.008 0.009	Sep 0.026 0.009 0.010	0.007 0.004 0.005	0.012 0.009 0.009	0.009 0.007 0.007
ft msl)	870 to 855 < 855 Joc 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050	Jan 0.011 0.009 0.009 0.009	Feb 0.010 0.009 0.009 0.009	0.009 0.008 0.009 0.009	Apr 0.011 0.008 0.009 0.016	0.008 0.009 0.008 0.009	Jun 0.014 0.012 0.012 0.012	Jul 0.006 0.006 0.007 0.006	Aug 0.008 0.008 0.009 0.015	Sep 0.026 0.009 0.010 0.009	Oct 0.007 0.004 0.005 0.007	0.012 0.009 0.009 0.011	0.009 0.007 0.007 0.008
ge (ft msl)	870 to 855 < 855 Joc 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035	Jan 0.011 0.009 0.009 0.009 0.013	Feb 0.010 0.009 0.009 0.009 0.010	Mar 0.009 0.008 0.009 0.009 0.011	Apr 0.011 0.008 0.009 0.016 0.010	0.008 0.008 0.009 0.008 0.008 0.008	Jun 0.014 0.012 0.012 0.012 0.012 0.012	Jul 0.006 0.006 0.007 0.006 0.008	Aug 0.008 0.008 0.009 0.015 0.021	Sep 0.026 0.009 0.010 0.009 0.011	Oct 0.007 0.004 0.005 0.007 0.007	0.012 0.009 0.009 0.011 0.012	0.009 0.007 0.007 0.008 0.008
ange (ft msl)	870 to 855 < 855 Joc 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020	Jan 0.011 0.009 0.009 0.009 0.013 0.011	Feb 0.010 0.009 0.009 0.009 0.010 0.011	Mar 0.009 0.008 0.009 0.009 0.011 0.009	Apr 0.011 0.008 0.009 0.016 0.010 0.010	0.008 0.008 0.009 0.008 0.008 0.008 0.008	Jun 0.014 0.012 0.012 0.012 0.012 0.012 0.016	Jul 0.006 0.006 0.007 0.006 0.008 0.007	Aug 0.008 0.008 0.009 0.015 0.021 0.014	Sep 0.026 0.009 0.010 0.009 0.011 0.010	Oct 0.007 0.004 0.005 0.007 0.007	0.012 0.009 0.009 0.011 0.012 0.012	0.009 0.007 0.007 0.008 0.008 0.006
Range (ft msl)	870 to 855 < 855 Joc 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005	Jan 0.011 0.009 0.009 0.009 0.013 0.011 0.010	Feb 0.010 0.009 0.009 0.009 0.010 0.011 0.011	Mar 0.009 0.008 0.009 0.009 0.011 0.009 0.013	Apr 0.011 0.008 0.009 0.016 0.010 0.010 0.011	0.008 0.008 0.008 0.008 0.008 0.008 0.008	Jun 0.014 0.012 0.012 0.012 0.012 0.012 0.016 0.011	Jul 0.006 0.006 0.007 0.006 0.008 0.007 0.009	Aug 0.008 0.008 0.009 0.015 0.021 0.014 0.018	Sep 0.026 0.009 0.010 0.009 0.011 0.010 0.010	Oct 0.007 0.004 0.005 0.007 0.007 0.007	0.012 0.009 0.009 0.011 0.012 0.012 0.012	0.009 0.007 0.007 0.008 0.008 0.006 0.008
	870 to 855 < 855 Joc 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990	Jan 0.011 0.009 0.009 0.009 0.013 0.011 0.010 0.012	Feb 0.010 0.009 0.009 0.009 0.010 0.011 0.011 0.010	Mar 0.009 0.008 0.009 0.009 0.011 0.009	Apr 0.011 0.008 0.009 0.016 0.010 0.010	0.008 0.008 0.009 0.008 0.008 0.008 0.008	Jun 0.014 0.012 0.012 0.012 0.012 0.012 0.016	Jul 0.006 0.006 0.007 0.006 0.008 0.007 0.009 0.008	Aug 0.008 0.008 0.009 0.015 0.021 0.014 0.018 0.026	Sep 0.026 0.009 0.010 0.009 0.011 0.010 0.010 0.012	Oct 0.007 0.004 0.005 0.007 0.007 0.006 0.005	0.012 0.009 0.009 0.011 0.012 0.012 0.012 0.013	0.009 0.007 0.007 0.008 0.008 0.006 0.008 0.009
	870 to 855 < 855 Joc 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975	Jan 0.011 0.009 0.009 0.009 0.013 0.011 0.010 0.012 0.002	Feb 0.010 0.009 0.009 0.009 0.010 0.011 0.011 0.010 0.005	Mar 0.009 0.008 0.009 0.009 0.011 0.009 0.013 0.009	Apr 0.011 0.008 0.009 0.016 0.010 0.010 0.011 0.010	0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008	Jun 0.014 0.012 0.012 0.012 0.012 0.016 0.011 0.012	Jul 0.006 0.006 0.007 0.006 0.008 0.007 0.009 0.008	Aug 0.008 0.008 0.009 0.015 0.021 0.014 0.018 0.026 0.002	Sep 0.026 0.009 0.010 0.009 0.011 0.010 0.010 0.012 0.003	Oct 0.007 0.004 0.005 0.007 0.007 0.007 0.006 0.005 0.003	0.012 0.009 0.009 0.011 0.012 0.012 0.012 0.013 0.003	0.009 0.007 0.007 0.008 0.008 0.006 0.008 0.009 0.002
	870 to 855 < 855 Joc 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960	Jan 0.011 0.009 0.009 0.009 0.013 0.011 0.010 0.012	Feb 0.010 0.009 0.009 0.009 0.010 0.011 0.011 0.010	Mar 0.009 0.008 0.009 0.009 0.011 0.009 0.013	Apr 0.011 0.008 0.009 0.016 0.010 0.010 0.011	0.008 0.008 0.008 0.008 0.008 0.008 0.008	Jun 0.014 0.012 0.012 0.012 0.012 0.012 0.016 0.011	Jul 0.006 0.006 0.007 0.006 0.008 0.007 0.009 0.008	Aug 0.008 0.008 0.009 0.015 0.021 0.014 0.018 0.026	Sep 0.026 0.009 0.010 0.009 0.011 0.010 0.010 0.012	Oct 0.007 0.004 0.005 0.007 0.007 0.006 0.005	0.012 0.009 0.009 0.011 0.012 0.012 0.012 0.013	0.009 0.007 0.007 0.008 0.008 0.006 0.008 0.009
	870 to 855 < 855 Joc 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945	Jan 0.011 0.009 0.009 0.009 0.013 0.011 0.010 0.012 0.002	Feb 0.010 0.009 0.009 0.009 0.010 0.011 0.011 0.010 0.005	Mar 0.009 0.008 0.009 0.009 0.011 0.009 0.013 0.009	Apr 0.011 0.008 0.009 0.016 0.010 0.010 0.011 0.010	0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008	Jun 0.014 0.012 0.012 0.012 0.012 0.016 0.011 0.012	Jul 0.006 0.006 0.007 0.006 0.008 0.007 0.009 0.008	Aug 0.008 0.008 0.009 0.015 0.021 0.014 0.018 0.026 0.002	Sep 0.026 0.009 0.010 0.009 0.011 0.010 0.010 0.012 0.003	Oct 0.007 0.004 0.005 0.007 0.007 0.007 0.006 0.005 0.003	0.012 0.009 0.009 0.011 0.012 0.012 0.012 0.013 0.003	0.009 0.007 0.007 0.008 0.008 0.006 0.008 0.009 0.002
	870 to 855 < 855 Joc 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930	Jan 0.011 0.009 0.009 0.009 0.013 0.011 0.010 0.012 0.002	Feb 0.010 0.009 0.009 0.009 0.010 0.011 0.011 0.010 0.005	Mar 0.009 0.008 0.009 0.009 0.011 0.009 0.013 0.009	Apr 0.011 0.008 0.009 0.016 0.010 0.010 0.011 0.010	0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008	Jun 0.014 0.012 0.012 0.012 0.012 0.016 0.011 0.012	Jul 0.006 0.006 0.007 0.006 0.008 0.007 0.009 0.008	Aug 0.008 0.008 0.009 0.015 0.021 0.014 0.018 0.026 0.002	Sep 0.026 0.009 0.010 0.009 0.011 0.010 0.010 0.012 0.003	Oct 0.007 0.004 0.005 0.007 0.007 0.007 0.006 0.005 0.003	0.012 0.009 0.009 0.011 0.012 0.012 0.012 0.013 0.003	0.009 0.007 0.007 0.008 0.008 0.006 0.008 0.009 0.002
	870 to 855 < 855 Joc 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915	Jan 0.011 0.009 0.009 0.009 0.013 0.011 0.010 0.012 0.002	Feb 0.010 0.009 0.009 0.009 0.010 0.011 0.011 0.010 0.005	Mar 0.009 0.008 0.009 0.009 0.011 0.009 0.013 0.009	Apr 0.011 0.008 0.009 0.016 0.010 0.010 0.011 0.010	0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008	Jun 0.014 0.012 0.012 0.012 0.012 0.016 0.011 0.012	Jul 0.006 0.006 0.007 0.006 0.008 0.007 0.009 0.008	Aug 0.008 0.008 0.009 0.015 0.021 0.014 0.018 0.026 0.002	Sep 0.026 0.009 0.010 0.009 0.011 0.010 0.010 0.012 0.003	Oct 0.007 0.004 0.005 0.007 0.007 0.007 0.006 0.005 0.003	0.012 0.009 0.009 0.011 0.012 0.012 0.012 0.013 0.003	0.009 0.007 0.007 0.008 0.008 0.006 0.008 0.009 0.002
	870 to 855 < 855 Joc 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900	Jan 0.011 0.009 0.009 0.009 0.013 0.011 0.010 0.012 0.002	Feb 0.010 0.009 0.009 0.009 0.010 0.011 0.011 0.010 0.005	Mar 0.009 0.008 0.009 0.009 0.011 0.009 0.013 0.009	Apr 0.011 0.008 0.009 0.016 0.010 0.010 0.011 0.010	0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008	Jun 0.014 0.012 0.012 0.012 0.012 0.016 0.011 0.012	Jul 0.006 0.006 0.007 0.006 0.008 0.007 0.009 0.008	Aug 0.008 0.008 0.009 0.015 0.021 0.014 0.018 0.026 0.002	Sep 0.026 0.009 0.010 0.009 0.011 0.010 0.010 0.012 0.003	Oct 0.007 0.004 0.005 0.007 0.007 0.007 0.006 0.005 0.003	0.012 0.009 0.009 0.011 0.012 0.012 0.012 0.013 0.003	0.009 0.007 0.007 0.008 0.008 0.006 0.008 0.009 0.002
	870 to 855 < 855 Joc 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885	Jan 0.011 0.009 0.009 0.009 0.013 0.011 0.010 0.012 0.002	Feb 0.010 0.009 0.009 0.009 0.010 0.011 0.011 0.010 0.005	Mar 0.009 0.008 0.009 0.009 0.011 0.009 0.013 0.009	Apr 0.011 0.008 0.009 0.016 0.010 0.010 0.011 0.010	0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008	Jun 0.014 0.012 0.012 0.012 0.012 0.016 0.011 0.012	Jul 0.006 0.006 0.007 0.006 0.008 0.007 0.009 0.008 0.012 0.007	Aug 0.008 0.008 0.009 0.015 0.021 0.014 0.018 0.026 0.002	Sep 0.026 0.009 0.010 0.009 0.011 0.010 0.010 0.012 0.003	Oct 0.007 0.004 0.005 0.007 0.007 0.007 0.006 0.005 0.003	0.012 0.009 0.009 0.011 0.012 0.012 0.012 0.013 0.003	0.009 0.007 0.007 0.008 0.008 0.006 0.008 0.009 0.002
Measurement Reading Range (ft msl)	870 to 855 < 855 Joc 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900	Jan 0.011 0.009 0.009 0.009 0.013 0.011 0.010 0.012 0.002	Feb 0.010 0.009 0.009 0.009 0.010 0.011 0.011 0.010 0.005	Mar 0.009 0.008 0.009 0.009 0.011 0.009 0.013 0.009	Apr 0.011 0.008 0.009 0.016 0.010 0.010 0.011 0.010	0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008	Jun 0.014 0.012 0.012 0.012 0.012 0.016 0.011 0.012	Jul 0.006 0.006 0.007 0.006 0.008 0.007 0.009 0.008 0.012 0.007	Aug 0.008 0.008 0.009 0.015 0.021 0.014 0.018 0.026 0.002	Sep 0.026 0.009 0.010 0.009 0.011 0.010 0.010 0.012 0.003	Oct 0.007 0.004 0.005 0.007 0.007 0.007 0.006 0.005 0.003	0.012 0.009 0.009 0.011 0.012 0.012 0.012 0.013 0.003	0.009 0.007 0.007 0.008 0.008 0.006 0.008 0.009 0.002

0.020

< 855

Legend

0.000

	Jo	cassee E_	2_557.0: N	nonthly Av	eraged Pl	hosphorus	s (mg/L) 19	975 to 199 ⁻	1 (Pre Bac	l Creek Op	eration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.029	0.007	0.007	0.009	0.012	0.008	0.010	0.014	0.007	0.007	0.014	0.006
	1095 to 1080	0.014	0.016	0.008	0.010	0.015	0.023	0.012	0.014	0.011	0.011	0.011	0.008
ısı	1080 to 1065	0.007	0.007	0.006	0.009	0.008	0.011	0.010	0.008	0.008	0.009	0.012	0.005
Range (ft msl)	1065 to 1050	0.018	0.013	0.010	0.058	0.015	0.020	0.020	0.011	0.010	0.012	0.024	0.008
() ()	1050 to 1035	0.007	0.007	0.006	0.014	0.006	0.007	0.009	0.025	0.008	0.008	0.009	0.005
lug	1035 to 1020	0.011	0.008	0.010	0.012	0.014	0.017	0.012	0.012	0.011	0.007	0.023	0.006
	1020 to 1005	0.010	0.010	0.005	0.006	0.009	0.007	0.012	0.007	0.005	0.009	0.010	0.008
ng	1005 to 990	0.043	0.008	0.011	0.012	0.013	0.006	0.008	0.024	0.009	0.009	0.020	0.005
adi	990 to 975	0.008	0.008	0.008	0.009	0.011	0.011	0.011	0.009	0.014	0.012	0.022	0.010
Re	975 to 960	0.005	0.008	0.010	0.010	0.011	0.013	0.007	0.009	0.008	0.008	0.024	0.006
Ħ	960 to 945		0.015	0.015	0.027	0.015	0.064		0.015	0.015	0.015	0.015	0.015
me	945 to 930	0.006	0.006	0.011	0.012	0.009	0.006	0.007	0.006	0.006	0.016	0.011	0.005
<u>ē</u>	930 to 915	0.015	0.015	0.015	0.026	0.015	0.015	0.017	0.015	0.015	0.015	0.091	0.010
ası	915 to 900	0.006	0.008	0.009	0.010	0.014	0.009	0.015	0.011	0.009	0.011	0.017	0.006
Measurement Reading	900 to 885		0.015	0.015	0.015	0.015		0.015		0.013	0.011	0.016	0.011
_	885 to 870	0.039	0.007	0.008	0.012	0.006	0.008	0.005	0.005			0.006	0.005
	870 to 855		0.009	0.015	0.015	0.023			0.015	0.010	0.005	0.030	0.006
	< 855	0.008	0.019	0.012	0.017	0.011	0.008		0.009	0.010	0.011	0.014	0.010
	Joc	assee E_2		onthly Av	eraged Ph	osphorus	(mg/L) 19		(Post Ba	d Creek O	peration)	•	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.007	0.006	0.014	0.008	0.007	0.009	0.006	0.009	0.004	0.008	0.008	0.016
	1095 to 1080	0.005	0.005	0.006	0.007	0.007	0.006	0.005	0.006	0.004	0.004	0.006	0.004
πs	1080 to 1065	0.009	0.008	0.008	0.009	0.007	0.010	0.006	0.008	0.008	0.007	0.010	0.012
(ft msl)	1065 to 1050	0.005	0.006	0.005	0.006	0.005	0.005	0.005	0.005	0.004	0.004	0.005	0.004
) ge	1050 to 1035	0.015	0.009	0.015	0.009	0.009	0.012	0.006	0.011	0.012	0.010	0.012	0.025
Range	1035 to 1020	0.002								0.002	0.002	0.004	0.002
<u> </u>	1020 to 1005	0.013	0.010	0.010	0.010	0.008	0.012	0.006	0.009	0.012	0.012	0.013	0.025
ding	1005 to 990	0.002								0.002	0.002	0.002	0.002
ad	990 to 975	0.014	0.010	0.009	0.011	0.009	0.012	0.006	0.012	0.011	0.009	0.014	0.017
Rea	975 to 960	0.002	0.005						0.004	0.002	0.002	0.003	0.002
ř	960 to 945	0.005	0.005	0.615	0.615	0.003	0.615	0.000	0.002	0.000	0.002	0.511	0.002
Measurement	945 to 930	0.015	0.010	0.010	0.010	0.014	0.012	0.006	0.011	0.008	0.013	0.011	0.019
nre	930 to 915			0.00	0.0/3	0.000	0.01	0.00	0.000		0.002	0.00	
as	915 to 900	0.012	0.012	0.009	0.010	0.008	0.012	0.006	0.009	0.013	0.004	0.021	0.025
■ Me	900 to 885	0.61-	0.615	0.615	0.615	0.000	0.517	0.000	0.615	0.002	0.002	0.003	0.002
	885 to 870	0.015	0.010	0.010	0.012	0.008	0.015	0.006	0.010	0.012	0.011	0.019	0.037
	870 to 855	0.002	0.044	0.04	0.07	0.000	0.045	0.045	0.044	0.003	0.002	0.003	0.002
	< 855	0.012	0.011	0.011	0.011	0.009	0.013	0.013	0.011	0.009	0.010	0.014	0.017
		Legend											0.020

	Joo	cassee F_2	2_554.8: N	onthly Av	eraged Ph	nosphorus	(mg/L) 19	986 to 199	1 (Pre Bac	d Creek O	peration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	1110 to 1095	0.006	0.013	0.013	0.016	0.008	0.007	0.006	0.008	0.006	0.008	0.029	0.006
	1095 to 1080	0.018	0.015	0.015	0.017	0.015	0.018	0.015	0.015	0.015	0.013	0.015	0.011
S C 1	1080 to 1065	0.057	0.006	0.011	0.014	0.008	0.006	0.007	0.010	0.006	0.015	0.006	0.005
1 يو ا	1065 to 1050	0.015	0.015	0.015	0.021	0.015	0.026	0.048	0.015	0.015	0.013	0.015	0.013
a 1	1050 to 1035	0.008	0.005	0.006	0.012	0.007	0.006	0.006	0.009	0.008	0.011		0.006
Bu 1	1035 to 1020	0.015	0.010	0.012	0.015	0.015	0.025	0.015	0.015	0.012	0.011	0.030	0.007
8 1	1020 to 1005	0.018	0.005	0.006	0.006	0.006	0.006	0.007	0.007	0.009	0.015	0.015	0.015
bu .	1005 to 990	0.015	0.010	0.013	0.022	0.011	0.005		0.011	0.006	0.011	0.041	0.007
adi	990 to 975				0.032	0.015	0.026	0.015	0.015	0.015	0.015	0.015	0.024
Re	975 to 960		0.015	0.010	0.015	0.012	0.006	0.005	0.023	0.007	0.011		0.012
Ħ	960 to 945	0.023	0.011	0.012	0.020	0.006	0.011	0.014	0.015	0.011	0.016	0.019	0.011
me [945 to 930												
<u>ē</u>	930 to 915												
_ a _	915 to 900												
Me _	900 to 885												
	885 to 870					Mir	nimum Res	ading 946.	5 ft				
	870 to 855					14111	mmam rec	Jung 5+0.	<i>5 1</i> 1				
	< 855												
	Joc		_			osphorus		1	<u> </u>	ı	i	 	
	1110 to 1005	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
I —	1110 to 1095	0.009	0.007	0.010	0.010	0.008	0.010	0.006	0.007	0.007	0.010	0.010	0.023
	1095 to 1080	0.005	0.006	0.008	0.009	0.009	0.008	0.007	0.006	0.005	0.005	0.006	0.004
E F	1080 to 1065	0.010	0.008	0.009	0.013	0.009	0.012	0.007	0.009	0.010	0.011	0.008	0.014
	1065 to 1050	0.005	0.007	0.006	0.009	0.009	0.008	0.008	0.005	0.004	0.004	0.005	0.004
. ≚ ⊢	1050 to 1035 1035 to 1020	0.014	0.006	0.010	0.012	0.009	0.014	0.006	0.010	0.016	0.011	0.010 0.007	0.020
l gan	1033 to 1020 1020 to 1005	0.002	0.007	0.013	0.010	0.008	0.013	0.006	0.009	0.002	0.003	0.007	0.002
6 /	1020 to 1003 1005 to 990	0.013	0.007	0.013	0.010	0.000	0.013	0.000	0.009	0.012	0.002	0.012	0.020
∺ ⊢	990 to 975	0.002	0.006			0.008			0.005	0.000	0.002	0.005	0.002
ea(975 to 960		0.006		0.005	0.000			0.000			0.000	0.005
# ⊢	960 to 945	0.012	0.000	0.010	0.003	0.009	0.016	0.006	0.012	0.013	0.010	0.012	0.003
Je	945 to 930	0.012	0.012	0.010	0.010	0.000	0.010	0.000	0.012	0.010	0.010	0.012	0.020
l ne. ⊢	930 to 915												
l sar	915 to 900												
ea	900 to 885												
≥	885 to 870												
<u> </u>						Mir	nimum Rea	ading 946.2	2 ft				
l l	870 to 855												
	870 to 855 < 855												

	300	cassee F_2	<u> 2_000.0. II</u>	TOTICITY AV	oragoa i i		, (g, =)	770 10 133	i (i ic bac	Crook Op	ciation		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.011	0.006	0.009	0.019	0.010	0.007	0.008	0.007	0.008	0.009	0.013	0.005
	1095 to 1080	0.013	0.015	0.009	0.016	0.017	0.016	0.017	0.012	0.013	0.013	0.010	0.010
ısı	1080 to 1065	0.006	0.009	0.007	0.008	0.010	0.010	0.007	0.011	0.007	0.017	0.009	0.005
<u> </u>	1065 to 1050	0.012	0.018	0.010	0.021	0.012	0.020	0.020	0.013	0.012	0.014	0.010	0.009
e (1	1050 to 1035	0.006	0.012	0.005	0.008	0.009	0.007	0.010	0.008	0.013	0.010	0.009	0.005
l g	1035 to 1020	0.011	0.009	0.011	0.015	0.019	0.013	0.012	0.015	0.010	0.010	0.011	0.006
Ra	1020 to 1005	0.006	0.011	0.005	0.008	0.009	0.010	0.009	0.009	0.005	0.013	0.009	0.008
ng	1005 to 990	0.015	0.010	0.010	0.015	0.013	0.016	0.007	0.008	0.011	0.023	0.030	0.005
adi	990 to 975	0.008	0.009	0.006	0.008	0.009	0.017	0.014	0.008	0.017	0.014	0.010	
Re	975 to 960	0.014	0.015	0.011	0.015	0.019	0.006	0.007	0.009	0.010	0.008	0.010	0.007
Ę	960 to 945	0.035	0.021	0.015	0.022	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.025
me	945 to 930		0.005	0.011	0.015		0.015		0.006	0.007	0.005	0.018	0.013
Measurement Reading Range (ft msl)	930 to 915	0.026	0.013		0.031	0.011	0.008	0.025	0.010	0.011	0.017	0.015	0.006
ası	915 to 900												
Me	900 to 885												
_	885 to 870												
	870 to 855					Mil	nimum Rea	ading 920.3	3 ft				
	< 855												
	Joc	assee F_2	_			_			`		· · · · · · · · · · · · · · · · · · ·	T	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	Jan 0.008	Feb 0.007	Mar 0.008	Apr 0.008	May 0.008	Jun 0.009	Jul 0.005	Aug 0.007	Sep 0.007	Oct 0.012	0.008	0.005
<u> </u>	1110 to 1095 1095 to 1080	Jan 0.008 0.005	Feb 0.007 0.005	Mar 0.008 0.006	Apr 0.008 0.008	0.008 0.006	Jun 0.009 0.008	Jul 0.005 0.006	Aug 0.007 0.006	Sep 0.007 0.004	Oct 0.012 0.005	0.008 0.006	0.005 0.005
msl)	1110 to 1095 1095 to 1080 1080 to 1065	Jan 0.008 0.005 0.010	Feb 0.007 0.005 0.009	Mar 0.008 0.006 0.008	Apr 0.008 0.008 0.010	May 0.008 0.006 0.008	Jun 0.009 0.008 0.011	Jul 0.005 0.006 0.006	Aug 0.007 0.006 0.010	Sep 0.007 0.004 0.010	Oct 0.012 0.005 0.008	0.008 0.006 0.008	0.005 0.005 0.005
(ft msl)	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050	Jan 0.008 0.005 0.010 0.005	Feb 0.007 0.005 0.009 0.006	Mar 0.008 0.006 0.008 0.006	Apr 0.008 0.008 0.010 0.007	May 0.008 0.006 0.008 0.005	Jun 0.009 0.008 0.011 0.005	Jul 0.005 0.006 0.006 0.006	Aug 0.007 0.006 0.010 0.005	Sep 0.007 0.004 0.010 0.004	Oct 0.012 0.005 0.008 0.004	0.008 0.006 0.008 0.004	0.005 0.005 0.005 0.004
ge (ft msl)	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035	Jan 0.008 0.005 0.010 0.005 0.015	Feb 0.007 0.005 0.009	Mar 0.008 0.006 0.008	Apr 0.008 0.008 0.010	May 0.008 0.006 0.008	Jun 0.009 0.008 0.011	Jul 0.005 0.006 0.006	Aug 0.007 0.006 0.010	Sep 0.007 0.004 0.010 0.004 0.012	Oct 0.012 0.005 0.008 0.004 0.011	0.008 0.006 0.008 0.004 0.009	0.005 0.005 0.005 0.004 0.004
ange (ft msl)	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020	Jan 0.008 0.005 0.010 0.005 0.015 0.002	Feb 0.007 0.005 0.009 0.006 0.008	Mar 0.008 0.006 0.008 0.006 0.013	Apr 0.008 0.008 0.010 0.007 0.011	May 0.008 0.006 0.008 0.005 0.007	Jun 0.009 0.008 0.011 0.005 0.015	Jul 0.005 0.006 0.006 0.006 0.006	Aug 0.007 0.006 0.010 0.005 0.012	Sep 0.007 0.004 0.010 0.004 0.012 0.002	Oct 0.012 0.005 0.008 0.004 0.011 0.002	0.008 0.006 0.008 0.004 0.009 0.005	0.005 0.005 0.005 0.004 0.004 0.002
g Range (ft msl)	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005	Jan 0.008 0.005 0.010 0.005 0.015 0.002 0.015	Feb 0.007 0.005 0.009 0.006	Mar 0.008 0.006 0.008 0.006	Apr 0.008 0.008 0.010 0.007	May 0.008 0.006 0.008 0.005	Jun 0.009 0.008 0.011 0.005	Jul 0.005 0.006 0.006 0.006	Aug 0.007 0.006 0.010 0.005	Sep 0.007 0.004 0.010 0.004 0.012 0.002 0.011	Oct 0.012 0.005 0.008 0.004 0.011 0.002 0.010	0.008 0.006 0.008 0.004 0.009 0.005 0.009	0.005 0.005 0.005 0.004 0.004 0.002 0.004
ling Range (ft msI)	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990	Jan 0.008 0.005 0.010 0.005 0.015 0.002 0.015 0.002	Feb 0.007 0.005 0.009 0.006 0.008	Mar 0.008 0.006 0.008 0.006 0.013	Apr 0.008 0.008 0.010 0.007 0.011	May 0.008 0.006 0.008 0.005 0.007	Jun 0.009 0.008 0.011 0.005 0.015	Jul 0.005 0.006 0.006 0.006 0.006	Aug 0.007 0.006 0.010 0.005 0.012	Sep 0.007 0.004 0.010 0.004 0.012 0.002 0.011 0.002	Oct 0.012 0.005 0.008 0.004 0.011 0.002 0.010 0.002	0.008 0.006 0.008 0.004 0.009 0.005 0.009 0.003	0.005 0.005 0.005 0.004 0.004 0.002 0.004 0.002
lding	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975	Jan 0.008 0.005 0.010 0.005 0.015 0.002 0.015 0.002 0.015	Feb 0.007 0.005 0.009 0.006 0.008 0.011	Mar 0.008 0.006 0.008 0.006 0.013	Apr 0.008 0.008 0.010 0.007 0.011	May 0.008 0.006 0.008 0.005 0.007	Jun 0.009 0.008 0.011 0.005 0.015	Jul 0.005 0.006 0.006 0.006 0.006	Aug 0.007 0.006 0.010 0.005 0.012 0.010	Sep 0.007 0.004 0.010 0.004 0.012 0.002 0.011 0.002 0.011	Oct 0.012 0.005 0.008 0.004 0.011 0.002 0.010 0.002	0.008 0.006 0.008 0.004 0.009 0.005 0.009 0.003 0.010	0.005 0.005 0.005 0.004 0.004 0.002 0.004 0.002 0.004
lding	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960	Jan 0.008 0.005 0.010 0.005 0.015 0.002 0.015 0.002	Feb 0.007 0.005 0.009 0.006 0.008 0.011 0.007 0.005	Mar 0.008 0.006 0.008 0.006 0.013	Apr 0.008 0.008 0.010 0.007 0.011	May 0.008 0.006 0.008 0.005 0.007 0.007	Jun 0.009 0.008 0.011 0.005 0.015	Jul 0.005 0.006 0.006 0.006 0.006	Aug 0.007 0.006 0.010 0.005 0.012	Sep 0.007 0.004 0.010 0.004 0.012 0.002 0.011 0.002	Oct 0.012 0.005 0.008 0.004 0.011 0.002 0.010 0.002	0.008 0.006 0.008 0.004 0.009 0.005 0.009 0.003	0.005 0.005 0.005 0.004 0.004 0.002 0.004 0.002
lding	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945	Jan 0.008 0.005 0.010 0.005 0.015 0.002 0.015 0.002 0.015	Feb 0.007 0.005 0.009 0.006 0.008 0.011 0.007 0.005 0.004	Mar 0.008 0.006 0.008 0.006 0.013 0.010	Apr 0.008 0.008 0.010 0.007 0.011 0.010	May 0.008 0.006 0.008 0.005 0.007 0.007	Jun 0.009 0.008 0.011 0.005 0.015 0.009	Jul 0.005 0.006 0.006 0.006 0.006 0.006	Aug 0.007 0.006 0.010 0.005 0.012 0.010 0.011 0.003	Sep 0.007 0.004 0.010 0.004 0.012 0.002 0.011 0.002 0.011	Oct 0.012 0.005 0.008 0.004 0.011 0.002 0.010 0.002 0.010 0.002	0.008 0.006 0.008 0.004 0.009 0.005 0.009 0.003 0.010 0.004	0.005 0.005 0.005 0.004 0.004 0.002 0.004 0.002 0.004
lding	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930	Jan 0.008 0.005 0.010 0.005 0.015 0.002 0.015 0.002 0.015 0.002	Feb 0.007 0.005 0.009 0.006 0.008 0.011 0.007 0.005 0.004 0.008	Mar 0.008 0.006 0.008 0.006 0.013 0.010	Apr 0.008 0.008 0.010 0.007 0.011 0.010	May 0.008 0.006 0.008 0.005 0.007 0.007	Jun 0.009 0.008 0.011 0.005 0.015 0.009	Jul 0.005 0.006 0.006 0.006 0.006 0.006	Aug 0.007 0.006 0.010 0.005 0.012 0.010 0.011 0.003	Sep 0.007 0.004 0.010 0.004 0.012 0.002 0.011 0.002 0.011 0.002	Oct 0.012 0.005 0.008 0.004 0.011 0.002 0.010 0.002 0.010 0.002	0.008 0.006 0.008 0.004 0.009 0.005 0.009 0.003 0.010 0.004	0.005 0.005 0.005 0.004 0.004 0.002 0.004 0.002 0.004 0.002
lding	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915	Jan 0.008 0.005 0.010 0.005 0.015 0.002 0.015 0.002 0.015	Feb 0.007 0.005 0.009 0.006 0.008 0.011 0.007 0.005 0.004	Mar 0.008 0.006 0.008 0.006 0.013 0.010	Apr 0.008 0.008 0.010 0.007 0.011 0.010	May 0.008 0.006 0.008 0.005 0.007 0.007	Jun 0.009 0.008 0.011 0.005 0.015 0.009	Jul 0.005 0.006 0.006 0.006 0.006 0.006	Aug 0.007 0.006 0.010 0.005 0.012 0.010 0.011 0.003	Sep 0.007 0.004 0.010 0.004 0.012 0.002 0.011 0.002 0.011	Oct 0.012 0.005 0.008 0.004 0.011 0.002 0.010 0.002 0.010 0.002	0.008 0.006 0.008 0.004 0.009 0.005 0.009 0.003 0.010 0.004	0.005 0.005 0.005 0.004 0.004 0.002 0.004 0.002 0.004
lding	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900	Jan 0.008 0.005 0.010 0.005 0.015 0.002 0.015 0.002 0.015 0.002	Feb 0.007 0.005 0.009 0.006 0.008 0.011 0.007 0.005 0.004 0.008	Mar 0.008 0.006 0.008 0.006 0.013 0.010	Apr 0.008 0.008 0.010 0.007 0.011 0.010	May 0.008 0.006 0.008 0.005 0.007 0.007	Jun 0.009 0.008 0.011 0.005 0.015 0.009	Jul 0.005 0.006 0.006 0.006 0.006 0.006	Aug 0.007 0.006 0.010 0.005 0.012 0.010 0.011 0.003	Sep 0.007 0.004 0.010 0.004 0.012 0.002 0.011 0.002 0.011 0.002	Oct 0.012 0.005 0.008 0.004 0.011 0.002 0.010 0.002 0.010 0.002	0.008 0.006 0.008 0.004 0.009 0.005 0.009 0.003 0.010 0.004	0.005 0.005 0.005 0.004 0.004 0.002 0.004 0.002 0.004 0.002
Measurement Reading Range (ft msl)	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885	Jan 0.008 0.005 0.010 0.005 0.015 0.002 0.015 0.002 0.015 0.002	Feb 0.007 0.005 0.009 0.006 0.008 0.011 0.007 0.005 0.004 0.008	Mar 0.008 0.006 0.008 0.006 0.013 0.010	Apr 0.008 0.008 0.010 0.007 0.011 0.010	May 0.008 0.006 0.008 0.005 0.007 0.007	Jun 0.009 0.008 0.011 0.005 0.015 0.009	Jul 0.005 0.006 0.006 0.006 0.006 0.006	Aug 0.007 0.006 0.010 0.005 0.012 0.010 0.011 0.003	Sep 0.007 0.004 0.010 0.004 0.012 0.002 0.011 0.002 0.011 0.002	Oct 0.012 0.005 0.008 0.004 0.011 0.002 0.010 0.002 0.010 0.002	0.008 0.006 0.008 0.004 0.009 0.005 0.009 0.003 0.010 0.004	0.005 0.005 0.005 0.004 0.004 0.002 0.004 0.002 0.004 0.002
lding	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870	Jan 0.008 0.005 0.010 0.005 0.015 0.002 0.015 0.002 0.015 0.002	Feb 0.007 0.005 0.009 0.006 0.008 0.011 0.007 0.005 0.004 0.008	Mar 0.008 0.006 0.008 0.006 0.013 0.010	Apr 0.008 0.008 0.010 0.007 0.011 0.010	May 0.008 0.006 0.008 0.005 0.007 0.007 0.007 0.002 0.007 0.012	Jun 0.009 0.008 0.011 0.005 0.015 0.009 0.014	Jul 0.005 0.006 0.006 0.006 0.006 0.006	Aug 0.007 0.006 0.010 0.005 0.012 0.010 0.011 0.003 0.010 0.014	Sep 0.007 0.004 0.010 0.004 0.012 0.002 0.011 0.002 0.011 0.002	Oct 0.012 0.005 0.008 0.004 0.011 0.002 0.010 0.002 0.010 0.002	0.008 0.006 0.008 0.004 0.009 0.005 0.009 0.003 0.010 0.004	0.005 0.005 0.005 0.004 0.004 0.002 0.004 0.002 0.004 0.002
lding	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870 870 to 855	Jan 0.008 0.005 0.010 0.005 0.015 0.002 0.015 0.002 0.015 0.002	Feb 0.007 0.005 0.009 0.006 0.008 0.011 0.007 0.005 0.004 0.008	Mar 0.008 0.006 0.008 0.006 0.013 0.010	Apr 0.008 0.008 0.010 0.007 0.011 0.010	May 0.008 0.006 0.008 0.005 0.007 0.007 0.007 0.002 0.007 0.012	Jun 0.009 0.008 0.011 0.005 0.015 0.009 0.014	Jul 0.005 0.006 0.006 0.006 0.006 0.006	Aug 0.007 0.006 0.010 0.005 0.012 0.010 0.011 0.003 0.010 0.014	Sep 0.007 0.004 0.010 0.004 0.012 0.002 0.011 0.002 0.011 0.002	Oct 0.012 0.005 0.008 0.004 0.011 0.002 0.010 0.002 0.010 0.002	0.008 0.006 0.008 0.004 0.009 0.005 0.009 0.003 0.010 0.004	0.005 0.005 0.005 0.004 0.004 0.002 0.004 0.002 0.004 0.002
lding	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870	Jan 0.008 0.005 0.010 0.005 0.015 0.002 0.015 0.002 0.015 0.002	Feb 0.007 0.005 0.009 0.006 0.008 0.011 0.007 0.005 0.004 0.008	Mar 0.008 0.006 0.008 0.006 0.013 0.010	Apr 0.008 0.008 0.010 0.007 0.011 0.010	May 0.008 0.006 0.008 0.005 0.007 0.007 0.007 0.002 0.007 0.012	Jun 0.009 0.008 0.011 0.005 0.015 0.009 0.014	Jul 0.005 0.006 0.006 0.006 0.006 0.006	Aug 0.007 0.006 0.010 0.005 0.012 0.010 0.011 0.003 0.010 0.014	Sep 0.007 0.004 0.010 0.004 0.012 0.002 0.011 0.002 0.011 0.002	Oct 0.012 0.005 0.008 0.004 0.011 0.002 0.010 0.002 0.010 0.002	0.008 0.006 0.008 0.004 0.009 0.005 0.009 0.003 0.010 0.004	0.005 0.005 0.005 0.004 0.004 0.002 0.004 0.002 0.004 0.002

Lake Jocassee Nitrogen

	J	Jocassee E	3_2_558.7	: Monthly	Averaged	l Nitrogen	(mg/l) 198	7 to 1991	(Pre Bad C	reek Ope	ration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.22	0.16	0.22	0.27	0.16	0.17	0.21	0.44	0.23	0.22	0.17	
	1095 to 1080	0.24	0.25	0.23	0.24	0.23	0.20	0.20	0.29	0.20	0.20	0.21	0.21
ısı	1080 to 1065		0.16	0.17	0.18	0.17	0.18	0.19	0.39	0.17	0.27	0.15	
] <u>+</u>	1065 to 1050	0.23	0.26	0.23	0.23	0.23	0.20	0.20	0.20	0.20	0.20	0.20	0.22
e (-	1050 to 1035				0.18	0.18	0.20	0.16	0.35	0.16	0.23		
lug	1035 to 1020	0.23	0.21	0.20	0.23	0.23	0.20	0.20	0.21	0.20		0.17	
Measurement Reading Range (ft msl)	1020 to 1005							0.21		0.22	0.20	0.21	0.21
ng	1005 to 990	0.23	0.21	0.20	0.18	0.18	0.20		0.36		0.36	0.19	
adi	990 to 975				0.23	0.25	0.22	0.22	0.24	0.26	0.26	0.26	0.21
R R	975 to 960		0.20	0.17	0.26	0.19	0.22	0.23	0.28	0.23	0.32	0.25	
<u>t</u>	960 to 945	0.25		0.23	0.23	0.27	0.27	0.24	0.27	0.27	0.27	0.28	0.28
шe	945 to 930		0.16	0.17	0.30	0.20	0.24	0.23	0.46	0.28	0.27	0.24	
<u> </u>	930 to 915	0.28	0.25	0.23	0.24	0.25	0.27	0.25	0.28	0.28	0.27	0.24	0.25
asr	915 to 900		0.14	0.18	0.27	0.21	0.24	0.24	0.38	0.34	0.25	0.24	
Μe	900 to 885	0.31	0.24	0.24	0.24	0.28	0.28	0.26	0.28	0.28	0.28	0.29	0.28
-	885 to 870			0.17	0.27	0.22	0.25	0.25	0.36	0.27	0.27		
	870 to 855	0.32	0.18	0.23	0.25	0.28	0.28	0.26	0.28	0.29		0.26	
	< 855		0.15	0.16	0.27	0.21	0.27	0.25	0.33	0.25	0.27	0.29	0.29
	J	ocassee B	_2_558.7:	Monthly	Averaged	Nitrogen	(mg/l) 1991	to 2010 (Post Bad (Creek Ope	eration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095		0.16			0.16						0.17	
	1095 to 1080		0.25			0.23			0.29			0.21	
nsl)	1080 to 1065		0.25			0.23			0.29			0.21	
ft msl)	1080 to 1065 1065 to 1050		0.25			0.23			0.29			0.21	
ge (ft msl)	1080 to 1065 1065 to 1050 1050 to 1035		0.25			0.23			0.29			0.21	
ange (ft msl)	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020		0.25			0.23			0.29			0.21	
Range (ft msl)	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005		0.25			0.23			0.29			0.21	
ing Range (ft msl)	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990		0.25			0.23			0.29			0.21	
ading Range (ft msl)	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975		0.25			0.23			0.29			0.21	
Rea	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960		0.25			0.23			0.29			0.21	
Rea	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945		0.25			0.23			0.29			0.21	
Rea	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930		0.25			0.23			0.29			0.21	
Rea	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915		0.25			0.23			0.29			0.21	
Rea	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900		0.25			0.23			0.29			0.21	
Measurement Reading Range (ft msl)	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885		0.25			0.23			0.29			0.21	
Rea	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870		0.25			0.23			0.29			0.21	
Rea	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870 870 to 855		0.25			0.23			0.29				
Rea	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870	Legend	0.25			0.23			0.29			0.21	0.35

	J	locassee E	3_3_558.0	: Monthly	Averaged	l Nitrogen	(mg/l) 198	7 to 1991 (Pre Bad C	reek Opei	ration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.17	0.21	0.18	0.18	0.18	0.17	0.29	0.33	0.20	0.38	0.21	
	1095 to 1080	0.22	0.24	0.22	0.29	0.24	0.20	0.20	0.33	0.20	0.20	0.22	0.18
lsi.	1080 to 1065		0.20	0.18	0.18	0.19	0.18	0.19	0.27	0.25	0.33	0.22	
Range (ft msl)	1065 to 1050	0.22	0.24	0.23	0.23	0.23	0.20	0.20	0.10	0.20	0.20	0.20	0.20
e (<u>.</u>	1050 to 1035		0.24		0.19	0.20	0.19	0.16	0.29	0.23	0.26	0.22	
lug	1035 to 1020	0.23	0.21	0.20	0.23	0.24	0.20	0.20	0.10	0.20		0.19	0.16
Ra	1020 to 1005		0.24			0.24		0.18	0.27	0.20	0.20	0.21	0.21
Measurement Reading	1005 to 990	0.23	0.21	0.21	0.18	0.28	0.20		0.36		0.34	0.20	0.16
adi	990 to 975		0.24		0.24	0.24	0.24	0.22	0.29	0.26	0.25	0.24	0.21
R R	975 to 960		0.21	0.18	0.21	0.25	0.21	0.23	0.30	0.21	0.50	0.28	0.24
Ę	960 to 945	0.23	0.24	0.24	0.25	0.27	0.26	0.24		0.27	0.27	0.27	0.27
Ше	945 to 930		0.21	0.18	0.19	0.22	0.24	0.24	0.34	0.24	0.39	0.36	
<u>ē</u>	930 to 915	0.31	0.25	0.24	0.25	0.29	0.28	0.25		0.27	0.27	0.28	0.26
asr	915 to 900		0.21	0.18	0.22	0.23	0.25	0.24	0.34	0.24	0.47	0.34	
Α̈́Θ	900 to 885	0.32	0.25	0.23	0.25	0.29	0.28	0.26		0.27	0.27	0.28	0.27
-	885 to 870		0.22	0.17	0.21	0.23	0.25	0.24	0.30	0.25	0.40	0.30	
	870 to 855	0.32	0.23	0.22	0.25	0.29	0.27	0.25		0.28		0.27	0.34
	< 855	0.35	0.23	0.19	0.21	0.26	0.27	0.28	0.35	0.28	0.32	0.28	0.28
	J	ocassee B		Monthly	Averaged	Nitrogen ((mg/l) 1991	to 2010 (Post Bad (Creek Ope	ration)	1	Ī
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095		0.24			0.21			0.23			0.22	
	1095 to 1080		0.23			0.16			0.21			0.31	
πs	1080 to 1065		0.23			0.21			0.22			0.21	
<u>#</u>	1065 to 1050											0.20	
) e	1050 to 1035		0.23			0.20			0.21			0.33	
auć	1035 to 1020											0.20	
ding Range (ft msl)	1020 to 1005		0.24			0.23			0.24			0.19	
i Si	1005 to 990											0.26	
ad	990 to 975		0.23			0.23			0.26			0.26	
٣	975 to 960		0.23			0.11			0.24			0.27	
ent	960 to 945		0.25			0.11			0.00			0.07	
Ĭ	945 to 930		0.29	l		0.26			0.26			0.27	
Measurement Rea	930 to 915		0.00	ı		0.04			0.00			0.00	
as	915 to 900		0.28			0.24			0.26			0.28	
Ĕ	900 to 885		0.00	ı		0.05			0.00			0.26	
	885 to 870		0.28	l		0.25			0.26			0.27	
	870 to 855		0.24	ı		0.00			0.24			0.29	
	< 855	1 1	0.31			0.26			0.31			0.31	0.0=
		Legend	0.00										0.35

	J	locassee (C_2_559.0	: Monthly	Averaged	l Nitrogen	(mg/l) 198	7 to 1991 (Pre Bad C	reek Ope	ration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.19	0.20	0.78	0.23	0.18	0.15	0.14	0.26	0.26	0.78	0.24	
	1095 to 1080	0.23	0.24	0.23	0.23	0.22	0.20	0.20	0.25	0.20	0.20	0.22	0.19
ısı	1080 to 1065		0.23	0.22	0.20	0.21	0.17	0.16	0.29	0.16	0.43	0.23	
= =	1065 to 1050	0.23	0.22	0.23	0.23	0.22	0.20	0.20		0.20	0.20	0.19	0.19
e (-	1050 to 1035		0.24		0.24	0.20	0.17	0.18	0.23	0.15	0.44	0.22	
Range (ft msl)	1035 to 1020	0.23	0.21	0.21	0.23	0.23	0.20	0.20	0.20	0.20		0.24	0.17
R _a	1020 to 1005		0.24			0.25		0.19	0.21	0.29	0.20	0.22	0.21
Measurement Reading	1005 to 990	0.28	0.21	0.21	0.26	0.22	0.19		0.32		0.55	0.19	0.16
adi	990 to 975		0.23		0.25	0.25	0.24	0.23	0.28	0.27	0.26	0.29	0.21
Re Re	975 to 960		0.21	0.19	0.23	0.23	0.22	0.22	0.30	0.23	0.52	0.24	0.24
ŧ	960 to 945	0.29	0.23	0.25	0.26	0.26	0.28	0.25	0.27	0.28	0.27	0.24	0.29
Ше	945 to 930		0.21	0.19	0.21	0.24	0.24	0.24	0.35	0.24	0.44	0.29	
<u>ē</u>	930 to 915	0.32	0.25	0.25	0.26	0.27	0.27	0.26	0.28	0.29	0.28	0.29	0.28
ası	915 to 900		0.21	0.23	0.29	0.24	0.25	0.26	0.31	0.27	0.93	0.31	
Α̈́Θ	900 to 885	0.34	0.28	0.25	0.26	0.28	0.29	0.27	0.29	0.29	0.29	0.23	0.29
-	885 to 870		0.23		0.33	0.25	0.26	0.27	0.39	0.27	1.07	0.29	
	870 to 855	0.32	0.18	0.25	0.26	0.28	0.29	0.27	0.29	0.30		0.27	0.26
	< 855	0.29	0.23	0.21	0.27	0.26	0.28	0.27	0.32	0.29	0.52	0.25	0.28
	J	ocassee C		Monthly A	Averaged	Nitrogen ((mg/l) 1991	to 2000 (Post Bad (Creek Ope	ration)	T	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095		0.28			0.19			0.39			0.20	
	1095 to 1080												ı
πs	1080 to 1065		0.24			0.18			0.31			0.21	
l £	1065 to 1050											0.20	
) e	1050 to 1035		0.32			0.25			0.21			0.22	
auć	1035 to 1020			ı								0.22	
ding Range (ft msl)	1020 to 1005		0.37			0.21			0.24			0.26	
<u> </u>	1005 to 990			ı								0.26	
ad	990 to 975		0.26			0.20			0.24			0.27	
ag B	975 to 960		0.04	ı					0.24			0.27	
ent	960 to 945		0.21			0.00			0.32			0.28	
Ĕ	945 to 930		0.25	l		0.23			0.40			0.26	
Measurement Rea	930 to 915		0.00	ı		0.00			0.00			0.05	ı
as	915 to 900		0.28	l		0.22			0.28			0.25	
Ĕ	900 to 885		0.00	ı		0.00			0.00			0.28	
	885 to 870		0.30	l		0.20			0.32			0.20	
	870 to 855		0.00	ı		0.40			0.00			0.28	
	< 855	_	0.29			0.19			0.29			0.26	
		Legend	0.00										0.35

	J	locassee (C_2_560.0	: Monthly	Averaged	l Nitrogen	(mg/l) 198	7 to 1991 ((Pre Bad C	reek Ope	ration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.21	0.21	0.17	0.20	0.18	0.16	0.18	0.29	0.22		0.24	
	1095 to 1080	0.23	0.25	0.25	0.23	0.23	0.20	0.20	0.25	0.20	0.20	0.18	0.20
l Si	1080 to 1065		0.23	0.18	0.18	0.18	0.14	0.14	0.23	0.18	0.65	0.24	
Range (ft msl)	1065 to 1050	0.24	0.23	0.24	0.23	0.22	0.20	0.20	0.20	0.20	0.20	0.20	0.19
e (-	1050 to 1035		0.24		0.19	0.19	0.15	0.14	0.23	0.20	0.55	0.22	
lug	1035 to 1020	0.23	0.23	0.21	0.23	0.23	0.20	0.20	0.20	0.20		0.19	0.18
Ra	1020 to 1005		0.24			0.24		0.29	0.27	0.49	0.20	0.21	0.21
Measurement Reading	1005 to 990	0.23	0.23	0.23	0.35	0.22	0.20		0.44		0.73	0.22	0.19
adi	990 to 975		0.29			0.24	0.23	0.22	0.27	0.26	0.26	0.27	0.21
Re	975 to 960	0.25	0.23	0.19	0.23	0.22	0.24	0.22	0.27	0.28	0.38	0.27	
ŧ	960 to 945		0.25	0.24	0.25	0.26	0.27	0.25	0.28	0.29	0.28	0.28	0.28
Ше	945 to 930		0.21	0.20	0.24	0.28	0.29	0.26	0.29	0.29	0.34	0.34	
<u> </u>	930 to 915	0.27	0.28	0.24	0.25	0.27	0.28	0.26	0.29	0.29	0.28	0.29	0.29
ası	915 to 900		0.22	0.26	0.32	0.26	0.31	0.28	0.29	0.33		0.32	
Α̈́Θ	900 to 885	0.34	0.29	0.25	0.26	0.28	0.29	0.27	0.29	0.30	0.29	0.29	0.29
-	885 to 870		0.28		0.28	0.28	0.31	0.28	0.32	0.31	0.70	0.31	
	870 to 855	0.34	0.25	0.27	0.26	0.25	0.28	0.27	0.30	0.30		0.55	0.29
	< 855	0.34	0.30	0.25	0.27	0.29	0.30	0.28	0.32	0.29	0.56	0.29	0.29
	J	ocassee C		Monthly	Averaged	Nitrogen ((mg/l) 1991	to 2010 (Post Bad (Creek Ope	ration)	T	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095		0.23			0.25			0.21			0.22	
	1095 to 1080		0.29			0.22			0.19			0.30	
πs	1080 to 1065		0.24			0.21			0.21			0.21	
₽	1065 to 1050											0.22	
) Ge	1050 to 1035		0.22			0.20			0.30			0.20	
auč	1035 to 1020											0.25	
ding Range (ft msl)	1020 to 1005		0.26			0.22			0.24			0.21	
<u> </u>	1005 to 990											0.27	
ad	990 to 975		0.23			0.23			0.28			0.27	
ag B	975 to 960		0.05						0.24			0.00	ı
ent	960 to 945		0.25			0.00			0.27			0.28	
Ĭ	945 to 930		0.25			0.23			0.31			0.28	
Measurement Rea	930 to 915		0.05			0.04			0.00			0.00	ı
as	915 to 900		0.25			0.24			0.32			0.28	
Ĕ	900 to 885		0.00			0.05			0.00			0.27	
	885 to 870		0.28			0.25			0.28			0.28	
	870 to 855		0.24			0.19			0.26			0.25	
	< 855	_	0.25			0.28			0.29			0.33	
		Legend	0.00										0.35

		Jocassee (C_2_562.0	: Monthly	Averaged	Nitrogen	(mg/l) 1987	7 to 1991	(Pre Bad C	Creek Ope	ration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.22	0.24	0.37	0.18	0.18	0.17	0.18	0.31	0.15	0.56	0.33	
	1095 to 1080	0.25	0.28	0.26	0.26	0.23	0.20	0.26	0.20	0.22	0.24	0.20	0.21
ls.	1080 to 1065		0.45	0.17	0.19	0.42	0.35	0.22	0.34	0.22	0.68	0.34	
] =	1065 to 1050	0.24	0.27	0.30	0.31	0.27	0.25	0.33	0.30	0.22	0.24	0.26	0.24
e (†	1050 to 1035		0.51		0.18	0.23	0.19	0.33	0.35	0.16	0.58	0.40	
ng	1035 to 1020	0.26	0.25	0.26	0.30	0.24		0.32	0.35	0.26		0.21	0.19
Ra	1020 to 1005		0.32		0.29						0.24	0.24	0.24
Measurement Reading Range (ft msl)	1005 to 990	0.29	0.30	0.26	0.19	0.25	0.23	0.22	0.33	0.24	0.44	0.28	0.24
g	990 to 975												
Řě	975 to 960												
=	960 to 945												
пе	945 to 930												
re	930 to 915					A 4:	inimuum Dae	adina 001	1 EL				
l ns	915 to 900					IVII	nimum Rea	adırıg 991.	4 11				
<u>ر</u> ق	900 to 885												
=	885 to 870												
	870 to 855												
	< 855												
	J	ocassee C	_2_562.0:	Monthly A	Averaged	Nitrogen ((mg/l) 1991	to 1997 (Post Bad	Creek Ope	eration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095		0.26			0.24						0.20	
	1095 to 1080											0.20	
lsπ	1080 to 1065		0.25			0.24						0.20	
<u>+</u>	1065 to 1050											0.20	
<u>e</u>	1050 to 1035		0.27			0.23						0.20	
l c	1035 to 1020											0.22	
Measurement Reading Range (ft msl)	1020 to 1005		0.31			0.24						0.20	
ing	1005 to 990		0.29			0.25						0.24	
ad	990 to 975												
8	975 to 960												
ĭ	960 to 945												
ı Be	945 to 930	ļ											
l e	930 to 915					Mi	nimum Rea	adina 995	2 ft				
ası	915 to 900								•				
ĕ	900 to 885												
	885 to 870												
	870 to 855												
	< 855												

		Jocassee C	_2_565.4	: Monthly	Averaged	Nitrogen	(mg/l) 1987	7 to 1988 (Pre Bad C	Creek Oper	ation)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.19	0.18	0.18	0.23	0.16	0.13	0.14	0.25	0.14	0.47		
	1095 to 1080	0.24	0.26	0.26	0.23	0.21	0.20	0.20	0.20	0.20	0.20	0.18	0.19
JSI)	1080 to 1065			0.18	0.18	0.16	0.15	0.15	0.28	0.18	0.50		
בַּ	1065 to 1050	0.24	0.22	0.25	0.23	0.22	0.20	0.20	0.20	0.20	0.20	0.18	0.18
e (1	1050 to 1035				0.20	0.18	0.15	0.18	0.22	0.16	0.56		
ng	1035 to 1020	0.23	0.22	0.22	0.23	0.23	0.20	0.20	0.20	0.20		0.16	0.17
Ra	1020 to 1005							0.21		0.25	0.20	0.20	0.20
ng	1005 to 990	0.23	0.22	0.22	0.32	0.21	0.17		0.23		0.36	0.22	0.20
g	990 to 975						0.23	0.22	0.29	0.29	0.27	0.22	0.20
Ř	975 to 960	0.23	0.25	0.22	0.19	0.19	0.22	0.23	0.27	0.32	0.75	0.25	
<u> </u>	960 to 945		0.19	0.26	0.26		0.21	0.24	0.27	0.30	0.26		0.25
пе	945 to 930	0.27	0.25	0.17	0.20	0.26	0.27		0.36	0.30	0.57	0.29	0.26
Ē	930 to 915					0.23				0.27			
asn	915 to 900												
Measurement Reading Range (ft msl)	900 to 885												
	885 to 870					Mi	inimum Rea	ading 918.1	1 ft				
	870 to 855												
	< 855												
	T				C_2_565.4	: Monthly	Averaged		(mg/l)	,		•	•
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095												
	1095 to 1080												
ms	1080 to 1065												
l Ē	1065 to 1050												
) Ge	1050 to 1035												
auć	1035 to 1020												
ding Range (ft msl)	1020 to 1005												
ing	1005 to 990												
ad	990 to 975					Measu	rements On	ılv 1987 ar	nd 1988				
Re	975 to 960							,					
•nt	960 to 945												
Measurement Rea	945 to 930												
ure	930 to 915												
a	915 to 900												
¥e	900 to 885												
	885 to 870												
	870 to 855												
	< 855												
		Legend	0.00										0.35

	J	Jocassee D	2_551.0	Monthly	Average	d Nit	rogen	(mg/l) 198	7 to 1991	(Pre Bad	Creek Ope	eration)		
		Jan	Feb	Mar	Apr		May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095		0.19											
	1095 to 1080		0.21											
JS (1080 to 1065													
<u> </u>	1065 to 1050													
e (1	1050 to 1035													
ng	1035 to 1020													
Ra	1020 to 1005													
ng	1005 to 990													
adi	990 to 975													
Ř	975 to 960						N Air	nimum Rea	dina 1002	1 ff				
<u> </u>	960 to 945						IVIII	IIIIIuIII Rea	iuirig 1003	.4 11				
пе	945 to 930													
Ē	930 to 915													
nse	915 to 900													
Measurement Reading Range (ft msl)	900 to 885													
	885 to 870													
	870 to 855													
	< 855													
	J	ocassee D			Averaged	l Nitr	ogen ((mg/l) 1991		Post Bad	Creek Op	eration)		
		Jan	Feb	Mar	Apr		May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095		0.16				0.16						0.24	
	1095 to 1080		0.16							0.16				
пs	1080 to 1065													
<u> </u>	1065 to 1050													
) ge	1050 to 1035													
au ĉ	1035 to 1020													
<u> </u>	1020 to 1005													
ing	1005 to 990													
ad	990 to 975													
Re	975 to 960						Mir	nimum Rea	ndina 1084	.2 ft				
) I	960 to 945									·				
Ĭ,	945 to 930													
ure	930 to 915													
Measurement Reading Range (ft msl)	915 to 900													
ĕ	900 to 885													
	885 to 870													
	870 to 855													
	< 855													
		Legend	0.00											0.35

	J	locassee [0_2_564.0	: Monthly	Averaged	Nitrogen	(mg/l) 198	7 to 1991 (Pre Bad C	reek Ope	ration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.22	0.23	0.51	0.21	0.19	0.18	0.22	0.27	0.16	0.32	0.22	
	1095 to 1080	0.24	0.26	0.24	0.23	0.23	0.20	0.20	0.20	0.20	0.20	0.22	0.20
ısı	1080 to 1065		0.23	0.25	0.35	0.20	0.17	0.16	0.24	0.19	0.79	0.22	
Range (ft msl)	1065 to 1050	0.24	0.23	0.24	0.23	0.22	0.20	0.20	0.20	0.20	0.20	0.23	0.19
<u>.)</u>	1050 to 1035		0.24		3.00	0.19	0.20	0.16	0.24	0.28	0.34	0.23	
l g	1035 to 1020	0.23	0.23	0.23	0.23	0.23	0.20	0.20	0.20	0.20		0.18	0.18
Ra	1020 to 1005		0.34			0.23		0.36	0.27	0.54	0.20	0.21	0.20
Measurement Reading	1005 to 990	0.24	0.25	0.23	0.22	0.22	0.25		0.52		0.93	0.21	0.20
adi	990 to 975		0.22			0.25	0.23	0.23	0.22	0.27	0.26	0.26	0.20
Re	975 to 960	0.24	0.36	0.19	0.26	0.25	0.39	0.44	0.34	0.34	0.71	0.30	
Ħ	960 to 945		0.22	0.25	0.24	0.26	0.27	0.27	0.27	0.30	0.28	0.26	0.29
ше	945 to 930		0.23	0.18	0.23	0.28	0.35	0.30	0.30	0.32	0.47	0.30	
<u>ē</u>	930 to 915	0.24	0.26	0.26	0.25	0.27	0.28	0.27		0.30	0.29	0.29	0.30
asn	915 to 900		0.22	0.29		0.30	0.37	0.29	0.31	0.32	0.76	0.32	
۸e%	900 to 885	0.24	0.28	0.25	0.28	0.28	0.28	0.27	0.43	0.31	0.29	0.31	0.30
	885 to 870	0.24	0.35	0.29		0.31	0.31	0.29	0.29	0.29	0.28	0.30	0.29
	870 to 855			0.40	0.24	0.29			0.28		0.92	0.30	0.29
	< 855					M	inimum Rea	ading 864.	7 ft				
	J	ocassee D	_2_564.0:	Monthly A	Averaged	Nitrogen ((mg/l) 1991	to 1994 (Post Bad (Creek Ope	ration)	_	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095		0.23			0.17			0.22			0.20	
_	1095 to 1080											0.20	
πs	1080 to 1065		0.22			0.17			0.21			0.20	
# #	1065 to 1050											0.20	
<u>e</u>	1050 to 1035		0.22			0.23			0.23			0.21	
l o	1035 to 1020											0.23	
ding Range (ft msl)	1020 to 1005		0.29			0.21			0.27			0.22	
ing	1005 to 990											0.27	
ad	990 to 975		0.22			0.21			0.27			0.26	
Re	975 to 960								0.25			0.28	
, r	960 to 945		0.20						0.24			0.28	
ä	945 to 930		0.23			0.22			0.37			0.27	
Measurement Rea	930 to 915												ı
ası	915 to 900		0.21			0.21			0.33			0.20	
Σ	900 to 885		0.22			0.24						0.30	
	885 to 870		0.20			0.21			0.25			0.25	
	870 to 855		0.23						0.21			0.26	
	< 855					M	inimum Rea	ading 868.	7 ft				
		Legend	0.00										0.35

	,	Jocassee D	_2_564.1	: Monthly	Averaged	Nitrogen	(mg/l) 198	8 to 1991	(Pre Bad C	reek Ope	eration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095		0.23			0.20			0.24			0.21	
	1095 to 1080	0.20	0.33	0.24	0.19	0.22	0.36	0.15		0.32	0.21	0.16	0.20
ısı	1080 to 1065		0.21			0.20			0.20			0.22	
ב. ב	1065 to 1050	0.18	0.28	0.37	0.18	0.18	0.30		0.20	0.80	0.28	0.18	0.20
e (1	1050 to 1035		0.21			0.21			0.20			0.24	
ng	1035 to 1020	0.23	0.24	1.61	0.20	0.19		0.29	0.28	0.36		0.23	
Ra	1020 to 1005		0.22			0.20			0.24		0.15	0.19	0.20
ng	1005 to 990	0.28	0.25	0.26	0.20	0.20						0.20	
adi	990 to 975		0.22			0.20					0.15	0.19	
Ze.	975 to 960								0.31			0.20	
<u> </u>	960 to 945												
ne	945 to 930												
rer	930 to 915												
asn	915 to 900					Λ./.:	nimum Da	odina 050	O #				
Measurement Reading Range (ft msl)	900 to 885					IVII	nimum Rea	ading 959.	9 11				
_	885 to 870												
	870 to 855												
	< 855												
	J	ocassee D	_2_564.1:	Monthly A	Averaged	Nitrogen (mg/l) 1991	to 1994 (Post Bad (Creek Op	eration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095		0.22			0.20			0.22			0.21	
	400E to 4000											0.20	
	1095 to 1080			ı						1			
nsl)	1080 to 1065		0.21			0.20			0.20			0.20	
ft msl)	1080 to 1065 1065 to 1050											0.20 0.20	
le (ft msl)	1080 to 1065 1065 to 1050 1050 to 1035	ı	0.21			0.20	 		0.20	 		0.20 0.20 0.20	
ange (ft msl)	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020		0.22			0.26			0.20			0.20 0.20 0.20 0.20	
Range (ft msl)	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005			 								0.20 0.20 0.20 0.20 0.23	
ing Range (ft msl)	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990		0.22			0.26			0.20			0.20 0.20 0.20 0.20	
ading Range (ft msl)	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975		0.22			0.26			0.20			0.20 0.20 0.20 0.20 0.23	
Reading Range (ft msl)	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960		0.22			0.26			0.20			0.20 0.20 0.20 0.20 0.23	
int Reading Range (ft msl)	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945		0.22			0.26			0.20			0.20 0.20 0.20 0.20 0.23	
ment Reading Range (ft msl)	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930		0.22			0.26			0.20			0.20 0.20 0.20 0.20 0.23	
urement Reading Range (ft msl)	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915		0.22			0.26	linimum Re	eading 963	0.20			0.20 0.20 0.20 0.20 0.23	
asurement Reading Range (ft msl)	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900		0.22			0.26	l Iinimum Re	eading 963	0.20			0.20 0.20 0.20 0.20 0.23	
Measurement Reading Range (ft msl)	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885		0.22			0.26	l Iinimum Re	eading 963	0.20			0.20 0.20 0.20 0.20 0.23	
Measurement Reading Range (ft msl)	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870		0.22			0.26	l Iinimum Re	eading 963	0.20			0.20 0.20 0.20 0.20 0.23	
Measurement Reading Range (ft msl)	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870 870 to 855		0.22			0.26	l Iinimum Re	eading 963	0.20			0.20 0.20 0.20 0.20 0.23	
Measurement Reading Range (ft msl)	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870		0.22			0.26	l Iinimum Re	eading 963	0.20			0.20 0.20 0.20 0.20 0.23	0.35

	J	locassee E	_2_557.0	: Monthly	Averaged	Nitrogen	(mg/l) 198	7 to 1991 (Pre Bad C	reek Oper	ration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.22	0.20	0.18	0.18	0.17	0.16	0.16	0.22	0.20	0.21	0.23	
	1095 to 1080	0.38	0.22	0.21	0.23	0.23	0.20	0.20	0.20	0.20	0.20	0.20	0.18
ısı	1080 to 1065		0.21	0.17	0.20	0.19	0.17	0.17	0.27	0.13	0.21	0.18	
Range (ft msl)	1065 to 1050	0.20	0.23	0.22	0.22	0.24	0.20	0.20	0.20	0.20	0.20	0.20	0.20
e (-	1050 to 1035		0.24		0.21	0.19	0.18	0.21	0.23	0.13	0.24	0.23	
lug	1035 to 1020	0.21	0.19	0.20	0.23	0.25	0.20	0.20	0.20	0.20		0.17	0.16
Ra	1020 to 1005		0.23			0.23		0.17	0.27	0.21	0.20	0.20	0.20
Measurement Reading	1005 to 990	0.20	0.19	0.20	0.19	0.23	0.19		0.38		0.33	0.25	0.15
adi	990 to 975		0.22		0.22	0.24	0.23	0.20	0.24	0.27	0.27	0.34	0.20
Re.	975 to 960		0.19	0.18	0.20	0.24	0.22	0.22	0.33	0.26	0.22	0.29	0.25
ŧ	960 to 945	0.20	0.25	0.22	0.23	0.25	0.26	0.24	0.28	0.29	0.29	0.30	0.29
Ше	945 to 930		0.19	0.17	0.20	0.22	0.23	0.23	0.34	0.23	0.37	0.37	
<u> </u>	930 to 915	0.20	0.22	0.22	0.23	0.28	0.28	0.26	0.30	0.29	0.29	0.30	0.29
ası	915 to 900		0.19	0.17	0.19	0.23	0.25	0.24	0.32	0.23	0.24	0.30	
Α̈́Θ	900 to 885		0.23	0.21	0.23	0.28		0.26		0.29	0.29	0.30	0.28
-	885 to 870		0.22		0.18	0.23	0.22	0.23	0.32			0.54	
	870 to 855		0.18	0.22	0.24	0.28			0.28	0.29		0.27	0.25
	< 855		0.21	0.19	0.21	0.26	0.24	0.26	0.34	0.29	0.29	0.24	0.29
	J	ocassee E		Monthly A	Averaged	Nitrogen (mg/l) 1991	to 2010 (I	Post Bad (Creek Ope	ration)	Ī	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095		0.25			0.18			0.23			0.19	
	1095 to 1080		0.18			0.19			0.14			0.33	
πs	1080 to 1065		0.23			0.22			0.21			0.20	
₽	1065 to 1050			ı								0.20	
) Ge	1050 to 1035		0.28			0.24			0.21			0.20	
auč	1035 to 1020			I								0.20	
ding Range (ft msl)	1020 to 1005		0.24			0.23			0.22			0.20	
i i	1005 to 990			I								0.28	
ad	990 to 975		0.25			0.25			0.22			0.28	
٣	975 to 960		0.23			0.45			0.23			0.27	
ent	960 to 945		0.20			0.15			0.00			0.00	
Ĕ	945 to 930		0.24			0.30			0.28			0.28	
Measurement Rea	930 to 915		0.05	ı		0.05			0.00			0.00	
as	915 to 900		0.25			0.25			0.26			0.30	
Ĕ	900 to 885		0.04	ı		0.00			0.04			0.29	
	885 to 870		0.24			0.22			0.31			0.29	
	870 to 855		0.00	ı		0.00			0.00			0.31	
	< 855		0.23			0.23			0.28			0.27	
		Legend	0.00										0.35

		Jocassee F	_2_554.8	Monthly	Averaged	Nitrogen	(mg/l) 1987	7 to 1991	(Pre Bad C	reek Ope	ration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.16	0.15	0.20	0.15	0.16	0.13	0.14	0.30	0.23	0.33	0.16	
	1095 to 1080	0.22	0.22	0.21	0.22	0.22	0.20	0.20	0.20	0.20	0.20	0.20	0.17
Jsl)	1080 to 1065		0.14	0.18	0.19	0.18	0.14	0.16	0.47	0.29	0.19	0.12	
ft n	1065 to 1050	0.20	0.23	0.21	0.21	0.21	0.20	0.20	0.20	0.20	0.20	0.20	0.17
e (1	1050 to 1035				0.27	0.18	0.15	0.14		0.16	0.20		
ng	1035 to 1020	0.20	0.20	0.20	0.22	0.20	0.20	0.20	0.20	0.20		0.14	0.18
Ra	1020 to 1005					0.21		0.19		0.20	0.20	0.20	0.20
ng	1005 to 990	0.20	0.18	0.21	0.16	0.17	0.18		0.27		0.23	0.18	0.16
l ijg	990 to 975				0.22	0.21	0.22	0.20	0.25	0.25	0.24	0.20	0.20
Şeç	975 to 960		0.23	0.21	0.20	0.19	0.18	0.18	0.46	0.34			0.36
l t	960 to 945	0.20	0.14	0.28	0.28	0.22	0.28	0.29	0.54	0.34	0.34	0.28	0.19
пеі	945 to 930												
rer	930 to 915												
nsı	915 to 900												
Measurement Reading Range (ft msl)	900 to 885					Mi	nimum Rea	ding 946.	5 ft				
=	885 to 870							_					
	870 to 855	-											
	< 855												
		locassee F	_2_554.8:	Monthly A	Averaged	Nitrogen (mg/l) 1991	to 1997 (Post Bad (Creek Ope	eration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095		0.20			0.23			0.29			0.20	
	1095 to 1080]											
ısı	1080 to 1065		0.20			0.20			0.20			0.20	
ft n	1065 to 1050												
е (1050 to 1035		0.21			0.20			0.23			0.20	
lng	1035 to 1020												
Ra	1020 to 1005		0.20			0.22			0.27			0.22	
ng	1005 to 990												
adi	990 to 975		0.20			0.22			0.31			0.25	
) Se	975 to 960		0.21										
				1		0.00			0.23			0.31	
nt R	960 to 945		0.20			0.22			0.20			0.0.	
ment F	960 to 945 945 to 930		0.20			0.22			0.20				
rement F			0.20			0.22			0.20			0.01	
ssurement F	945 to 930		0.20			0.22			0.20				
deasurement F	945 to 930 930 to 915		0.20				nimum Rea	nding 948.					
Measurement Reading Range (ft msl)	945 to 930 930 to 915 915 to 900		0.20				nimum Rea	ading 948.					
Measurement F	945 to 930 930 to 915 915 to 900 900 to 885		0.20				nimum Rea	nding 948.					
Measurement F	945 to 930 930 to 915 915 to 900 900 to 885 885 to 870		0.20				nimum Rea	ading 948.					

	J	locassee F	_2_556.0	: Monthly	Averaged	Nitrogen	(mg/l) 198	7 to 1991 (Pre Bad C	reek Ope	ration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.17	0.19	0.17	0.17	0.16	0.14	0.18	0.31	0.23	0.25	0.18	
	1095 to 1080	0.20	0.22	0.20	0.21	0.21	0.20	0.20	0.20	0.20	0.20	0.20	0.17
, Isu	1080 to 1065		0.19	0.18	0.18	0.18	0.16	0.15	0.24	0.23	0.19	0.18	
ב	1065 to 1050	0.20	0.22	0.22	0.22	0.22	0.20	0.20	0.20	0.20	0.20	0.20	0.17
e (i	1050 to 1035		0.21		0.18	0.18	0.15	0.14	0.28	0.18	0.14	0.20	
ng	1035 to 1020	0.20	0.18	0.23	0.23	0.22	0.20	0.22	0.21	0.20		0.17	0.15
Ra	1020 to 1005		0.22			0.22		0.17	0.26	0.22	0.20	0.20	0.20
ng	1005 to 990	0.20	0.19	0.22	0.17	0.20	0.16		0.52		0.23	0.23	0.14
adi	990 to 975		0.22		0.22	0.23	0.23	0.20	0.30	0.28	0.29	0.29	0.20
Z.	975 to 960		0.18	0.49	0.16	0.20	0.19	0.22	0.38	0.24	0.32	0.21	0.21
뒽	960 to 945	0.20	0.21	0.20	0.22	0.24	0.23	0.22	0.26		0.28	0.23	0.25
шe	945 to 930		0.14	0.19	0.18		0.22		0.46	0.19		0.23	0.26
<u> </u>	930 to 915	0.20	0.22		0.22	0.22		0.23	0.24	0.28	0.33	0.23	
Measurement Reading Range (ft msl)	915 to 900												
Μe	900 to 885												
	885 to 870					Mi	nimum Rea	ading 920.3	3 ft				
	870 to 855												
	< 855												
	J	ocassee F	2 556 0	Monthly A	Averaged	Nitrogen (1 - 0040 /	D 4 D I 4	200012 000			
					1	1					1	T	
	11121 122	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095		Feb 0.25		1	May 0.21			Aug 0.21		1	0.22	Dec
=	1095 to 1080		Feb 0.25 0.23		1	0.21 0.20			0.21 0.19		1	0.22 0.29	Dec
msl)	1095 to 1080 1080 to 1065		Feb 0.25		1	May 0.21			Aug 0.21		1	0.22 0.29 0.20	Dec
(ft msl)	1095 to 1080 1080 to 1065 1065 to 1050		Feb 0.25 0.23 0.22		1	May 0.21 0.20 0.21			0.21 0.19 0.22		1	0.22 0.29 0.20 0.20	Dec
ge (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035		Feb 0.25 0.23		1	0.21 0.20			0.21 0.19		1	0.22 0.29 0.20 0.20 0.26	Dec
ange (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020		Feb 0.25 0.23 0.22		1	May 0.21 0.20 0.21 0.22			Aug 0.21 0.19 0.22 0.23		1	0.22 0.29 0.20 0.20 0.26 0.20	Dec
g Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005		Feb 0.25 0.23 0.22		1	May 0.21 0.20 0.21			0.21 0.19 0.22		1	0.22 0.29 0.20 0.20 0.26 0.20 0.20	Dec
ling Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990		Feb 0.25 0.23 0.22 0.22		1	May 0.21 0.20 0.21 0.22			Aug 0.21 0.19 0.22 0.23		1	0.22 0.29 0.20 0.20 0.26 0.20 0.20 0.30	Dec
eading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975		Feb 0.25 0.23 0.22 0.22 0.24 0.25		1	May 0.21 0.20 0.21 0.22			0.21 0.19 0.22 0.23 0.23		1	0.22 0.29 0.20 0.20 0.26 0.20 0.20 0.30 0.31	Dec
Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960		0.25 0.23 0.22 0.22 0.24 0.25 0.21		1	May 0.21 0.20 0.21 0.22			Aug 0.21 0.19 0.22 0.23		1	0.22 0.29 0.20 0.20 0.26 0.20 0.20 0.30	Dec
ent Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945		Feb 0.25 0.23 0.22 0.22 0.24 0.25 0.21 0.20		1	May 0.21 0.20 0.21 0.22 0.37			0.21 0.19 0.22 0.23 0.23 0.26 0.26		1	0.22 0.29 0.20 0.20 0.26 0.20 0.30 0.31 0.32	Dec
ement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930		0.25 0.23 0.22 0.22 0.24 0.25 0.21 0.20 0.24		1	0.21 0.20 0.21 0.22 0.37 0.23			0.21 0.19 0.22 0.23 0.23 0.26 0.26 0.29		1	0.22 0.29 0.20 0.20 0.26 0.20 0.20 0.30 0.31 0.32	Dec
surement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915		Feb 0.25 0.23 0.22 0.22 0.24 0.25 0.21 0.20		1	May 0.21 0.20 0.21 0.22 0.37			0.21 0.19 0.22 0.23 0.23 0.26 0.26		1	0.22 0.29 0.20 0.20 0.26 0.20 0.30 0.31 0.32	Dec
easurement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900		0.25 0.23 0.22 0.22 0.24 0.25 0.21 0.20 0.24		1	0.21 0.20 0.21 0.22 0.37 0.23			0.21 0.19 0.22 0.23 0.23 0.26 0.26 0.29		1	0.22 0.29 0.20 0.20 0.26 0.20 0.20 0.30 0.31 0.32	Dec
Measurement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885		0.25 0.23 0.22 0.22 0.24 0.25 0.21 0.20 0.24	1	1	0.21 0.20 0.21 0.22 0.37 0.23	Jun	Jul	0.21 0.19 0.22 0.23 0.23 0.26 0.26 0.29 0.29		1	0.22 0.29 0.20 0.20 0.26 0.20 0.20 0.30 0.31 0.32	Dec
Measurement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870		0.25 0.23 0.22 0.22 0.24 0.25 0.21 0.20 0.24	1	1	0.21 0.20 0.21 0.22 0.37 0.23		Jul	0.21 0.19 0.22 0.23 0.23 0.26 0.26 0.29 0.29		1	0.22 0.29 0.20 0.20 0.26 0.20 0.20 0.30 0.31 0.32	Dec
Measurement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885		0.25 0.23 0.22 0.22 0.24 0.25 0.21 0.20 0.24	1	1	0.21 0.20 0.21 0.22 0.37 0.23	Jun	Jul	0.21 0.19 0.22 0.23 0.23 0.26 0.26 0.29 0.29		1	0.22 0.29 0.20 0.20 0.26 0.20 0.20 0.30 0.31 0.32	Dec

0.35

Legend

0.00

Lake Jocassee Chlorophyll a

	Jo	cassee B_	2_558.7:	Monthly A	veraged C	hlorophy	ll (ug/l) 19	90 to 1991	(Pre Bad	Creek Ope	eration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.61	1.03	2.14	1.19	1.19	1.05	0.70	1.45	2.10	1.53	2.02	3.62
	1095 to 1080	0.83	1.29	1.74	1.49	1.21	0.75	1.01	1.70	2.30	2.18	2.57	3.62
Isu	1080 to 1065	0.77	0.65	0.97	1.37	1.09	0.81	0.73	2.10	2.34	2.30	2.82	3.82
ב ו	1065 to 1050	0.77	0.57	1.22	0.93	1.09	1.01	1.37	1.61				3.22
e (1	1050 to 1035	0.69	0.61	0.85	0.55	0.81	1.10	1.25	1.53	2.14	2.02	2.72	3.72
ng	1035 to 1020	0.77	0.55	0.73	0.38	0.79	0.77	0.81	1.09	2.14	2.02	2.67	
Ra	1020 to 1005	0.73	0.47	0.37	0.28	0.32	0.22	0.45	0.93	1.53	2.74	2.87	3.82
пg	1005 to 990									0.32	0.77	2.62	3.02
ggi	990 to 975	0.73	0.41	0.47	0.30	0.23	0.15	0.35	0.27				
Re	975 to 960									0.52	0.49	0.37	1.09
 	960 to 945												
пе	945 to 930												
Measurement Reading Range (ft msl)	930 to 915												
asn	915 to 900	0.49	0.24	0.61	0.13	0.10	0.08	0.07	0.11	0.49	0.12	0.13	0.25
Αe	900 to 885												
-	885 to 870												
	870 to 855												
	< 855	1.01	0.20	0.21	0.06	0.03	0.08	0.06	0.06	0.08	0.12	0.08	0.09
	Jo	cassee B_	2_558.7: N	Monthly A	veraged C	hlorophyl	l (ug/l) 199	1 to 2010	(Post Bad	Creek Op	eration)	_	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	1.82	1.63	2.09	2.95	2.24	1.22	1.18	1.76	2.32	3.07	3.10	2.88
	1095 to 1080	2.07	1.54	2.55	3.57	2.68	1.99	1.91	1.88	2.31	3.47	2.89	2.84
Isl	1080 to 1065	2.18	1.91	2.20	2.59	3.14	2.90	2.85	2.70	3.14	3.53	3.56	2.84
# #	1065 to 1050	2.17	1.73	2.00	2.18	2.62	2.61	2.52	2.54	2.62	3.76	3.45	2.89
<u>e</u>	1050 to 1035	2.38	1.64	1.72	1.80	1.79	2.10	2.10	2.22	1.89	3.39	3.32	2.83
l g	1035 to 1020	2.16	1.55	1.41	1.33	0.83	1.09	1.21	1.00	1.09	2.87	3.38	2.85
8	1020 to 1005	2.18	1.66	1.13	0.72	0.56	0.67	0.72	0.53	0.68	1.17	2.54	2.56
ing Range (ft msl)	1005 to 990	1.13								0.81	3.41	0.82	0.91
adi	990 to 975	2.19	1.70	0.95	0.58	0.40	0.34	0.38	0.57	0.37	0.55	0.51	1.07
Measurement Read	975 to 960	1.09	2.89						0.46	0.33	0.32	1.56	0.41
ŗ	960 to 945												
me	945 to 930												
<u>re</u>	930 to 915												
ası	915 to 900	0.53	0.94	0.92	0.32	0.24	0.19	0.21	0.16	0.13	0.27	0.30	0.32
ĕ	900 to 885									0.18	0.31	0.95	0.25
	885 to 870												
	870 to 855												
	< 855	0.38	0.83	0.52	0.22	0.45	0.15	0.12	0.10	0.12	0.10	0.26	0.15
		Legend	0.00										10.00

	Jo	cassee B_	3_558.0:	Monthly A	veraged (Chlorophy	ll (ug/l) 19	90 to 1991	(Pre Bad	Creek Op	eration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.65	1.17	1.25	1.17	1.11	0.91	1.33	1.29	2.38	1.92	2.34	3.27
	1095 to 1080	1.03	0.89	1.49	1.53	1.37	0.77	1.08	1.82	2.54	2.14	2.52	3.42
Range (ft msl)	1080 to 1065	0.95	0.77	1.05	1.61	1.45	2.42	1.78	1.61	2.58	2.10	2.62	3.42
<u> </u>	1065 to 1050	0.93	0.63	0.77	1.25	1.21	1.29	1.41	1.41				3.82
e (†	1050 to 1035	0.87	0.59	0.57	0.97	1.21	0.57	1.17	1.41	2.54	1.94	2.27	3.92
ng	1035 to 1020	0.87	0.53	0.47	0.45	0.81	0.57	0.85	1.21	2.54	2.62	2.82	
Ra	1020 to 1005	0.95	0.47	0.39	0.45	0.39	0.49	0.65	0.93	1.61	2.34	2.62	3.02
ng	1005 to 990									1.29	0.89	2.72	3.62
gdi	990 to 975	0.95	0.35	0.38	0.29	0.25	0.39	0.26	0.32				
R e	975 to 960									0.83	0.55	0.51	0.77
Έ	960 to 945												
πe	945 to 930												
Measurement Reading	930 to 915												
asn	915 to 900	0.49	0.10	0.23	0.25	0.11	0.11	0.11	0.15	0.16	0.23	0.27	0.18
۸eږ	900 to 885												
-	885 to 870												
	870 to 855												
	< 855	0.28	0.09	0.14	0.10	0.06	0.05	0.05	0.13	0.08	0.09	0.38	0.13
	Jo	cassee B_	3_558.0: I	Monthly A	veraged C	hlorophyl	l (ug/l) 199	1 to 2010	(Post Bad	Creek Op	peration)		
		Jan	rah	N /	A mr	May	lum		A	C	0-4	NI	Daa
			Feb	Mar	Apr		Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	1.66	1.69	1.97	2.69	2.22	1.44	1.32	1.51	2.34	3.18	3.14	2.96
_	1095 to 1080	1.66 1.79	1.69 1.95	1.97 2.43	2.69 2.38	2.22 2.72	1.44 1.73	1.32 1.75	1.51 2.08	2.34 2.36	3.18 3.14	3.14 2.99	2.96 2.84
msl)	1095 to 1080 1080 to 1065	1.66 1.79 2.13	1.69 1.95 1.60	1.97 2.43 2.30	2.69 2.38 2.54	2.22 2.72 2.40	1.44 1.73 2.38	1.32 1.75 2.11	1.51 2.08 2.32	2.34 2.36 2.70	3.18 3.14 3.56	3.14 2.99 3.22	2.96 2.84 2.98
ft msl)	1095 to 1080 1080 to 1065 1065 to 1050	1.66 1.79 2.13 2.09	1.69 1.95 1.60 1.71	1.97 2.43 2.30 1.91	2.69 2.38 2.54 1.79	2.22 2.72 2.40 2.11	1.44 1.73 2.38 2.42	1.32 1.75 2.11 2.43	1.51 2.08 2.32 2.36	2.34 2.36 2.70 2.42	3.18 3.14 3.56 3.40	3.14 2.99 3.22 3.51	2.96 2.84 2.98 2.80
ge (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035	1.66 1.79 2.13 2.09 2.10	1.69 1.95 1.60 1.71 1.73	1.97 2.43 2.30 1.91 1.55	2.69 2.38 2.54 1.79 1.16	2.22 2.72 2.40 2.11 1.59	1.44 1.73 2.38 2.42 2.03	1.32 1.75 2.11 2.43 1.90	1.51 2.08 2.32 2.36 1.64	2.34 2.36 2.70 2.42 1.88	3.18 3.14 3.56 3.40 3.16	3.14 2.99 3.22 3.51 3.34	2.96 2.84 2.98 2.80 3.16
ange (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020	1.66 1.79 2.13 2.09 2.10 2.26	1.69 1.95 1.60 1.71 1.73 1.67	1.97 2.43 2.30 1.91 1.55 1.43	2.69 2.38 2.54 1.79 1.16 0.93	2.22 2.72 2.40 2.11 1.59 1.05	1.44 1.73 2.38 2.42 2.03 1.09	1.32 1.75 2.11 2.43 1.90 1.14	1.51 2.08 2.32 2.36 1.64 1.08	2.34 2.36 2.70 2.42 1.88 1.13	3.18 3.14 3.56 3.40 3.16 3.28	3.14 2.99 3.22 3.51 3.34 3.24	2.96 2.84 2.98 2.80 3.16 2.89
Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005	1.66 1.79 2.13 2.09 2.10 2.26 2.27	1.69 1.95 1.60 1.71 1.73	1.97 2.43 2.30 1.91 1.55	2.69 2.38 2.54 1.79 1.16	2.22 2.72 2.40 2.11 1.59	1.44 1.73 2.38 2.42 2.03	1.32 1.75 2.11 2.43 1.90	1.51 2.08 2.32 2.36 1.64	2.34 2.36 2.70 2.42 1.88 1.13 0.66	3.18 3.14 3.56 3.40 3.16 3.28 1.14	3.14 2.99 3.22 3.51 3.34 3.24 2.55	2.96 2.84 2.98 2.80 3.16 2.89 2.74
ing Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990	1.66 1.79 2.13 2.09 2.10 2.26 2.27 1.15	1.69 1.95 1.60 1.71 1.73 1.67 1.63	1.97 2.43 2.30 1.91 1.55 1.43 1.25	2.69 2.38 2.54 1.79 1.16 0.93 0.66	2.22 2.72 2.40 2.11 1.59 1.05 0.62	1.44 1.73 2.38 2.42 2.03 1.09 0.67	1.32 1.75 2.11 2.43 1.90 1.14 0.68	1.51 2.08 2.32 2.36 1.64 1.08 0.69	2.34 2.36 2.70 2.42 1.88 1.13 0.66 0.66	3.18 3.14 3.56 3.40 3.16 3.28 1.14 0.69	3.14 2.99 3.22 3.51 3.34 3.24 2.55 0.58	2.96 2.84 2.98 2.80 3.16 2.89 2.74 1.18
ading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975	1.66 1.79 2.13 2.09 2.10 2.26 2.27 1.15 1.72	1.69 1.95 1.60 1.71 1.73 1.67 1.63	1.97 2.43 2.30 1.91 1.55 1.43 1.25	2.69 2.38 2.54 1.79 1.16 0.93	2.22 2.72 2.40 2.11 1.59 1.05	1.44 1.73 2.38 2.42 2.03 1.09	1.32 1.75 2.11 2.43 1.90 1.14	1.51 2.08 2.32 2.36 1.64 1.08 0.69	2.34 2.36 2.70 2.42 1.88 1.13 0.66 0.66 0.36	3.18 3.14 3.56 3.40 3.16 3.28 1.14 0.69 0.53	3.14 2.99 3.22 3.51 3.34 3.24 2.55 0.58 0.58	2.96 2.84 2.98 2.80 3.16 2.89 2.74 1.18 0.60
Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960	1.66 1.79 2.13 2.09 2.10 2.26 2.27 1.15 1.72	1.69 1.95 1.60 1.71 1.73 1.67 1.63	1.97 2.43 2.30 1.91 1.55 1.43 1.25 0.93 0.53	2.69 2.38 2.54 1.79 1.16 0.93 0.66	2.22 2.72 2.40 2.11 1.59 1.05 0.62	1.44 1.73 2.38 2.42 2.03 1.09 0.67	1.32 1.75 2.11 2.43 1.90 1.14 0.68	1.51 2.08 2.32 2.36 1.64 1.08 0.69	2.34 2.36 2.70 2.42 1.88 1.13 0.66 0.66	3.18 3.14 3.56 3.40 3.16 3.28 1.14 0.69	3.14 2.99 3.22 3.51 3.34 3.24 2.55 0.58	2.96 2.84 2.98 2.80 3.16 2.89 2.74 1.18
งทt Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945	1.66 1.79 2.13 2.09 2.10 2.26 2.27 1.15 1.72 1.07 0.32	1.69 1.95 1.60 1.71 1.73 1.67 1.63 1.25 2.85	1.97 2.43 2.30 1.91 1.55 1.43 1.25 0.93 0.53 0.45	2.69 2.38 2.54 1.79 1.16 0.93 0.66 0.59	2.22 2.72 2.40 2.11 1.59 1.05 0.62	1.44 1.73 2.38 2.42 2.03 1.09 0.67	1.32 1.75 2.11 2.43 1.90 1.14 0.68	1.51 2.08 2.32 2.36 1.64 1.08 0.69 0.28 0.39	2.34 2.36 2.70 2.42 1.88 1.13 0.66 0.66 0.36 0.24	3.18 3.14 3.56 3.40 3.16 3.28 1.14 0.69 0.53 0.27	3.14 2.99 3.22 3.51 3.34 3.24 2.55 0.58 0.58 0.34	2.96 2.84 2.98 2.80 3.16 2.89 2.74 1.18 0.60 0.40
ment Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930	1.66 1.79 2.13 2.09 2.10 2.26 2.27 1.15 1.72	1.69 1.95 1.60 1.71 1.73 1.67 1.63	1.97 2.43 2.30 1.91 1.55 1.43 1.25 0.93 0.53	2.69 2.38 2.54 1.79 1.16 0.93 0.66	2.22 2.72 2.40 2.11 1.59 1.05 0.62	1.44 1.73 2.38 2.42 2.03 1.09 0.67	1.32 1.75 2.11 2.43 1.90 1.14 0.68	1.51 2.08 2.32 2.36 1.64 1.08 0.69	2.34 2.36 2.70 2.42 1.88 1.13 0.66 0.66 0.36	3.18 3.14 3.56 3.40 3.16 3.28 1.14 0.69 0.53	3.14 2.99 3.22 3.51 3.34 3.24 2.55 0.58 0.58	2.96 2.84 2.98 2.80 3.16 2.89 2.74 1.18 0.60
urement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915	1.66 1.79 2.13 2.09 2.10 2.26 2.27 1.15 1.72 1.07 0.32 0.45	1.69 1.95 1.60 1.71 1.73 1.67 1.63 1.25 2.85	1.97 2.43 2.30 1.91 1.55 1.43 1.25 0.93 0.53 0.45 0.34	2.69 2.38 2.54 1.79 1.16 0.93 0.66 0.59	2.22 2.72 2.40 2.11 1.59 1.05 0.62 0.37	1.44 1.73 2.38 2.42 2.03 1.09 0.67 0.30	1.32 1.75 2.11 2.43 1.90 1.14 0.68 0.29	1.51 2.08 2.32 2.36 1.64 1.08 0.69 0.28 0.39	2.34 2.36 2.70 2.42 1.88 1.13 0.66 0.66 0.36 0.24	3.18 3.14 3.56 3.40 3.16 3.28 1.14 0.69 0.53 0.27	3.14 2.99 3.22 3.51 3.34 3.24 2.55 0.58 0.58 0.34	2.96 2.84 2.98 2.80 3.16 2.89 2.74 1.18 0.60 0.40
asurement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900	1.66 1.79 2.13 2.09 2.10 2.26 2.27 1.15 1.72 1.07 0.32	1.69 1.95 1.60 1.71 1.73 1.67 1.63 1.25 2.85	1.97 2.43 2.30 1.91 1.55 1.43 1.25 0.93 0.53 0.45	2.69 2.38 2.54 1.79 1.16 0.93 0.66 0.59	2.22 2.72 2.40 2.11 1.59 1.05 0.62	1.44 1.73 2.38 2.42 2.03 1.09 0.67	1.32 1.75 2.11 2.43 1.90 1.14 0.68	1.51 2.08 2.32 2.36 1.64 1.08 0.69 0.28 0.39	2.34 2.36 2.70 2.42 1.88 1.13 0.66 0.66 0.36 0.24 0.17	3.18 3.14 3.56 3.40 3.16 3.28 1.14 0.69 0.53 0.27	3.14 2.99 3.22 3.51 3.34 3.24 2.55 0.58 0.58 0.34 0.33	2.96 2.84 2.98 2.80 3.16 2.89 2.74 1.18 0.60 0.40 0.24
Measurement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885	1.66 1.79 2.13 2.09 2.10 2.26 2.27 1.15 1.72 1.07 0.32 0.45	1.69 1.95 1.60 1.71 1.73 1.67 1.63 1.25 2.85 0.37	1.97 2.43 2.30 1.91 1.55 1.43 1.25 0.93 0.53 0.45 0.34	2.69 2.38 2.54 1.79 1.16 0.93 0.66 0.59 0.31 0.31	2.22 2.72 2.40 2.11 1.59 1.05 0.62 0.37	1.44 1.73 2.38 2.42 2.03 1.09 0.67 0.30	1.32 1.75 2.11 2.43 1.90 1.14 0.68 0.29 0.15	1.51 2.08 2.32 2.36 1.64 1.08 0.69 0.28 0.39 0.11	2.34 2.36 2.70 2.42 1.88 1.13 0.66 0.66 0.36 0.24 0.17	3.18 3.14 3.56 3.40 3.16 3.28 1.14 0.69 0.53 0.27 0.35	3.14 2.99 3.22 3.51 3.34 3.24 2.55 0.58 0.58 0.34 0.33	2.96 2.84 2.98 2.80 3.16 2.89 2.74 1.18 0.60 0.40 0.24
Measurement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870	1.66 1.79 2.13 2.09 2.10 2.26 2.27 1.15 1.72 1.07 0.32 0.45	1.69 1.95 1.60 1.71 1.73 1.67 1.63 1.25 2.85	1.97 2.43 2.30 1.91 1.55 1.43 1.25 0.93 0.53 0.45 0.34	2.69 2.38 2.54 1.79 1.16 0.93 0.66 0.59	2.22 2.72 2.40 2.11 1.59 1.05 0.62 0.37	1.44 1.73 2.38 2.42 2.03 1.09 0.67 0.30	1.32 1.75 2.11 2.43 1.90 1.14 0.68 0.29	1.51 2.08 2.32 2.36 1.64 1.08 0.69 0.28 0.39	2.34 2.36 2.70 2.42 1.88 1.13 0.66 0.66 0.36 0.24 0.17	3.18 3.14 3.56 3.40 3.16 3.28 1.14 0.69 0.53 0.27	3.14 2.99 3.22 3.51 3.34 3.24 2.55 0.58 0.58 0.34 0.33	2.96 2.84 2.98 2.80 3.16 2.89 2.74 1.18 0.60 0.40 0.24
Measurement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870 870 to 855	1.66 1.79 2.13 2.09 2.10 2.26 2.27 1.15 1.72 1.07 0.32 0.45 0.37	1.69 1.95 1.60 1.71 1.73 1.67 1.63 1.25 2.85 0.37 0.46	1.97 2.43 2.30 1.91 1.55 1.43 1.25 0.93 0.53 0.45 0.34 0.70	2.69 2.38 2.54 1.79 1.16 0.93 0.66 0.59 0.31 0.31 0.28	2.22 2.72 2.40 2.11 1.59 1.05 0.62 0.37 0.21 0.22	1.44 1.73 2.38 2.42 2.03 1.09 0.67 0.30 0.24 0.18	1.32 1.75 2.11 2.43 1.90 1.14 0.68 0.29 0.15	1.51 2.08 2.32 2.36 1.64 1.08 0.69 0.28 0.39 0.11 0.11	2.34 2.36 2.70 2.42 1.88 1.13 0.66 0.66 0.36 0.24 0.17	3.18 3.14 3.56 3.40 3.16 3.28 1.14 0.69 0.53 0.27 0.35 0.27	3.14 2.99 3.22 3.51 3.34 3.24 2.55 0.58 0.58 0.34 0.33 0.22 0.26 0.15	2.96 2.84 2.98 2.80 3.16 2.89 2.74 1.18 0.60 0.40 0.24 0.25 0.27 0.15
Measurement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870	1.66 1.79 2.13 2.09 2.10 2.26 2.27 1.15 1.72 1.07 0.32 0.45	1.69 1.95 1.60 1.71 1.73 1.67 1.63 1.25 2.85 0.37	1.97 2.43 2.30 1.91 1.55 1.43 1.25 0.93 0.53 0.45 0.34	2.69 2.38 2.54 1.79 1.16 0.93 0.66 0.59 0.31 0.31	2.22 2.72 2.40 2.11 1.59 1.05 0.62 0.37	1.44 1.73 2.38 2.42 2.03 1.09 0.67 0.30	1.32 1.75 2.11 2.43 1.90 1.14 0.68 0.29 0.15	1.51 2.08 2.32 2.36 1.64 1.08 0.69 0.28 0.39 0.11	2.34 2.36 2.70 2.42 1.88 1.13 0.66 0.66 0.36 0.24 0.17	3.18 3.14 3.56 3.40 3.16 3.28 1.14 0.69 0.53 0.27 0.35	3.14 2.99 3.22 3.51 3.34 3.24 2.55 0.58 0.58 0.34 0.33	2.96 2.84 2.98 2.80 3.16 2.89 2.74 1.18 0.60 0.40 0.24

	Jo	cassee C_	2_559.0:	Monthly A	veraged C	hlorophy	ll (ug/l) 19	90 to 1991	(Pre Bad	Creek Op	eration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.49	0.71	1.41	1.05	0.93	0.58	0.81	1.03	1.86	2.97	2.57	2.82
	1095 to 1080	0.73	1.05	1.70	1.25	1.25	0.67	1.29	1.49	1.90	2.92	2.92	3.02
ısı	1080 to 1065	1.57	1.14	0.71	1.29	1.33	1.61	1.86	1.90	1.90	2.92	2.51	2.72
=	1065 to 1050	0.73	1.16	0.43	0.73	1.17	2.14	1.74	1.82				2.92
) e	1050 to 1035	0.75	1.10	0.57	0.47	0.83	1.53	1.21	1.74	1.94	2.82	3.02	2.92
l g	1035 to 1020	0.79	0.69	0.51	0.30	0.61	0.81	0.47	1.08	1.21	3.12	2.92	
88	1020 to 1005	0.71	0.71	0.41	0.32	0.28	0.39	0.47	0.81	1.09	1.94	2.92	2.82
ng	1005 to 990									0.69	0.57	3.02	2.82
adi	990 to 975	0.69	0.35	0.33	0.26	0.20	0.20	0.28	0.24				
Re	975 to 960									0.41	0.53	3.52	1.09
Ħ	960 to 945												
Ше	945 to 930												
Measurement Reading Range (ft msl)	930 to 915												
asr	915 to 900	0.28	0.15	0.18	0.18	0.07	0.08	0.09	0.09	0.06	0.15	3.42	0.22
Ĭ	900 to 885												
-	885 to 870												
	870 to 855												
	< 855	0.11	0.02	0.04	0.03	0.04	0.03	0.07	0.05	0.07	0.09	3.42	0.11
	Jo	cassee C_	2_559.0: N	Ionthly A	veraged C	hlorophyl	l (ug/l) 199	1 to 1997	(Post Bad	Creek Op	eration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	1.86	1.84	2.08	2.34	1.92	1.34	1.23	1.45	2.02	3.06	2.93	2.53
	1095 to 1080	2.06	1.79	2.29	2.21	3.00	2.04	1.98	1.71	2.27	2.84	2.80	2.19
lsπ	1080 to 1065	2.01	1.90	2.37	2.21	3.54	3.05	3.02	2.63	2.58	3.32	3.16	2.49
 	1065 to 1050	1.95	1.93	1.87	1.81	2.68	2.35	3.25	2.22	2.78	2.88	2.91	2.42
<u>e</u>	1050 to 1035	2.15	1.82	1.62	1.45	1.62	1.48	2.64	1.79	1.80	3.81	2.79	2.22
l û	1035 to 1020	1.87	1.83	1.30	0.76	0.80	0.88	1.58	1.14	0.80	2.65	3.47	2.62
<u> </u>	1020 to 1005	1.87	1.60	1.09	0.77	0.55	0.90	0.71	0.65	0.68	1.08	2.09	2.14
ing Range (ft msl)	1005 to 990	0.98								0.79	0.79	1.28	0.80
äd	990 to 975	1.94	1.21	1.07	0.77	0.51	0.34	0.46	0.34	0.33	0.57	0.54	0.58
Measurement Read	975 to 960	0.86	2.64						0.51	0.36	0.26	0.36	0.38
ŗ	960 to 945												
me	945 to 930												
<u> </u>	930 to 915												
ası	915 to 900	0.44	0.37	0.63	0.35	0.23	0.19	0.20	0.13	0.12	0.28	0.21	0.27
ĕ	900 to 885									0.10	0.17	0.18	0.20
	885 to 870												
	870 to 855												
	< 855	0.39	0.31	0.40	0.19	0.13	0.08	0.09	0.07	0.07	0.11	0.12	0.67
		Legend	0.00										10.00

	Jo	cassee C_	_2_560.0:	Monthly A	Averaged (Chlorophy	ll (ug/l) 19	90 to 1991	(Pre Bad	Creek Op	eration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.75	1.33	1.29	1.05	1.05	1.17	0.99	0.83	1.78	2.46	2.51	2.11
	1095 to 1080	0.83	1.61	1.25	1.25	1.49	1.29	1.25	1.13	2.02	2.51	2.62	2.31
ısı	1080 to 1065	0.89	1.12	1.17	1.21	1.65	1.53	2.02	1.78	2.06	2.82	2.31	3.02
<u> </u>	1065 to 1050	0.93	0.95	0.55	0.69	1.09	2.62	1.41	1.01				2.31
e (1	1050 to 1035	1.01	0.39	0.43	0.37	0.81	2.18	1.09	1.21	1.61	2.72	2.72	2.31
ng	1035 to 1020	0.97	0.18	0.39	0.81	0.49	1.25	0.77	0.93	0.81	2.54	2.92	
Ra	1020 to 1005	0.95	0.37	0.37	0.22	0.32	0.43	0.48	0.53	0.59	2.06	3.12	2.31
ng	1005 to 990									0.51	0.53	2.82	2.62
ğ	990 to 975	0.87	0.28	0.32	0.17	0.14	0.22	0.24	0.26				
Ř	975 to 960									0.24	0.28	1.53	1.01
둩	960 to 945												
шe	945 to 930												
<u> </u>	930 to 915												
Measurement Reading Range (ft msl)	915 to 900		0.15	0.18	0.09	0.07		0.10	0.09	0.07	0.10	0.18	0.21
ě	900 to 885												
	885 to 870					ΛΛi	nimum Po	ading 901.1	1 ft				
	870 to 855					IVIII	IIIIIIIIIII NE	auing 901.	T.				
	< 855												
	Jo	cassee C_	2 560.0: I	Monthly A	veraged C	hlorophyl	L /ma/l\ 100	14 40 2010	(Doct Doc	Crook On	oration)		
					· · · · · · · · ·	····oropiiyi	i (ug/i) 198	71 10 2010	(PUSI DAU	Cleek Op	eration)		•
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	Jan 1.66	Feb 1.34	Mar 2.12	Apr 3.55	May 2.65	Jun 1.32	Jul 1.64	Aug 1.50	Sep 2.10	Oct 3.12	2.99	2.61
(1110 to 1095 1095 to 1080	Jan 1.66 1.83	Feb 1.34 1.41	Mar 2.12 2.28	3.55 2.76	May 2.65 2.95	Jun 1.32 1.85	Jul 1.64 1.69	Aug 1.50 1.82	Sep 2.10 2.29	Oct 3.12 2.61	2.99 2.44	2.61 2.01
nsl)	1110 to 1095 1095 to 1080 1080 to 1065	Jan 1.66 1.83 1.81	Feb 1.34 1.41 1.49	Mar 2.12 2.28 1.90	3.55 2.76 2.24	May 2.65 2.95 3.25	Jun 1.32 1.85 2.49	Jul 1.64 1.69 2.89	Aug 1.50 1.82 2.27	Sep 2.10 2.29 2.28	Oct 3.12 2.61 2.93	2.99 2.44 2.83	2.61 2.01 2.33
ft msl)	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050	Jan 1.66 1.83 1.81 1.84	Feb 1.34 1.41 1.49 1.42	2.12 2.28 1.90 1.46	3.55 2.76 2.24 1.70	May 2.65 2.95 3.25 2.77	Jun 1.32 1.85 2.49 2.94	Jul 1.64 1.69 2.89 3.36	Aug 1.50 1.82 2.27 2.57	Sep 2.10 2.29 2.28 2.02	Oct 3.12 2.61 2.93 2.85	2.99 2.44 2.83 2.69	2.61 2.01 2.33 2.23
je (ft msl)	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035	Jan 1.66 1.83 1.81 1.84 1.73	Feb 1.34 1.41 1.49 1.42 1.31	2.12 2.28 1.90 1.46 1.50	3.55 2.76 2.24 1.70 1.32	May 2.65 2.95 3.25 2.77 1.64	1.32 1.85 2.49 2.94 1.96	Jul 1.64 1.69 2.89 3.36 2.52	Aug 1.50 1.82 2.27 2.57 1.72	Sep 2.10 2.29 2.28 2.02 1.60	Oct 3.12 2.61 2.93 2.85 2.87	2.99 2.44 2.83 2.69 2.69	2.61 2.01 2.33 2.23 2.23
ange (ft msl)	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020	Jan 1.66 1.83 1.81 1.84 1.73 1.65	Feb 1.34 1.41 1.49 1.42 1.31 1.16	Mar 2.12 2.28 1.90 1.46 1.50 1.15	3.55 2.76 2.24 1.70 1.32 0.96	May 2.65 2.95 3.25 2.77 1.64 0.82	Jun 1.32 1.85 2.49 2.94 1.96 1.01	Jul 1.64 1.69 2.89 3.36 2.52 1.30	Aug 1.50 1.82 2.27 2.57 1.72 0.82	Sep 2.10 2.29 2.28 2.02 1.60 0.79	Oct 3.12 2.61 2.93 2.85 2.87 3.32	2.99 2.44 2.83 2.69 2.69 2.65	2.61 2.01 2.33 2.23 2.23 2.21
Range (ft msl)	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005	Jan 1.66 1.83 1.81 1.84 1.73 1.65 1.72	Feb 1.34 1.41 1.49 1.42 1.31	2.12 2.28 1.90 1.46 1.50	3.55 2.76 2.24 1.70 1.32	May 2.65 2.95 3.25 2.77 1.64	1.32 1.85 2.49 2.94 1.96	Jul 1.64 1.69 2.89 3.36 2.52	Aug 1.50 1.82 2.27 2.57 1.72	2.10 2.29 2.28 2.02 1.60 0.79 0.46	Oct 3.12 2.61 2.93 2.85 2.87 3.32 0.80	2.99 2.44 2.83 2.69 2.69 2.65 2.08	2.61 2.01 2.33 2.23 2.23 2.21 2.06
ing Range (ft msl)	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990	Jan 1.66 1.83 1.81 1.84 1.73 1.65 1.72 0.91	Feb 1.34 1.41 1.49 1.42 1.31 1.16 1.11	2.12 2.28 1.90 1.46 1.50 1.15 0.94	3.55 2.76 2.24 1.70 1.32 0.96 0.66	May 2.65 2.95 3.25 2.77 1.64 0.82 0.61	Jun 1.32 1.85 2.49 2.94 1.96 1.01 0.50	Jul 1.64 1.69 2.89 3.36 2.52 1.30 0.76	Aug 1.50 1.82 2.27 2.57 1.72 0.82 0.49	2.10 2.29 2.28 2.02 1.60 0.79 0.46 0.46	Oct 3.12 2.61 2.93 2.85 2.87 3.32 0.80 0.47	2.99 2.44 2.83 2.69 2.69 2.65 2.08 0.73	2.61 2.01 2.33 2.23 2.23 2.21 2.06 0.65
ading Range (ft msl)	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975	Jan 1.66 1.83 1.81 1.84 1.73 1.65 1.72 0.91 2.23	Feb 1.34 1.41 1.49 1.42 1.31 1.16 1.11	Mar 2.12 2.28 1.90 1.46 1.50 1.15	3.55 2.76 2.24 1.70 1.32 0.96	May 2.65 2.95 3.25 2.77 1.64 0.82	Jun 1.32 1.85 2.49 2.94 1.96 1.01	Jul 1.64 1.69 2.89 3.36 2.52 1.30	Aug 1.50 1.82 2.27 2.57 1.72 0.82 0.49	2.10 2.29 2.28 2.02 1.60 0.79 0.46 0.46 0.29	Oct 3.12 2.61 2.93 2.85 2.87 3.32 0.80 0.47 0.39	2.99 2.44 2.83 2.69 2.69 2.65 2.08 0.73 0.32	2.61 2.01 2.33 2.23 2.23 2.21 2.06 0.65 0.58
Reading Range (ft msl)	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960	Jan 1.66 1.83 1.81 1.84 1.73 1.65 1.72 0.91	Feb 1.34 1.41 1.49 1.42 1.31 1.16 1.11	2.12 2.28 1.90 1.46 1.50 1.15 0.94	3.55 2.76 2.24 1.70 1.32 0.96 0.66	May 2.65 2.95 3.25 2.77 1.64 0.82 0.61	Jun 1.32 1.85 2.49 2.94 1.96 1.01 0.50	Jul 1.64 1.69 2.89 3.36 2.52 1.30 0.76	Aug 1.50 1.82 2.27 2.57 1.72 0.82 0.49	2.10 2.29 2.28 2.02 1.60 0.79 0.46 0.46	Oct 3.12 2.61 2.93 2.85 2.87 3.32 0.80 0.47	2.99 2.44 2.83 2.69 2.69 2.65 2.08 0.73	2.61 2.01 2.33 2.23 2.23 2.21 2.06 0.65
int Reading Range (ft msl)	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945	Jan 1.66 1.83 1.81 1.84 1.73 1.65 1.72 0.91 2.23	Feb 1.34 1.41 1.49 1.42 1.31 1.16 1.11 0.86 1.75	2.12 2.28 1.90 1.46 1.50 1.15 0.94	3.55 2.76 2.24 1.70 1.32 0.96 0.66	May 2.65 2.95 3.25 2.77 1.64 0.82 0.61	Jun 1.32 1.85 2.49 2.94 1.96 1.01 0.50	Jul 1.64 1.69 2.89 3.36 2.52 1.30 0.76	Aug 1.50 1.82 2.27 2.57 1.72 0.82 0.49 0.26 0.34	2.10 2.29 2.28 2.02 1.60 0.79 0.46 0.46 0.29	Oct 3.12 2.61 2.93 2.85 2.87 3.32 0.80 0.47 0.39	2.99 2.44 2.83 2.69 2.69 2.65 2.08 0.73 0.32 0.35	2.61 2.01 2.33 2.23 2.23 2.21 2.06 0.65 0.58
ment Reading Range (ft msl)	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930	Jan 1.66 1.83 1.81 1.84 1.73 1.65 1.72 0.91 2.23	Feb 1.34 1.41 1.49 1.42 1.31 1.16 1.11	2.12 2.28 1.90 1.46 1.50 1.15 0.94	3.55 2.76 2.24 1.70 1.32 0.96 0.66	May 2.65 2.95 3.25 2.77 1.64 0.82 0.61	Jun 1.32 1.85 2.49 2.94 1.96 1.01 0.50	Jul 1.64 1.69 2.89 3.36 2.52 1.30 0.76	Aug 1.50 1.82 2.27 2.57 1.72 0.82 0.49	2.10 2.29 2.28 2.02 1.60 0.79 0.46 0.46 0.29	Oct 3.12 2.61 2.93 2.85 2.87 3.32 0.80 0.47 0.39	2.99 2.44 2.83 2.69 2.69 2.65 2.08 0.73 0.32	2.61 2.01 2.33 2.23 2.23 2.21 2.06 0.65 0.58
urement Reading Range (ft msl)	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915	Jan 1.66 1.83 1.81 1.84 1.73 1.65 1.72 0.91 2.23 1.02	Feb 1.34 1.41 1.49 1.42 1.31 1.16 1.11 0.86 1.75	Mar 2.12 2.28 1.90 1.46 1.50 1.15 0.94	3.55 2.76 2.24 1.70 1.32 0.96 0.66 0.53	May 2.65 2.95 3.25 2.77 1.64 0.82 0.61 0.40	Jun 1.32 1.85 2.49 2.94 1.96 1.01 0.50	Jul 1.64 1.69 2.89 3.36 2.52 1.30 0.76	Aug 1.50 1.82 2.27 2.57 1.72 0.82 0.49 0.26 0.34 0.17	Sep 2.10 2.29 2.28 2.02 1.60 0.79 0.46 0.46 0.29 0.26	Oct 3.12 2.61 2.93 2.85 2.87 3.32 0.80 0.47 0.39 0.23	2.99 2.44 2.83 2.69 2.65 2.08 0.73 0.32 0.35	2.61 2.01 2.33 2.23 2.23 2.21 2.06 0.65 0.58 0.33
asurement Reading Range (ft msl)	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900	Jan 1.66 1.83 1.81 1.84 1.73 1.65 1.72 0.91 2.23	Feb 1.34 1.41 1.49 1.42 1.31 1.16 1.11 0.86 1.75	2.12 2.28 1.90 1.46 1.50 1.15 0.94	3.55 2.76 2.24 1.70 1.32 0.96 0.66	May 2.65 2.95 3.25 2.77 1.64 0.82 0.61	Jun 1.32 1.85 2.49 2.94 1.96 1.01 0.50	Jul 1.64 1.69 2.89 3.36 2.52 1.30 0.76	Aug 1.50 1.82 2.27 2.57 1.72 0.82 0.49 0.26 0.34	Sep 2.10 2.29 2.28 2.02 1.60 0.79 0.46 0.29 0.26	Oct 3.12 2.61 2.93 2.85 2.87 3.32 0.80 0.47 0.39 0.23	2.99 2.44 2.83 2.69 2.65 2.08 0.73 0.32 0.35 0.21	2.61 2.01 2.33 2.23 2.23 2.21 2.06 0.65 0.58 0.33
Measurement Reading Range (ft msl)	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885	Jan 1.66 1.83 1.81 1.84 1.73 1.65 1.72 0.91 2.23 1.02	Feb 1.34 1.41 1.49 1.42 1.31 1.16 1.11 0.86 1.75 0.35	Mar 2.12 2.28 1.90 1.46 1.50 1.15 0.94	3.55 2.76 2.24 1.70 1.32 0.96 0.66 0.53	May 2.65 2.95 3.25 2.77 1.64 0.82 0.61 0.40	Jun 1.32 1.85 2.49 2.94 1.96 1.01 0.50	Jul 1.64 1.69 2.89 3.36 2.52 1.30 0.76	Aug 1.50 1.82 2.27 2.57 1.72 0.82 0.49 0.26 0.34 0.17	Sep 2.10 2.29 2.28 2.02 1.60 0.79 0.46 0.46 0.29 0.26	Oct 3.12 2.61 2.93 2.85 2.87 3.32 0.80 0.47 0.39 0.23	2.99 2.44 2.83 2.69 2.65 2.08 0.73 0.32 0.35 0.21	2.61 2.01 2.33 2.23 2.23 2.21 2.06 0.65 0.58 0.33
Measurement Reading Range (ft msl)	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870	Jan 1.66 1.83 1.81 1.84 1.73 1.65 1.72 0.91 2.23 1.02	Feb 1.34 1.41 1.49 1.42 1.31 1.16 1.11 0.86 1.75	Mar 2.12 2.28 1.90 1.46 1.50 1.15 0.94	3.55 2.76 2.24 1.70 1.32 0.96 0.66 0.53	May 2.65 2.95 3.25 2.77 1.64 0.82 0.61 0.40	Jun 1.32 1.85 2.49 2.94 1.96 1.01 0.50	Jul 1.64 1.69 2.89 3.36 2.52 1.30 0.76	Aug 1.50 1.82 2.27 2.57 1.72 0.82 0.49 0.26 0.34 0.17	Sep 2.10 2.29 2.28 2.02 1.60 0.79 0.46 0.29 0.26	Oct 3.12 2.61 2.93 2.85 2.87 3.32 0.80 0.47 0.39 0.23	2.99 2.44 2.83 2.69 2.65 2.08 0.73 0.32 0.35 0.21	2.61 2.01 2.33 2.23 2.23 2.21 2.06 0.65 0.58 0.33
Measurement Reading Range (ft msl)	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870 870 to 855	Jan 1.66 1.83 1.81 1.84 1.73 1.65 1.72 0.91 2.23 1.02	Feb 1.34 1.41 1.49 1.42 1.31 1.16 1.11 0.86 1.75 0.35	Mar 2.12 2.28 1.90 1.46 1.50 1.15 0.94	3.55 2.76 2.24 1.70 1.32 0.96 0.66 0.53 0.13 0.41	May 2.65 2.95 3.25 2.77 1.64 0.82 0.61 0.40	Jun 1.32 1.85 2.49 2.94 1.96 1.01 0.50	Jul 1.64 1.69 2.89 3.36 2.52 1.30 0.76	Aug 1.50 1.82 2.27 2.57 1.72 0.82 0.49 0.26 0.34 0.17	Sep 2.10 2.29 2.28 2.02 1.60 0.79 0.46 0.29 0.26	Oct 3.12 2.61 2.93 2.85 2.87 3.32 0.80 0.47 0.39 0.23	2.99 2.44 2.83 2.69 2.65 2.08 0.73 0.32 0.35 0.21	2.61 2.01 2.33 2.23 2.23 2.21 2.06 0.65 0.58 0.33
Measurement Reading Range (ft msl)	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870	Jan 1.66 1.83 1.81 1.84 1.73 1.65 1.72 0.91 2.23 1.02	Feb 1.34 1.41 1.49 1.42 1.31 1.16 1.11 0.86 1.75 0.35	Mar 2.12 2.28 1.90 1.46 1.50 1.15 0.94	3.55 2.76 2.24 1.70 1.32 0.96 0.66 0.53	May 2.65 2.95 3.25 2.77 1.64 0.82 0.61 0.40	Jun 1.32 1.85 2.49 2.94 1.96 1.01 0.50	Jul 1.64 1.69 2.89 3.36 2.52 1.30 0.76	Aug 1.50 1.82 2.27 2.57 1.72 0.82 0.49 0.26 0.34 0.17	Sep 2.10 2.29 2.28 2.02 1.60 0.79 0.46 0.29 0.26	Oct 3.12 2.61 2.93 2.85 2.87 3.32 0.80 0.47 0.39 0.23	2.99 2.44 2.83 2.69 2.65 2.08 0.73 0.32 0.35 0.21	2.61 2.01 2.33 2.23 2.23 2.21 2.06 0.65 0.58 0.33

	Jo	cassee C	_2_562.0:	Monthly A	veraged (Chlorophy	ll (ug/l) 199	90 to 1991	(Pre Bad	Creek Op	eration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.69	2.26	1.33	1.67	1.51	1.37	1.35	1.09	1.53	2.51	2.42	3.17
	1095 to 1080	1.24	1.08	1.65	2.02	2.26	1.94	2.42	1.53	2.46	2.62	3.02	2.82
nsi	1080 to 1065	0.89	0.81	1.25	1.49	0.67	0.77	1.17	2.46	2.38	3.42	1.91	3.32
f n	1065 to 1050	0.91	0.65	0.83	0.57	0.60	0.43	0.73	1.21				3.92
(j	1050 to 1035	0.99	0.53	0.75	0.35	0.39	0.26	0.48	0.57	2.22	2.51	2.92	3.32
ng	1035 to 1020		0.28	0.45	0.25		0.14	0.31	0.24	2.14	3.02	2.92	
Ra	1020 to 1005	0.99	0.37	0.39	0.30	0.30	0.13	0.23	0.22	1.98	2.72	3.02	3.42
ng	1005 to 990									0.48	0.65	3.02	3.32
adi	990 to 975	0.89											
Re	975 to 960												
뒽	960 to 945												
πe	945 to 930												
ire	930 to 915												
Measurement Reading Range (ft msl)	915 to 900					Mil	nimum Rea	ding 975.3	3 ft				
۸e٤	900 to 885												
	885 to 870												
	870 to 855												
	< 855												
	Jo	cassee C_	_2_562.0:	Monthly A	veraged C	hlorophyl	l (ug/l) 199	1 to 1999	(Post Bad	Creek Op	eration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	2.68	2.53	3.14	3.68	3.62	1.98	2.19	1.95	1.92	3.18	4.33	3.73
_	1095 to 1080	2.88	2.21	2.40	2.72	4.30	2.64	3.27	2.38	3.02	3.15	3.96	3.00
ıısı	1080 to 1065	2.31	2.02	2.68	2.01	2.89	2.24	1.89	3.60	3.48	3.84	4.05	2.90
_	40051.4050	2.39	2.08	2.00	1.24	2.55	0.97	0.98	1.57	3.08	3.56	3.89	3.04
¥	1065 to 1050												
Je (ft	1050 to 1035	2.47	1.90	1.62	0.81	1.18	0.52	0.53	0.73	1.83	3.52	3.75	3.14
ange (ft	1050 to 1035 1035 to 1020	2.47 2.41	1.90 1.93	1.62 1.43	0.81 0.73	1.18 0.54	0.52 0.39	0.53 0.42	0.73 0.38	1.83 0.66	3.52 2.77	3.75 3.35	3.14 2.98
Range (ft	1050 to 1035 1035 to 1020 1020 to 1005	2.47 2.41 2.34	1.90	1.62	0.81	1.18	0.52	0.53	0.73	1.83	3.52	3.75	3.14 2.98 2.96
ing Range (ft	1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990	2.47 2.41	1.90 1.93	1.62 1.43	0.81 0.73 0.74	1.18 0.54	0.52 0.39	0.53 0.42	0.73 0.38	1.83 0.66	3.52 2.77	3.75 3.35	3.14 2.98
ading Range (ft msl)	1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975	2.47 2.41 2.34	1.90 1.93	1.62 1.43	0.81 0.73	1.18 0.54	0.52 0.39	0.53 0.42	0.73 0.38	1.83 0.66	3.52 2.77	3.75 3.35	3.14 2.98 2.96
Reading Range (ft	1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960	2.47 2.41 2.34	1.90 1.93	1.62 1.43	0.81 0.73 0.74	1.18 0.54	0.52 0.39	0.53 0.42	0.73 0.38	1.83 0.66	3.52 2.77	3.75 3.35	3.14 2.98 2.96
int Reading Range (ft	1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945	2.47 2.41 2.34	1.90 1.93	1.62 1.43	0.81 0.73 0.74	1.18 0.54	0.52 0.39	0.53 0.42	0.73 0.38	1.83 0.66	3.52 2.77	3.75 3.35	3.14 2.98 2.96
ment Reading Range (ft	1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930	2.47 2.41 2.34	1.90 1.93	1.62 1.43	0.81 0.73 0.74	1.18 0.54	0.52 0.39	0.53 0.42	0.73 0.38	1.83 0.66	3.52 2.77	3.75 3.35	3.14 2.98 2.96
ırement Reading Range (ft	1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915	2.47 2.41 2.34	1.90 1.93	1.62 1.43	0.81 0.73 0.74	1.18 0.54 1.11	0.52 0.39 0.41	0.53 0.42 0.34	0.73 0.38 0.24	1.83 0.66	3.52 2.77	3.75 3.35	3.14 2.98 2.96
asurement Reading Range (ft	1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900	2.47 2.41 2.34	1.90 1.93	1.62 1.43	0.81 0.73 0.74	1.18 0.54 1.11	0.52 0.39	0.53 0.42 0.34	0.73 0.38 0.24	1.83 0.66	3.52 2.77	3.75 3.35	3.14 2.98 2.96
Measurement Reading Range (ft	1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915	2.47 2.41 2.34	1.90 1.93	1.62 1.43	0.81 0.73 0.74	1.18 0.54 1.11	0.52 0.39 0.41	0.53 0.42 0.34	0.73 0.38 0.24	1.83 0.66	3.52 2.77	3.75 3.35	3.14 2.98 2.96
Measurement Reading Range (ft	1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900	2.47 2.41 2.34	1.90 1.93	1.62 1.43	0.81 0.73 0.74	1.18 0.54 1.11	0.52 0.39 0.41	0.53 0.42 0.34	0.73 0.38 0.24	1.83 0.66	3.52 2.77	3.75 3.35	3.14 2.98 2.96
Measurement Reading Range (ft	1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885	2.47 2.41 2.34	1.90 1.93	1.62 1.43	0.81 0.73 0.74	1.18 0.54 1.11	0.52 0.39 0.41	0.53 0.42 0.34	0.73 0.38 0.24	1.83 0.66	3.52 2.77	3.75 3.35	3.14 2.98 2.96
Measurement Reading Range (ft	1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870	2.47 2.41 2.34	1.90 1.93	1.62 1.43	0.81 0.73 0.74	1.18 0.54 1.11	0.52 0.39 0.41	0.53 0.42 0.34	0.73 0.38 0.24	1.83 0.66	3.52 2.77	3.75 3.35	3.14 2.98 2.96

	Jo	cassee C	2_565.4:	Monthly A	veraged C	Chlorophy	l (ug/l) 19	90 to 1991	(Pre Bad	Creek Ope	eration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.55	2.02	1.29	1.19	1.41	0.65	1.25	0.94	1.55	2.11	2.37	2.87
	1095 to 1080	0.67	1.94	1.37	1.45	1.98	1.41	1.90	1.57	2.18	2.46	3.02	2.72
ısı	1080 to 1065	0.79	0.75	0.53	1.41	1.86	1.82	1.78	2.37	2.02	1.91	3.22	2.11
בנו	1065 to 1050	0.71	0.59	0.61	0.45	0.77	2.22	1.25	2.34				2.41
е (1050 to 1035	0.73	0.47	0.53	0.39	0.83	0.77	1.25	1.25	1.98	2.62	2.82	2.62
ıng	1035 to 1020	0.75	1.53	0.41	0.32	0.45	0.41	0.69	0.77	1.94	2.62	3.02	
S.	1020 to 1005	0.79	0.39	0.30	0.28	0.28	0.37	0.43	0.47	1.37	1.91	3.52	2.62
ng	1005 to 990									0.47	0.47	2.62	2.72
adi	990 to 975	0.69	0.39	0.37	0.26	0.21	0.22	0.24	0.24				
Re	975 to 960									0.32	0.28	0.37	1.11
Ħ	960 to 945												
a E	945 to 930												
ıre	930 to 915												
Measurement Reading Range (ft msl)	915 to 900					Mii	nimum Rea	adina 966 i	R ff				
Me	900 to 885					10111	mmam rec	ading 500.	<i>,</i> , , , , , , , , , , , , , , , , , ,				
_	885 to 870												
	870 to 855												
	< 855												
	Jo		1	1		hlorophyl							·
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	Jan 2.35	Feb 2.43	Mar 2.38	Apr 4.34	May 3.23	Jun 1.43	Jul 1.27	Aug 1.54	Sep 1.95	Oct 3.62	3.45	3.78
(1	1110 to 1095 1095 to 1080	Jan 2.35 2.68	Feb 2.43 2.52	Mar 2.38 2.46	Apr 4.34 3.69	May 3.23 4.20	Jun 1.43 2.29	Jul 1.27 2.74	Aug 1.54 2.47	Sep 1.95 2.88	Oct 3.62 2.54	3.45 3.29	3.78 3.08
msl)	1110 to 1095 1095 to 1080 1080 to 1065	Jan 2.35 2.68 2.63	2.43 2.52 2.31	Mar 2.38 2.46 2.22	Apr 4.34 3.69 2.74	3.23 4.20 4.25	Jun 1.43 2.29 3.49	Jul 1.27 2.74 4.20	Aug 1.54 2.47 3.28	Sep 1.95 2.88 3.39	Oct 3.62 2.54 2.94	3.45 3.29 3.67	3.78 3.08 3.52
(ft msl)	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050	Jan 2.35 2.68 2.63 2.49	2.43 2.52 2.31 2.01	2.38 2.46 2.22 1.92	Apr 4.34 3.69 2.74 1.78	May 3.23 4.20 4.25 3.34	Jun 1.43 2.29 3.49 2.61	Jul 1.27 2.74 4.20 2.83	Aug 1.54 2.47 3.28 2.21	Sep 1.95 2.88 3.39 2.48	Oct 3.62 2.54 2.94 3.27	3.45 3.29 3.67 3.79	3.78 3.08 3.52 3.40
ge (ft msl)	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035	Jan 2.35 2.68 2.63 2.49 2.84	Feb 2.43 2.52 2.31 2.01 1.89	2.38 2.46 2.22 1.92 1.36	Apr 4.34 3.69 2.74 1.78 1.43	May 3.23 4.20 4.25 3.34 1.80	Jun 1.43 2.29 3.49 2.61 1.58	Jul 1.27 2.74 4.20 2.83 2.07	Aug 1.54 2.47 3.28 2.21 1.20	Sep 1.95 2.88 3.39 2.48 1.55	Oct 3.62 2.54 2.94 3.27 3.16	3.45 3.29 3.67 3.79 3.36	3.78 3.08 3.52 3.40 3.41
ange (ft msl)	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020	Jan 2.35 2.68 2.63 2.49 2.84 2.53	Feb 2.43 2.52 2.31 2.01 1.89 1.64	Mar 2.38 2.46 2.22 1.92 1.36 1.41	Apr 4.34 3.69 2.74 1.78 1.43 0.77	May 3.23 4.20 4.25 3.34 1.80 0.92	Jun 1.43 2.29 3.49 2.61 1.58 0.72	Jul 1.27 2.74 4.20 2.83 2.07 0.85	Aug 1.54 2.47 3.28 2.21 1.20 0.92	Sep 1.95 2.88 3.39 2.48 1.55 0.70	Oct 3.62 2.54 2.94 3.27 3.16 3.17	3.45 3.29 3.67 3.79 3.36 3.18	3.78 3.08 3.52 3.40 3.41 3.64
g Range (ft msl)	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005	2.35 2.68 2.63 2.49 2.84 2.53 2.56	Feb 2.43 2.52 2.31 2.01 1.89	2.38 2.46 2.22 1.92 1.36	Apr 4.34 3.69 2.74 1.78 1.43	May 3.23 4.20 4.25 3.34 1.80	Jun 1.43 2.29 3.49 2.61 1.58	Jul 1.27 2.74 4.20 2.83 2.07	Aug 1.54 2.47 3.28 2.21 1.20	Sep 1.95 2.88 3.39 2.48 1.55 0.70 0.36	Oct 3.62 2.54 2.94 3.27 3.16 3.17 1.05	3.45 3.29 3.67 3.79 3.36 3.18 2.35	3.78 3.08 3.52 3.40 3.41 3.64 2.86
ling Range (ft msl)	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990	Jan 2.35 2.68 2.63 2.49 2.84 2.53 2.56 1.12	Feb 2.43 2.52 2.31 2.01 1.89 1.64 1.56	Mar 2.38 2.46 2.22 1.92 1.36 1.41 1.32	Apr 4.34 3.69 2.74 1.78 1.43 0.77 0.77	May 3.23 4.20 4.25 3.34 1.80 0.92 0.68	Jun 1.43 2.29 3.49 2.61 1.58 0.72 0.59	Jul 1.27 2.74 4.20 2.83 2.07 0.85 0.52	Aug 1.54 2.47 3.28 2.21 1.20 0.92 0.43	Sep 1.95 2.88 3.39 2.48 1.55 0.70 0.36 0.40	Oct 3.62 2.54 2.94 3.27 3.16 3.17 1.05 0.34	3.45 3.29 3.67 3.79 3.36 3.18 2.35 0.61	3.78 3.08 3.52 3.40 3.41 3.64 2.86 0.57
eading Range (ft msl)	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975	2.35 2.68 2.63 2.49 2.84 2.53 2.56 1.12 2.93	2.43 2.52 2.31 2.01 1.89 1.64 1.56	Mar 2.38 2.46 2.22 1.92 1.36 1.41	Apr 4.34 3.69 2.74 1.78 1.43 0.77	May 3.23 4.20 4.25 3.34 1.80 0.92	Jun 1.43 2.29 3.49 2.61 1.58 0.72	Jul 1.27 2.74 4.20 2.83 2.07 0.85	Aug 1.54 2.47 3.28 2.21 1.20 0.92 0.43	Sep 1.95 2.88 3.39 2.48 1.55 0.70 0.36 0.40 0.21	3.62 2.54 2.94 3.27 3.16 3.17 1.05 0.34 0.46	3.45 3.29 3.67 3.79 3.36 3.18 2.35 0.61 0.64	3.78 3.08 3.52 3.40 3.41 3.64 2.86 0.57 1.06
: Reading Range (ft msl)	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960	Jan 2.35 2.68 2.63 2.49 2.84 2.53 2.56 1.12	Feb 2.43 2.52 2.31 2.01 1.89 1.64 1.56	Mar 2.38 2.46 2.22 1.92 1.36 1.41 1.32	Apr 4.34 3.69 2.74 1.78 1.43 0.77 0.77	May 3.23 4.20 4.25 3.34 1.80 0.92 0.68	Jun 1.43 2.29 3.49 2.61 1.58 0.72 0.59	Jul 1.27 2.74 4.20 2.83 2.07 0.85 0.52	Aug 1.54 2.47 3.28 2.21 1.20 0.92 0.43	Sep 1.95 2.88 3.39 2.48 1.55 0.70 0.36 0.40	Oct 3.62 2.54 2.94 3.27 3.16 3.17 1.05 0.34	3.45 3.29 3.67 3.79 3.36 3.18 2.35 0.61	3.78 3.08 3.52 3.40 3.41 3.64 2.86 0.57
ent Reading Range (ft msl)	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945	2.35 2.68 2.63 2.49 2.84 2.53 2.56 1.12 2.93	2.43 2.52 2.31 2.01 1.89 1.64 1.56	Mar 2.38 2.46 2.22 1.92 1.36 1.41 1.32	Apr 4.34 3.69 2.74 1.78 1.43 0.77 0.77	May 3.23 4.20 4.25 3.34 1.80 0.92 0.68	Jun 1.43 2.29 3.49 2.61 1.58 0.72 0.59	Jul 1.27 2.74 4.20 2.83 2.07 0.85 0.52	Aug 1.54 2.47 3.28 2.21 1.20 0.92 0.43	Sep 1.95 2.88 3.39 2.48 1.55 0.70 0.36 0.40 0.21	3.62 2.54 2.94 3.27 3.16 3.17 1.05 0.34 0.46	3.45 3.29 3.67 3.79 3.36 3.18 2.35 0.61 0.64	3.78 3.08 3.52 3.40 3.41 3.64 2.86 0.57 1.06
ement Reading Range (ft msl)	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930	2.35 2.68 2.63 2.49 2.84 2.53 2.56 1.12 2.93	2.43 2.52 2.31 2.01 1.89 1.64 1.56	Mar 2.38 2.46 2.22 1.92 1.36 1.41 1.32	Apr 4.34 3.69 2.74 1.78 1.43 0.77 0.77	May 3.23 4.20 4.25 3.34 1.80 0.92 0.68	Jun 1.43 2.29 3.49 2.61 1.58 0.72 0.59	Jul 1.27 2.74 4.20 2.83 2.07 0.85 0.52	Aug 1.54 2.47 3.28 2.21 1.20 0.92 0.43	Sep 1.95 2.88 3.39 2.48 1.55 0.70 0.36 0.40 0.21	3.62 2.54 2.94 3.27 3.16 3.17 1.05 0.34 0.46	3.45 3.29 3.67 3.79 3.36 3.18 2.35 0.61 0.64	3.78 3.08 3.52 3.40 3.41 3.64 2.86 0.57 1.06
urement Reading Range (ft msl)	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915	2.35 2.68 2.63 2.49 2.84 2.53 2.56 1.12 2.93	2.43 2.52 2.31 2.01 1.89 1.64 1.56	Mar 2.38 2.46 2.22 1.92 1.36 1.41 1.32	Apr 4.34 3.69 2.74 1.78 1.43 0.77 0.77	May 3.23 4.20 4.25 3.34 1.80 0.92 0.68	Jun 1.43 2.29 3.49 2.61 1.58 0.72 0.59	Jul 1.27 2.74 4.20 2.83 2.07 0.85 0.52	Aug 1.54 2.47 3.28 2.21 1.20 0.92 0.43	Sep 1.95 2.88 3.39 2.48 1.55 0.70 0.36 0.40 0.21	3.62 2.54 2.94 3.27 3.16 3.17 1.05 0.34 0.46	3.45 3.29 3.67 3.79 3.36 3.18 2.35 0.61 0.64	3.78 3.08 3.52 3.40 3.41 3.64 2.86 0.57 1.06
essurement Reading Range (ft msl)	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900	2.35 2.68 2.63 2.49 2.84 2.53 2.56 1.12 2.93	2.43 2.52 2.31 2.01 1.89 1.64 1.56	Mar 2.38 2.46 2.22 1.92 1.36 1.41 1.32	Apr 4.34 3.69 2.74 1.78 1.43 0.77 0.77	May 3.23 4.20 4.25 3.34 1.80 0.92 0.68 0.61	Jun 1.43 2.29 3.49 2.61 1.58 0.72 0.59	Jul 1.27 2.74 4.20 2.83 2.07 0.85 0.52 0.33	Aug 1.54 2.47 3.28 2.21 1.20 0.92 0.43 0.35 0.35	Sep 1.95 2.88 3.39 2.48 1.55 0.70 0.36 0.40 0.21	3.62 2.54 2.94 3.27 3.16 3.17 1.05 0.34 0.46	3.45 3.29 3.67 3.79 3.36 3.18 2.35 0.61 0.64	3.78 3.08 3.52 3.40 3.41 3.64 2.86 0.57 1.06
Measurement Reading Range (ft msl)	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885	2.35 2.68 2.63 2.49 2.84 2.53 2.56 1.12 2.93	2.43 2.52 2.31 2.01 1.89 1.64 1.56	Mar 2.38 2.46 2.22 1.92 1.36 1.41 1.32	Apr 4.34 3.69 2.74 1.78 1.43 0.77 0.77	May 3.23 4.20 4.25 3.34 1.80 0.92 0.68 0.61	Jun 1.43 2.29 3.49 2.61 1.58 0.72 0.59	Jul 1.27 2.74 4.20 2.83 2.07 0.85 0.52 0.33	Aug 1.54 2.47 3.28 2.21 1.20 0.92 0.43 0.35 0.35	Sep 1.95 2.88 3.39 2.48 1.55 0.70 0.36 0.40 0.21	3.62 2.54 2.94 3.27 3.16 3.17 1.05 0.34 0.46	3.45 3.29 3.67 3.79 3.36 3.18 2.35 0.61 0.64	3.78 3.08 3.52 3.40 3.41 3.64 2.86 0.57 1.06
Measurement Reading Range (ft msl)	1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900	2.35 2.68 2.63 2.49 2.84 2.53 2.56 1.12 2.93	2.43 2.52 2.31 2.01 1.89 1.64 1.56	Mar 2.38 2.46 2.22 1.92 1.36 1.41 1.32	Apr 4.34 3.69 2.74 1.78 1.43 0.77 0.77	May 3.23 4.20 4.25 3.34 1.80 0.92 0.68 0.61	Jun 1.43 2.29 3.49 2.61 1.58 0.72 0.59	Jul 1.27 2.74 4.20 2.83 2.07 0.85 0.52 0.33	Aug 1.54 2.47 3.28 2.21 1.20 0.92 0.43 0.35 0.35	Sep 1.95 2.88 3.39 2.48 1.55 0.70 0.36 0.40 0.21	3.62 2.54 2.94 3.27 3.16 3.17 1.05 0.34 0.46	3.45 3.29 3.67 3.79 3.36 3.18 2.35 0.61 0.64	3.78 3.08 3.52 3.40 3.41 3.64 2.86 0.57 1.06

Legend 0.00 10.00

< 855

			Jo	ocassee D	_2_551.0	: Mo	onthly .	Averaged (Chlorophy	yll (ug/l)				
		Jan	Feb	Mar	Apr		May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095													
	1095 to 1080													
ısı	1080 to 1065													
<u> </u>	1065 to 1050													
e (†	1050 to 1035													
ng	1035 to 1020													
Ra	1020 to 1005													
Вu	1005 to 990													
ğ	990 to 975						,	Doodings B	ogan in 20	000				
Šé	975 to 960							Readings B	egan in 20	109				
<u>=</u>	960 to 945													
πe	945 to 930													
Ē	930 to 915													
nse	915 to 900													
Measurement Reading Range (ft msl)	900 to 885													
~	885 to 870													
	870 to 855													
	< 855													
	Jo	cassee D_	2_551.0: l	Monthly A	veraged (Chlo	orophy	'll (ug/l) 199	91 to 2010	(Post Ba	d Creek O	peration)		
		Jan	Feb	Mar	Apr		May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095													
	1095 to 1080		0.25				1.16							
πs	1080 to 1065													
<u> </u>	1065 to 1050									1.86			1.43	
) eg	1050 to 1035		0.35											
l û	1035 to 1020													
ř	1020 to 1005													
l <u>i</u>	1005 to 990													
ad	990 to 975													
8	975 to 960													
, t	960 to 945													
l g	945 to 930						Mi	nimum Rea	nding 1043	3.6 ft				
l e	930 to 915													
Measurement Reading Range (ft msl)	915 to 900													
ĕ	900 to 885													
	885 to 870													
	870 to 855													
	< 855													
		Legend	0.00											10.00

	Jo	cassee D	_2_564.0:	Monthly A	veraged (Chlorophy	ll (ug/l) 199	90 to 1991	(Pre Bad	Creek Op	eration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.53	1.82	1.33	1.13	1.21	1.61	1.13	0.79	1.72	2.26	2.49	2.14
	1095 to 1080	0.59	1.18	1.41	1.37	1.70	2.02	1.70	1.57	2.34	3.02	2.82	2.92
Įsu į	1080 to 1065	0.69	0.93	1.25	0.97	1.78	2.62	1.41	2.54	0.97	2.31	2.62	3.22
<u></u>	1065 to 1050	0.67	0.65	0.65	0.51	1.25	2.37	1.29	1.29				2.82
e (†	1050 to 1035	0.71	0.43	0.53	0.39	0.75	1.98	0.81	1.17	1.87	2.11	3.22	3.32
ng	1035 to 1020	0.75	0.45	0.45	0.30	0.39	1.33	0.65	0.48	1.54	2.30	2.92	
Ra	1020 to 1005	0.75	0.37	0.37	0.30	0.28	0.89	0.48	0.45	1.01	1.82	3.12	2.62
Вu	1005 to 990									0.45	0.47	2.26	2.51
ğ	990 to 975	0.75	0.39	0.30	0.28	0.15	0.23	0.25	0.23				
Ze.	975 to 960									0.25	0.32	0.37	0.89
 	960 to 945												
ne	945 to 930												
ē	930 to 915												
ns:	915 to 900		0.18	1.41	0.09	0.09	0.08	0.07	0.08	0.09	0.09	0.16	0.16
Measurement Reading Range (ft msl)	900 to 885												
_	885 to 870					A 4:	nimum Dog	adina 001	1 £1				
	870 to 855					IVII	nimum Rea	ading 901.	Π				
	< 855												
	Jo	cassee D_	_2_564.0: l	Monthly A	veraged C	hlorophyl	l (ug/l) 199	1 to 1994	(Post Bad	Creek Op	eration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	1.87	2.14	2.15	3.54	2.88	1.25	1.38	1.57	2.11	3.32	3.03	2.75
_	1095 to 1080	2.01	2.79	2.15	2.44	4.09	1.63	1.49	1.83	2.31	2.40	2.90	2.63
Isu	1080 to 1065	2.23	2.53	2.19	2.20	3.72	2.65	2.70	2.40	2.22	2.82	3.55	2.44
≟	1065 to 1050	2.05	1.39	2.18	1.72	2.82	3.09	3.67	2.63	2.42	3.13	3.87	2.88
ding Range (ft msl)	1050 to 1035	2.60	2.17	1.72	1.13	3.15	1.87	2.85	1.72	1.83	3.25	3.54	2.84
g ng	1035 to 1020	2.12	1.67	1.59	0.80	1.56	1.05	1.78	1.07	0.84	2.91	3.57	2.94
22	1020 to 1005	2.27	1.47	1.47	0.66	1.08	0.61	0.86	0.69	0.47	1.17	2.26	2.52
ng	1005 to 990	1.21								0.56	0.50	0.75	0.66
adi	990 to 975	2.20	1.33	1.24	0.62	0.75	0.34	0.42	0.34	0.24	0.52	0.43	0.52
Measurement Rea	975 to 960	0.86	2.02						0.17	0.23	0.37	0.29	0.30
בֻ	960 to 945												
шe	945 to 930												
ıre	930 to 915												
ası	915 to 900	1.07	1.88	0.84	0.39	0.36	0.17	0.59	0.72	0.21	0.20	0.24	0.15
Ž Č	900 to 885									0.24	0.16	0.13	0.13
_	885 to 870												
	870 to 855					Mi	nimum Rea	ading 896.	5 ft				
	< 855												
		Legend	0.00										10.00

	Jo	cassee D	_2_564.1:	Monthly A	werayeu c	Jilioi opiiyi	ıı (ug/i) iə.	ו פפו טו טפ	(FIE Dau	Cieek Ope	eration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.69	2.62	0.65	1.84	1.43	1.43	1.09	1.94	1.44	2.92	2.51	2.57
_	1095 to 1080	0.75	1.37	1.17	1.13	1.05	2.54	1.53	1.18	1.66	3.02	2.62	2.92
ls!	1080 to 1065	0.67	0.63	0.63	0.93	0.81	2.34	0.77	0.61	1.34	3.32	2.62	3.12
ب	1065 to 1050	0.63	0.49	0.43	0.55	0.55	1.49	0.61	0.31				1.81
Range (ft msl)	1050 to 1035	0.61	0.18	0.57	0.35	0.24	0.48	0.41	0.20	1.14	1.57	1.71	1.91
ng	1035 to 1020	0.51	0.35	0.49	0.30	0.14	0.47	0.22	0.17	1.22	1.46	3.31	
Ra	1020 to 1005	0.45	0.23	0.35	0.21	0.11	0.10	0.13	0.20	0.49	0.89	2.34	1.86
	1005 to 990									0.45	0.31	2.02	2.07
di	990 to 975	0.57	0.28	0.35	0.25	0.11	0.10	0.05	0.15				
Ze.	975 to 960									0.69	0.45	1.86	2.17
<u> </u>	960 to 945												
nel	945 to 930												
rer	930 to 915												
asn	915 to 900					N 4 i .	aimum Dae	odina 066 (. #				
Measurement Reading	900 to 885					IVIII	nimum Rea	auriy 900.0) IL				
	885 to 870												
	870 to 855												
	870 to 855 < 855												
	< 855	cassee D_		Monthly A	veraged C	hlorophyll	l (ug/l) 199	1 to 1999	(Post Bad	Creek Op	eration)		
	< 855 Jo	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	< 855 Joe 1110 to 1095	Jan 1.92	Feb 1.94	Mar 1.91	Apr 2.48	May 3.05	Jun 1.52	Jul 1.45	Aug 1.79	Sep 2.26	Oct 2.88	3.22	2.81
(1	< 855 Journal 1110 to 1095 1095 to 1080	Jan 1.92 1.85	1.94 1.86	Mar 1.91 1.86	Apr 2.48 1.86	3.05 2.68	Jun 1.52 2.22	Jul 1.45 1.68	Aug 1.79 1.98	Sep 2.26 1.83	Oct 2.88 2.09	3.22 2.34	2.81 2.02
nsl)	< 855 Joe 1110 to 1095 1095 to 1080 1080 to 1065	Jan 1.92 1.85 1.93	1.94 1.86 1.72	Mar 1.91 1.86 1.78	2.48 1.86 1.89	3.05 2.68 2.96	Jun 1.52 2.22 2.30	Jul 1.45 1.68 2.43	Aug 1.79 1.98 1.86	Sep 2.26 1.83 2.02	Oct 2.88 2.09 2.43	3.22 2.34 2.91	2.81 2.02 2.19
ft msl)	< 855 Joe 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050	Jan 1.92 1.85 1.93 1.87	1.94 1.86 1.72 1.81	Mar 1.91 1.86 1.78 1.75	2.48 1.86 1.89 1.90	3.05 2.68 2.96 3.24	Jun 1.52 2.22 2.30 2.40	Jul 1.45 1.68 2.43 2.99	Aug 1.79 1.98 1.86 2.29	Sep 2.26 1.83 2.02 2.06	Oct 2.88 2.09 2.43 2.64	3.22 2.34 2.91 2.78	2.81 2.02 2.19 2.19
ge (ft msl)	< 855 Joe 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035	Jan 1.92 1.85 1.93 1.87 2.09	1.94 1.86 1.72 1.81 1.76	1.91 1.86 1.78 1.75 1.51	Apr 2.48 1.86 1.89 1.90 1.86	May 3.05 2.68 2.96 3.24 2.77	Jun 1.52 2.22 2.30 2.40 2.41	Jul 1.45 1.68 2.43 2.99 3.48	Aug 1.79 1.98 1.86 2.29 1.95	Sep 2.26 1.83 2.02 2.06 1.97	Oct 2.88 2.09 2.43 2.64 2.58	3.22 2.34 2.91 2.78 2.59	2.81 2.02 2.19 2.19 2.24
ange (ft msl)	< 855 Joe 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020	Jan 1.92 1.85 1.93 1.87 2.09 1.87	1.94 1.86 1.72 1.81 1.76 1.64	Mar 1.91 1.86 1.78 1.75 1.51 1.55	Apr 2.48 1.86 1.89 1.90 1.86 1.73	May 3.05 2.68 2.96 3.24 2.77 2.80	Jun 1.52 2.22 2.30 2.40 2.41 2.78	Jul 1.45 1.68 2.43 2.99 3.48 3.63	Aug 1.79 1.98 1.86 2.29 1.95 1.82	Sep 2.26 1.83 2.02 2.06 1.97 1.88	Oct 2.88 2.09 2.43 2.64 2.58 2.50	3.22 2.34 2.91 2.78 2.59 2.65	2.81 2.02 2.19 2.19 2.24 2.22
Range (ft msl)	< 855 Joe 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005	Jan 1.92 1.85 1.93 1.87 2.09 1.87 1.81	1.94 1.86 1.72 1.81 1.76	1.91 1.86 1.78 1.75 1.51	Apr 2.48 1.86 1.89 1.90 1.86	May 3.05 2.68 2.96 3.24 2.77	Jun 1.52 2.22 2.30 2.40 2.41	Jul 1.45 1.68 2.43 2.99 3.48	Aug 1.79 1.98 1.86 2.29 1.95	Sep 2.26 1.83 2.02 2.06 1.97 1.88 1.82	Oct 2.88 2.09 2.43 2.64 2.58 2.50 2.45	3.22 2.34 2.91 2.78 2.59 2.65 2.82	2.81 2.02 2.19 2.19 2.24 2.22 2.06
ing Range (ft msl)	< 855 Joe 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990	Jan 1.92 1.85 1.93 1.87 2.09 1.87 1.81 0.93	1.94 1.86 1.72 1.81 1.76 1.64 1.60	Mar 1.91 1.86 1.78 1.75 1.51 1.55 1.50	Apr 2.48 1.86 1.89 1.90 1.86 1.73 1.88	May 3.05 2.68 2.96 3.24 2.77 2.80 2.49	Jun 1.52 2.22 2.30 2.40 2.41 2.78 2.65	Jul 1.45 1.68 2.43 2.99 3.48 3.63 3.45	Aug 1.79 1.98 1.86 2.29 1.95 1.82 1.82	Sep 2.26 1.83 2.02 2.06 1.97 1.88 1.82 1.50	Oct 2.88 2.09 2.43 2.64 2.58 2.50 2.45 2.19	3.22 2.34 2.91 2.78 2.59 2.65 2.82 2.02	2.81 2.02 2.19 2.19 2.24 2.22 2.06 1.54
ading Range (ft msl)	< 855 Joe 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975	Jan 1.92 1.85 1.93 1.87 2.09 1.87 1.81 0.93 1.97	1.94 1.86 1.72 1.81 1.76 1.64 1.60	Mar 1.91 1.86 1.78 1.75 1.51 1.55	Apr 2.48 1.86 1.89 1.90 1.86 1.73	May 3.05 2.68 2.96 3.24 2.77 2.80	Jun 1.52 2.22 2.30 2.40 2.41 2.78	Jul 1.45 1.68 2.43 2.99 3.48 3.63	Aug 1.79 1.98 1.86 2.29 1.95 1.82 1.82	Sep 2.26 1.83 2.02 2.06 1.97 1.88 1.82	Oct 2.88 2.09 2.43 2.64 2.58 2.50 2.45	3.22 2.34 2.91 2.78 2.59 2.65 2.82	2.81 2.02 2.19 2.19 2.24 2.22 2.06 1.54 2.76
Reading Range (ft msl)	< 855 Joe 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960	Jan 1.92 1.85 1.93 1.87 2.09 1.87 1.81 0.93	1.94 1.86 1.72 1.81 1.76 1.64 1.60	Mar 1.91 1.86 1.78 1.75 1.51 1.55 1.50	Apr 2.48 1.86 1.89 1.90 1.86 1.73 1.88	May 3.05 2.68 2.96 3.24 2.77 2.80 2.49	Jun 1.52 2.22 2.30 2.40 2.41 2.78 2.65	Jul 1.45 1.68 2.43 2.99 3.48 3.63 3.45	Aug 1.79 1.98 1.86 2.29 1.95 1.82 1.82	Sep 2.26 1.83 2.02 2.06 1.97 1.88 1.82 1.50	Oct 2.88 2.09 2.43 2.64 2.58 2.50 2.45 2.19	3.22 2.34 2.91 2.78 2.59 2.65 2.82 2.02	2.81 2.02 2.19 2.19 2.24 2.22 2.06 1.54
int Reading Range (ft msl)	< 855 Joe 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945	Jan 1.92 1.85 1.93 1.87 2.09 1.87 1.81 0.93 1.97 0.96	1.94 1.86 1.72 1.81 1.76 1.64 1.60	Mar 1.91 1.86 1.78 1.75 1.51 1.55 1.50	Apr 2.48 1.86 1.89 1.90 1.86 1.73 1.88	May 3.05 2.68 2.96 3.24 2.77 2.80 2.49	Jun 1.52 2.22 2.30 2.40 2.41 2.78 2.65	Jul 1.45 1.68 2.43 2.99 3.48 3.63 3.45	Aug 1.79 1.98 1.86 2.29 1.95 1.82 1.82	Sep 2.26 1.83 2.02 2.06 1.97 1.88 1.82 1.50	Oct 2.88 2.09 2.43 2.64 2.58 2.50 2.45 2.19	3.22 2.34 2.91 2.78 2.59 2.65 2.82 2.02	2.81 2.02 2.19 2.19 2.24 2.22 2.06 1.54 2.76
ment Reading Range (ft msl)	< 855 Joe 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930	Jan 1.92 1.85 1.93 1.87 2.09 1.87 1.81 0.93 1.97	1.94 1.86 1.72 1.81 1.76 1.64 1.60	Mar 1.91 1.86 1.78 1.75 1.51 1.55 1.50	Apr 2.48 1.86 1.89 1.90 1.86 1.73 1.88	May 3.05 2.68 2.96 3.24 2.77 2.80 2.49	Jun 1.52 2.22 2.30 2.40 2.41 2.78 2.65	Jul 1.45 1.68 2.43 2.99 3.48 3.63 3.45	Aug 1.79 1.98 1.86 2.29 1.95 1.82 1.82	Sep 2.26 1.83 2.02 2.06 1.97 1.88 1.82 1.50	Oct 2.88 2.09 2.43 2.64 2.58 2.50 2.45 2.19	3.22 2.34 2.91 2.78 2.59 2.65 2.82 2.02	2.81 2.02 2.19 2.19 2.24 2.22 2.06 1.54 2.76
urement Reading Range (ft msl)	< 855 Joe 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915	Jan 1.92 1.85 1.93 1.87 2.09 1.87 1.81 0.93 1.97 0.96	1.94 1.86 1.72 1.81 1.76 1.64 1.60	Mar 1.91 1.86 1.78 1.75 1.51 1.55 1.50	Apr 2.48 1.86 1.89 1.90 1.86 1.73 1.88	May 3.05 2.68 2.96 3.24 2.77 2.80 2.49	Jun 1.52 2.22 2.30 2.40 2.41 2.78 2.65	Jul 1.45 1.68 2.43 2.99 3.48 3.63 3.45	Aug 1.79 1.98 1.86 2.29 1.95 1.82 1.82 2.10	Sep 2.26 1.83 2.02 2.06 1.97 1.88 1.82 1.50	Oct 2.88 2.09 2.43 2.64 2.58 2.50 2.45 2.19	3.22 2.34 2.91 2.78 2.59 2.65 2.82 2.02	2.81 2.02 2.19 2.19 2.24 2.22 2.06 1.54 2.76
asurement Reading Range (ft msl)	< 855 Joe 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900	Jan 1.92 1.85 1.93 1.87 2.09 1.87 1.81 0.93 1.97 0.96	1.94 1.86 1.72 1.81 1.76 1.64 1.60	Mar 1.91 1.86 1.78 1.75 1.51 1.55 1.50	Apr 2.48 1.86 1.89 1.90 1.86 1.73 1.88	May 3.05 2.68 2.96 3.24 2.77 2.80 2.49	Jun 1.52 2.22 2.30 2.40 2.41 2.78 2.65	Jul 1.45 1.68 2.43 2.99 3.48 3.63 3.45	Aug 1.79 1.98 1.86 2.29 1.95 1.82 1.82 2.10	Sep 2.26 1.83 2.02 2.06 1.97 1.88 1.82 1.50	Oct 2.88 2.09 2.43 2.64 2.58 2.50 2.45 2.19	3.22 2.34 2.91 2.78 2.59 2.65 2.82 2.02	2.81 2.02 2.19 2.19 2.24 2.22 2.06 1.54 2.76
Measurement Reading Range (ft msl)	< 855 Joe 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885	Jan 1.92 1.85 1.93 1.87 2.09 1.87 1.81 0.93 1.97 0.96	1.94 1.86 1.72 1.81 1.76 1.64 1.60	Mar 1.91 1.86 1.78 1.75 1.51 1.55 1.50	Apr 2.48 1.86 1.89 1.90 1.86 1.73 1.88	May 3.05 2.68 2.96 3.24 2.77 2.80 2.49	Jun 1.52 2.22 2.30 2.40 2.41 2.78 2.65 2.59	Jul 1.45 1.68 2.43 2.99 3.48 3.63 3.45	Aug 1.79 1.98 1.86 2.29 1.95 1.82 1.82 2.10 2.06	Sep 2.26 1.83 2.02 2.06 1.97 1.88 1.82 1.50	Oct 2.88 2.09 2.43 2.64 2.58 2.50 2.45 2.19	3.22 2.34 2.91 2.78 2.59 2.65 2.82 2.02	2.81 2.02 2.19 2.19 2.24 2.22 2.06 1.54 2.76
Measurement Reading Range (ft msl)	< 855 Joe 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870	Jan 1.92 1.85 1.93 1.87 2.09 1.87 1.81 0.93 1.97 0.96	1.94 1.86 1.72 1.81 1.76 1.64 1.60	Mar 1.91 1.86 1.78 1.75 1.51 1.55 1.50	Apr 2.48 1.86 1.89 1.90 1.86 1.73 1.88	May 3.05 2.68 2.96 3.24 2.77 2.80 2.49	Jun 1.52 2.22 2.30 2.40 2.41 2.78 2.65	Jul 1.45 1.68 2.43 2.99 3.48 3.63 3.45	Aug 1.79 1.98 1.86 2.29 1.95 1.82 1.82 2.10 2.06	Sep 2.26 1.83 2.02 2.06 1.97 1.88 1.82 1.50	Oct 2.88 2.09 2.43 2.64 2.58 2.50 2.45 2.19	3.22 2.34 2.91 2.78 2.59 2.65 2.82 2.02	2.81 2.02 2.19 2.19 2.24 2.22 2.06 1.54 2.76
Measurement Reading Range (ft msl)	< 855 Joe 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885	Jan 1.92 1.85 1.93 1.87 2.09 1.87 1.81 0.93 1.97 0.96	1.94 1.86 1.72 1.81 1.76 1.64 1.60	Mar 1.91 1.86 1.78 1.75 1.51 1.55 1.50	Apr 2.48 1.86 1.89 1.90 1.86 1.73 1.88	May 3.05 2.68 2.96 3.24 2.77 2.80 2.49	Jun 1.52 2.22 2.30 2.40 2.41 2.78 2.65 2.59	Jul 1.45 1.68 2.43 2.99 3.48 3.63 3.45	Aug 1.79 1.98 1.86 2.29 1.95 1.82 1.82 2.10 2.06	Sep 2.26 1.83 2.02 2.06 1.97 1.88 1.82 1.50	Oct 2.88 2.09 2.43 2.64 2.58 2.50 2.45 2.19	3.22 2.34 2.91 2.78 2.59 2.65 2.82 2.02	2.81 2.02 2.19 2.19 2.24 2.22 2.06 1.54 2.76

Legend 0.00 10.00

	Jo	cassee E	_2_557.0:	Monthly A		∍nioropnyi	ii (ug/i) 19:	90 to 1991	(Pre Bad	Сгеек Оре	eration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	0.61	1.41	1.98	1.31	1.39	1.07	0.87	0.89	1.86	1.74	2.21	3.52
	1095 to 1080	0.67	1.78	2.54	1.25	1.49	1.25	1.29	1.09	1.94	2.22	3.07	3.32
ısı	1080 to 1065	0.85	0.87	0.93	1.21	1.74	2.14	2.22	2.34	1.94	2.21	2.67	3.72
ב	1065 to 1050	0.77	0.20	0.63	1.01	1.74	2.58	1.78	2.30				3.12
e (i	1050 to 1035	0.85	0.53	0.65	0.63	1.25	1.45	1.82	2.22	2.02	2.41	3.07	3.42
ng	1035 to 1020	0.87	0.49	0.61	0.35	0.65	0.77	0.57	0.81	2.10	2.92	2.62	
Ra	1020 to 1005	0.83	0.41	0.45	0.29	0.30	0.53	0.45	0.89	0.61	0.81	3.12	1.31
ng	1005 to 990									0.51	0.57	3.02	4.53
Measurement Reading Range (ft msl)	990 to 975	0.83	0.49	0.30	0.22	0.22	0.22	0.15	0.32				
Re	975 to 960									0.31	0.30	0.39	2.11
Έ	960 to 945												
ле	945 to 930												
ē	930 to 915												
asn	915 to 900					Λ <i>Λi</i> i	nimum Rea	ndina 001 1	1 <i>f</i> t				
ĕ	900 to 885					IVIII	IIIIIIIIII NEe	aumy 90 i. i	π				
	885 to 870												
	870 to 855												
	< 855												
	< 855	cassee E_	1		veraged C	hlorophyll	(ug/l) 199		(Post Bad	Creek Op	eration)		
	< 855 Jo	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	< 855 Joe 1110 to 1095	Jan 2.15	Feb 2.33	Mar 1.99	Apr 3.36	May 2.06	Jun 1.21	Jul 1.02	Aug 1.32	Sep 1.80	Oct 3.24	4.12	3.54
	< 855 Jo 1110 to 1095 1095 to 1080	Jan 2.15 2.29	Feb 2.33 2.55	Mar 1.99 2.62	Apr 3.36 3.26	May 2.06 2.64	Jun 1.21 2.33	Jul 1.02 2.39	Aug 1.32 2.05	Sep 1.80 1.88	Oct 3.24 3.03	4.12 3.40	3.54 2.58
msl)	< 855 Joe 1110 to 1095 1095 to 1080 1080 to 1065	Jan 2.15 2.29 2.63	2.33 2.55 2.37	Mar 1.99 2.62 2.49	Apr 3.36 3.26 3.60	2.06 2.64 3.77	Jun 1.21 2.33 2.83	Jul 1.02 2.39 3.78	Aug 1.32 2.05 3.40	Sep 1.80 1.88 4.06	Oct 3.24 3.03 3.25	4.12 3.40 3.87	3.54 2.58 3.09
(ft msl)	< 855 Jo 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050	Jan 2.15 2.29 2.63 2.66	2.33 2.55 2.37 2.20	Mar 1.99 2.62 2.49 2.13	3.36 3.26 3.60 2.48	May 2.06 2.64 3.77 3.58	Jun 1.21 2.33 2.83 3.34	Jul 1.02 2.39 3.78 4.24	Aug 1.32 2.05 3.40 4.05	Sep 1.80 1.88 4.06 4.52	Oct 3.24 3.03 3.25 3.42	4.12 3.40 3.87 3.42	3.54 2.58 3.09 3.97
ge (ft msl)	< 855 Joe 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035	Jan 2.15 2.29 2.63 2.66 3.21	2.33 2.55 2.37 2.20 1.97	Mar 1.99 2.62 2.49 2.13 1.84	3.36 3.26 3.60 2.48 1.70	May 2.06 2.64 3.77 3.58 2.63	Jun 1.21 2.33 2.83 3.34 2.07	Jul 1.02 2.39 3.78 4.24 3.40	Aug 1.32 2.05 3.40 4.05 1.87	Sep 1.80 1.88 4.06 4.52 2.05	Oct 3.24 3.03 3.25 3.42 4.41	4.12 3.40 3.87 3.42 3.39	3.54 2.58 3.09 3.97 3.25
ange (ft msl)	< 855 Joe 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020	Jan 2.15 2.29 2.63 2.66 3.21 2.65	Feb 2.33 2.55 2.37 2.20 1.97 1.76	Mar 1.99 2.62 2.49 2.13 1.84 1.52	Apr 3.36 3.26 3.60 2.48 1.70 1.00	May 2.06 2.64 3.77 3.58 2.63 1.06	Jun 1.21 2.33 2.83 3.34 2.07 1.39	Jul 1.02 2.39 3.78 4.24 3.40 1.92	Aug 1.32 2.05 3.40 4.05 1.87 1.32	Sep 1.80 1.88 4.06 4.52 2.05 1.22	Oct 3.24 3.03 3.25 3.42 4.41 3.88	4.12 3.40 3.87 3.42 3.39 3.74	3.54 2.58 3.09 3.97 3.25 2.88
Range (ft msl)	< 855 Joe 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005	Jan 2.15 2.29 2.63 2.66 3.21 2.65 2.87	2.33 2.55 2.37 2.20 1.97	Mar 1.99 2.62 2.49 2.13 1.84	3.36 3.26 3.60 2.48 1.70	May 2.06 2.64 3.77 3.58 2.63	Jun 1.21 2.33 2.83 3.34 2.07	Jul 1.02 2.39 3.78 4.24 3.40	Aug 1.32 2.05 3.40 4.05 1.87	Sep 1.80 1.88 4.06 4.52 2.05 1.22 0.68	Oct 3.24 3.03 3.25 3.42 4.41 3.88 1.42	4.12 3.40 3.87 3.42 3.39 3.74 3.29	3.54 2.58 3.09 3.97 3.25 2.88 2.40
ing Range (ft msl)	< 855 Joe 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990	Jan 2.15 2.29 2.63 2.66 3.21 2.65 2.87 1.29	2.33 2.55 2.37 2.20 1.97 1.76 1.61	Mar 1.99 2.62 2.49 2.13 1.84 1.52 1.46	Apr 3.36 3.26 3.60 2.48 1.70 1.00 1.01	May 2.06 2.64 3.77 3.58 2.63 1.06 0.68	Jun 1.21 2.33 2.83 3.34 2.07 1.39 0.68	Jul 1.02 2.39 3.78 4.24 3.40 1.92 1.00	Aug 1.32 2.05 3.40 4.05 1.87 1.32 0.61	Sep 1.80 1.88 4.06 4.52 2.05 1.22 0.68 0.64	Oct 3.24 3.03 3.25 3.42 4.41 3.88 1.42 0.41	4.12 3.40 3.87 3.42 3.39 3.74 3.29 0.58	3.54 2.58 3.09 3.97 3.25 2.88 2.40 0.70
ading Range (ft msl)	< 855 Joe 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975	2.15 2.29 2.63 2.66 3.21 2.65 2.87 1.29 2.69	2.33 2.55 2.37 2.20 1.97 1.76 1.61	Mar 1.99 2.62 2.49 2.13 1.84 1.52	Apr 3.36 3.26 3.60 2.48 1.70 1.00	May 2.06 2.64 3.77 3.58 2.63 1.06	Jun 1.21 2.33 2.83 3.34 2.07 1.39	Jul 1.02 2.39 3.78 4.24 3.40 1.92	Aug 1.32 2.05 3.40 4.05 1.87 1.32 0.61	Sep 1.80 1.88 4.06 4.52 2.05 1.22 0.68 0.64 0.37	3.24 3.03 3.25 3.42 4.41 3.88 1.42 0.41 0.42	4.12 3.40 3.87 3.42 3.39 3.74 3.29 0.58 0.62	3.54 2.58 3.09 3.97 3.25 2.88 2.40 0.70 1.85
Reading Range (ft msl)	< 855 Joe 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960	Jan 2.15 2.29 2.63 2.66 3.21 2.65 2.87 1.29	2.33 2.55 2.37 2.20 1.97 1.76 1.61	Mar 1.99 2.62 2.49 2.13 1.84 1.52 1.46	Apr 3.36 3.26 3.60 2.48 1.70 1.00 1.01	May 2.06 2.64 3.77 3.58 2.63 1.06 0.68	Jun 1.21 2.33 2.83 3.34 2.07 1.39 0.68	Jul 1.02 2.39 3.78 4.24 3.40 1.92 1.00	Aug 1.32 2.05 3.40 4.05 1.87 1.32 0.61	Sep 1.80 1.88 4.06 4.52 2.05 1.22 0.68 0.64	Oct 3.24 3.03 3.25 3.42 4.41 3.88 1.42 0.41	4.12 3.40 3.87 3.42 3.39 3.74 3.29 0.58	3.54 2.58 3.09 3.97 3.25 2.88 2.40 0.70
ent Reading Range (ft msl)	< 855 Joe 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945	2.15 2.29 2.63 2.66 3.21 2.65 2.87 1.29 2.69	2.33 2.55 2.37 2.20 1.97 1.76 1.61	Mar 1.99 2.62 2.49 2.13 1.84 1.52 1.46	Apr 3.36 3.26 3.60 2.48 1.70 1.00 1.01	May 2.06 2.64 3.77 3.58 2.63 1.06 0.68	Jun 1.21 2.33 2.83 3.34 2.07 1.39 0.68	Jul 1.02 2.39 3.78 4.24 3.40 1.92 1.00	Aug 1.32 2.05 3.40 4.05 1.87 1.32 0.61	Sep 1.80 1.88 4.06 4.52 2.05 1.22 0.68 0.64 0.37	3.24 3.03 3.25 3.42 4.41 3.88 1.42 0.41 0.42	4.12 3.40 3.87 3.42 3.39 3.74 3.29 0.58 0.62	3.54 2.58 3.09 3.97 3.25 2.88 2.40 0.70 1.85
ment Reading Range (ft msl)	< 855 Joe 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930	2.15 2.29 2.63 2.66 3.21 2.65 2.87 1.29 2.69	2.33 2.55 2.37 2.20 1.97 1.76 1.61	Mar 1.99 2.62 2.49 2.13 1.84 1.52 1.46	Apr 3.36 3.26 3.60 2.48 1.70 1.00 1.01	May 2.06 2.64 3.77 3.58 2.63 1.06 0.68	Jun 1.21 2.33 2.83 3.34 2.07 1.39 0.68	Jul 1.02 2.39 3.78 4.24 3.40 1.92 1.00	Aug 1.32 2.05 3.40 4.05 1.87 1.32 0.61	Sep 1.80 1.88 4.06 4.52 2.05 1.22 0.68 0.64 0.37	3.24 3.03 3.25 3.42 4.41 3.88 1.42 0.41 0.42	4.12 3.40 3.87 3.42 3.39 3.74 3.29 0.58 0.62	3.54 2.58 3.09 3.97 3.25 2.88 2.40 0.70 1.85
urement Reading Range (ft msl)	< 855 Joe 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915	2.15 2.29 2.63 2.66 3.21 2.65 2.87 1.29 2.69	2.33 2.55 2.37 2.20 1.97 1.76 1.61	Mar 1.99 2.62 2.49 2.13 1.84 1.52 1.46	Apr 3.36 3.26 3.60 2.48 1.70 1.00 1.01	May 2.06 2.64 3.77 3.58 2.63 1.06 0.68	Jun 1.21 2.33 2.83 3.34 2.07 1.39 0.68	Jul 1.02 2.39 3.78 4.24 3.40 1.92 1.00	Aug 1.32 2.05 3.40 4.05 1.87 1.32 0.61	Sep 1.80 1.88 4.06 4.52 2.05 1.22 0.68 0.64 0.37	3.24 3.03 3.25 3.42 4.41 3.88 1.42 0.41 0.42	4.12 3.40 3.87 3.42 3.39 3.74 3.29 0.58 0.62	3.54 2.58 3.09 3.97 3.25 2.88 2.40 0.70 1.85
asurement Reading Range (ft msl)	< 855 Joe 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900	2.15 2.29 2.63 2.66 3.21 2.65 2.87 1.29 2.69	2.33 2.55 2.37 2.20 1.97 1.76 1.61	Mar 1.99 2.62 2.49 2.13 1.84 1.52 1.46	Apr 3.36 3.26 3.60 2.48 1.70 1.00 1.01	May 2.06 2.64 3.77 3.58 2.63 1.06 0.68	Jun 1.21 2.33 2.83 3.34 2.07 1.39 0.68 0.42	Jul 1.02 2.39 3.78 4.24 3.40 1.92 1.00	Aug 1.32 2.05 3.40 4.05 1.87 1.32 0.61 0.45 0.52	Sep 1.80 1.88 4.06 4.52 2.05 1.22 0.68 0.64 0.37	3.24 3.03 3.25 3.42 4.41 3.88 1.42 0.41 0.42	4.12 3.40 3.87 3.42 3.39 3.74 3.29 0.58 0.62	3.54 2.58 3.09 3.97 3.25 2.88 2.40 0.70 1.85
Measurement Reading Range (ft msl)	< 855 Joe 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885	2.15 2.29 2.63 2.66 3.21 2.65 2.87 1.29 2.69	Feb 2.33 2.55 2.37 2.20 1.97 1.76 1.61	Mar 1.99 2.62 2.49 2.13 1.84 1.52 1.46	Apr 3.36 3.26 3.60 2.48 1.70 1.00 1.01	May 2.06 2.64 3.77 3.58 2.63 1.06 0.68	Jun 1.21 2.33 2.83 3.34 2.07 1.39 0.68	Jul 1.02 2.39 3.78 4.24 3.40 1.92 1.00	Aug 1.32 2.05 3.40 4.05 1.87 1.32 0.61 0.45 0.52	Sep 1.80 1.88 4.06 4.52 2.05 1.22 0.68 0.64 0.37	3.24 3.03 3.25 3.42 4.41 3.88 1.42 0.41 0.42	4.12 3.40 3.87 3.42 3.39 3.74 3.29 0.58 0.62	3.54 2.58 3.09 3.97 3.25 2.88 2.40 0.70 1.85
Measurement Reading Range (ft msl)	< 855 Joe 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870	2.15 2.29 2.63 2.66 3.21 2.65 2.87 1.29 2.69	Feb 2.33 2.55 2.37 2.20 1.97 1.76 1.61	Mar 1.99 2.62 2.49 2.13 1.84 1.52 1.46	Apr 3.36 3.26 3.60 2.48 1.70 1.00 1.01	May 2.06 2.64 3.77 3.58 2.63 1.06 0.68	Jun 1.21 2.33 2.83 3.34 2.07 1.39 0.68 0.42	Jul 1.02 2.39 3.78 4.24 3.40 1.92 1.00	Aug 1.32 2.05 3.40 4.05 1.87 1.32 0.61 0.45 0.52	Sep 1.80 1.88 4.06 4.52 2.05 1.22 0.68 0.64 0.37	3.24 3.03 3.25 3.42 4.41 3.88 1.42 0.41 0.42	4.12 3.40 3.87 3.42 3.39 3.74 3.29 0.58 0.62	3.54 2.58 3.09 3.97 3.25 2.88 2.40 0.70 1.85
Measurement Reading Range (ft msl)	< 855 Joe 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885	2.15 2.29 2.63 2.66 3.21 2.65 2.87 1.29 2.69	Feb 2.33 2.55 2.37 2.20 1.97 1.76 1.61	Mar 1.99 2.62 2.49 2.13 1.84 1.52 1.46	Apr 3.36 3.26 3.60 2.48 1.70 1.00 1.01	May 2.06 2.64 3.77 3.58 2.63 1.06 0.68	Jun 1.21 2.33 2.83 3.34 2.07 1.39 0.68 0.42	Jul 1.02 2.39 3.78 4.24 3.40 1.92 1.00 0.46	Aug 1.32 2.05 3.40 4.05 1.87 1.32 0.61 0.45 0.52	Sep 1.80 1.88 4.06 4.52 2.05 1.22 0.68 0.64 0.37	3.24 3.03 3.25 3.42 4.41 3.88 1.42 0.41 0.42	4.12 3.40 3.87 3.42 3.39 3.74 3.29 0.58 0.62	3.54 2.58 3.09 3.97 3.25 2.88 2.40 0.70 1.85

Legend 0.00 10.00

	Jo	cassee F_	2_554.8:	Monthly A	veraged (Chlorophy	ll (ug/l) 199	90 to 1991	(Pre Bad	Creek Ope	eration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	1.45	3.83	1.98	1.53	1.21	0.69	0.99	0.68	1.84	2.77	2.97	4.73
	1095 to 1080	1.37	0.49	1.17	1.70	2.72	4.93	3.02	0.97	2.31	4.02	3.02	4.02
ısı	1080 to 1065	1.53	0.89	0.73	1.33	1.78	1.53	1.37	1.41	2.82	4.53	3.92	3.82
1 <u>2</u>	1065 to 1050	1.41	0.59	0.59	0.63	0.77	1.33	0.81	1.49				3.92
e (.	1050 to 1035	1.57	0.53	0.55	0.45	0.61	0.48	0.57	0.73	2.82	4.12	3.72	3.92
ng	1035 to 1020	1.53	0.51	0.73	0.41	0.35	0.39	0.37	0.35	2.41	3.02	3.32	
Ra	1020 to 1005	1.29	0.51	0.65	0.28	0.22	0.25	0.26	0.14	2.06	3.02	3.22	6.14
ng	1005 to 990									0.43	2.31	3.22	2.92
adi	990 to 975	1.21	0.47	0.43	0.20	0.18	0.11	0.90	0.22				
Re	975 to 960									0.24	0.37	0.30	2.62
<u> </u>	960 to 945												
μ	945 to 930												
<u>re</u>	930 to 915												
Measurement Reading Range (ft msl)	915 to 900					A 4:	nimum Doo	ndina 066 (o #				
٩	900 to 885					IVIII	nimum Rea	aurig 900.	o II				
	885 to 870												
	870 to 855												
	< 855												
	Jo	cassee F_	2_554.8: I	Monthly A	veraged C	hlorophyl	l (ug/l) 199	1 to 1997	(Post Bad	Creek Op	eration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	3.16	3.97	3.27	3.39	2.93	1.79	1.45	1.70	2.02	3.73	4.71	4.48
_	1095 to 1080	3.53	4.07	3.56	4.08	3.52	4.61	4.14	2.21	2.81	4.02	4.55	3.48
Isu	1080 to 1065	3.35	3.53	3.20	3.05	3.71	2.77	4.07	4.57	4.28	4.56	4.72	3.77
# L	1065 to 1050	2.96	3.01	2.47	2.00	1.88	1.32	1.97	1.96	3.02	3.90	4.11	3.52
Range (ft msl)	1050 to 1035	2.92	2.77	2.24	1.13	1.12	0.66	0.85	0.86	2.23	3.51	3.98	4.01
gu g	1035 to 1020	2.74	2.48	1.83	0.89	0.60	0.51	0.38	0.44	0.75	3.02	3.40	3.67
ď	1020 to 1005	2 72		4 57	0.50	0.44	~ ~ =				4 00	0.70	3.46
		2.72	2.24	1.57	0.59	0.44	0.35	0.25	0.22	0.40	1.39	2.72	
ing	1005 to 990	1.70								0.18	0.24	0.34	0.96
ading	1005 to 990 990 to 975	1.70 3.41	2.43	2.48	0.65	0.44	0.35	0.25 0.26	0.27	0.18 0.25	0.24 0.36	0.34 3.27	0.96 2.34
Reading	1005 to 990 990 to 975 975 to 960	1.70								0.18	0.24	0.34	0.96
int Reading	1005 to 990 990 to 975 975 to 960 960 to 945	1.70 3.41	2.43		0.65				0.27	0.18 0.25	0.24 0.36	0.34 3.27	0.96 2.34
ment Reading	1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930	1.70 3.41	2.43						0.27	0.18 0.25	0.24 0.36	0.34 3.27	0.96 2.34
rement Reading	1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915	1.70 3.41	2.43		0.65				0.27	0.18 0.25	0.24 0.36	0.34 3.27	0.96 2.34
asurement Reading	1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900	1.70 3.41	2.43		0.65				0.27	0.18 0.25	0.24 0.36	0.34 3.27	0.96 2.34
Measurement Reading	1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915	1.70 3.41	2.43		0.65	0.41	0.27	0.26	0.27 0.18	0.18 0.25	0.24 0.36	0.34 3.27	0.96 2.34
Measurement Reading I	1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870	1.70 3.41	2.43		0.65	0.41		0.26	0.27 0.18	0.18 0.25	0.24 0.36	0.34 3.27	0.96 2.34
Measurement Reading	1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870 870 to 855	1.70 3.41	2.43		0.65	0.41	0.27	0.26	0.27 0.18	0.18 0.25	0.24 0.36	0.34 3.27	0.96 2.34
Measurement Reading	1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870	1.70 3.41	2.43		0.65	0.41	0.27	0.26	0.27 0.18	0.18 0.25	0.24 0.36	0.34 3.27	0.96 2.34

	J	cassee F_	2_556.0:	Monthly A	veraged (Chlorophy	ll (ug/l) 199	00 to 1991	(Pre Bad	Creek Ope	eration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	1.01	1.21	1.65	1.21	1.29	1.05	0.91	0.34	1.67	3.22	2.48	3.57
	1095 to 1080	1.08	0.97	1.53	1.57	1.65	0.77	1.09	2.82	2.26	3.62	1.51	3.72
ıısı	1080 to 1065	1.12	0.99	0.93	1.33	2.58	1.53	1.37	2.54	2.30	4.83	2.72	3.92
1 <u>2</u>	1065 to 1050	1.16	0.57	0.77	0.85	1.41	2.30	1.09	0.73				3.72
e (-	1050 to 1035	1.03	0.57	0.61	0.47	0.73	2.06	1.09	1.53	2.06	3.92	3.72	3.92
ng	1035 to 1020	1.03	0.45	0.49	0.32	0.45	1.05	0.43	0.65	1.94	3.12	2.82	
Ra	1020 to 1005	0.97	0.43	0.41	0.30	0.37	0.20	0.41	0.45	1.17	2.62	3.12	3.42
ng	1005 to 990									0.35	1.65	2.26	2.72
adi	990 to 975	1.03	0.43	0.43	0.17	0.23	0.21	0.15	0.28				
Re	975 to 960									0.22	0.32	2.77	3.22
<u> </u>	960 to 945												
μ	945 to 930												
<u>re</u>	930 to 915												
Measurement Reading Range (ft msl)	915 to 900					Λ / i	nimum Rea	dina 066 s	Q ff				
ďe	900 to 885					IVIII	illillilli Rea	uniy 900.0	ט ונ				
	885 to 870												
	870 to 855												
	< 855												
	Jo	cassee F_	2_556.0: I	Monthly A	veraged C	Chlorophyl	l (ug/l) 199	1 to 2010	(Post Bad	Creek Op	eration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	2.73	2.69	3.15	4.06	2.60	1.36	1.12	1.26	2.04	3.56	3.35	3.47
	1005 to 1000	3.07	264	3.16	4.58	3.22	3.47	2.29	1.70	2.73	3.71	3.53	2 02
	1095 to 1080		2.64										3.02
(Isu	1080 to 1065	3.12	2.85	2.67	4.39	4.05	3.02	3.62	3.98	3.53	3.68	4.21	3.24
ft msl)	1080 to 1065 1065 to 1050	3.12 2.75	2.85 2.48	2.67 2.33	4.39 2.71	4.05 3.18	3.02 2.05	3.62 3.48	3.98 2.40	3.53 2.96	3.68 3.96	4.21 3.59	3.24 3.24
e (ft msl)	1080 to 1065 1065 to 1050 1050 to 1035	3.12 2.75 2.91	2.85 2.48 2.38	2.67	4.39	4.05	3.02 2.05 1.25	3.62 3.48 1.85	3.98 2.40 0.96	3.53 2.96 1.91	3.68 3.96 3.91	4.21 3.59 3.45	3.24 3.24 3.09
ange (ft msl)	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020	3.12 2.75 2.91 2.87	2.85 2.48 2.38 2.38	2.67 2.33 1.92 1.71	4.39 2.71 1.65 1.01	4.05 3.18 1.83 1.31	3.02 2.05 1.25 0.73	3.62 3.48 1.85 0.70	3.98 2.40 0.96 0.60	3.53 2.96 1.91 0.70	3.68 3.96 3.91 2.71	4.21 3.59 3.45 2.95	3.24 3.24 3.09 3.16
Range (ft msl)	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005	3.12 2.75 2.91 2.87 2.30	2.85 2.48 2.38	2.67 2.33 1.92	4.39 2.71 1.65	4.05 3.18 1.83	3.02 2.05 1.25	3.62 3.48 1.85	3.98 2.40 0.96	3.53 2.96 1.91 0.70 0.42	3.68 3.96 3.91 2.71 0.99	4.21 3.59 3.45 2.95 2.15	3.24 3.24 3.09 3.16 1.88
ing Range (ft msl)	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990	3.12 2.75 2.91 2.87 2.30 1.34	2.85 2.48 2.38 2.38 1.60	2.67 2.33 1.92 1.71 1.54	4.39 2.71 1.65 1.01 0.75	4.05 3.18 1.83 1.31 0.61	3.02 2.05 1.25 0.73 0.43	3.62 3.48 1.85 0.70 0.46	3.98 2.40 0.96 0.60 0.25	3.53 2.96 1.91 0.70 0.42 0.38	3.68 3.96 3.91 2.71 0.99 0.26	4.21 3.59 3.45 2.95 2.15 0.46	3.24 3.24 3.09 3.16 1.88 0.98
ading Range (ft msl)	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975	3.12 2.75 2.91 2.87 2.30 1.34 2.93	2.85 2.48 2.38 2.38 1.60	2.67 2.33 1.92 1.71	4.39 2.71 1.65 1.01	4.05 3.18 1.83 1.31	3.02 2.05 1.25 0.73	3.62 3.48 1.85 0.70	3.98 2.40 0.96 0.60 0.25	3.53 2.96 1.91 0.70 0.42 0.38 0.18	3.68 3.96 3.91 2.71 0.99 0.26 0.43	4.21 3.59 3.45 2.95 2.15 0.46 0.43	3.24 3.24 3.09 3.16 1.88 0.98 2.29
Reading Range (ft msl)	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960	3.12 2.75 2.91 2.87 2.30 1.34	2.85 2.48 2.38 2.38 1.60	2.67 2.33 1.92 1.71 1.54	4.39 2.71 1.65 1.01 0.75	4.05 3.18 1.83 1.31 0.61	3.02 2.05 1.25 0.73 0.43	3.62 3.48 1.85 0.70 0.46	3.98 2.40 0.96 0.60 0.25	3.53 2.96 1.91 0.70 0.42 0.38	3.68 3.96 3.91 2.71 0.99 0.26	4.21 3.59 3.45 2.95 2.15 0.46	3.24 3.24 3.09 3.16 1.88 0.98
ınt Reading Range (ft msl)	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945	3.12 2.75 2.91 2.87 2.30 1.34 2.93	2.85 2.48 2.38 2.38 1.60 1.65 3.05	2.67 2.33 1.92 1.71 1.54	4.39 2.71 1.65 1.01 0.75	4.05 3.18 1.83 1.31 0.61	3.02 2.05 1.25 0.73 0.43	3.62 3.48 1.85 0.70 0.46	3.98 2.40 0.96 0.60 0.25 0.21 0.21	3.53 2.96 1.91 0.70 0.42 0.38 0.18	3.68 3.96 3.91 2.71 0.99 0.26 0.43	4.21 3.59 3.45 2.95 2.15 0.46 0.43 0.39	3.24 3.24 3.09 3.16 1.88 0.98 2.29
ment Reading Range (ft msl)	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930	3.12 2.75 2.91 2.87 2.30 1.34 2.93	2.85 2.48 2.38 2.38 1.60	2.67 2.33 1.92 1.71 1.54	4.39 2.71 1.65 1.01 0.75	4.05 3.18 1.83 1.31 0.61	3.02 2.05 1.25 0.73 0.43	3.62 3.48 1.85 0.70 0.46	3.98 2.40 0.96 0.60 0.25	3.53 2.96 1.91 0.70 0.42 0.38 0.18	3.68 3.96 3.91 2.71 0.99 0.26 0.43	4.21 3.59 3.45 2.95 2.15 0.46 0.43	3.24 3.24 3.09 3.16 1.88 0.98 2.29
urement Reading Range (ft msl)	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915	3.12 2.75 2.91 2.87 2.30 1.34 2.93	2.85 2.48 2.38 2.38 1.60 1.65 3.05	2.67 2.33 1.92 1.71 1.54 1.68	4.39 2.71 1.65 1.01 0.75 0.65	4.05 3.18 1.83 1.31 0.61	3.02 2.05 1.25 0.73 0.43	3.62 3.48 1.85 0.70 0.46	3.98 2.40 0.96 0.60 0.25 0.21 0.21	3.53 2.96 1.91 0.70 0.42 0.38 0.18	3.68 3.96 3.91 2.71 0.99 0.26 0.43	4.21 3.59 3.45 2.95 2.15 0.46 0.43 0.39	3.24 3.24 3.09 3.16 1.88 0.98 2.29
asurement Reading Range (ft msl)	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900	3.12 2.75 2.91 2.87 2.30 1.34 2.93	2.85 2.48 2.38 2.38 1.60 1.65 3.05	2.67 2.33 1.92 1.71 1.54 1.68	4.39 2.71 1.65 1.01 0.75	4.05 3.18 1.83 1.31 0.61	3.02 2.05 1.25 0.73 0.43	3.62 3.48 1.85 0.70 0.46	3.98 2.40 0.96 0.60 0.25 0.21 0.21	3.53 2.96 1.91 0.70 0.42 0.38 0.18	3.68 3.96 3.91 2.71 0.99 0.26 0.43	4.21 3.59 3.45 2.95 2.15 0.46 0.43 0.39	3.24 3.24 3.09 3.16 1.88 0.98 2.29
Measurement Reading Range (ft msl)	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885	3.12 2.75 2.91 2.87 2.30 1.34 2.93	2.85 2.48 2.38 2.38 1.60 1.65 3.05	2.67 2.33 1.92 1.71 1.54 1.68	4.39 2.71 1.65 1.01 0.75 0.65	4.05 3.18 1.83 1.31 0.61	3.02 2.05 1.25 0.73 0.43	3.62 3.48 1.85 0.70 0.46	3.98 2.40 0.96 0.60 0.25 0.21 0.21	3.53 2.96 1.91 0.70 0.42 0.38 0.18	3.68 3.96 3.91 2.71 0.99 0.26 0.43	4.21 3.59 3.45 2.95 2.15 0.46 0.43 0.39	3.24 3.24 3.09 3.16 1.88 0.98 2.29
Measurement Reading Range (ft msl)	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870	3.12 2.75 2.91 2.87 2.30 1.34 2.93	2.85 2.48 2.38 2.38 1.60 1.65 3.05	2.67 2.33 1.92 1.71 1.54 1.68	4.39 2.71 1.65 1.01 0.75 0.65	4.05 3.18 1.83 1.31 0.61 0.42	3.02 2.05 1.25 0.73 0.43	3.62 3.48 1.85 0.70 0.46	3.98 2.40 0.96 0.60 0.25 0.21 0.21 0.05	3.53 2.96 1.91 0.70 0.42 0.38 0.18	3.68 3.96 3.91 2.71 0.99 0.26 0.43	4.21 3.59 3.45 2.95 2.15 0.46 0.43 0.39	3.24 3.24 3.09 3.16 1.88 0.98 2.29
Measurement Reading Range (ft msl)	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870 870 to 855	3.12 2.75 2.91 2.87 2.30 1.34 2.93	2.85 2.48 2.38 2.38 1.60 1.65 3.05	2.67 2.33 1.92 1.71 1.54 1.68	4.39 2.71 1.65 1.01 0.75 0.65	4.05 3.18 1.83 1.31 0.61 0.42	3.02 2.05 1.25 0.73 0.43	3.62 3.48 1.85 0.70 0.46	3.98 2.40 0.96 0.60 0.25 0.21 0.21 0.05	3.53 2.96 1.91 0.70 0.42 0.38 0.18	3.68 3.96 3.91 2.71 0.99 0.26 0.43	4.21 3.59 3.45 2.95 2.15 0.46 0.43 0.39	3.24 3.24 3.09 3.16 1.88 0.98 2.29
Measurement Reading Range (ft msl)	1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870	3.12 2.75 2.91 2.87 2.30 1.34 2.93	2.85 2.48 2.38 2.38 1.60 1.65 3.05	2.67 2.33 1.92 1.71 1.54 1.68	4.39 2.71 1.65 1.01 0.75 0.65	4.05 3.18 1.83 1.31 0.61 0.42	3.02 2.05 1.25 0.73 0.43	3.62 3.48 1.85 0.70 0.46	3.98 2.40 0.96 0.60 0.25 0.21 0.21 0.05	3.53 2.96 1.91 0.70 0.42 0.38 0.18	3.68 3.96 3.91 2.71 0.99 0.26 0.43	4.21 3.59 3.45 2.95 2.15 0.46 0.43 0.39	3.24 3.24 3.09 3.16 1.88 0.98 2.29

Lake Jocassee Conductivity

	Joc	assee B_2	_558.7: M	onthly Av	eraged Co	nductivity	/ (uS/cm)	1987 to 199	91 (Pre Ba	d Creek O	peration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	18.3	19.0	18.0	19.3	19.0	18.5	19.6	19.8	20.5	19.2	19.8	21.0
	1095 to 1080	20.5	19.0	20.0	20.4	20.0	20.5	20.6	20.6	21.0	19.7	20.8	21.7
lsi l	1080 to 1065	20.5	19.0	20.5	20.3	20.0	20.5	20.8	20.3	20.9	20.0	20.7	21.7
Range (ft msl)	1065 to 1050	20.4	19.0	20.8	20.3	20.0	20.7	20.9	20.3	21.1	20.2	20.6	21.7
e (1	1050 to 1035	20.0	19.0	20.2	20.6	20.0	20.2	20.4	20.1	21.3	19.6	20.4	20.9
ng	1035 to 1020	19.8	19.0	20.5	20.7	19.4	20.3	19.9	20.4	20.8	19.4	20.2	21.1
Ra	1020 to 1005	19.4	19.0	20.6	20.7	19.7	19.9	20.3	19.9	20.4	19.3	20.2	21.0
рп	1005 to 990	19.5	19.0	20.0	20.5	19.7	19.7	19.9	19.9	20.0	18.4	19.6	20.4
gdi	990 to 975	19.2	19.0	19.6	20.1	19.3	19.5	22.7	19.8	20.3	17.1	19.1	20.6
Ze.	975 to 960	19.0	19.0	19.5	20.3	19.3	19.5	20.7	20.2	20.3	18.3	18.9	20.0
 	960 to 945	18.8	18.5	19.8	20.2	19.3	19.7	20.1	20.0	20.0	18.2	18.9	19.6
πe	945 to 930	18.8	18.8	18.6	20.0	19.3	19.1	19.7	19.4	20.0	17.3	19.1	19.7
<u>e</u>	930 to 915	18.4	18.5	19.3	19.9	19.3	19.2	19.8	19.7	19.7	18.1	19.4	20.6
Measurement Reading	915 to 900	17.6	18.5	19.6	19.8	19.3	19.6	19.9	20.3	19.6	17.9	19.0	19.4
Ĭ Ĭ	900 to 885	18.8	18.5	19.8	20.0	19.3	19.0	19.8	19.9	19.8	17.4	18.8	19.4
-	885 to 870	19.6	18.4	19.6	20.0	19.6	19.7	19.9	19.8	20.0	16.8	19.2	20.4
	870 to 855	19.5	18.0	20.0	20.2	19.7	19.5	20.1	20.4	20.3	18.0	18.2	20.0
	< 855	22.0	23.5	20.8	20.4	19.7	19.9	20.0	21.5	23.3	22.4	22.1	28.6
	Joca	ssee B_2	_558.7: Mc	onthly Ave	raged Co	nductivity	(uS/cm) 1	991 to 201	5 (Post Ba	ad Creek C	Operation)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	17.1	17.0	17.0	17.5	18.2	18.0	18.6	18.6	18.5	18.2	18.3	16.6
	1095 to 1080	17.1	17.6	17.3	18.0	18.2	18.3	18.9	18.9	18.3	18.8	18.1	17.6
(ft msl)	1080 to 1065	17.2	17.5	17.3	18.1	18.4	18.6	18.9	19.1	18.5	18.9	18.2	17.5
 	1065 to 1050	17.4	17.5	17.1	17.9	18.2	18.2	18.8	19.1	18.2	18.9	18.1	17.6
e (1050 to 1035	17.2	17.3	17.3	17.7	17.9	18.1	18.5	18.8	18.1	18.7	18.1	17.5
Range (1035 to 1020	17.3	17.4	17.3	17.9	18.0	17.9	18.3	18.6	17.9	18.6	18.2	17.5
<u> </u>	1020 to 1005	17.2	17.5	17.3	17.8	17.9	17.8	17.6	17.9	17.1	18.4	18.0	17.5
ing	1005 to 990	17.4	17.2	17.0	17.7	17.9	17.2	17.3	17.4	16.7	17.4	17.5	17.3
Measurement Reading	990 to 975	17.0	17.5	17.1	17.5	17.5	17.4	17.4	17.4	16.8	17.5	17.0	17.0
Re	975 to 960	17.0	17.4	17.1	17.7	17.7	17.3	17.4	17.4	16.7	17.7	17.2	16.9
ŗ	960 to 945	17.3	17.2	17.0	17.5	17.7	17.3	17.4	17.4	16.5	17.6	17.1	17.0
me	945 to 930	17.2	17.0	17.0	17.5	17.7	17.3	17.4	17.3	16.6	17.5	17.1	17.0
<u> </u>	930 to 915	17.4	17.3	17.0	18.0	17.9	17.6	17.6	17.5	17.0	17.6	17.2	17.2
ası	915 to 900	17.8	17.4	17.0	17.8	17.9	17.4	17.5	17.5	16.8	17.7	17.4	17.5
Me	900 to 885	18.1	17.2	17.0	17.7	17.8	17.3	17.4	17.9	16.9	17.7	17.6	17.6
	885 to 870	17.9	17.5	17.2	17.8	17.7	17.5	17.6	17.9	17.3	17.8	17.6	18.0
	870 to 855	18.6	17.4	17.2	18.0	17.9	17.7	17.8	18.2	17.5	18.0	18.0	18.4
	< 855	20.1	18.3	17.4	18.2	18.2	18.0	18.3	18.9	19.2	19.4	20.3	20.0
		Legend	15.0										25.0

	Joc	assee B_3	_558.0: M	onthly Av	eraged Co	nductivity	/ (uS/cm) 1	1975 to 19	91 (Pre Ba	d Creek C	peration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	15.8	17.2	17.1	17.0	15.3	16.5	19.0	18.1	17.4	17.8	15.9	17.9
	1095 to 1080	17.5	17.5	17.8	18.1	17.2	18.2	18.6	19.4	18.1	19.0	17.6	18.0
JS (1080 to 1065	17.4	17.6	17.2	17.8	17.4	18.2	19.0	18.8	18.0	18.6	17.3	17.8
<u> </u>	1065 to 1050	17.0	17.0	17.9	17.3	17.9	18.1	19.4	19.1	18.7	18.5	18.1	18.4
e (1	1050 to 1035	16.8	17.3	17.2	17.6	16.9	17.9	18.6	18.6	16.8	18.3	17.9	19.1
Range (ft msl)	1035 to 1020	17.3	17.1	17.8	17.3	16.6	17.6	18.0	18.9	17.6	18.2	17.2	18.3
	1020 to 1005	17.0	16.9	17.7	17.0	16.2	17.3	19.1	17.7	16.8	17.6	16.8	17.8
ng	1005 to 990	17.3	16.7	17.3	16.5	16.7	17.1	17.5	17.5	16.9	16.7	16.3	18.5
adi	990 to 975	17.2	16.7	17.1	17.7	16.7	17.7	17.9	18.8	16.5	16.2	15.9	18.1
Re.	975 to 960	17.7	19.0	20.0	19.0	17.9	17.8	22.1	18.6	18.7	17.2	17.1	18.8
ヹ	960 to 945	18.8	16.8	19.7	18.3	20.3	19.8	20.8	19.5	21.1	17.3	19.6	19.6
me	945 to 930	18.5	17.4	19.2	18.8	19.7	18.8	20.0	20.7	18.6	17.6	18.6	19.9
Measurement Reading	930 to 915	18.6	17.1	19.5	19.0	20.1	19.0	20.7	19.8	21.0	17.5	19.4	20.3
asn	915 to 900	19.4	18.1	17.7	18.0	19.2	18.7	18.9	18.9	19.2	17.8	18.3	20.0
Ĭ	900 to 885	19.0	16.7	20.0	18.9	20.3	19.4	20.8	20.2	20.4	17.1	18.9	19.7
	885 to 870	19.6	18.1	20.6	19.5	20.2	19.8	20.6	20.3	20.5	17.5	19.7	20.2
	870 to 855	19.5	18.0	21.0	19.3	20.7	19.8	20.9	19.6	20.6	17.8	19.1	19.1
	< 855	23.1	20.1	20.6	19.7	20.3	19.6	20.5	21.7	21.5	21.4	22.5	24.6
	Joca	issee B_3	_558.0: Mc	onthly Ave	raged Co	nductivity	(uS/cm) 1	991 to 202	0 (Post Ba	ad Creek (Operation)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	17.3	17.5	17.4	17.6	18.3	18.3	19.0	19.2	19.2	18.7	18.9	16.8
	1095 to 1080	17.4	17.8	17.9	18.2	18.5	18.7	19.4	19.4	19.1	19.0	18.5	17.6
Isl	1080 to 1065	17.5	17.7	17.8	18.3	18.8	18.7	19.3	19.4	19.1	19.2	18.4	17.8
# ±	1065 to 1050	17.5	17.7	17.5	18.0	18.4	18.3	19.0	19.3	18.8	19.1	18.5	17.8
<u>e</u>	1050 to 1035	17.3	17.5	17.7	18.0	18.2	18.2	18.9	19.1	18.7	19.0	18.4	17.6
Range (ft msl)	1035 to 1020	17.4	17.7	17.7	18.0	18.2	18.0	18.5	18.8	18.6	18.9	18.4	17.7
	1020 to 1005	17.4	17.7	17.6	18.0	18.0	17.6	17.9	18.1	17.9	18.6	18.2	17.6
ing	1005 to 990	17.4	17.5	17.5	17.8	18.0	17.3	17.6	17.5	17.3	17.6	17.9	17.4
ad	990 to 975	17.3	17.7	17.5	17.8	17.7	17.4	17.7	17.6	17.2	17.7	17.2	17.2
Re	975 to 960	17.2	17.6	17.4	17.9	17.9	17.4	17.5	17.4	17.2	17.7	17.3	17.0
Ĭ	960 to 945	17.5	17.7	17.3	17.7	17.9	17.4	17.4	17.6	17.0	17.9	17.3	17.0
ä	945 to 930	17.7	17.5	17.5	17.7	17.9	17.5	17.6	17.4	17.1	17.6	17.4	17.1
- 4	930 to 915	17.6	17.9	17.5	17.9	18.0	17.7	17.8	17.6	17.5	17.8	17.5	17.2
l e		4	17.9	17.6	17.9	18.1	17.6	17.7	17.6	17.3	17.9	17.7	17.5
asure	915 to 900	17.9					47.0	4	4	4 - 4	4		474
Measurement Reading	900 to 885	18.1	17.9	17.5	17.9	18.0	17.6	17.7	17.5	17.4	17.8	17.9	17.4
Measure	900 to 885 885 to 870	18.1 18.1	17.9 18.1	17.5 17.9	18.0	17.9	17.5	17.7	17.8	17.6	17.9	17.7	17.9
Measure	900 to 885 885 to 870 870 to 855	18.1 18.1 18.6	17.9 18.1 18.4	17.5 17.9 17.7	18.0 18.1	17.9 18.0	17.5 17.7	17.7 17.8	17.8 18.0	17.6 17.9	17.9 18.1	17.7 18.2	17.9 18.1
Measure	900 to 885 885 to 870	18.1 18.1	17.9 18.1	17.5 17.9	18.0	17.9	17.5	17.7	17.8	17.6	17.9	17.7	17.9

	Joc	assee C_2	_559.0: M	onthly Av	eraged Co	nductivity	/ (uS/cm) <i>'</i>	1987 to 199	91 (Pre Ba	d Creek O	peration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	18.0	19.0	18.7		20.5	19.2	19.6	19.4	20.5	19.3	19.8	20.5
	1095 to 1080	20.5	19.0	20.0	20.0	21.0	20.7	20.5	20.2	21.0	20.1	20.1	21.2
S	1080 to 1065	20.5	19.0	20.0	20.0	21.0	20.6	20.5	20.2	20.6	20.1	20.0	21.1
Range (ft msl)	1065 to 1050	20.4	19.0	20.2	20.0	21.0	20.5	20.5	20.1	20.4	20.4	20.2	21.2
((1050 to 1035	20.0	19.0	20.0	19.9	20.7	20.5	20.3	20.1	20.6	19.8	19.8	20.8
ng	1035 to 1020	20.0	19.0	19.8	20.1	21.2	20.6	19.8	20.7	20.9	19.6	20.0	20.8
	1020 to 1005	19.4	19.0	20.2	20.0	20.5	20.6	20.4	19.9	20.2	19.6	20.2	20.9
ng	1005 to 990	19.5	19.3	20.5	19.8	20.3	20.1	19.8	20.1	20.4	18.8	19.0	20.2
gdi	990 to 975	19.2	19.0	20.4	19.9	20.0	20.0	19.7	19.9	19.9	29.3	19.0	20.4
Re	975 to 960	19.0	19.0	20.5	19.7	19.6	19.4	20.1	20.1	19.9	18.6	18.8	19.7
 	960 to 945	18.2	19.0	20.4	19.7	19.6	19.5	19.8	20.0	19.6	18.5	18.8	19.7
Measurement Reading	945 to 930	18.8	19.0	20.0	19.5	19.3	19.6	19.6	19.9	19.8	17.8	18.5	19.6
<u>re</u>	930 to 915	19.4	19.0	20.0	20.0	19.7	19.3	20.0	19.9	19.9	17.8	18.8	20.3
asu	915 to 900	18.4	19.5	20.6	19.7	19.8	19.8	20.2	20.4	19.6	18.2	19.0	19.8
Me %	900 to 885	19.0	19.3	20.7	19.8	19.4	19.6	20.0	20.3	19.8	17.9	18.0	20.0
	885 to 870	20.0	19.8	23.2	20.4	20.3	19.8	20.0	20.0	20.1	17.3	19.3	21.4
	870 to 855	19.0	19.8	22.0	20.8	20.3	23.9	20.3	20.6	20.2	18.4	19.6	21.6
	< 855	25.0	24.0	23.7	22.9	20.0	19.8	20.3	21.0	20.8	23.0	23.1	29.1
	Joca	assee C_2	_559.0: Mc	onthly Ave	raged Co	nductivity	(uS/cm) 1	991 to 201	5 (Post B	ad Creek C	peration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	16.7	16.9	16.8	17.3	18.1	17.8	18.4	18.5	18.3	18.1	18.1	17.4
 	1095 to 1080	16.6	17.4	17.2	17.7	18.0	18.2	18.6	18.7	18.6	18.6	17.9	17.6
ns	1080 to 1065	16.7	17.3	17.2	17.8	18.2	18.2	18.8	18.9	18.8	18.7	18.0	17.6
(ft msl)	1065 to 1050	16.9	17.3	16.9	17.6	18.1	18.1	18.6	18.8	18.6	18.7	17.9	17.7
) Je	1050 to 1035	16.8	17.1	17.2	17.6	17.9	18.0	18.5	18.6	18.3	18.6	17.9	17.7
Range (1035 to 1020	16.9	17.3	17.2	17.7	18.0	17.9	18.3	18.4	18.1	18.5	18.0	17.6
<u> </u>	1020 to 1005	16.8	17.3	17.1	17.7	17.9	17.5	17.8	17.8	17.5	18.3	17.7	17.6
Measurement Reading	1005 to 990	17.0	17.0	16.9	17.5	17.8	17.2	17.5	17.3	17.1	17.6	17.5	17.7
ad	990 to 975	16.7	17.2	17.1	17.4	17.5	17.3	17.5	17.3	17.1	17.7	17.3	17.4
Re	975 to 960	16.9	17.2	17.0	17.6	17.6	17.2	17.4	17.3	17.1	17.9	17.2	17.3
Ĭ	960 to 945	17.2	17.3	16.9	17.8	17.8	17.2	17.4	17.4	17.0	17.7	17.2	17.4
l ä	945 to 930	17.4	17.2	17.2	17.4	17.6	17.3	17.4	17.2	17.0	17.7	17.3	17.6
l e	930 to 915	17.6	17.6	17.3	17.6	18.0	17.5	17.6	17.5	17.4	17.8	17.4	17.8
ası	915 to 900	18.1	17.7	17.4	17.8	17.9	17.6	17.7	17.8	17.4	18.0	18.0	18.3
¥	900 to 885	18.6	17.9	17.4	17.8	18.0	17.7	17.7	17.8	17.5	18.0	18.2	18.3
	885 to 870	18.7	18.1	17.7	18.2	18.0	17.7	17.9	18.2	17.9	18.1	18.2	19.1
	870 to 855	21.7	18.2	17.9	18.4	18.2	18.0	18.3	18.6	18.4	18.5	18.9	19.6
	< 855	20.7	19.0	19.0	19.5	19.0	18.2	18.8	18.7	18.6	20.0	20.5	21.7
		Legend	15.0										25.0

	Joc	assee C_2	_560.0: M	onthly Ave	eraged Co	nductivity	/ (uS/cm) 1	1975 to 199	1 (Pre Ba	d Creek O	peration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	15.6	16.4	16.6	16.6	16.6	15.9	18.1	17.7	16.7	16.7	15.6	16.8
	1095 to 1080	17.3	16.7	17.5	17.6	17.4	17.5	17.8	19.2	17.7	17.6	17.0	17.7
lsi.	1080 to 1065	17.4	17.0	17.1	17.4	17.3	17.3	18.1	18.5	17.2	17.7	16.8	17.3
Range (ft msl)	1065 to 1050	16.6	16.3	17.8	16.8	17.5	17.4	18.3	18.8	17.5	17.4	17.3	18.1
e (1	1050 to 1035	16.6	16.7	16.7	17.2	17.6	17.3	18.0	18.0	16.4	17.1	17.4	18.3
ng	1035 to 1020	16.8	16.5	17.5	17.0	16.8	16.9	17.3	18.6	17.2	16.9	16.6	17.8
	1020 to 1005	16.6	16.1	16.9	16.8	16.7	16.6	18.1	17.8	16.4	16.8	16.7	17.6
ng	1005 to 990	16.1	16.2	17.1	16.6	17.6	16.8	17.1	17.8	17.1	16.6	16.4	17.9
gdi	990 to 975	16.6	15.9	16.7	17.0	16.9	17.1	17.3	18.7	16.3	16.3	16.0	17.8
Re	975 to 960	17.0	18.1	19.8	18.4	17.7	17.2	18.1	18.4	18.0	16.8	17.2	18.3
=	960 to 945	18.8	16.0	19.5	17.3	19.5	18.6	19.6	19.4	19.6	16.7	18.2	19.8
ne	945 to 930	18.5	16.6	19.3	17.5	19.3	18.5	19.8	20.2	17.9	17.3	17.6	19.9
<u> </u>	930 to 915	19.2	16.4	19.2	18.1	19.6	18.8	20.1	20.3	20.2	16.6	18.5	20.9
Measurement Reading	915 to 900	20.4	17.3	17.3	18.0	18.7	17.8	18.4	19.4	17.8	17.0	17.8	20.1
Μe	900 to 885	19.8	17.0	20.0	18.2	19.6	19.1	20.0	20.6	20.3	16.5	18.0	20.0
	885 to 870	20.0	17.7	20.6	18.2	20.2	19.4	20.1	20.3	20.8	16.5	19.3	20.9
	870 to 855	19.6	16.8	21.0	19.1	20.5	19.6	20.4	20.0	20.9	18.7	20.1	21.1
	< 855	24.5	15.7	21.0	21.3	19.1	19.9	21.1	26.4	21.3	17.8	20.0	21.1
	Joca	assee C_2_	_560.0: Mo	onthly Ave	raged Cor	nductivity	(uS/cm) 1	991 to 201	5 (Post Ba	ad Creek C	peration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	16.7	16.5	17.0	17.3	18.1	17.9	18.2	18.5	18.1	17.8	17.9	17.2
	1095 to 1080	16.5	16.9	17.4	17.7	18.1	18.2	18.5	18.7	18.2	18.3	17.7	17.2
(ft msl)	1080 to 1065	16.7	16.9	17.2	17.8	18.1	18.2	18.5	18.8	18.3	18.4	17.6	17.4
<u>#</u>	1065 to 1050	16.7	16.7	17.2	17.7	18.1	18.2	18.5	18.8	18.1	18.4	17.7	17.5
) e	1050 to 1035	16.6	16.6	17.1	17.6	18.0	18.2	18.5	18.6	17.9	18.3	17.7	17.5
Range (1035 to 1020	16.6	16.8	17.4	17.7	18.0	18.0	18.3	18.6	17.9	18.3	17.6	17.5
<u> </u>	1020 to 1005	16.6	16.8	17.1	17.6	17.8	17.5	17.8	18.1	17.4	18.2	17.4	17.4
Measurement Reading	1005 to 990	16.8	16.5	17.2	17.6	17.6	17.1	17.3	17.4	17.1	17.7	17.4	17.4
äd	990 to 975	16.5	16.8	17.5	17.4	17.4	17.3	17.5	17.4	17.1	17.7	17.3	17.5
Re	975 to 960	16.8	16.8	17.1	17.5	17.5	17.3	17.4	17.5	17.1	17.9	17.4	17.8
ĭ	960 to 945	17.5	16.8	17.2	17.4	17.5	17.4	17.4	17.6	17.0	17.9	17.6	18.1
ше	945 to 930	18.2	17.2	17.3	17.5	17.7	17.6	17.5	17.5	17.1	17.9	17.7	18.3
<u>e</u>	930 to 915	18.5	17.6	17.7	17.8	18.0	17.8	17.7	17.9	17.6	18.1	18.0	18.4
ası	915 to 900	19.0	17.8	17.8	18.0	17.9	18.0	17.8	18.2	18.0	18.3	18.4	19.1
Σ	900 to 885	19.3	18.3	17.9	18.1	18.1	18.0	17.8	18.1	18.0	18.3	18.6	18.9
	885 to 870	19.1	18.9	18.7	18.2	18.2	18.3	18.1	18.5	18.5	18.6	18.6	19.4
	870 to 855	20.0	19.3	18.8	18.7	18.8	18.8	18.9	18.8	19.3	19.6	20.2	20.3
	< 855	19.6	20.5	19.5	23.3	17.7	17.9	17.5	18.7	18.6	20.1	18.4	26.8
		Legend	15.0										25.0

	Joc	assee C_2	_562.0: M	onthly Av	eraged Co	nductivity	/ (uS/cm) 1	1980 to 19	91 (Pre Ba	d Creek C	peration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	16.7	17.6	18.5	17.2	19.1	18.7	20.8	20.9	20.6	18.9	19.3	21.0
	1095 to 1080	19.6	17.7	19.3	18.2	20.5	21.4	22.2	22.1	21.4	19.4	19.3	21.5
msl)	1080 to 1065	19.1	17.4	19.3	18.0	20.7	21.8	22.6	21.9	21.0	19.7	20.0	21.5
(# n	1065 to 1050	18.0	17.0	19.7	17.8	20.4	22.1	24.0	23.4	21.8	19.3	19.6	21.7
	1050 to 1035	18.5	17.6	19.7	18.1	20.8	22.4	22.2	23.1	22.1	19.1	19.2	21.3
nge	1035 to 1020	18.7	16.9	19.6	18.3	20.1	21.8	21.8	23.2	22.5	19.1	19.4	21.7
Rai	1020 to 1005	18.1	16.5	19.7	18.2	20.3	22.4	22.5	24.7	25.9	20.8	19.7	21.4
ng	1005 to 990	18.0	17.5	20.0	17.6	21.3	23.2	25.8	30.0	40.4	29.6	26.3	21.7
Readii	990 to 975	14.0	16.4	16.0	16.9	18.0		25.0	24.0		43.6	56.0	
Re	975 to 960									32.0			
Ħ	960 to 945												
reme	945 to 930												
<u>l</u>	930 to 915												
Measu	915 to 900					Λ <i>Λi</i>	nimum Po	ading 964.	5 ft				
Me	900 to 885					IVIII	illilliulli Red	aumy 904.	יונ				
_	005 to 070												

	Jocassee C_2_562.0: Monthly Averaged Conductivity (uS/cm) 1991 to 2015 (Post Bad Creek Operation)												
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	16.9	16.8	17.1	17.3	18.1	18.0	18.2	18.4	18.1	18.0	17.9	17.5
_	1095 to 1080	16.7	17.1	17.4	17.3	18.5	18.6	18.8	18.6	18.3	18.4	17.8	17.6
(ft msl)	1080 to 1065	17.0	17.0	17.3	17.6	18.5	18.6	19.3	19.0	18.4	18.5	17.9	17.5
# <u>_</u>	1065 to 1050	16.9	17.0	17.3	17.4	18.2	18.1	18.8	19.2	18.4	18.6	17.9	17.5
e (1	1050 to 1035	16.9	16.9	17.3	17.4	18.1	18.2	18.6	18.9	18.4	18.5	17.9	17.7
ng	1035 to 1020	16.9	17.1	17.6	17.6	18.2	18.5	19.1	19.5	18.9	18.6	17.9	17.6
Range	1020 to 1005	16.8	17.1	17.5	17.9	18.6	19.1	19.9	20.6	20.7	19.2	17.9	17.5
	1005 to 990	17.1	17.3	17.6	18.4	19.7	21.2	21.4	25.1	30.9	27.6	22.1	21.4
adi	990 to 975												
Ze.	975 to 960												
뒫	960 to 945												
пе	945 to 930												
<u> </u>	930 to 915					N 43	nimum Da	adina 000 f	n #				
Measurement Reading	915 to 900					IVIII	nimum Rea	auiiig 992.2	۷ ال				
۸e٤	900 to 885												
_	005 to 070												

Legend 15.0

900 to 885 885 to 870 870 to 855 < 855

25.0

Jocassee C_2_565.4: Monthly Averaged Conductivity (uS/cm) 1987 to 1991 (Pre Bad Creek Operation)													
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	18.0	18.0	17.0	17.3	20.0	18.0	19.5	19.2	20.6	18.0	18.0	19.0
	1095 to 1080	20.5	18.5	19.5	18.5	20.0	19.5	20.3	20.0	20.9	19.8	19.8	20.9
msl)	1080 to 1065	20.6	18.8	20.0	18.5	20.5	19.2	20.0	20.1	20.5	20.1	20.3	20.8
(ft n	1065 to 1050	20.0	19.0	20.2	18.3	20.0	18.7	20.0	19.8	20.9	19.4	19.6	20.9
	1050 to 1035	20.0	18.8	19.8	18.7	20.0	19.3	20.0	19.7	20.1	19.4	19.4	20.4
nge	1035 to 1020	20.0	18.6	19.8	19.0	19.5	18.7	19.9	20.1	19.9	19.0	19.5	20.3
Ra	1020 to 1005	19.2	18.0	20.0	18.5	19.0	18.8	19.5	20.2	20.4	19.3	19.4	20.5
ng	1005 to 990	19.0	18.3	19.8	18.4	19.1	18.6	19.7	20.3	21.3	19.8	19.0	19.4
adi	990 to 975	19.0	17.0	18.8	17.8	18.7	19.3	19.4	20.1	21.2	17.9	19.8	20.0
Reading	975 to 960	17.2	16.8	19.0	18.5	19.0	19.0	19.6	20.9	21.3	20.1	22.1	20.5
ŧ	960 to 945	16.3	16.0	18.8	18.5	19.3	19.0	20.6	20.7	21.6	21.3	21.6	22.1
reme	945 to 930	14.5	16.2	17.0	16.0	18.3	19.1	19.3	20.2	22.8	23.7	22.0	23.6
<u> </u>	930 to 915			17.0		17.7	20.0		20.0	25.7			
Measu	915 to 900												
Ĭ Ā	900 to 885												
	005 to 070					N 11:	nimum Da	adina 010	1 ££				

Minimum Reading 918.1 ft	Minimum	Reading	918.	1 ft
--------------------------	---------	---------	------	------

	Joca	issee C_2 _.	_565.4: Mo	onthly Ave	eraged Co	nductivity	(uS/cm) 1	991 to 199	4 (Post Ba	ad Creek C	Operation)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	16.9	15.4	17.6	16.3	17.9	16.8	17.1	17.7	17.5	16.7	16.5	16.0
	1095 to 1080	16.7	15.9	17.5	15.5	17.4	15.4	17.0	17.3	17.3	16.8	16.2	15.9
msl)	1080 to 1065	16.8	15.5	17.5	15.4	17.5	15.5	17.3	17.1	17.0	16.8	16.4	15.9
(ft n	1065 to 1050	16.8	15.2	17.5	16.1	17.6	15.9	16.8	16.4	16.3	16.7	16.7	15.8
e (1	1050 to 1035	16.9	15.2	17.3	16.2	17.4	16.2	16.6	16.3	15.8	16.8	16.1	16.0
Range	1035 to 1020	16.6	15.3	17.3	16.2	17.6	16.0	16.6	16.4	16.4	16.6	16.3	15.8
Ra	1020 to 1005	16.8	15.3	17.1	16.1	17.5	15.8	16.4	17.0	16.9	17.1	16.3	15.4
	1005 to 990	16.7	15.2	17.0	16.2	17.9	16.4	16.4	17.5	16.9	17.6	17.1	16.0
Reading	990 to 975	16.5	15.3	16.7	15.8	18.2	16.7	17.2	17.9	17.9	18.2	17.6	17.3
3 e%	975 to 960	16.2	15.1	16.6	16.0	18.5	16.8	17.1	18.3	18.3	18.6	18.5	19.0
	960 to 945	16.3	14.8	16.5	16.3	18.5	16.8	17.3	18.8	18.9	19.4	20.1	19.4
neı	945 to 930	18.3	14.1	16.4	16.1	18.8	17.8	17.8	18.7	19.0	20.3	20.9	22.0
Measurement	930 to 915	14.0				19.0		19.5	22.0	21.0		18.0	
asu.	915 to 900						•						
Лег	900 to 885												
_	995 to 970					A 4:	nima um Da	-dina 006 /	c tt				ļ

Minimum Reading 926.6 ft

15.0 Legend

900 to 885 885 to 870 870 to 855 < 855

900 to 885 885 to 870

870 to 855 < 855

	Joc	assee D_2_	551.0: M	onthly Av	eraged C	onductivity	/ (uS/cm) ⁻	1975 to 19	91 (Pre Ba	d Creek (Operation)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095		8.9	7.8	9.6	8.3	10.1	10.4	13.7	8.8	10.3	9.1	10.0
	1095 to 1080	11.0	11.5	10.0	11.0	14.5	13.5	14.0	14.0	14.0	12.0	10.3	10.5
IS	1080 to 1065												
<u> </u>	1065 to 1050												
e (1	1050 to 1035												
ng	1035 to 1020												
Ra	1020 to 1005												
ng	1005 to 990												
gdi	990 to 975												
Ř	975 to 960												
둩	960 to 945					Mil	nimum Rea	ading 1082	.8 ft				
ле	945 to 930												
<u>ē</u>	930 to 915												
Measurement Reading Range (ft msl)	915 to 900												
Ĭ	900 to 885												
	885 to 870												
	870 to 855												
	< 855												
	Joca	ssee D_2_		1	1		T	T	T	T	1		1
		Jan	Eah	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	11101 1005		Feb			_			-				
	1110 to 1095	9.0	12.7	10.0	9.0	17.3	9.0	12.0	16.0	16.0	14.0	17.0	7.0
	1095 to 1080					_			-				
msl)	1095 to 1080 1080 to 1065		12.7			_			16.0			17.0	
(ft msl)	1095 to 1080 1080 to 1065 1065 to 1050		12.7			_			16.0			17.0	
ge (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035		12.7			_			16.0			17.0	
ange (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020		12.7			_			16.0			17.0	
y Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005		12.7			_			16.0			17.0	
ling Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990		12.7			_			16.0			17.0	
eading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975		12.7			_			16.0			17.0	
Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960		12.7			17.3	9.0	12.0	16.0 21.0			17.0	
ent Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945		12.7			17.3	9.0		16.0 21.0			17.0	
ement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930		12.7			17.3	9.0	12.0	16.0 21.0			17.0	
urement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915		12.7			17.3	9.0	12.0	16.0 21.0			17.0	
अsurement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900		12.7			17.3	9.0	12.0	16.0 21.0			17.0	
Measurement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885		12.7			17.3	9.0	12.0	16.0 21.0			17.0	
Measurement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870		12.7			17.3	9.0	12.0	16.0 21.0			17.0	
Measurement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870 870 to 855		12.7			17.3	9.0	12.0	16.0 21.0			17.0	
Measurement Reading Range (ft msl)	1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870		12.7			17.3	9.0	12.0	16.0 21.0			17.0	

	Joc	assee D_2	_564.0: M	onthly Av	eraged Co	nductivity	/ (uS/cm) /	1976 to 199	91 (Pre Ba	d Creek O	peration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	16.3	16.3	15.9	16.5	17.5	17.7	19.4	18.1	17.4	16.4	15.5	17.3
	1095 to 1080	18.9	16.3	16.6	16.9	18.3	18.7	18.8	18.7	18.3	17.8	17.1	18.3
ısı	1080 to 1065	18.6	16.6	16.5	16.2	17.7	17.8	18.9	18.0	17.5	17.8	16.9	18.0
<u> </u>	1065 to 1050	17.0	16.0	17.0	16.2	18.5	18.0	19.4	18.2	17.7	17.2	17.4	18.6
e (j	1050 to 1035	17.7	16.0	15.6	16.2	18.1	18.1	19.0	18.4	16.8	17.3	17.1	18.5
Range (ft msl)	1035 to 1020	17.7	16.2	16.6	16.0	18.2	17.8	18.7	19.4	18.1	17.0	16.6	18.3
Ra	1020 to 1005	17.6	15.5	15.6	16.0	17.9	17.7	19.3	19.5	18.4	17.4	17.0	18.0
Measurement Reading	1005 to 990	16.4	15.5	16.0	16.5	18.3	17.6	19.0	20.1	19.1	18.8	17.6	19.1
adi	990 to 975	17.4	15.4	16.1	16.2	18.3	18.1	19.0	21.0	18.7	19.3	19.7	21.1
Re	975 to 960	17.3	16.7	19.3	16.7	19.2	17.8	20.0	20.1	19.4	18.9	21.8	21.4
T _	960 to 945	18.5	14.2	19.2	17.3	19.5	18.8	19.4	20.8	20.5	17.4	19.9	21.2
шe	945 to 930	18.3	14.4	19.5	17.6	19.5	19.3	19.7	20.8	20.6	18.3	20.1	21.8
<u> </u>	930 to 915	17.8	15.4	19.2	18.4	21.0	20.9	20.8	22.3	22.1	19.5	20.5	22.8
asn	915 to 900	18.0	16.1	20.0	19.6	21.6	21.2	21.8	23.2	21.9	19.4	20.9	22.1
Ζe	900 to 885	20.3	17.8	20.2	20.9	21.5	21.1	21.7	24.3	22.0	19.3	21.9	22.6
	885 to 870	22.0	18.3	22.0	23.8	21.6	22.5	21.4	25.9	23.6	18.8	22.2	24.0
	870 to 855	26.0			26.0	21.0	22.0	26.3	24.3	26.0	26.7	24.0	22.0
	< 855					Mi	nimum Rea	ading 864.7	7 ft				
	Joca	ssee D_2_		onthly Ave	raged Cor	nductivity	(uS/cm) 1		5 (Post Ba	d Creek C	Operation)	r	1
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	17.1	16.7	17.7	17.5	18.4	18.1	18.4	18.8	18.1	17.6	17.7	17.5
	1095 to 1080	16.7	17.1	17.8	17.7	18.3	18.4	18.8	18.9	18.3	18.5	17.6	17.6
us	1080 to 1065	16.9	17.0	17.7	18.0	18.4	18.4	18.7	19.1	18.4	18.5	17.7	17.5
(ft msl)	1065 to 1050	16.8	16.9	17.5	17.9	18.4	18.5	18.8	18.8	18.2	18.5	17.6	17.5
) ()	1050 to 1035	17.0	16.8	17.6	17.9	18.4	18.4	18.7	18.7	18.0	18.3	17.7	17.7
Range (1035 to 1020	16.8	16.9	17.7	17.9	18.3	18.2	18.5	18.8	17.9	18.3	17.5	17.5
<u> </u>	1020 to 1005	16.6	16.9	17.7	17.9	18.1	17.9	18.1	18.4	17.6	18.4	17.4	17.3
ding	1005 to 990	16.9	16.6	17.8	17.8	17.9	17.5	17.7	17.9	17.6	18.1	17.6	17.5
ad	990 to 975	16.7	17.0	17.9	17.6	17.8	17.6	18.0	18.0	17.7	18.2	17.7	17.8
8 8	975 to 960	17.1	17.0	17.7	17.9	18.1	17.7	18.0	18.0	17.9	18.5	18.2	18.3
ent	960 to 945	17.6	17.0	17.6	17.8	18.1	17.9	18.1	18.3	17.9	18.7	18.4	18.9
Measurement Rea	945 to 930	18.9	17.2	17.7	18.0	18.3	18.1	18.4	18.4	18.4	19.1	19.2	19.9
nre	930 to 915	19.5	17.6	18.0	18.5	18.5	18.6	19.0	19.1	19.0	19.5	20.0	20.8
as	915 to 900	20.5	19.9	23.4	18.8	18.6	19.0	19.2	19.6	19.7	20.2	21.2	21.3
ĕ	900 to 885	22.2	19.4	18.5	19.2	19.0	18.9	18.5	18.5	20.5	19.7	21.8	21.6
	885 to 870	22.7	24.0	21.8	18.0	17.8	19.1	19.6	18.9	24.7	20.7	23.6	26.3
	870 to 855	30.9	23.0	28.0	18.3		23.0	27.0	21.5		25.0		
	< 855					Mi	nımum Rea	ading 864.4	1 ft				
		Legend	15.0										25.0

	Joc	assee D_2	_564.1: M	onthly Av	eraged Co	nductivity	/ (uS/cm) 1	1987 to 199	91 (Pre Ba	d Creek O	peration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	20.0	18.0	17.0	18.0	20.7	19.7	20.4	21.2	20.8	18.8	19.0	20.5
	1095 to 1080	20.6	18.3	18.7	18.8	19.8	19.7	20.3	22.3	21.2	19.7	19.6	21.1
msl)	1080 to 1065	18.2	17.4	18.8	18.4	20.3	20.8	19.7	21.2	21.0	20.9	20.6	21.4
(# u	1065 to 1050	17.6	15.8	16.5	16.6	17.6	19.5	19.8	21.9	20.6	18.8	18.7	19.2
(-)	1050 to 1035	19.3	16.4	16.8	16.8	17.2	19.3	19.7	23.4	20.6	18.7	17.9	18.7
Range	1035 to 1020	20.0	17.0	16.8	17.6	16.8	19.1	19.5	24.3	23.5	18.5	17.8	19.0
Ra	1020 to 1005	22.2	17.0	18.5	19.6	19.6	21.3	20.9	25.2	27.6	21.1	18.3	18.2
рu	1005 to 990	21.0	17.2	20.3	21.0	22.1	23.7	24.7	28.5	31.9	33.8	18.1	18.5
ggi	990 to 975	20.8	17.6	20.2	21.9	22.0	24.3	26.3	29.0	31.1	51.1	23.6	18.5
Reading	975 to 960	22.2	18.7	26.0	25.5	22.5	25.3	28.3	31.3	34.4		28.0	18.5
	960 to 945					23.0							
rement	945 to 930												
Ē	930 to 915												
Measu	915 to 900												
۸eږ	900 to 885					Mi	nimum Rea	ading 959.9	9 ft				
	00E to 070												

	Joca	ssee D_2	_564.1: Mc	onthly Ave	raged Co	nductivity	(uS/cm) 19	991 to 201	7 (Post Ba	ad Creek (Operation)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	17.1	16.4	17.4	17.5	18.2	18.2	18.4	18.8	18.4	17.4	17.8	17.2
_	1095 to 1080	16.5	16.7	17.5	17.2	17.9	18.2	18.7	18.7	18.3	18.2	17.6	17.3
msl)	1080 to 1065	16.7	16.7	17.5	17.6	18.3	18.3	18.7	18.5	18.3	18.4	17.7	17.2
(ft n	1065 to 1050	16.5	16.3	17.5	17.4	18.4	18.4	18.4	17.7	18.0	18.2	17.6	17.1
	1050 to 1035	16.6	16.3	17.4	17.7	18.4	18.4	18.8	17.9	18.0	18.3	17.5	17.2
nge	1035 to 1020	16.3	16.2	17.5	17.7	18.5	18.3	18.6	17.9	18.2	18.2	17.2	17.0
Ra	1020 to 1005	16.3	16.4	17.3	17.8	18.5	18.5	18.9	17.7	17.9	18.3	17.3	16.9
ng	1005 to 990	16.4	15.9	17.2	17.9	18.6	18.2	18.3	17.2	17.8	17.9	17.1	16.9
ğ	990 to 975	16.0	15.6	17.1	17.7	19.3	18.7	18.6	17.8	17.9	18.1	16.4	16.7
Reading	975 to 960	15.5	14.6	15.6	17.0	19.1	18.5	17.9	18.6	18.6	18.3	15.8	15.4
	960 to 945												
ле	945 to 930												
Measurement	930 to 915												
ısı	915 to 900					Λ.	lining up De	adina 060	4				
Леŝ	900 to 885					IVI	linimum Re	auing 963	π				
_	005 to 070												

Legend 15.0

885 to 870 870 to 855 < 855

900 to 885 885 to 870 870 to 855 < 855

25.0

	Joc	assee E_2	_557.0: M	onthly Av	eraged Co	nductivity	/ (uS/cm) 1	1975 to 19	91 (Pre Ba	d Creek C	peration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	15.6	16.3	16.6	16.8	15.1	16.1	18.9	17.9	16.7	16.8	15.8	17.0
	1095 to 1080	17.3	16.8	17.4	17.9	17.3	18.1	18.7	19.4	17.5	17.7	17.1	17.5
ls (1080 to 1065	17.0	17.0	17.2	17.6	16.8	17.5	19.2	18.3	17.6	17.5	16.9	17.3
ב ו	1065 to 1050	16.9	16.4	17.8	17.0	16.7	17.6	19.3	18.4	17.5	17.3	17.5	17.6
((1050 to 1035	16.8	16.5	17.2	17.3	17.1	17.4	18.5	17.9	16.3	17.0	17.4	17.9
ng	1035 to 1020	17.0	16.6	17.5	16.9	16.5	17.4	17.9	18.1	17.1	16.8	16.6	17.7
Range (ft msl)	1020 to 1005	16.8	16.0	17.5	16.8	16.2	17.1	18.6	17.3	16.3	16.6	16.6	17.1
рu	1005 to 990	16.6	16.2	16.9	16.3	16.8	16.6	17.3	17.0	16.4	15.8	16.1	17.9
gdi	990 to 975	16.9	16.0	16.9	17.1	16.5	17.2	17.5	18.5	15.9	15.8	16.1	17.6
Ze.	975 to 960	17.2	18.3	19.3	18.2	17.2	17.3	18.5	18.4	19.6	16.5	16.9	18.0
<u>=</u>	960 to 945	18.0	16.3	19.0	17.7	19.5	18.9	20.2	19.5	20.2	16.7	19.4	19.6
πe	945 to 930	17.8	16.7	18.4	17.7	18.8	18.2	19.5	20.3	17.9	16.5	18.5	19.7
<u>i</u>	930 to 915	17.8	15.8	18.8	17.2	19.1	18.7	20.1	19.8	20.4	16.7	18.3	20.6
asu	915 to 900	19.3	16.3	16.9	17.5	17.2	17.2	18.1	18.5	18.2	16.7	19.1	20.3
Measurement Reading	900 to 885	17.5	14.7	18.5	16.6	19.0	18.2	18.9	20.6	20.0	16.5	18.3	19.9
-	885 to 870	20.3	15.0	17.4	17.3	19.0	18.8	18.8	19.5	20.1	16.5	19.6	21.1
	870 to 855	25.5	16.2	18.0	17.0	19.8	18.8	18.9	19.1	20.1	18.5	19.5	20.9
	< 855	30.3	16.1	18.0	17.7	20.5	19.1	18.7	19.3	20.4	19.8	19.0	22.3
	Joca	assee E_2_	_557.0: Mc	onthly Ave	raged Co	nductivity	(uS/cm) 1	991 to 201	5 (Post Ba	ad Creek (Operation)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	17.0	16.9	17.3	17.4	17.9	17.8	18.5	18.9	18.9	18.1	18.5	17.5
_	1095 to 1080	17.1	17.4	17.8	18.1	18.1	18.4	19.0	19.0	18.6	18.7	18.2	17.7
(ft msl)	1080 to 1065	17.2	17.4	17.6	18.3	18.3	18.2	19.0	19.0	18.6	18.8	18.3	17.7
±	1065 to 1050	17.1	17.3	17.7	18.2	18.0	18.1	18.4	18.8	18.3	18.7	18.2	17.7
<u>e</u>	1050 to 1035	17.1	17.2	17.6	17.9	17.7	17.7	18.0	18.4	17.8	18.6	18.3	17.8
Range (1035 to 1020	17.1	17.3	17.6	17.9	17.7	17.6	18.3	18.4	17.8	18.5	18.1	17.7
8	1020 to 1005	17.0	17.4	17.4	17.9	17.6	17.2	17.6	17.8	17.1	18.4	17.9	17.6
ing	1005 to 990	17.0	17.1	17.4	17.7	17.5	16.9	17.2	17.4	17.0	17.8	17.6	17.5
Measurement Reading	990 to 975	16.7	17.2	17.5	17.4	17.3	17.1	17.6	17.4	17.1	17.9	17.5	17.2
Re	975 to 960	16.6	17.0	17.2	17.6	17.5	17.1	17.5	17.4	17.0	17.9	17.9	17.4
Į,	960 to 945	17.3	16.9	17.2	17.4	17.5	17.1	17.4	17.5	17.0	17.8	17.7	17.9
шe	945 to 930	17.9	16.8	17.0	17.3	17.4	16.9	17.4	17.4	17.1	17.9	18.1	18.2
re l	930 to 915	18.3	16.8	17.1	17.5	17.5	17.4	17.7	17.8	17.2	18.1	18.2	18.6
ası	915 to 900	18.8	16.9	17.0	17.6	17.6	17.3	17.6	17.9	17.6	18.1	18.5	19.0
ĕ	900 to 885	18.8	17.0	17.0	17.4	17.7	17.4	17.6	17.9	17.7	18.0	18.5	18.9
	885 to 870	19.3	17.5	17.3	17.8	17.6	17.7	18.0	18.2	17.9	18.3	18.6	19.0
	870 to 855	19.9	18.1	17.3	18.1	18.3	17.9	18.2	18.6	18.5	18.7	19.3	19.9
													044
	< 855	22.2	18.3	17.8	17.7	18.1	18.2	18.5	18.5	17.9	19.6	20.5	21.1

	Joc	assee F_2	2_554.8: M	onthly Ave	eraged Co	nductivity	(uS/cm) 1	1986 to 199	91 (Pre Ba	d Creek O	peration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	17.3	14.0	15.0	18.0	17.0	17.5	18.7	18.4	21.0	17.0		18.0
	1095 to 1080	20.5	17.5	17.3	18.8	17.7	19.8	19.7	19.9	20.8	18.6	20.4	20.3
msl)	1080 to 1065	20.5	18.0	18.3	18.3	18.0	19.5	20.0	19.8	20.6	19.2	20.4	20.1
(ft n	1065 to 1050	20.0	17.8	19.8	18.0	18.3	19.2	19.7	19.7	20.9	19.1	20.9	20.3
	1050 to 1035	20.0	18.0	19.2	17.3	18.3	19.1	19.4	19.6	20.6	18.4	20.3	19.6
nge	1035 to 1020	19.4	18.2	19.5	18.0	17.8	18.4	19.8	19.6	20.3	18.2	19.7	19.7
Ra	1020 to 1005	19.0	18.0	19.6	17.3	17.3	18.8	19.5	20.0	20.9	19.1	20.0	19.7
пg	1005 to 990	19.0	16.5	19.3	18.0	18.0	17.6	19.2	19.8	21.9	19.0	18.7	19.0
Reading	990 to 975	18.2	15.4	18.6	18.7	18.7	19.3	19.0	20.6	22.5	19.8	21.2	18.7
Re	975 to 960	17.3	15.4	18.8	18.6	20.4	20.1	21.5	23.3	27.9	28.1	29.0	19.6
Ħ	960 to 945	16.8	12.0	19.0		17.5	23.0	21.5	35.0	33.8	38.4	40.7	33.0
reme	945 to 930												
<u>ē</u>	930 to 915												
Measu	915 to 900												
٨eږ	900 to 885					Mi	nimum Rea	ading 946.	5 ft				
	005 40 070												

	Joca	issee F_2 _.	_554.8: Mc	onthly Ave	raged Co	nductivity	(uS/cm) 19	991 to 201	5 (Post Ba	ad Creek C	Operation)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	16.7	16.5	16.5	16.5	17.2	17.1	18.1	18.8	18.2	17.7	17.9	17.4
_	1095 to 1080	16.7	17.1	17.1	16.7	17.3	17.2	18.7	18.9	18.2	18.4	17.8	17.6
(ft msl)	1080 to 1065	16.8	17.1	16.9	16.8	17.6	17.1	18.5	18.7	18.2	18.5	17.9	17.6
ב	1065 to 1050	16.7	17.0	16.9	16.9	17.3	17.1	18.1	18.7	18.2	18.5	17.8	17.6
e (1	1050 to 1035	16.6	16.9	16.9	16.5	16.9	17.1	17.7	18.3	17.9	18.4	17.9	17.7
Range	1035 to 1020	16.7	17.0	16.8	16.8	16.9	17.0	18.0	18.5	18.0	18.3	17.7	17.5
Ra	1020 to 1005	16.5	16.9	16.6	17.0	17.0	16.8	17.8	18.4	17.7	18.5	17.5	17.2
	1005 to 990	16.5	16.5	16.4	17.0	17.3	16.7	17.7	18.2	18.1	19.1	17.9	17.3
Reading	990 to 975	16.4	16.5	16.8	17.2	17.5	17.5	18.8	19.1	19.4	20.8	19.9	17.7
≯ e%	975 to 960	16.3	16.3	16.5	17.8	18.7	19.8	20.7	22.1	23.5	26.6	30.4	22.5
ij	960 to 945	15.7	16.8	16.5	17.7	20.4	20.0	23.3	24.5	29.2	32.9	37.0	26.6
Measurement	945 to 930										<u> </u>		
<u> </u>	930 to 915												
nse	915 to 900												
Ле́г	900 to 885					Mi	nimum Rea	ading 945.3	3 ft				
_	005 to 070												

Legend 15.0

885 to 870 870 to 855 < 855

885 to 870 870 to 855 < 855

	Joc	assee F_2	_556.0: M	onthly Ave	eraged Co	nductivity	(uS/cm) 1	975 to 199	91 (Pre Ba	d Creek O	peration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	16.0	15.1	14.9	15.8	14.3	15.7	16.2	15.7	16.9	16.0	15.2	17.3
_	1095 to 1080	17.7	16.3	16.8	18.0	16.5	17.5	16.8	16.8	17.3	16.7	16.9	18.2
msl)	1080 to 1065	18.0	16.7	16.7	17.2	16.1	16.6	17.3	16.2	17.5	17.0	16.6	18.0
(ft, r	1065 to 1050	18.0	16.3	17.1	16.9	16.3	17.1	16.5	16.2	16.9	17.4	17.4	18.3
e (‡	1050 to 1035	17.5	15.8	16.3	16.8	16.4	17.1	16.2	16.0	15.9	16.4	16.8	18.2
Range	1035 to 1020	17.7	16.9	16.9	17.0	15.2	16.6	16.1	16.1	17.4	16.5	16.3	18.3
Ra	1020 to 1005	17.0	16.2	17.0	16.3	15.6	16.6	16.8	15.7	18.8	16.9	16.5	17.7
	1005 to 990	17.4	15.9	16.6	16.3	16.4	16.5	16.1	15.7	18.4	16.6	16.4	18.2
Reading	990 to 975	16.6	15.4	16.5	17.5	16.3	17.2	16.3	18.5	17.9	16.2	16.8	17.9
3 68	975 to 960	16.6	17.7	18.8	20.6	17.0	17.5	17.6	17.9	20.5	18.4	18.6	19.0
	960 to 945	17.4	17.0	18.4	19.3	19.3	19.7	19.8	21.0	21.8	20.2	22.0	22.4
ner	945 to 930	17.5	16.8	18.0	19.3	20.0	20.0	20.2	21.0	22.5	20.9	26.8	26.6
Measurement	930 to 915	16.7	16.5		21.0	21.3	19.0	20.8	20.5	23.8	25.6	29.0	27.0
nsı	915 to 900					23.0							
lea	900 to 885												
	885 to 870					Mi	nimum Pas	ading 914.1	1 f f				
	870 to 855					IVIII	IIIIIIIIII REG	auiily 914.	1 11				

	Joca	assee F_2	_556.0: Mo	nthly Ave	raged Cor	nductivity	(uS/cm) 19	991 to 201	5 (Post Ba	d Creek C	peration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	16.7	16.6	16.9	16.9	17.4	17.5	18.3	18.9	18.2	18.0	18.2	17.4
•	1095 to 1080	16.9	17.2	17.4	17.6	17.9	17.9	18.9	18.9	18.3	18.6	17.9	17.5
msl)	1080 to 1065	17.0	17.1	17.4	17.8	18.1	18.0	18.7	18.8	18.3	18.6	17.9	17.6
(ft, n	1065 to 1050	17.0	17.1	17.4	17.6	17.6	17.4	18.0	18.4	18.2	18.6	17.8	17.6
) (f	1050 to 1035	16.9	17.0	17.3	17.1	17.1	17.1	17.6	18.1	17.7	18.5	17.9	17.8
ngu	1035 to 1020	16.9	17.1	17.3	17.3	17.1	17.1	18.0	18.2	17.7	18.3	17.7	17.6
Range	1020 to 1005	16.7	17.1	16.9	17.3	17.2	16.9	17.6	17.8	17.2	18.5	17.5	17.4
	1005 to 990	16.7	16.6	16.9	17.3	17.3	16.7	17.2	17.4	17.1	18.1	17.6	17.3
dir	990 to 975	16.4	16.6	17.0	17.1	17.2	16.9	17.6	17.6	17.4	18.4	18.1	17.2
γ ea	975 to 960	16.3	16.5	16.6	17.3	17.6	17.3	17.9	18.0	17.7	19.0	19.1	18.2
It F	960 to 945	16.4	16.3	16.6	17.5	17.9	17.7	18.3	18.8	18.6	19.6	20.6	20.0
ner	945 to 930	17.0	16.5	17.0	17.9	18.4	18.9	19.3	20.3	20.2	22.2	24.4	24.2
ren	930 to 915	18.2	16.8	16.1	17.5	19.2	18.4	21.6	20.5	21.6	21.8	33.3	29.4
Measurement Reading	915 to 900												
lea	900 to 885												
2	885 to 870					ΛΛi	nimum Res	dina 018	1 ft				

Minimum Reading 918.4 ft

Legend 15.0

< 855

915 to 900 900 to 885 885 to 870

870 to 855 < 855

25.0

Lake Jocassee **Surface Water Quality** Data by Station

		Jocassee	Monthly A	veraged S	urface Te	mperature	(deg C) 1	987 to 199	1 (Pre Ba	d Creek O	peration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	558.7	10.3	9.7	11.3	14.5	20.1	23.9	25.6	26.2	24.8	21.4	17.7	13.3
	558.0	10.4	8.8	10.2	13.7	19.2	23.5	26.1	25.9	24.9	21.5	17.5	13.4
	559.0	10.5	9.7	11.2	15.2	19.7	24.9	25.8	26.8	25.0	21.5	17.9	13.6
	560.0	10.4	9.0	10.6	14.4	19.4	24.3	26.6	26.4	25.1	21.6	17.7	13.5
o	562.0	10.4	10.0	11.3	14.9	20.1	25.7	26.8	27.3	25.5	21.9	17.9	13.4
Station	565.4	10.6	10.0	11.1	16.3	21.1	26.2	26.8	27.3	25.3	21.7	17.7	13.8
St	551.0	5.6	5.9	9.1	11.6	14.8	18.9	21.1	21.1	18.4	13.7	9.8	6.5
	564.0	10.4	9.1	10.7	14.9	19.1	24.8	26.8	26.9	25.4	21.7	17.6	13.4
	564.1	10.7	10.4	11.8	15.1	19.8	24.3	26.4	27.4	25.6	21.7	17.9	13.4
	557.0	10.3	8.9	10.8	14.4	19.4	24.0	26.3	26.2	24.9	21.5	17.6	13.4
	554.8	10.3	9.8	12.4	16.4	22.3	25.5	27.8	27.5	25.1	21.6	17.2	13.5
	556.0	10.4	8.7	11.3	15.1	20.0	24.9	26.7	26.4	24.9	21.5	17.4	13.1
		Legend	8										25
	T	Jocassee I										1	1
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	558.7	10.7	10.0	11.4	15.4	20.0	24.5	26.2	26.6	25.1	21.6	17.5	13.9
	558.0	10.7	9.9	11.6	15.0	20.1	24.4	26.0	26.6	25.4	21.7	17.6	13.9
	559.0	10.8	10.0	11.7	15.6	20.5	25.0	26.7	27.0	25.2	21.6	17.6	13.9
	560.0	10.9	10.1	11.8	15.6	20.6	25.2	26.6	26.9	25.3	21.7	17.7	14.0
o	562.0	10.8	10.2	12.4	16.1	21.1	25.8	27.2	27.4	25.5	21.8	17.7	14.0
Station	565.4	10.6	10.7	11.4	16.5	21.2	25.1	27.0	26.4	25.3	20.5	17.1	13.5
Ω	551.0	3.3	6.2	8.9	15.0	20.6	20.2	20.8	22.5	20.1	12.3	16.6	4.0
	564.0	10.9	10.4	12.0	15.8	20.8	25.1	26.7	26.9	25.4	21.8	17.9	14.1
	564.1	10.9	10.3	11.4	15.1	20.1	23.7	25.6	26.5	25.2	21.7	18.0	14.1
	557.0	10.8	10.1	11.9	16.2	21.0	25.3	26.6	27.1	25.3	21.6	17.5	13.9
	554.8	10.6	10.0	12.2	16.7	21.5	25.9	27.4	27.3	25.3	21.6	17.3	13.7
	556.0	10.7	10.0	12.1	16.6	21.3	25.7	27.1	27.2	25.3	21.5	17.3	13.8
		Legend	8										25

		Joca	ssee Mont	hly Avera	ged Surfac	ce Do (mg	/L) 1987 to	1991 (Pro	e Bad Cre	ek Operati	on)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	558.7	9.340	8.960	10.100	10.140	9.480	8.640	8.300	8.140	7.720	8.260	8.700	9.000
	558.0	9.350	9.144	9.838	10.167	9.508	8.655	8.343	7.994	8.100	8.120	8.738	8.636
	559.0	9.433	9.300	10.000	10.150	9.360	8.520	8.220	8.000	7.800	8.100	8.520	9.000
	560.0	9.480	9.459	10.077	10.456	9.683	8.625	8.464	8.300	8.236	8.158	8.507	8.982
٦	562.0	9.629	9.990	10.150	10.436	9.617	8.360	8.429	8.311	7.933	8.145	8.500	9.100
Station	565.4	9.680	9.375	10.150	10.325	9.500	8.175	8.175	8.125	7.840	7.875	8.400	9.150
St	551.0	11.878	11.911	10.862	10.283	9.283	8.758	8.393	8.618	8.750	9.526	10.233	11.355
	564.0	9.457	9.787	10.364	10.407	9.778	8.573	8.454	7.825	8.300	8.171	8.609	8.933
	564.1	9.625	9.550	10.025	10.250	9.575	8.550	8.343	6.500	7.840	7.940	8.580	9.100
	557.0	9.750	9.750	10.369	10.339	9.825	8.717	8.507	8.376	8.315	8.083	8.607	9.009
	554.8	10.260	10.200	10.700	10.600	9.550	8.600	8.425	8.425	7.900	7.840	8.575	9.125
	556.0	10.044	9.769	10.718	10.118	9.955	8.700	8.692	8.562	8.392	8.108	8.554	9.040
		Legend	6.0										10.0

		Jocas	see Montl	nly Averag	ed Surfac	e Do (mg/	L) 1991 to	2013 (Pos	t Bad Cre	ek Operat	ion)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	558.7	9.255	9.300	9.902	9.799	8.932	8.335	8.070	7.794	7.590	7.859	8.392	8.813
	558.0	9.379	9.350	9.835	9.793	8.907	8.287	7.991	7.734	7.558	7.865	8.394	8.851
	559.0	9.234	9.292	9.968	9.855	8.896	8.229	8.044	7.791	7.700	7.769	8.348	8.731
	560.0	9.033	9.317	10.019	9.896	8.890	8.204	7.984	7.775	7.506	7.629	8.254	8.671
<u> </u>	562.0	9.363	9.721	10.060	9.904	9.034	8.324	8.258	7.951	7.719	7.854	8.360	8.784
Station	565.4	8.833	9.500	9.500	9.933	8.867	8.167	8.933	7.833	7.833	7.933	8.633	8.900
St	551.0	13.100	11.505			8.617			7.660			8.110	
	564.0	8.959	9.359	9.883	9.754	8.858	8.196	8.075	7.791	7.459	7.592	8.219	8.669
	564.1	9.105	9.473	9.746	9.621	8.865	8.297	7.995	7.612	7.198	7.524	8.139	8.659
	557.0	9.465	9.710	10.159	9.794	8.930	8.271	8.110	7.900	7.722	7.840	8.473	8.873
	554.8	9.695	10.228	10.375	9.873	8.966	8.400	8.113	8.081	7.796	7.787	8.455	8.943
	556.0	9.663	10.055	10.279	9.836	8.938	8.340	8.185	8.005	7.713	7.767	8.457	8.933
		Legend	6.0										10.0

		Jocasse	Monthly	Averaged	Surface D	O Saturati	ion (%) 19	87 to 1991	(Pre Bad	Creek Op	eration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	558.7												
	558.0												
	559.0												
	560.0												
<u>_</u>	562.0												
Station	565.4					5004	5	_					
Sta	551.0					DO Satur	ation Readi	ngs Began i	in 1998				
	564.0												
	564.1												
	557.0												
	554.8												
	556.0												
	•	Legend	0.0	10.00	20.00	30.00	40.00	50.00	60.00	70.00	80.00	90.00	100.00

		Jocassee	Monthly A	Averaged (Surface Do	o Saturatio	on (%) 199	1 to 2013	(Post Bad	Creek Op	eration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	558.7	85.1	85.1	93.3	98.9	98.4	102.1	99.4	99.0	94.5	92.0	90.3	87.5
	558.0	85.5	85.3	92.9	97.7	98.0	101.1	98.8	98.4	94.0	91.8	90.4	88.2
	559.0	84.3	85.1	95.0	99.7	99.4	101.6	99.7	100.0	95.6	90.9	90.2	87.1
	560.0	83.6	85.5	94.9	99.9	99.7	101.7	98.7	99.8	93.9	89.3	89.1	86.7
드	562.0	86.3	88.8	97.3	102.2	102.2	105.4	103.1	103.7	96.7	92.2	89.7	87.7
Station	565.4												
St	551.0	1	94.7			100.5			99.2			87.8	
	564.0	84.2	85.8	94.5	99.6	99.9	101.8	99.5	100.1	93.8	88.8	88.4	86.5
	564.1	85.5	86.6	92.1	96.9	98.1	99.8	96.0	96.7	90.3	87.7	87.5	86.4
	557.0	88.1	88.9	96.5	100.8	100.7	103.0	101.6	101.7	96.3	92.1	90.6	88.8
	554.8	89.5	93.1	99.6	102.6	102.2	105.8	104.1	104.9	97.0	86.1	90.3	89.2
	556.0	89.7	91.7	98.5	102.3	101.5	104.9	103.9	103.8	96.1	91.4	90.4	88.9
	•	Legend	0.0	10.00	20.00	30.00	40.00	50.00	60.00	70.00	80.00	90.00	100.00

			Jocass	ee Monthly	y Surface	pH (SI) 19	87 to 1991	(Pre Bad	Creek Op	eration)			
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	558.7	6.550	6.525	6.725	6.600	6.650	6.925	6.875	7.025	6.725	6.850	6.875	6.333
	558.0	6.378	6.247	6.427	6.600	6.745	6.930	6.977	6.931	6.785	6.474	6.692	6.200
	559.0	6.320	6.325	6.575	6.733	6.675	6.850	6.975	6.950	6.800	6.625	6.825	6.250
	560.0	6.344	6.300	6.400	6.624	6.809	7.018	7.108	7.206	6.908	6.450	6.646	6.120
uc	562.0	6.450	6.456	6.600	6.680	6.900	7.050	7.267	7.263	6.860	6.640	6.760	6.300
Station	565.4	6.700	6.367	6.433	6.567	6.900	7.400	7.067	6.900	6.750	6.833	6.767	6.433
St	551.0	6.838	6.329	6.336	6.400	6.464	6.582	6.777	6.550	6.646	6.628	6.538	6.250
	564.0	6.467	6.214	6.367	6.650	6.825	7.100	7.292	7.227	7.100	6.581	6.670	6.200
	564.1	6.600	6.500	6.667	6.533	6.567	6.940	7.100	7.050	6.850	6.725	6.775	6.375
	557.0	6.522	6.359	6.555	6.618	6.773	7.018	7.138	7.131	6.908	6.471	6.723	6.170
	554.8	6.800	6.533	6.850	6.767	6.967	7.200	6.900	7.133	6.875	6.850	6.967	6.367
	556.0	6.663	6.425	6.556	6.660	6.870	7.073	7.109	7.158	6.883	6.418	6.683	6.211
	< Aci	idic				Neutral						Basic >	
_													
1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	2		assee Mo			7 face PH (S						13	14
1		Joo Jan	assee Mo Feb	nthly Ave Mar	raged Sur Apr	7 face PH (S May	I) 1991 to Jun	2020 (Pos Jul	t Bad Cre	ek Operati Sep	ion) Oct	13 Nov	Dec
1	558.7	Joo Jan 6.402	Feb 6.240	nthly Ave Mar 6.528	raged Sur Apr 6.639	May 6.950	I) 1991 to Jun 6.800	2020 (Pos Jul 6.774	t Bad Cree Aug 6.885	ek Operati Sep 6.730	on) Oct 6.675	Nov 6.725	Dec 6.498
1	558.7 558.0	Jan 6.402 6.412	Feb 6.240 6.121	nthly Ave Mar 6.528 6.298	raged Sur Apr 6.639 6.546	May 6.950 6.776	I) 1991 to Jun	2020 (Pos Jul 6.774 6.584	t Bad Cre Aug 6.885 6.726	ek Operati Sep 6.730 6.695	Oct 6.675 6.567	Nov 6.725 6.596	Dec 6.498 6.535
1	558.7 558.0 559.0	Jan 6.402 6.412 6.339	Feb 6.240 6.121 6.263	Mar 6.528 6.298 6.528	raged Sur Apr 6.639 6.546 6.737	May 6.950 6.776 6.994	Jun 6.800 6.606 6.816	2020 (Pos Jul 6.774 6.584 6.818	Aug 6.885 6.726 6.987	ek Operati Sep 6.730 6.695 6.793	on) Oct 6.675 6.567 6.614	Nov 6.725 6.596 6.673	Dec 6.498 6.535 6.487
1	558.7 558.0	Jan 6.402 6.412	Feb 6.240 6.121	nthly Ave Mar 6.528 6.298	raged Sur Apr 6.639 6.546	May 6.950 6.776	Jun 6.800 6.606	2020 (Pos Jul 6.774 6.584	t Bad Cre Aug 6.885 6.726	ek Operati Sep 6.730 6.695	Oct 6.675 6.567	Nov 6.725 6.596	Dec 6.498 6.535
	558.7 558.0 559.0	Jan 6.402 6.412 6.339	Feb 6.240 6.121 6.263	Mar 6.528 6.298 6.528	raged Sur Apr 6.639 6.546 6.737	May 6.950 6.776 6.994	Jun 6.800 6.606 6.816	2020 (Pos Jul 6.774 6.584 6.818	Aug 6.885 6.726 6.987	ek Operati Sep 6.730 6.695 6.793	Oct 6.675 6.567 6.614 6.630 6.620	Nov 6.725 6.596 6.673	Dec 6.498 6.535 6.487
	558.7 558.0 559.0 560.0	Jan 6.402 6.412 6.339 6.405	Feb 6.240 6.121 6.263 6.317	Mar 6.528 6.298 6.528 6.619	Apr 6.639 6.546 6.737 6.762	May 6.950 6.776 6.994 7.004	Jun 6.800 6.606 6.816 6.887	2020 (Pos Jul 6.774 6.584 6.818 6.852	Aug 6.885 6.726 6.987 6.944	sep 6.730 6.695 6.793 6.731	Oct 6.675 6.567 6.614 6.630	Nov 6.725 6.596 6.673 6.714	Dec 6.498 6.535 6.487 6.478
Station	558.7 558.0 559.0 560.0 562.0	Jan 6.402 6.412 6.339 6.405 6.449	Feb 6.240 6.121 6.263 6.317 6.442	Mar 6.528 6.298 6.528 6.619 6.664	Apr 6.639 6.546 6.737 6.762 6.796	May 6.950 6.776 6.994 7.004 7.124	Jun 6.800 6.606 6.816 6.887 6.969	2020 (Pos Jul 6.774 6.584 6.818 6.852 6.901	Aug 6.885 6.726 6.987 6.944 6.998	sep 6.730 6.695 6.793 6.731 6.824 6.400 6.600	Oct 6.675 6.567 6.614 6.630 6.620	Nov 6.725 6.596 6.673 6.714 6.779	Dec 6.498 6.535 6.487 6.478 6.465
	558.7 558.0 559.0 560.0 562.0 565.4	Jan 6.402 6.412 6.339 6.405 6.449 6.100	Feb 6.240 6.121 6.263 6.317 6.442 5.900	Mar 6.528 6.298 6.528 6.619 6.664 6.175	Apr 6.639 6.546 6.737 6.762 6.796 6.400	May 6.950 6.776 6.994 7.004 7.124 6.475	Jun 6.800 6.606 6.816 6.887 6.969 6.550	2020 (Pos Jul 6.774 6.584 6.818 6.852 6.901 6.575	Aug 6.885 6.726 6.987 6.944 6.998 6.550	Sep 6.730 6.695 6.793 6.731 6.824 6.400	Oct 6.675 6.567 6.614 6.630 6.620 6.100	Nov 6.725 6.596 6.673 6.714 6.779 6.250	Dec 6.498 6.535 6.487 6.478 6.465 6.050
	558.7 558.0 559.0 560.0 562.0 565.4 551.0	Jan 6.402 6.412 6.339 6.405 6.449 6.100 5.750	Feb 6.240 6.121 6.263 6.317 6.442 5.900 6.582	Mar 6.528 6.298 6.528 6.619 6.664 6.175 6.400	Apr 6.639 6.546 6.737 6.762 6.796 6.400 6.900	May 6.950 6.776 6.994 7.004 7.124 6.475 6.726	Jun 6.800 6.606 6.816 6.887 6.969 6.550 5.700	2020 (Pos Jul 6.774 6.584 6.818 6.852 6.901 6.575 6.700	Aug 6.885 6.726 6.987 6.944 6.998 6.550 6.700	sep 6.730 6.695 6.793 6.731 6.824 6.400 6.600	Oct 6.675 6.567 6.614 6.630 6.620 6.100 6.700	Nov 6.725 6.596 6.673 6.714 6.779 6.250 6.786	Dec 6.498 6.535 6.487 6.478 6.465 6.050 6.200
	558.7 558.0 559.0 560.0 562.0 565.4 551.0 564.0	Jan 6.402 6.412 6.339 6.405 6.449 6.100 5.750 6.523	Feb 6.240 6.121 6.263 6.317 6.442 5.900 6.582 6.446	Mar 6.528 6.298 6.528 6.619 6.664 6.175 6.400 6.647	Apr 6.639 6.546 6.737 6.762 6.796 6.400 6.900 6.838	May 6.950 6.776 6.994 7.004 7.124 6.475 6.726 7.162	Jun 6.800 6.606 6.816 6.887 6.969 6.550 5.700 6.998	Jul 6.774 6.584 6.818 6.852 6.901 6.575 6.700 6.914	Aug 6.885 6.726 6.987 6.944 6.998 6.550 6.700 7.042	Sep 6.730 6.695 6.793 6.731 6.824 6.400 6.600 6.853	Oct 6.675 6.567 6.614 6.630 6.620 6.100 6.700 6.704	Nov 6.725 6.596 6.673 6.714 6.779 6.250 6.786 6.741	Dec 6.498 6.535 6.487 6.478 6.465 6.050 6.200 6.616
	558.7 558.0 559.0 560.0 562.0 565.4 551.0 564.0	Jan 6.402 6.412 6.339 6.405 6.409 6.100 5.750 6.523 6.549	Feb 6.240 6.121 6.263 6.317 6.442 5.900 6.582 6.446 6.413	Mar 6.528 6.298 6.528 6.619 6.664 6.175 6.400 6.647 6.627	Apr 6.639 6.546 6.737 6.762 6.796 6.400 6.900 6.838 6.718	May 6.950 6.776 6.994 7.004 7.124 6.475 6.726 7.162 7.053	Jun 6.800 6.606 6.816 6.887 6.969 6.550 5.700 6.998 6.852	2020 (Pos Jul 6.774 6.584 6.818 6.852 6.901 6.575 6.700 6.914 6.787	Aug 6.885 6.726 6.987 6.944 6.998 6.550 6.700 7.042 6.888	Sep 6.730 6.695 6.793 6.731 6.824 6.400 6.600 6.853 6.686	on) Oct 6.675 6.567 6.614 6.630 6.620 6.100 6.700 6.704 6.609	Nov 6.725 6.596 6.673 6.714 6.779 6.250 6.786 6.741 6.758	Dec 6.498 6.535 6.487 6.478 6.465 6.050 6.200 6.616 6.599

	J	ocassee N	Ionthly Av	eraged Su	urface Pho	sphorus ((mg/L) 198	37 to 1991	(Pre Bad (Creek Ope	eration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	558.7	0.012	0.010	0.013	0.024	0.012	0.010	0.053	0.011	0.012	0.010	0.027	0.015
	558.0	0.012	0.009	0.011	0.015	0.011	0.011	0.011	0.055	0.011	0.012	0.022	0.008
	559.0	0.009	0.011	0.012	0.015	0.021	0.013	0.015	0.009	0.009	0.009	0.019	0.011
	560.0	0.014	0.011	0.011	0.012	0.014	0.009	0.011	0.017	0.009	0.010	0.012	0.007
L C	562.0	0.012	0.010	0.013	0.012	0.012	0.009	0.010	0.011	0.010	0.010	0.012	0.010
Station	565.4	0.017	0.016	0.012	0.019	0.009	0.010	0.010	0.034	0.011	0.011	0.010	0.010
St	551.0	0.018	0.012	0.018	0.015	0.012	0.018	0.015	0.020	0.013	0.012	0.014	0.012
	564.0	0.010	0.009	0.010	0.013	0.009	0.006	0.009	0.011	0.008	0.008	0.008	0.013
	564.1	0.014	0.015	0.063	0.017	0.012	0.011	0.011	0.011	0.011	0.009	0.010	0.009
	557.0	0.025	0.010	0.013	0.015	0.013	0.010	0.016	0.014	0.009	0.008	0.013	0.007
	554.8	0.010	0.013	0.014	0.016	0.010	0.010	0.009	0.010	0.009	0.010	0.024	0.009
	556.0	0.012	0.009	0.013	0.018	0.012	0.008	0.012	0.009	0.010	0.010	0.013	0.007
		Legend	0.000										0.020

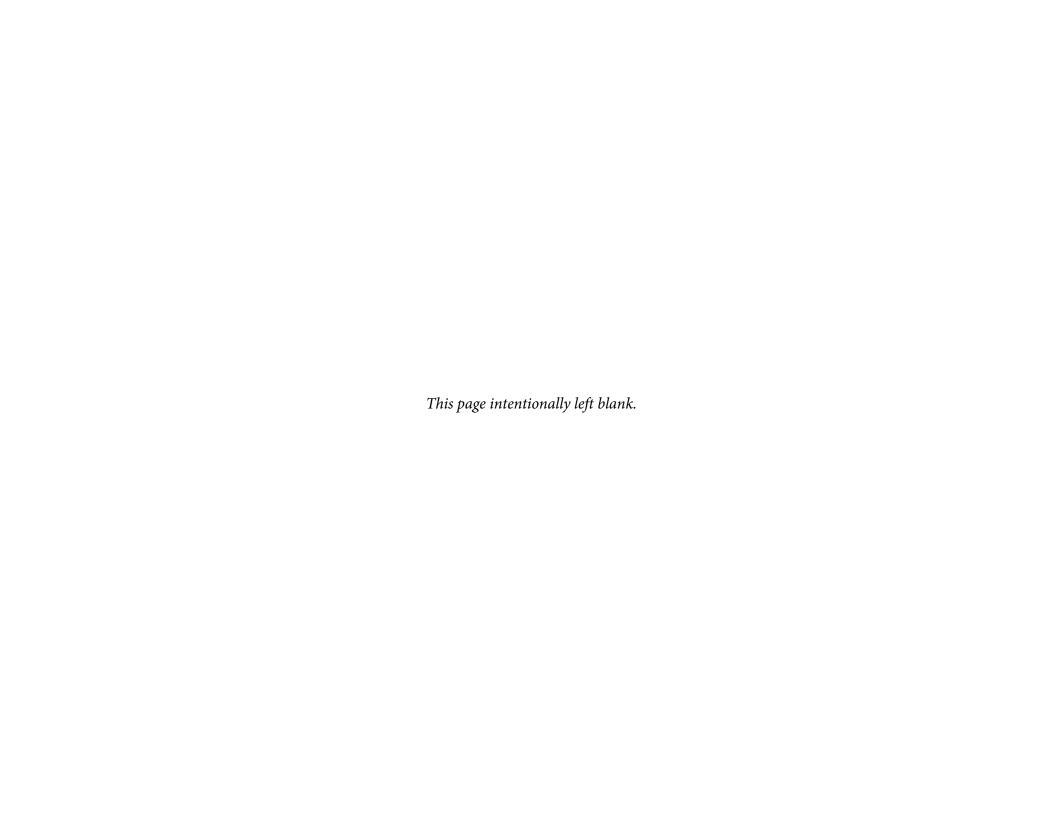
	Jo	ocassee M	onthly Av	eraged Su	rface Pho	sphorus (mg/L) 199	1 to 2013 (Post Bad	Creek Op	eration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	558.7	0.004	0.006	0.006	0.006	0.006	0.004	0.005	0.005	0.004	0.005	0.006	0.008
	558.0	0.005	0.007	0.008	0.007	0.007	0.007	0.005	0.006	0.004	0.006	0.008	0.006
	559.0	0.006	0.007	0.007	0.008	0.006	0.008	0.003	0.005	0.004	0.005	0.005	0.008
	560.0	0.007	0.008	0.008	0.009	0.006	0.006	0.004	0.006	0.004	0.004	0.004	0.009
۾	562.0	0.007	0.007	0.009	0.009	0.007	0.007	0.005	0.005	0.004	0.005	0.004	0.010
Station	565. <i>4</i>	0.015	0.012	0.011	0.013	0.010	0.012	0.005	0.004	0.005	0.003	0.004	0.003
St	551.0	0.034	0.010			0.009			0.005			0.006	
	564.0	0.012	0.010	0.010	0.009	0.008	0.008	0.005	0.004	0.005	0.010	0.004	0.004
	564.1	0.010	0.009	0.009	0.009	0.007	0.011	0.004	0.004	0.017	0.004	0.005	0.004
	557.0	0.007	0.006	0.013	0.007	0.007	0.007	0.005	0.006	0.004	0.005	0.005	0.010
	554.8	0.009	0.007	0.010	0.010	0.008	0.008	0.005	0.004	0.004	0.007	0.006	0.015
	556.0	0.007	0.006	0.008	0.008	0.008	0.008	0.004	0.005	0.004	0.008	0.005	0.012
		Legend	0.000										0.020

		Joca	ssee Mon	thly Surfa	ce Total N	itrogen (m	ng/L) 1987	to 1991 (F	re Bad Cr	eek Opera	ation)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	558.7	0.229	0.205	0.222	0.253	0.198	0.186	0.204	0.365	0.215	0.208	0.187	0.211
	558.0	0.196	0.229	0.203	0.239	0.213	0.183	0.245	0.330	0.200	0.290	0.216	0.185
	559.0	0.209	0.225	0.503	0.228	0.209	0.174	0.168	0.313	0.229	0.489	0.222	0.190
	560.0	0.222	0.232	0.212	0.216	0.224	0.178	0.189	0.269	0.211	0.200	0.210	0.199
u C	562.0	0.238	0.265	0.314	0.222	0.204	0.185	0.221	0.270	0.182	0.400	0.253	0.212
Station	565.4	0.216	0.219	0.218	0.227	0.186	0.166	0.170	0.223	0.172	0.336	0.182	0.188
St	551.0		0.160										
	564.0	0.233	0.242	0.374	0.219	0.206	0.189	0.212	0.258	0.179	0.261	0.215	0.195
	564.1	0.238	0.250	0.290	0.242	0.216	0.202	0.200	0.256	0.200	0.200	0.208	0.203
	557.0	0.300	0.215	0.195	0.204	0.200	0.182	0.179	0.234	0.202	0.205	0.217	0.177
	554.8	0.191	0.186	0.203	0.185	0.179	0.166	0.169	0.248	0.215	0.266	0.182	0.173
	556.0	0.183	0.245	0.185	0.189	0.188	0.170	0.192	0.266	0.216	0.226	0.196	0.171
		Legend	0.00										0.35

	,	Jocassee	Monthly A	veraged S	urface To	tal Nitroge	en (mg/L) 1	1991 to 20	10 (Post B	ad Creek	Operation	1)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	558.7												
	558.0		0.248			0.240			0.233			0.200	
	559.0		0.293			0.172			0.319			0.200	
	560.0		0.229			0.169			0.220			0.210	
드	562.0		0.230			0.290			0.218			0.200	
Station	565.4												
St	551.0												
	564.0		0.223			0.156			0.200			0.200	
	564.1		0.224			0.188			0.200			0.239	
	557.0		0.228			0.170			0.200			0.200	
	554.8												
	556.0		0.224			0.198			0.200			0.200	
		Legend	0.00										0.35

		Joca	assee Mor	thly Surfa	ce Chloro	phyll a (u	g/L) 1987 t	o 1991 (P	re Bad Cre	ek Operat	tion)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	558.7	1.71	2.11	3.03	3.00	2.29	1.38	1.67	2.89	2.48	2.70	3.38	4.09
	558.0	1.52	2.63	2.29	2.43	2.17	1.31	1.61	1.92	2.23	3.53	3.60	4.21
	559.0	1.45	2.53	2.61	1.65	1.47	1.40	1.70	1.82	1.84	3.30	3.25	3.22
	560.0	1.63	1.51	2.43	2.60	2.16	1.43	1.70	1.60	1.64	3.05	3.42	3.01
드	562.0	1.85	2.98	4.55	3.71	1.36	1.37	1.97	1.86	1.42	2.80	4.43	4.60
Station	565.4	1.87	2.84	3.68	3.53	2.12	1.25	1.47	1.34	1.43	2.99	3.20	3.62
St	551.0												
	564.0	1.79	2.94	2.82	3.69	2.40	1.60	1.33	1.38	1.73	2.89	3.34	2.81
	564.1	1.62	2.47	2.68	2.36	2.27	1.71	1.22	2.07	1.76	2.71	3.48	3.44
	557.0	1.58	1.99	2.61	2.91	1.91	1.44	1.24	1.26	1.65	2.46	3.64	3.68
	554.8	2.19	3.68	3.49	2.36	2.92	1.46	1.37	1.33	1.72	3.29	4.71	5.13
	556.0	1.98	2.46	3.15	3.25	2.14	1.50	1.11	1.06	1.59	3.54	3.14	3.90
		Legend	0.00										10.00

		Joca	ssee Mon	thly Surfa	ce Chloro _l	phyll a (ug	/L) 1991 to	o 2010 (Po	st Bad Cr	eek Opera	tion)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	558.7	1.74	1.40	1.82	2.54	2.15	1.11	0.97	1.33	2.02	2.60	2.45	2.41
	558.0	1.61	1.38	1.83	2.51	2.19	1.39	1.21	1.51	2.18	2.46	2.48	2.38
	559.0	1.85	1.48	1.85	2.36	1.91	1.14	0.93	1.19	1.82	2.53	2.43	2.18
	560.0	1.58	1.24	1.96	3.44	2.72	1.25	1.48	1.39	2.22	2.56	2.43	2.15
<u> </u>	562.0	2.72	2.37	2.59	3.26	4.06	1.98	2.11	1.82	2.42	3.02	3.64	3.02
Station	565.4	2.29	2.15	1.55	3.83	3.37	1.29	1.14	1.48	2.29	2.71	2.98	3.10
St	551.0		0.30			1.16			1.86			1.43	
	564.0	1.69	1.69	1.68	2.64	2.65	1.13	1.33	1.43	2.16	2.55	2.43	2.22
	564.1	1.87	1.79	1.40	2.36	3.03	1.39	1.48	1.67	1.94	2.30	2.25	1.65
	557.0	2.08	1.73	2.12	2.76	2.13	1.14	0.80	1.15	1.70	2.46	2.59	2.51
	554.8	3.28	4.06	3.08	3.43	2.59	1.70	1.38	1.63	2.05	3.46	4.18	3.82
	556.0	2.78	2.58	3.01	3.81	2.65	1.24	1.08	1.18	2.15	3.15	3.08	3.07
		Legend	0.00										10.00


		Jocassee I	Monthly A	veraged S	urface Co	nductivity	(uS/cm) 1	987 to 199	91 (Pre Ba	d Creek O	peration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	558.7	18.0	19.0	20.0	20.3	20.0	20.3	20.5	20.5	21.0	20.0	21.3	21.7
	558.0	16.1	17.1	16.5	17.6	16.5	16.5	18.3	18.4	17.5	18.5	17.2	17.9
	559.0	17.7	19.0	19.5	21.0	21.0	20.8	20.5	20.0	21.0	20.3	20.0	21.3
	560.0	15.4	16.8	16.4	16.9	17.2	16.7	17.9	18.0	16.8	17.4	16.3	16.9
L C	562.0	17.3	18.3	19.3	18.1	19.8	20.3	21.2	21.6	21.0	19.7	20.0	21.5
Station	565.4	17.7	18.5	19.0	18.5	20.3	19.3	20.3	20.3	20.8	19.7	20.3	21.0
St	551.0	8.3	9.3	7.8	9.5	9.5	10.6	10.5	13.3	9.8	10.4	9.8	9.8
	564.0	16.8	16.8	15.6	17.3	18.4	18.1	18.8	18.5	17.8	17.1	16.5	18.5
	564.1	21.0	18.5	19.5	19.7	21.3	21.6	20.8	21.8	21.3	20.0	20.0	21.3
	557.0	15.3	16.6	16.1	17.1	16.7	17.0	18.2	18.1	17.3	17.6	16.5	17.2
	554.8	17.3	16.0	18.0	19.0	18.5	19.0	19.7	19.7	21.3	18.8	20.7	20.3
	556.0	15.0	15.2	15.4	16.6	15.9	16.7	16.6	16.2	16.6	16.6	15.8	17.7
		Legend	15.0										25.0

		Jocassee M	Ionthly Av	eraged Su	ırface Cor	nductivity	(uS/cm) 19	991 to 202	0 (Post Ba	d Creek C	peration)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	558.7	17.2	17.4	17.3	18.0	18.3	18.2	18.9	19.0	18.3	18.8	18.2	17.6
	558.0	17.4	17.8	18.0	18.1	18.4	18.5	19.1	19.4	19.3	19.2	18.6	17.5
	559.0	16.7	17.3	17.1	17.8	18.3	18.1	18.7	18.8	18.5	18.6	18.0	17.6
	560.0	16.7	16.9	17.3	17.8	18.2	18.2	18.6	18.7	18.3	18.4	17.8	17.3
L C	562.0	16.8	17.1	17.4	17.8	18.3	18.2	18.5	18.7	18.3	18.4	17.9	17.6
Station	565.4	16.8	15.3	17.8	16.3	18.0	16.8	17.3	17.8	17.3	16.8	16.5	15.8
St	551.0	9.0	12.2	10.0	9.0	17.3	9.0	12.0	16.5	16.0	14.0	17.6	7.0
	564.0	16.9	17.0	17.8	18.0	18.5	18.4	18.7	19.0	18.4	18.4	17.6	17.7
	564.1	16.7	16.7	17.5	17.9	18.5	18.4	18.8	19.0	18.5	18.4	17.7	17.4
	557.0	17.1	17.4	17.6	17.9	18.0	18.1	18.8	19.1	18.9	18.7	18.2	17.8
	554.8	16.8	17.0	16.9	17.1	17.3	17.5	18.5	19.0	18.3	18.4	17.9	17.7
	556.0	16.9	17.1	17.3	17.5	17.5	17.7	18.6	19.0	18.4	18.6	18.0	17.7
		Legend	15.0										25.0

	,	Jocassee	Monthly A	Averaged	Surface T	urbidity (NTU) 197	5 to 1986	(Pre Bad	Creek Co	nstructior	1)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
uc	560.0	5.5	2.3	4.6	1.9	3.2	2.5	2.1	2.6	9.3	1.7	1.9	2.8
atio	564.0	2.0	1.9	11.0	2.5	2.5	2.0	2.2	3.6	6.4	2.2	1.8	2.0
St	564.1					Mea	surements	began in 1	988				

		Jocasse	e Monthly	y Average	ed Surface	Turbidit	y (NTU) 19	986 to 199	1 (Bad Cr	eek Cons	truction)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
uc	560.0	1.3	1.8	1.3	1.8	1.5	1.3	2.3	2.3	1.3	1.0	1.3	1.0
Statio	564.0	1.6	1.8	1.8	2.0	1.5	1.7	1.6	3.8	2.2	1.3	1.3	1.0
St	564.1	2.0	3.3	2.3	2.0	2.7	2.8	2.3	6.5	4.8	1.3	1.7	1.0

	J	ocassee N	lonthly A	veraged	Surface T	urbidity (l	NTU) 1991	l to 2015 (Post Bad	Creek Co	nstructio	n)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
uc	560.0	8.0	3.1	1.4	1.0	0.6	8.0	0.5	0.8	0.9	0.7	1.2	0.7
Station	564.0	0.8	3.1	1.5	1.0	0.6	0.8	0.5	0.8	0.9	0.7	1.3	0.6
St	564.1	0.9	1.2	1.2	1.6	0.6	0.7	0.6	1.0	1.2	0.7	0.7	1.2
		Legend	0.0										10.0

Whitewater River Cove Water Quality Data

Whitewater River Cove Temperature Data

	Jocasse	e C_2_56	0.0: Month	ly Average	e Water Te	emperatur	es (deg C)	1975 to 1	985 (Pre B	ad Creek	Construc	tion)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	10.1	8.7	9.7	13.4	18.5	23.7	26.7	26.3	25.2	21.5	18.1	13.2
	1095 to 1080	10.1	8.5	9.1	12.4	17.4	21.4	24.2	24.7	25.3	21.5	17.6	13.4
nsl	1080 to 1065	10.1	8.1	8.5	11.2	14.4	17.9	21.2	22.9	24.5	21.4	17.6	13.5
=	1065 to 1050	10.0	8.2	8.2	10.5	12.5	15.3	19.5	21.4	23.3	21.1	17.5	13.3
<u>•</u>	1050 to 1035	10.1	8.0	7.8	9.5	10.4	11.9	16.8	19.0	21.5	20.4	17.4	13.4
g L	1035 to 1020	10.0	7.9	7.7	9.0	9.8	10.0	12.9	14.5	15.9	17.2	16.0	13.0
۳	1020 to 1005	10.0	7.9	7.3	8.6	8.7	8.3	10.9	10.5	10.7	12.5	12.3	11.4
ng	1005 to 990	9.9	7.8	7.2	8.4	8.6	8.1	8.5	8.7	9.0	10.0	9.4	8.8
adi	990 to 975	9.7	7.8	7.2	8.1	8.3	8.2	8.4	8.4	8.2	8.5	8.4	8.5
Measurement Reading Range (ft msl)	975 to 960	9.3	7.7		8.2	9.4	7.0	7.9	7.8	8.4	8.6	8.2	8.1
j t	960 to 945		8.2	8.0	8.6			8.7	7.1		8.8		ı
Ĕ	945 to 930		7.9		8.2	8.1	7.3	8.6	8.3	7.3	7.8	7.0	
nre	930 to 915				8.6			8.4			8.6		
ası	915 to 900	8.3	7.5	7.0	7.9	8.1	7.8	8.0	7.9	7.9	8.2	7.6	7.9
ĕ	900 to 885					ı				8.3	8.4	8.2	
	885 to 870				7.7						8.4		
	870 to 855							!! 05.1	1 £1		8.3		
	< 855		TCO 0 17	Alak - A	- 14/ · /		nimum Rea			1010			
	Jocas		560.0: Mon				· · · · ·					T -	Dan
	1110 to 1095	Jan 10.6	Feb 10.1	Mar 11.2	Apr 16.3	May 21.3	Jun 26.0	Jul 25.8	Aug 26.2	Sep 24.9	Oct 21.6	Nov 18.6	Dec 13.5
	1095 to 1080	10.5	9.6	11.3	14.2	17.9	22.4	24.9	26.1	24.8	21.7	17.9	13.3
(F)	1080 to 1065	10.5	9.5	10.6	13.1	16.4	20.7	23.3	25.3	24.8	21.7	17.3	13.4
Range (ft msl)	1065 to 1050	10.3	9.5	10.0	12.2	15.5	19.5	22.4	24.6	24.8	21.7	17.7	13.4
H	1050 to 1035	10.4	9.5	9.9	11.5	14.7	18.7	21.6	24.1	24.6	21.5	17.8	13.6
Jge	1035 to 1020	10.4	9.3	9.8	11.1	13.8	17.5	20.6	22.9	23.8	21.4	17.7	13.4
Zar	1020 to 1005	10.4	9.4	9.7	10.7	12.6	15.4	17.6	19.3	20.5	20.5	17.6	13.4
D D	1005 to 990	10.4	9.3	9.5	10.2	11.5	12.8	13.6	13.8	14.0	14.5	16.2	13.4
Measurement Reading	990 to 975	10.3	9.3	9.5	9.8	10.6	10.9	11.3	10.9	11.1	10.9	12.2	12.3
Rea	975 to 960	10.1	9.3	9.3	9.5	10.0	10.1	10.3	10.2	10.3	10.0	10.1	10.6
 	960 to 945	9.8	9.3	9.3	9.3	9.7	9.7	9.9	9.8	9.8	9.7	9.8	9.7
Je I	945 to 930	9.4	9.2	9.3	9.2	9.5	9.6	9.9	9.6	9.6	9.4	9.6	9.5
Te T	930 to 915	9.3	9.0	9.2	9.1	9.4	9.4	9.5	9.5	9.5	9.4	9.5	9.4
nsı	915 to 900	9.1	8.9	9.0	9.0	9.2	9.3	9.5	9.4	9.3	9.3	9.4	9.2
lea	900 to 885	9.0	8.8	8.9	8.9	9.1	9.1	9.4	9.3	9.3	9.2	9.2	9.2
=	885 to 870	9.0	8.8	8.9	8.8	9.2	9.1	9.4	9.2	9.2	9.1	9.3	9.1
	870 to 855	8.9	8.6	8.7	8.7	9.0	9.1	9.2	9.2	9.3	9.1	9.2	9.1
	< 855	8.9	8.5	8.6	8.7	8.7	9.0	9.1	9.1	8.9	9.0	9.2	9.0
	Jocasse	e C_2_560	0.0: Month	y Average	Water Te	mperature	s (deg C)	1991 to 20	015 (Post I	Bad Creek	Construc	tion)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	10.9	9.9	11.5	15.2	20.3	24.6	26.3	26.4	25.1	21.4	17.9	14.2
=	1095 to 1080	10.8	9.9	11.3	14.5	18.2	22.3	24.9	26.4	25.2	21.6	17.6	13.9
ms	1080 to 1065	10.8	9.7	10.7	13.4	16.7	20.6	23.7	25.7	25.0	21.6	17.6	14.1
(ft msl)	1065 to 1050	10.8	9.7	10.4	12.4	15.5	19.1	22.4	24.5	24.8	21.6	17.7	14.0
Range (1050 to 1035	10.8	9.6	10.1	11.4	13.8	17.5	20.8	23.3	23.7	21.5	17.5	13.9
an	1035 to 1020	10.7	9.6	9.9	11.0	12.9	15.7	18.7	21.2	22.3	20.8	17.4	14.0
B	1020 to 1005 1005 to 990	10.8 10.7	9.6 9.5	9.7	10.4 10.0	11.6	13.3 11.1	15.1 11.9	16.6 12.2	18.0 12.5	18.9 13.1	16.9 14.1	13.9 13.0
Measurement Reading	990 to 975	10.7	9.5 9.5	9.5 9.5	9.7	10.5 9.9	10.1	10.2	10.3	12.5	10.4	14.1	11.3
eac	975 to 960	10.3	9.5	9.3	9.7	9.6	9.6	9.7	9.7	9.8	9.8	9.9	10.1
# *	960 to 945	9.6	9.4	9.3	9.3	9.3	9.4	9.5	9.7	9.5	9.6	9.6	9.5
ien	945 to 930	9.3	9.3	9.2	9.3	9.3	9.4	9.3	9.3	9.3	9.3	9.4	9.3
je m	930 to 915	9.2	9.1	9.2	9.1	9.1	9.2	9.3	9.3	9.3	9.3	9.4	9.3
sur	915 to 900	9.1	9.1	9.0	9.0	9.0	9.1	9.1	9.2	9.2	9.2	9.3	9.2
ea	900 to 885	9.1	8.9	8.9	9.0	8.9	9.0	9.1	9.1	9.1	9.1	9.2	9.1
Σ	885 to 870	8.9	8.9	8.9	8.8	8.8	9.0	9.0	9.1	9.1	9.1	9.1	9.1
	870 to 855	9.1	8.9	8.7	8.9	9.0	9.0	9.0	9.1	9.1	9.1	9.2	9.1
	< 850	8.6	8.4	8.6	8.6	8.6	8.8	8.7	8.7	8.9	8.7	9.2	9.1
		Legend	8	<u> </u>		-0.0	-0.0	<u> </u>		-0.0	J.1	V.E	25
		50114											

	Jocasse	e D_2_5	64.0: Month	ly Averag	e Water Te	mperatur	es (deg C)	1976 to 1	985 (Pre B	ad Creek	Construct	tion)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	10.1	8.8	10.0	13.6	18.5	24.8	27.3	26.5	25.2	21.6	17.5	13.0
	1095 to 1080	10.0	8.4	9.2	12.3	17.5	23.2	24.7	24.5	25.2	21.6	17.2	12.9
Range (ft msl)	1080 to 1065	9.9	7.9	8.6	11.0	14.9	18.4	21.6	22.8	24.4	21.4	17.3	13.0
ی ا	1065 to 1050	9.9	8.0	8.1	10.2	12.2	15.7	20.1	21.4	23.2	21.2	17.2	12.8
e (f	1050 to 1035	9.9	7.8	7.8	9.4	9.7	10.4	16.5	19.2	21.5	20.7	17.2	13.2
ngu	1035 to 1020	9.9	7.8	7.7	9.1	8.7	8.2	12.4	14.9	16.0	17.9	15.6	12.5
Rai	1020 to 1005	9.9	7.7	7.4	8.7	7.9	7.5	11.2	11.0	10.6	12.9	12.5	10.8
<u> </u>	1005 to 990	9.7	7.6	7.4	8.4	7.8	7.4	8.4	8.9	9.2	10.1	9.4	8.0
<u>p</u>	990 to 975	9.6	7.6	7.5	8.2	7.7	7.5	9.1	8.4	8.2	8.5	7.8	7.4
ea	975 to 960	9.5	7.1		8.5	8.5	7.4	8.3	7.8	8.4	9.2	7.8	7.4
+ R	960 to 945	0.0	8.2	8.2	8.8	0.0		9.5	1.0	0.1	9.0	7.0	
Measurement Reading	945 to 930		8.2	0.2	8.8			0.0			8.4		
eπ	930 to 915		0.2		0.0						0.4		
ü	915 to 900												
eas													
Ĕ	900 to 885					Mi	nimum Rea	ading 937.	5 ft				
	885 to 870							-					
	870 to 855												
	< 855		F04 0 37	41-1- 4	187 (T	/ 1	0) 1005 1	4004 (7	10 1 7		1	
	Jocass		<u>564.0: Mon</u>		· · · · · · · · · · · · · · · · · · ·	_	· · · · ·	· -	1				_
	1110 1- 1005	Jan 10.6	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	10.6	10.2	11.4	16.8	20.9	24.8	25.8	26.5	25.4	21.7	18.0	13.6
	1095 to 1080	10.5	9.7	11.2	14.5	17.9	21.8	24.3	26.0	25.1	21.7	17.8	13.4
Range (ft msl)	1080 to 1065	10.4	9.5	10.7	13.0	16.3	20.1	23.1	25.0	25.1	21.5	17.6	13.5
Ę.	1065 to 1050	10.4	9.5	10.3	12.1	15.5	19.0	22.0	24.4	24.8	21.7	17.7	13.4
) e	1050 to 1035	10.4	9.5	10.0	11.5	14.7	17.9	21.3	23.9	24.6	21.5	17.7	13.6
anç	1035 to 1020	10.4	9.3	9.8	11.2	13.8	16.7	19.8	22.6	23.8	21.4	17.7	13.4
Ř	1020 to 1005	10.3	9.4	9.7	10.7	12.8	14.6	16.6	18.8	20.8	20.4	17.5	13.4
ng	1005 to 990	10.3	9.3	9.5	10.2	11.6	12.2	13.1	13.5	14.3	14.6	16.2	13.3
adi	990 to 975	10.3	9.3	9.5	9.8	10.7	10.8	11.2	11.1	11.3	10.9	12.2	12.4
Re.	975 to 960	10.0	9.4	9.3	9.5	10.0	10.2	10.4	10.4	10.5	10.1	10.1	10.7
뒽	960 to 945	9.7	9.2	9.3	9.4	9.6	9.9	10.1	10.0	10.0	9.8	9.8	9.8
пе	945 to 930	9.4	9.2	9.2	9.2	9.4	9.8	10.0	9.7	9.9	9.5	9.6	9.6
Measurement Read	930 to 915	9.3	9.0	9.1	9.2	9.3	9.6	9.7	9.7	9.8	9.5	9.5	9.4
ısı	915 to 900	9.1	8.9	9.0	9.1	9.2	9.5	9.7	9.6	9.6	9.4	9.4	9.2
Леа	900 to 885	9.1	8.8	8.9	9.0	9.1	9.4	9.6	9.6	9.5	9.3	9.2	9.3
2	885 to 870	9.1	8.8	8.9	8.8	9.1	9.1	9.5	9.6	9.6	9.2	9.3	9.1
	870 to 855	9.4		8.6	8.5	9.0	9.2	9.7	9.2	9.9	9.4	9.8	8.9
	< 855		_				nimum Rea						
		D 2 56	4.0: Monthl	y Average	Water Te					Bad Creek	Construc	tion)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	11.1	10.4	11.7	15.6	20.4	24.6	26.3	26.2	25.1	21.4	18.2	14.3
	1095 to 1080	10.8	10.1	11.4	14.4	18.2	22.6	25.1	26.5	25.2	21.7	17.8	14.0
(Is	1080 to 1065	10.9	10.0	10.8	13.5	16.9	20.9	24.0	26.0	25.0	21.7	17.8	14.1
<u>۔</u>	1065 to 1050	10.8	10.0	10.6	12.7	16.0	19.7	22.9	24.9	24.9	21.6	17.8	14.1
Range (ft msl)	1050 to 1035	10.8	9.9	10.3	12.0	14.3	17.9	21.3	23.7	23.8	21.5	17.7	14.0
Jge	1035 to 1020	10.7	9.9	10.1	11.4	13.2	15.9	18.9	21.7	22.5	20.8	17.5	14.0
₹an	1020 to 1005	10.7	9.8	9.9	10.6	12.0	13.6	15.5	17.1	18.6	19.3	17.0	13.8
9	1020 to 1003	10.8	9.7	9.7	10.0	10.6	11.5	12.4	12.7	13.3	13.6	14.6	13.1
Measurement Reading	990 to 975	10.6	9.7	9.7	10.2	10.0	10.5	10.5	10.6	10.6	10.8	11.1	11.7
eat	975 to 960	10.5	9.7	9.7	9.7	9.7	9.9	9.9	10.0	10.0	10.8	10.0	10.3
Ŗ				9.5 9.4			9.9		9.7	9.7	9.8	9.8	
eni	960 to 945	9.9	9.5		9.6	9.5		9.7					9.7
me	945 to 930	9.6	9.4	9.3	9.5	9.3	9.5	9.5	9.6	9.5	9.6	9.6	9.6
ure	930 to 915	9.4	9.3	9.3	9.4	9.2	9.4	9.4	9.5	9.5	9.5	9.5	9.4
as	915 to 900	9.4	9.2	9.2	9.3	9.0	9.3	9.3	9.4	9.4	9.5	9.4	9.4
Me	900 to 885	9.3	9.1	9.0	9.1	9.2	9.2	9.1	9.3	9.3	9.3	9.4	9.2
	885 to 870	9.1	8.9	9.1	9.0	9.2	9.4	9.2	9.4	9.5	9.2	9.5	9.3
	870 to 855	9.2	8.2	9.5	8.9		10.0	9.1	9.3		9.0	10.3	
	< 850					Mi	nimum Rea	ading 864.	4 ft				
		Legend	8										25

	Jocasse	e D_2_56	4.1: Month	ly Average	e Water Te	emperatur	es (deg C)	1987 to 1	985 (Pre B	ad Creek	Construct	ion)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095												
_	1095 to 1080												
(Isr	1080 to 1065												
ب.	1065 to 1050												
e (f	1050 to 1035												
ng	1035 to 1020												
Ra	1020 to 1005												
д	1005 to 990												
널	990 to 975			_	,	5 "		. 5 . 6		<i>(' (1</i> 0	071		
\ea	975 to 960			I ei	mperature	Readings	Began Dur	ing Bad Cr	eek Consti	ruction (19	87)		
 	960 to 945												
ner	945 to 930												
ren	930 to 915												
Measurement Reading Range (ft msl)	915 to 900												
<u>e</u> a	900 to 885												
≥	885 to 870												
	870 to 855												
	< 855												
		see D 2	564.1: Mon	thiv Avera	ge Water	Temperat	ures (dea	C) 1985 to	1991 (Ba	d Creek Co	onstructio	n)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	10.9	11.6	12.6	16.0	20.8	24.2	26.1	26.8	25.8	21.6	18.2	13.5
	1095 to 1080	10.6	10.2	11.2	14.2	18.3	21.8	24.6	26.0	25.4	21.8	17.9	13.4
(Is	1080 to 1065	9.8	9.2	10.8	13.3	16.9	20.3	23.1	25.2	25.1	21.3	17.6	13.1
Range (ft msl)	1065 to 1050	8.8	8.2	9.4	11.9	15.3	18.0	21.5	24.0	23.9	20.3	16.1	11.4
Œ,	1050 to 1035	8.4	8.2	8.4	10.1	12.6	14.5	18.2	21.5	23.1	19.9	15.6	11.4
ge	1035 to 1020	8.4	8.0	8.1	9.0	10.4	11.1	13.5	16.8	20.6	19.5	15.5	10.8
Ran	1020 to 1005	8.3	7.9	7.6	8.1	8.8	10.0	12.6	15.2	17.5	19.2	15.3	11.0
<u>Б</u>	1005 to 990	8.3	8.0	7.5	7.8	8.3	8.9	9.9	12.2	14.8	16.9	15.3	11.1
Ë	990 to 975	8.3	8.2	7.5	7.9	8.6	8.9	9.5	11.3	13.7	14.7	14.7	11.0
Measurement Reading	975 to 960	8.2	7.8	6.7	7.9	8.6	8.9	9.6	11.0	13.7	13.0	13.1	9.9
Ř	960 to 945	0.2	1.0	0.7	1.2	8.6	0.9	9.0	11.0	13.2	13.0	13.1	9.9
ení	945 to 930					0.0							
E													
ָה בי	930 to 915												
eas	915 to 900					٨ ٨:	nimuum Da	adina OFO	O #				
ž	900 to 885					IVII	nimum Rea	ading 959.	9 π				
	885 to 870												
	870 to 855												
	< 855	D 0 50	4 4 . Mandal		Motor To		- (des O)	4004 4- 00	147 /Daa4 I	Dad Onsale	O t	4: \	
	Jocasse		4.1: Monthl	i i	1		1	1			T .	1	5
	11101.1005	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	11.1	10.3	11.3	14.8	20.1	23.5	25.4	26.1	24.9	21.3	18.2	14.3
	1095 to 1080	10.7	10.1	11.0	14.0	18.4	22.4	24.7	26.2	25.2	21.5	17.8	13.9
шs	1080 to 1065	10.7	10.0	10.9	13.7	17.2	21.3	24.3	25.7	25.1	21.7	17.8	13.9
Ħ)	1065 to 1050	10.5	9.8	10.7	13.3	16.4	20.8	23.8	24.9	25.0	21.5	17.7	13.8
ge	1050 to 1035	10.6	9.7	10.8	13.2	15.9	20.3	23.5	25.0	24.9	21.6	17.6	13.7
anç	1035 to 1020	10.4	9.6	10.8	13.1	16.0	19.9	23.3	24.8	24.8	21.5	17.4	13.7
Α.	1020 to 1005	10.3	9.7	10.8	13.0	15.9	19.8	23.1	24.7	24.8	21.5	17.6	13.6
inç	1005 to 990	10.4	9.5	10.4	12.7	15.2	19.0	22.4	24.3	24.5	21.3	17.3	13.6
∌ad	990 to 975	10.0	9.5	10.5	12.3	15.4	19.0	22.2	24.0	24.3	20.9	17.0	13.4
ቖ	975 to 960	10.2	9.4	9.9	12.1	14.5	17.8	21.5	22.4	23.7	20.0	16.8	13.2
3nt	960 to 945												
I ~	945 to 930												
Ĕ	930 to 915												
uren													
asuren	915 to 900					Λ.	linimum Re	eading 963	ft				
Measurement Reading Range (ft msl)	915 to 900 900 to 885					M	linimum Re	eading 963	ft				
Measuren	915 to 900 900 to 885 885 to 870					M	linimum Re	eading 963	ft				
Measuren	915 to 900 900 to 885 885 to 870 870 to 855					M	linimum Re	eading 963	ft				
Measuren	915 to 900 900 to 885 885 to 870					M	linimum Re	eading 963	ft				
Measuren	915 to 900 900 to 885 885 to 870 870 to 855	Legend	8			M	linimum Re	eading 963	ft				25

Whitewater River Cove Dissolved Oxygen

		Jocass	ee C_2_	560.0: Mont	hly Avera	ged Disso	lved Oxyg	en (mg/l) 1	1975 to 19	85 (Pre Ba	d Creek C	onstruction	on)	
1005 to 10060						<u> </u>					_			
		1110 to 1095			10.5	10.7	9.9		8.8	8.5			8.7	
1/10 1/10		1095 to 1080	9.1	9.7	10.2	10.9	10.5	9.6	10.0	9.0	8.7	8.3	8.6	9.0
1/10 1/10	ıısı				10.2			10.3	10.4					
1/10 1/10	±	1065 to 1050	9.1	9.3	10.1	10.5	9.9	10.0	10.1	8.8	7.8	8.0	8.7	9.1
1/10 1/10	е (.	1050 to 1035	9.0	9.0	9.6	10.0	9.6	9.7	9.6	8.6	7.4	7.6	8.9	9.0
1/10 1/10	lug	1035 to 1020	9.0	9.0	9.6	9.4	8.9	9.0	9.0	8.3	7.6	6.8	8.7	9.1
1/10 1/10	Ra	1020 to 1005	8.8	8.8	9.1	9.1	8.2	8.1	8.3	7.7	7.3	6.5	6.4	8.1
September Sept	bu	1005 to 990	8.5	8.8	8.9	8.7	7.6	7.1	7.6	7.0	6.4	5.7	5.5	5.8
September Sept	ğ	990 to 975	5.5	8.9	8.3	8.7	7.0	6.3	6.8	6.1	5.9	5.9	4.6	5.1
September Sept	Ze.	975 to 960	2.2	7.6		7.9	5.5	7.9	6.9	6.6	4.7	4.8	4.7	4.6
September Sept	=	960 to 945		8.2	5.6	7.5			6.4	5.8		4.7		
September Sept	l e	945 to 930		6.6		7.5	4.0	6.0	4.4	5.2	5.6	5.1	7.1	
September Sept	l e	930 to 915				6.1			3.0			4.6		
September Sept	ns	915 to 900	0.7	6.2	7.4	6.8	5.2	6.2		4.0	4.3	3.7	4.6	3.4
September Sept	<u>lea</u>													
Section Sect	2	-	1											
Separate														
			1				Mi	nimum Rea	adina 856	1 ft			l	
			ssee C 2	. 560.0: Mo	nthly Ave	raged Diss					Creek Co	nstruction)	
1110 to 1095					1	1 -	1	T		1				Dec
Tobs		1110 to 1095	9.7		9.8			8.2				8.2	8.4	9.1
Tobs		-												
1050 10 10 10 10 10 10 1	(Is													
1050 10 10 10 10 10 10 1	±													
1035 to 1020 94	₩.													
1005 to 990 9,4) ge													
1005 to 990 9,4	3ar	-												
### Page 1990 to 975 ### Page	9													
### Page	di i													
S85 to 870	eac													
S85 to 870	X	-												
S85 to 870	en													
S85 to 870	eπ													
S85 to 870	l "i	-												
S85 to 870	eas													
Ref	Ž													
Second S														
Separation Sep														1.4
1110 to 1095		JUGASSI	1	1	T	1	1			ı				Dec
1095 to 1080 9.0 9.2 9.9 9.9 9.1 8.5 8.1 7.7 7.5 7.6 8.2 8.6		1110 to 1005					-				_			
1080 to 1065 8.9 9.1 9.9 9.8 9.1 8.7 8.2 7.6 7.3 7.6 8.2 8.6														
1050 to 7035 8.9 9.0 9.6 9.5 9.1 8.7 8.1 7.2 6.8 7.5 8.1 8.5 1035 to 1020 8.8 8.9 9.4 9.4 9.0 8.5 7.9 6.9 6.3 7.2 8.0 8.5 1020 to 1005 8.8 8.7 9.3 9.3 8.9 8.5 7.9 7.0 6.1 6.1 7.6 8.4 1005 to 990 8.8 8.7 9.1 9.0 8.7 8.3 7.9 7.2 6.5 5.8 6.1 7.5 990 to 975 8.0 8.6 8.8 8.6 8.2 7.7 7.2 6.7 6.3 5.8 5.4 5.5 975 to 960 6.7 8.1 8.4 8.1 7.6 6.9 6.4 5.9 5.5 5.0 4.6 4.2 960 to 945 4.8 7.2 7.7 7.4 7.0 6.1 5.7 5.3 5.0 4.4 4.1 3.6 945 to 930 3.6 6.2 7.1 6.6 6.4 5.5 5.3 4.8 4.7 4.0 3.8 3.0 930 to 915 2.8 5.6 6.2 5.7 5.9 5.1 4.7 4.2 4.1 3.7 3.5 2.6 915 to 900 2.2 5.1 5.4 5.4 5.6 4.7 4.5 4.0 3.9 3.3 3.0 2.4 900 to 885 2.0 4.5 5.1 5.0 5.5 4.3 4.2 3.8 3.5 2.8 2.8 2.7 885 to 870 2.4 4.6 4.6 4.6 4.6 4.8 4.4 4.2 3.3 3.4 2.8 2.8 1.9 870 to 855 1.8 4.9 5.1 4.6 4.1 3.9 3.6 3.2 3.0 2.1 2.0 1.9 < 855 2.2 4.8 5.3 4.2 4.3 4.1 4.0 3.7 2.8 2.5 2.5 1.7	_	-												
1050 to 7035 8.9 9.0 9.6 9.5 9.1 8.7 8.1 7.2 6.8 7.5 8.1 8.5 1035 to 1020 8.8 8.9 9.4 9.4 9.0 8.5 7.9 6.9 6.3 7.2 8.0 8.5 1020 to 1005 8.8 8.7 9.3 9.3 8.9 8.5 7.9 7.0 6.1 6.1 7.6 8.4 1005 to 990 8.8 8.7 9.1 9.0 8.7 8.3 7.9 7.2 6.5 5.8 6.1 7.5 990 to 975 8.0 8.6 8.8 8.6 8.2 7.7 7.2 6.7 6.3 5.8 5.4 5.5 975 to 960 6.7 8.1 8.4 8.1 7.6 6.9 6.4 5.9 5.5 5.0 4.6 4.2 960 to 945 4.8 7.2 7.7 7.4 7.0 6.1 5.7 5.3 5.0 4.4 4.1 3.6 945 to 930 3.6 6.2 7.1 6.6 6.4 5.5 5.3 4.8 4.7 4.0 3.8 3.0 930 to 915 2.8 5.6 6.2 5.7 5.9 5.1 4.7 4.2 4.1 3.7 3.5 2.6 915 to 900 2.2 5.1 5.4 5.4 5.6 4.7 4.5 4.0 3.9 3.3 3.0 2.4 900 to 885 2.0 4.5 5.1 5.0 5.5 4.3 4.2 3.8 3.5 2.8 2.8 2.7 885 to 870 2.4 4.6 4.6 4.6 4.6 4.8 4.4 4.2 3.3 3.4 2.8 2.8 1.9 870 to 855 1.8 4.9 5.1 4.6 4.1 3.9 3.6 3.2 3.0 2.1 2.0 1.9 < 855 2.2 4.8 5.3 4.2 4.3 4.1 4.0 3.7 2.8 2.5 2.5 1.7	Ë													
Bernard 1035 to 1020 8.8 8.9 9.4 9.4 9.0 8.5 7.9 6.9 6.3 7.2 8.0 8.5 1020 to 1005 8.8 8.7 9.3 9.3 8.9 8.5 7.9 7.0 6.1 6.1 7.6 8.4 1005 to 990 8.8 8.7 9.1 9.0 8.7 8.3 7.9 7.2 6.5 5.8 6.1 7.5 990 to 975 8.0 8.6 8.8 8.6 8.2 7.7 7.2 6.7 6.3 5.8 5.4 5.5 975 to 960 6.7 8.1 8.4 8.1 7.6 6.9 6.4 5.9 5.5 5.0 4.6 4.2 960 to 945 4.8 7.2 7.7 7.4 7.0 6.1 5.7 5.3 5.0 4.4 4.1 3.6 945 to 930 3.6 6.2 7.1 6.6 6.4 5.5 5.3 4.8 4.7	l E													
## 1005 to 990 8.8	ge													
## 1005 to 990 8.8	lan	-												
885 to 870 2.4 4.6 4.6 4.8 4.4 4.2 3.3 3.4 2.8 2.8 1.9 870 to 855 1.8 4.9 5.1 4.6 4.1 3.9 3.6 3.2 3.0 2.1 2.0 1.9 < 855	E E	-												
885 to 870 2.4 4.6 4.6 4.8 4.4 4.2 3.3 3.4 2.8 2.8 1.9 870 to 855 1.8 4.9 5.1 4.6 4.1 3.9 3.6 3.2 3.0 2.1 2.0 1.9 < 855	l Ë													
885 to 870 2.4 4.6 4.6 4.8 4.4 4.2 3.3 3.4 2.8 2.8 1.9 870 to 855 1.8 4.9 5.1 4.6 4.1 3.9 3.6 3.2 3.0 2.1 2.0 1.9 < 855	eac													
885 to 870 2.4 4.6 4.6 4.8 4.4 4.2 3.3 3.4 2.8 2.8 1.9 870 to 855 1.8 4.9 5.1 4.6 4.1 3.9 3.6 3.2 3.0 2.1 2.0 1.9 < 855	ĕ	-												
885 to 870 2.4 4.6 4.6 4.8 4.4 4.2 3.3 3.4 2.8 2.8 1.9 870 to 855 1.8 4.9 5.1 4.6 4.1 3.9 3.6 3.2 3.0 2.1 2.0 1.9 < 855	ent													
885 to 870 2.4 4.6 4.6 4.8 4.4 4.2 3.3 3.4 2.8 2.8 1.9 870 to 855 1.8 4.9 5.1 4.6 4.1 3.9 3.6 3.2 3.0 2.1 2.0 1.9 < 855	Ĕ													
885 to 870 2.4 4.6 4.6 4.8 4.4 4.2 3.3 3.4 2.8 2.8 1.9 870 to 855 1.8 4.9 5.1 4.6 4.1 3.9 3.6 3.2 3.0 2.1 2.0 1.9 < 855	n z	-												
885 to 870 2.4 4.6 4.6 4.8 4.4 4.2 3.3 3.4 2.8 2.8 1.9 870 to 855 1.8 4.9 5.1 4.6 4.1 3.9 3.6 3.2 3.0 2.1 2.0 1.9 < 855	as													
870 to 855 1.8 4.9 5.1 4.6 4.1 3.9 3.6 3.2 3.0 2.1 2.0 1.9 < 855	ĕ													
< 855 2.2 4.8 5.3 4.2 4.3 4.1 4.0 3.7 2.8 2.5 2.5 1.7														
Legend 6.0 10.0		< 855			5.3	4.2	4.3	4.1	4.0	3.7	2.8	2.5	2.5	
			Legend	6.0										10.0

1170 to 1095		Jocass	ee D_2_5	64.0: Mont	hly Avera	ged Disso	lved Oxyg	en (mg/l) [,]	1976 to 19	85 (Pre Ba	d Creek C	Constructi	on)	
1095 to 7080 9.8 10.0 10.3 10.9 10.8 9.5 8.8 9.0 8.8 8.4 8.6 10.5 1065 to 7050 9.8 9.8 7.1 10.2 10.9 10.8 10.4 94 8.7 9.0 8.3 8.7 10.5					1									Dec
Total Tota		1110 to 1095	9.8	10.2	10.6		10.3			8.8	8.8			9.0
Part		1095 to 1080	9.8	10.0	10.3	10.9	10.8	9.5	8.8		8.8	8.4	8.6	8.9
Part	ısı	1080 to 1065	9.8	9.8	10.2	10.9	10.8	10.4	9.4	8.7	9.0	8.3	8.7	9.0
Property 1005 to 990 9.9 9.6 9.7 9.2 6.2 4.9 4.6 1.5 0.6 1.3 1.8 1.8 1.0 0.5 0.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1	בַּ	1065 to 1050	9.8	9.7	10.2	10.9	10.4	9.8	9.1	8.2	8.3	8.3	8.8	9.1
Property 1005 to 990 9.9 9.6 9.7 9.2 6.2 4.9 4.6 1.5 0.6 1.3 1.8 1.8 1.0 0.5 0.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1	e (t	1050 to 1035	9.8	9.6	10.1	10.6	9.2	9.0	8.5	7.7	7.0	8.2	9.1	9.1
Property 1005 to 990 9.9 9.6 9.7 9.2 6.2 4.9 4.6 1.5 0.6 1.3 1.8 1.8 1.0 0.5 0.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1 1.0 0.1	ng	1035 to 1020	9.8	9.6	9.9	10.3	8.3	7.8	6.7	6.4	5.5	7.3	8.2	9.3
Page 1005 to 990 9.9 9.6 9.7 9.2 6.2 4.9 4.6 1.5 0.6 1.3 1.8	Ra	1020 to 1005	9.8	9.5	9.7	9.8	7.2	6.0	5.5	4.0	2.4	3.3	6.1	8.7
Section Sect		1005 to 990	9.9	9.6	9.7	9.2	6.2	4.9	4.6	1.5	0.6	1.3	1.8	5.0
Section Sect	Ē	990 to 975	10.0	9.9	9.6	8.7	5.8	4.5	5.1	1.0	0.6	0.8	0.1	1.4
Section Sect	Sea	975 to 960	10.0	10.2		8.6	5.3	4.5	3.9	1.2	0.5	1.0	0.1	1.2
Section Sect	# #	960 to 945		9.5	9.5	9.2			6.1			1.0		
Section Sect	ner	945 to 930				9.0						1.6		
Section Sect	ren												•	
September Sept	Ins													
Separate Separate	ea													
Section Sect	Ž						Mil	nimum Rea	ading 937.	5 ft				
Separation Sep			1											
	İ													
			ssee D 2	564.0: Mo	nthly Ave	raged Disc	olved Ox	/gen (mg/) 1985 to	1991 (Bad	Creek Co	nstruction	1)	
Third Dispose 9.7 9.9 10.1 9.4 8.5 8.7 6.7 8.0 8.2 8.4		3004			1	1	T		Ī	T T		T	Ť	Dec
Top	1110 to 1095												9.1	
Total Tota														9.0
1035 fo 1020 9.4 8.7 9.3 9.6 9.3 8.8 8.2 5.9 6.7 7.6 8.3 1020 fo 1005 9.4 8.9 9.2 9.5 9.1 8.5 7.6 5.3 5.4 6.8 8.2 1020 fo 1005 9.4 8.9 9.0 9.3 9.0 8.2 7.5 4.7 5.6 4.3 7.4 1020 fo 1005 9.4 8.9 9.1 8.9 9.1 8.8 8.0 7.4 4.8 5.8 4.5 5.0 1020 fo 1005 9.4 8.9 9.1 8.9 9.1 8.8 8.0 7.4 4.8 5.8 4.5 5.0 1020 fo 1005 9.5 8.9 8.6 8.7 8.3 7.5 6.9 4.5 5.5 4.5 4.3 1020 fo 1006 9.5 8.9 8.6 8.7 8.3 7.5 6.9 4.5 5.5 4.5 4.3 1020 fo 1007 9.3 8.5 7.9 7.2 6.2 5.7 3.7 4.2 3.2 2.4 1020 fo 1005 9.5 8.9 8.6 8.7 8.3 7.0 6.3 4.1 4.9 4.2 3.5 1020 fo 105 fo 105 9.5 8.0 8.3 7.0 6.4 4.9 4.6 2.9 2.9 2.1 1.8 1020 fo 105 fo 105 9.5 8.0 8.3 7.0 6.4 4.9 4.6 2.9 2.9 2.1 1.8 1020 fo 105 fo 105 9.5 9.0 7.7 7.4 6.6 5.6 5.8 3.3 3.2 3.2 1.2 1.6 1.5 1020 fo 105 fo 105 9.1 9.3 9.9 9.8 9.1 9.5 9.5 9.5 1020 fo 105 fo 105 9.1 9.3 9.9 9.8 9.0 8.2 8.2 7.9 7.7 7.6 8.1 1020 fo 105 fo 105 8.9 9.1 9.7 9.6 9.1 8.7 8.2 7.6 7.3 7.6 8.2 1020 fo 105 fo 105 8.9 9.1 9.7 9.6 9.1 8.7 8.2 7.6 7.3 7.6 8.2 1020 fo 105 fo 105 8.8 9.9 9.5 9.4 9.0 8.6 8.1 7.3 6.9 7.5 8.1 1020 fo 105 fo 105 8.8 8.9 9.3 9.3 9.3 9.0 8.5 7.8 7.0 6.4 7.3 8.0 1020 fo 105 fo 105 8.8 8.8 8.9 8.8 8.6 8.1 7.6 6.8 6.1 7.3 6.9 7.5 8.1 1020 fo 105 fo 105 8.8 8.8 8.9 8.8 8.6 8.1 7.6 6.8 6.1 5.4 5.0 4.6 1020 fo 105 fo 105 8.8 8.8 8.9 8.8 8.6 8.1 7.6 6.8 6.1 5.4 5.0 4.6 1020 fo 105 fo 105 8.8 8.8 8.9 8.8 8.6 8.1 7.6 6.8 6.1 5.4 5.0 4.6 1020 fo 105 fo 105 8.8 8.8 8.9 8.8 8.6 8.1 7.6 6.8 6.1 5.4 5.0 4.6 1020 fo 1	SI)													9.0
1035 to 1020 9.4 8.7 9.3 9.6 9.3 8.8 8.2 5.9 6.7 7.6 8.3 1020 to 1005 9.4 8.9 9.2 9.5 9.1 8.5 7.6 5.3 5.4 6.8 8.2 1020 to 1005 9.4 8.9 9.2 9.5 9.1 8.5 7.6 5.3 5.4 6.8 8.2 1020 to 1005 9.4 8.9 9.2 9.5 9.1 8.8 8.0 7.4 4.8 5.8 4.5 5.0 1020 to 1005 9.4 8.9 9.1 8.9 9.1 8.8 8.0 7.4 4.8 5.8 4.5 5.0 1020 to 1005 9.5 8.9 8.6 8.7 8.3 7.5 6.9 4.5 5.5 4.5 4.3 1020 to 1005 9.5 8.9 8.6 8.7 8.3 7.5 6.9 4.5 5.5 4.5 4.3 1020 to 1005 9.5 8.9 8.6 8.7 8.3 7.5 6.9 4.5 5.5 4.5 4.3 1020 to 1005 9.5 8.9 8.6 8.7 8.3 7.5 6.9 4.5 5.5 4.5 4.3 1020 to 1005 9.5 8.9 8.6 8.7 8.3 7.5 6.9 4.5 5.5 4.5 4.3 1020 to 1005 9.5 8.9 8.6 8.7 8.3 7.5 6.9 4.5 5.5 4.5 4.3 1020 to 1005 9.5 8.9 8.6 8.7 8.3 7.5 6.9 4.5 5.5 4.5 1020 to 1005 9.1 9.3 8.5 7.9 7.2 6.2 5.7 3.7 4.2 3.2 2.4 1020 to 1005 8.9 9.1 9.7 9.6 5.6 3.8 3.1 2.3 0.8 0.7 0.4 0.6 1020 to 1005 8.9 9.1 9.7 9.6 9.1 8.7 8.2 7.9 7.7 7.6 8.1 1020 to 1005 8.9 9.1 9.7 9.6 9.1 8.7 8.2 7.6 7.3 7.6 8.2 1020 to 1005 8.8 9.9 9.5 9.4 9.0 8.6 8.1 7.7 7.4 7.6 8.2 1020 to 1005 8.8 8.9 9.3 9.3 9.3 9.0 8.5 7.8 7.0 6.4 7.3 8.0 1020 to 1005 8.8 8.9 9.3 9.3 9.3 9.0 8.5 7.8 7.0 6.4 7.3 8.0 1020 to 1005 8.8 8.8 9.9 9.8 9.1 8.7 8.2 7.6 7.3 7.6 8.2 1020 to 1005 8.8 8.9 9.3 9.3 9.0 8.5 7.8 7.0 6.4 7.3 8.0 1020 to 1005 8.8 8.9 9.3 9.3 9.0 8.5 7.8 7.0 6.4 7.3 8.0 1020 to 1005 8.8 8.9 9.3 9.3 9.3 9.0 8.5 7.8 7.0 6.4 7.3 8.0 1020 to 1005 8.8 8.8 8.9 8.8 8.6 8.1 7.6 6.8 6.1 5.4 5.0 4.6 1020 to 1005 8	E													9.0
1035 to 1020 9.4 8.7 9.3 9.6 9.3 8.8 8.2 5.9 6.7 7.6 8.3	£)													9.0
1005 to 990 9,4 8,9 9,0 9,3 9,0 8,2 7,5 4,7 5,6 4,3 7,4 9,9 9,0 9,5 9,4 9,1 8,9 9,1 8,8 8,0 7,4 4,8 5,8 4,5 5,0 9,5 9,5 9,5 8,9 8,6 8,7 8,3 7,5 6,9 4,5 5,5 4,5 4,3 4,5 5,0 9,5 9,5 9,5 9,5 9,5 8,9 8,6 8,7 8,3 7,5 6,9 4,5 5,5 4,5 4,3 4,4 4,9 4,2 3,5 9,45 6,9 9,0 9,3 8,5 7,9 7,2 6,2 5,7 3,7 4,2 3,2 2,4 4,9 3,0 9,0 6,8 4,0 4,9 7,4 5,9 5,2 3,2 2,5 1,2 1,5 0,9 1,1 1,5 0,9 1	Jge													9.0
1005 to 990 9,4 8,9 9,0 9,3 9,0 8,2 7,5 4,7 5,6 4,3 7,4 9,9 9,0 9,5 9,4 9,1 8,9 9,1 8,8 8,0 7,4 4,8 5,8 4,5 5,0 9,5 9,5 9,5 8,9 8,6 8,7 8,3 7,5 6,9 4,5 5,5 4,5 4,3 4,5 5,0 9,5 9,5 9,5 9,5 9,5 8,9 8,6 8,7 8,3 7,5 6,9 4,5 5,5 4,5 4,3 4,4 4,9 4,2 3,5 9,45 6,9 9,0 9,3 8,5 7,9 7,2 6,2 5,7 3,7 4,2 3,2 2,4 4,9 3,0 9,0 6,8 4,0 4,9 7,4 5,9 5,2 3,2 2,5 1,2 1,5 0,9 1,1 1,5 0,9 1	Rar													9.0
Total Page	g													8.9
### Page 1														7.8
Ref Set ea													5.4	
S85 to 870 3.3 4.3 6.1 4.0 3.8 3.1 2.3 0.8 0.7 0.4 0.6	t R													3.4
S85 to 870 3.3 4.3 6.1 4.0 3.8 3.1 2.3 0.8 0.7 0.4 0.6	Jen													2.2
S85 to 870 3.3 4.3 6.1 4.0 3.8 3.1 2.3 0.8 0.7 0.4 0.6	eπ													1.5
Ref Set sur													1.1	
S85 to 870 3.3 4.3 6.1 4.0 3.8 3.1 2.3 0.8 0.7 0.4 0.6	ea													0.6
R70 to 855	Σ													0.0
Separation Sep				7.0										0.7
Second Part			0.0		1.8	1.2					0.0	0.0	0.0	0.7
1110 to 1095			PP D 2 54	64 O: Monti	hly Averso	ned Dissol					ad Creek	Construct	ion)	
1110 to 1095		Jucasse												Dec
1095 to 1080 8.9 9.2 9.8 9.8 9.1 8.5 8.1 7.7 7.4 7.6 8.2		1110 to 1095												8.8
1080 to 1065														8.6
## 1005 to 990 8.8	(F)													8.6
1005 to 990	Ë													8.6
## 1005 to 990 8.8	Œ,													8.6
1005 to 990	ge													8.6
1005 to 990	≀an													8.4
885 to 870														7.6
885 to 870	Ë													5.5
885 to 870	еас													3.7
885 to 870 2.3 3.9 3.3 4.4 2.9 2.7 3.0 2.2 2.0 2.2 1.0 870 to 855 0.1 4.3 3.1 5.2 0.0 0.4 2.8 2.3 0.0 Minimum Reading 864.4 ft	Ř													
885 to 870 2.3 3.9 3.3 4.4 2.9 2.7 3.0 2.2 2.0 2.2 1.0 870 to 855 0.1 4.3 3.1 5.2 0.0 0.4 2.8 2.3 0.0 Minimum Reading 864.4 ft	eni													2.9
885 to 870 2.3 3.9 3.3 4.4 2.9 2.7 3.0 2.2 2.0 2.2 1.0 870 to 855 0.1 4.3 3.1 5.2 0.0 0.4 2.8 2.3 0.0 Minimum Reading 864.4 ft	<u> </u>													2.1
885 to 870 2.3 3.9 3.3 4.4 2.9 2.7 3.0 2.2 2.0 2.2 1.0 870 to 855 0.1 4.3 3.1 5.2 0.0 0.4 2.8 2.3 0.0 Minimum Reading 864.4 ft	ure													1.8
885 to 870 2.3 3.9 3.3 4.4 2.9 2.7 3.0 2.2 2.0 2.2 1.0 870 to 855 0.1 4.3 3.1 5.2 0.0 0.4 2.8 2.3 0.0 Aminimum Reading 864.4 ft 4.4 4.4 4.4 2.9 2.7 3.0 2.2 2.0 2.2 1.0	as													1.7
870 to 855 0.1 4.3 3.1 5.2 0.0 0.4 2.8 2.3 0.0 64.4 ft	¥e													1.9
< 855 Minimum Reading 864.4 ft							2.9				2.0			1.4
			0.1	4.3	3.1	5.2						2.3	0.0	
Legend 6.0		< 855					Mil	nimum Rea	ading 864.	4 ft				
			Legend	6.0										10.0

	,	Jocassee I	D_2_564.1	: Monthly	Averaged	Dissolve	d Oxygen (mg/l) (Pre	Bad Cree	k Constru	ıction)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095												
_	1095 to 1080												
[St	1080 to 1065												
ב	1065 to 1050												
e (i	1050 to 1035												
Range (ft msl)	1035 to 1020												
Ra	1020 to 1005												
ng	1005 to 990												
adi	990 to 975				DO Page	linas Reas	n During Ba	ad Craak	Constructio	n (1087)			
Re	975 to 960				DO Neac	iiigs bega	in Duning Do	au Creek	Constructio	11 (1901)			
Ħ	960 to 945												
шe	945 to 930												
<u> </u>	930 to 915												
Measurement Reading	915 to 900												
Me	900 to 885												
_	885 to 870												
	870 to 855												
	< 855												
	Joca						ygen (mg/l)				1		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	10.0	10.6	9.8	10.2	9.3	8.7	8.6	5.4	7.9	8.2	8.3	9.2
<u>-</u>	1095 to 1080	9.8	9.5	10.0	10.2	9.5	8.9	8.7	6.3	7.7	8.0	8.5	9.2
ding Range (ft msl)	1080 to 1065	10.0	9.7	10.0	10.1	9.5	9.0	8.6	5.9	7.6	8.1	8.6	9.2
Œ,	1065 to 1050	10.6	10.6	10.2	10.3	9.4	8.5	8.2	5.5	7.5	8.0	8.7	9.7
ge	1050 to 1035	10.7	10.4	10.1	10.3	9.2	7.7	6.8	4.7	7.0	7.8	8.6	9.8
an	1035 to 1020	10.7	10.2	10.0	9.8	8.7	6.2	5.3	2.7	4.6	7.7	8.5	9.9
X	1020 to 1005	10.6	10.4	9.8	9.1	7.7	5.1	3.8	2.2	1.0	6.2	8.4	9.8
ù <u>i</u>	1005 to 990	10.6	10.2	9.3	8.0	5.8	2.9	1.5	0.9	0.1	1.7	8.1	9.7
∌ad	990 to 975	10.6	10.0	9.0	7.3	4.1	2.1	0.3	0.3	0.0	0.0	5.4	9.7
Measurement Rea	975 to 960	10.5	9.9	9.5	8.7	2.8	1.5	0.0	0.4	0.0	0.0	1.9	10.1
ent	960 to 945					2.7							
Ĕ	945 to 930												
n a	930 to 915												
eas	915 to 900					Λ.	lininaa Da	- din - 000	· Æ				
Ĕ	900 to 885					IV	linimum Re	ading 963	π				
•	885 to 870												
•	870 to 855 < 855												
		00 D 2 F6	11: Month	ly Avorac	and Dissolv	vod Ovva	en (mg/l) 19	201 to 201	17 (Doct B	ad Crook (Construction	n)	
	Jocass	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	9.2	9.5	9.7	9.7	8.9	8.3	8.2	7.8	7.3	7.5	8.1	8.8
-	1095 to 1080	9.0	9.4	9.7	9.7	9.0	8.4	8.1	7.6	7.2	7.5	8.1	8.6
(E	1080 to 1065	9.1	9.3	9.6	9.6	9.0	8.5	8.2	7.6	7.2	7.5	8.1	8.6
E	1065 to 1050	9.1	9.4	9.6	9.6	9.0	8.5	8.3	7.6	7.1	7.5	8.1	8.7
Range (ft msl)	1050 to 1035	9.1	9.4	9.6	9.5	9.0	8.6	8.2	7.5	7.1	7.4	8.1	8.6
Jge	1035 to 1020	9.2	9.4	9.6	9.5	9.0	8.6	8.1	7.6	7.1	7.4	8.1	8.7
Rai	1020 to 1005	9.1	9.3	9.6	9.4	8.9	8.6	8.1	7.6	7.1	7.4	8.0	8.7
<u> </u>	1005 to 990	9.2	9.4	9.6	9.4	8.9	8.6	8.4	7.6	7.1	7.4	8.1	8.7
Ā	990 to 975	9.1	9.5	9.6	9.4	8.7	8.6	8.1	7.6	6.9	7.4	8.2	8.7
Measurement Reading	975 to 960	9.3	9.4	9.8	9.5	8.8	8.3	8.4	7.1	6.8	7.5	8.2	8.9
F.	960 to 945												
ner	945 to 930	1											
ē	930 to 915	1											
nsı	915 to 900	1						din = 050	o #				
lea	900 to 885	1				Mi	nimum Rea	aing 959.	9 π				
<	885 to 870	1											
ľ	870 to 855	1											
	< 855	1											
		Legend	6.0										10.0

Whitewater River Cove **Dissolved Oxygen Saturation**

	Jocasse	e C_2_560.	0: Montly	Averaged	Dissolved	d Oxygen	Percent S	aturation	(%) (Pre	Bad Creek	Construc	ction)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095			•				•	•	•	•	•	•
	1095 to 1080												
Measurement Reading Range (ft msl)	1080 to 1065												
ב.	1065 to 1050												
e (1	1050 to 1035												
ng	1035 to 1020												
Ra	1020 to 1005												
D _U	1005 to 990												
ğ	990 to 975					DO Catur	otion Door	dinas Dono	n in 1000				
Ze.	975 to 960					DO Salui	alion Read	dings Bega	11111 1990				
뒽	960 to 945												
шe	945 to 930												
<u> </u>	930 to 915												
ası	915 to 900												
Α̈́	900 to 885												
_	885 to 870												
	870 to 855												
	< 855												
	Jocass	see C_2_56		1				I	I		T	1	
	40051 1115	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1095 to 1110												
=	1080 to 1095												
ng Range (ft msl)	1065 to 1080												
Œ.	1050 to 1065												
ge	1035 to 1050												
ang	1020 to 1035												
X	1005 to 1020												
	990 to 1005												
	975 to 990					DO Satur	ation Read	dings Bega	n in 1998				
	975 to 990 960 to 975					DO Satur	ation Read	dings Bega	n in 1998				
	975 to 990 960 to 975 945 to 960					DO Satur	ation Read	dings Bega	n in 1998				
	975 to 990 960 to 975 945 to 960 930 to 945					DO Satur	ration Read	dings Bega	n in 1998				
	975 to 990 960 to 975 945 to 960 930 to 945 915 to 930					DO Satur	ration Read	dings Bega	n in 1998				
	975 to 990 960 to 975 945 to 960 930 to 945 915 to 930 900 to 915					DO Satur	ration Read	dings Bega	n in 1998				
Measurement Readin	975 to 990 960 to 975 945 to 960 930 to 945 915 to 930 900 to 915 885 to 900					DO Satur	ration Read	dings Bega	n in 1998				
	975 to 990 960 to 975 945 to 960 930 to 945 915 to 930 900 to 915 885 to 900 870 to 885					DO Satur	ration Read	dings Bega	n in 1998				
	975 to 990 960 to 975 945 to 960 930 to 945 915 to 930 900 to 915 885 to 900 870 to 885 855 to 870					DO Satur	ration Read	dings Bega	n in 1998				
Measurement Readi	975 to 990 960 to 975 945 to 960 930 to 945 915 to 930 900 to 915 885 to 900 870 to 885 855 to 870 < 855	560 O: Moss	fly Avora	nad Disso	Ived Ovyg						Crock C	onstructio	.n)
Measurement Readi	975 to 990 960 to 975 945 to 960 930 to 945 915 to 930 900 to 915 885 to 900 870 to 885 855 to 870			Ī .		en Percer	nt Saturati	on (%) 199	98 to 2015	5 (Post Bac	T	1	1
Measurement Readi	975 to 990 960 to 975 945 to 960 930 to 945 915 to 930 900 to 915 885 to 900 870 to 885 855 to 870 < 855 Jocassee C_2_5	Jan	Feb	Mar	Apr	en Percer May		on (%) 199	98 to 2015 Aug	5 (Post Bac Sep	Oct	Nov	Dec
Measurement Readi	975 to 990 960 to 975 945 to 960 930 to 945 915 to 930 900 to 915 885 to 900 870 to 885 855 to 870 < 855			Ī .		en Percer	nt Saturati Jun	on (%) 199 Jul 98.5	98 to 2015	5 (Post Bac	T	1	1
Measurement Readi	975 to 990 960 to 975 945 to 960 930 to 945 915 to 930 900 to 915 885 to 900 870 to 885 855 to 870 < 855 Jocassee C_2_5	Jan 85.8	Feb 84.8	Mar 94.3	Apr 98.7	en Percer May 99.4	et Saturati Jun 101.7	on (%) 199	98 to 2015 Aug 100.6	5 (Post Bac Sep 95.8	Oct 87.4	Nov 89.2	Dec 88.0
Measurement Readi	975 to 990 960 to 975 945 to 960 930 to 945 915 to 930 900 to 915 885 to 900 870 to 885 855 to 870 < 855 Jocassee C_2_5 1110 to 1095 1095 to 1080	Jan 85.8 83.3	Feb 84.8 84.3	Mar 94.3 92.9	Apr 98.7 97.4	en Percer May 99.4 96.2	ot Saturati Jun 101.7 100.1	on (%) 199 Jul 98.5 96.2	98 to 2015 Aug 100.6 98.7	5 (Post Bac Sep 95.8 92.9	Oct 87.4 88.8	Nov 89.2 88.4	88.0 85.7
Measurement Readi	975 to 990 960 to 975 945 to 960 930 to 945 915 to 930 900 to 915 885 to 900 870 to 885 855 to 870 < 855 Jocassee C_2_5 1110 to 1095 1095 to 1080 1080 to 1065	Jan 85.8 83.3 82.8	Feb 84.8 84.3 82.1	Mar 94.3 92.9 90.9	98.7 97.4 94.8	en Percer May 99.4 96.2 94.5	ot Saturati Jun 101.7 100.1 99.0	on (%) 199 Jul 98.5 96.2 95.6	98 to 2015 Aug 100.6 98.7 95.8	5 (Post Bac Sep 95.8 92.9 90.9	Oct 87.4 88.8 88.3	89.2 88.4 87.8	88.0 85.7 85.7
Measurement Readi	975 to 990 960 to 975 945 to 960 930 to 945 915 to 930 900 to 915 885 to 900 870 to 885 855 to 870 < 855 Jocassee C_2_5 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050	Jan 85.8 83.3 82.8 83.1	Feb 84.8 84.3 82.1 81.6	Mar 94.3 92.9 90.9 88.6	98.7 97.4 94.8 92.2	en Percer May 99.4 96.2 94.5 92.2	101.7 100.1 99.0 96.8	on (%) 199 Jul 98.5 96.2 95.6 93.4	98 to 2015 Aug 100.6 98.7 95.8 93.3	5 (Post Bac Sep 95.8 92.9 90.9 89.0	Oct 87.4 88.8 88.3 88.3	89.2 88.4 87.8 87.5	88.0 85.7 85.7 85.2
Measurement Readi	975 to 990 960 to 975 945 to 960 930 to 945 915 to 930 900 to 915 885 to 900 870 to 885 855 to 870 < 855 Jocassee C_2_5 1110 to 1095 1095 to 1080 1080 to 1050 1050 to 1035	Jan 85.8 83.3 82.8 83.1 82.0	Feb 84.8 84.3 82.1 81.6 80.9	Mar 94.3 92.9 90.9 88.6 86.7	98.7 97.4 94.8 92.2 88.9	en Percer May 99.4 96.2 94.5 92.2 88.8	Jun 101.7 100.1 99.0 96.8 94.2	on (%) 199 Jul 98.5 96.2 95.6 93.4 90.1	98 to 2015 Aug 100.6 98.7 95.8 93.3 88.5	Sep 95.8 92.9 90.9 89.0 86.3	Oct 87.4 88.8 88.3 88.3 87.6	89.2 88.4 87.8 87.5 87.3	88.0 85.7 85.7 85.2 84.9
Measurement Readi	975 to 990 960 to 975 945 to 960 930 to 945 915 to 930 900 to 915 885 to 900 870 to 885 855 to 870 < 855 Jocassee C_2_5 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020	Jan 85.8 83.3 82.8 83.1 82.0 82.1	Feb 84.8 84.3 82.1 81.6 80.9 80.1	Mar 94.3 92.9 90.9 88.6 86.7 84.0	Apr 98.7 97.4 94.8 92.2 88.9 87.5	en Percer May 99.4 96.2 94.5 92.2 88.8 87.5	101.7 100.1 99.0 96.8 94.2 90.1	on (%) 199 Jul 98.5 96.2 95.6 93.4 90.1 84.2	Aug 100.6 98.7 95.8 93.3 88.5 81.0	5 (Post Bac Sep 95.8 92.9 90.9 89.0 86.3 78.3	Oct 87.4 88.8 88.3 88.3 87.6 84.6	89.2 88.4 87.8 87.5 87.3 86.9	88.0 85.7 85.7 85.2 84.9
Measurement Readi	975 to 990 960 to 975 945 to 960 930 to 945 915 to 930 900 to 915 885 to 900 870 to 885 855 to 870 < 855 Jocassee C_2_5 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005	Jan 85.8 83.3 82.8 83.1 82.0 82.1 81.9	Feb 84.8 84.3 82.1 81.6 80.9 80.1 77.9	Mar 94.3 92.9 90.9 88.6 86.7 84.0 82.3	98.7 97.4 94.8 92.2 88.9 87.5 84.6	en Percer May 99.4 96.2 94.5 92.2 88.8 87.5 84.1	Jun 101.7 100.1 99.0 96.8 94.2 90.1 84.8	on (%) 199 Jul 98.5 96.2 95.6 93.4 90.1 84.2 78.3	98 to 2015 Aug 100.6 98.7 95.8 93.3 88.5 81.0 74.8	5 (Post Bac Sep 95.8 92.9 90.9 89.0 86.3 78.3 66.1	Oct 87.4 88.8 88.3 88.3 87.6 84.6 72.1	89.2 88.4 87.8 87.5 87.3 86.9 83.1	88.0 85.7 85.7 85.2 84.9 84.9 83.7
Measurement Readi	975 to 990 960 to 975 945 to 960 930 to 945 915 to 930 900 to 915 885 to 900 870 to 885 855 to 870 < 855 Jocassee C_2_5 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990	Jan 85.8 83.3 82.8 83.1 82.0 82.1 81.9 81.7	Feb 84.8 84.3 82.1 81.6 80.9 80.1 77.9 76.6	Mar 94.3 92.9 90.9 88.6 86.7 84.0 82.3 80.3	98.7 97.4 94.8 92.2 88.9 87.5 84.6 81.0	en Percer May 99.4 96.2 94.5 92.2 88.8 87.5 84.1 80.0	101.7 100.1 99.0 96.8 94.2 90.1 84.8 78.3	on (%) 198 Jul 98.5 96.2 95.6 93.4 90.1 84.2 78.3 72.0	98 to 2015 Aug 100.6 98.7 95.8 93.3 88.5 81.0 74.8 69.5	5 (Post Bac Sep 95.8 92.9 90.9 89.0 86.3 78.3 66.1 61.8	Oct 87.4 88.8 88.3 88.3 87.6 84.6 72.1 56.1	89.2 88.4 87.8 87.5 87.3 86.9 83.1 62.8	88.0 85.7 85.7 85.2 84.9 84.9 83.7 76.3
Measurement Readi	975 to 990 960 to 975 945 to 960 930 to 945 915 to 930 900 to 915 885 to 900 870 to 885 855 to 870 < 855 Jocassee C_2_5 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975	Jan 85.8 83.3 82.8 83.1 82.0 82.1 81.9 81.7 73.2	Feb 84.8 84.3 82.1 81.6 80.9 80.1 77.9 76.6 76.4	94.3 92.9 90.9 88.6 86.7 84.0 82.3 80.3 78.0	98.7 97.4 94.8 92.2 88.9 87.5 84.6 81.0 76.1	en Percer May 99.4 96.2 94.5 92.2 88.8 87.5 84.1 80.0 74.3	101.7 100.1 99.0 96.8 94.2 90.1 84.8 78.3 70.9	on (%) 199 Jul 98.5 96.2 95.6 93.4 90.1 84.2 78.3 72.0 63.9	98 to 2015 Aug 100.6 98.7 95.8 93.3 88.5 81.0 74.8 69.5 61.9	5 (Post Bac Sep 95.8 92.9 90.9 89.0 86.3 78.3 66.1 61.8 57.2	Oct 87.4 88.8 88.3 87.6 84.6 72.1 56.1 53.4	89.2 88.4 87.8 87.5 87.3 86.9 83.1 62.8 49.8	88.0 85.7 85.7 85.2 84.9 84.9 83.7 76.3 54.5
Measurement Readi	975 to 990 960 to 975 945 to 960 930 to 945 915 to 930 900 to 915 885 to 900 870 to 885 855 to 870 < 855 Jocassee C_2_5 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960	Jan 85.8 83.3 82.8 83.1 82.0 82.1 81.9 81.7 73.2 58.6	Feb 84.8 84.3 82.1 81.6 80.9 80.1 77.9 76.6 76.4 69.8	Mar 94.3 92.9 90.9 88.6 86.7 84.0 82.3 80.3 78.0 74.5	98.7 97.4 94.8 92.2 88.9 87.5 84.6 81.0 76.1 71.8	en Percer May 99.4 96.2 94.5 92.2 88.8 87.5 84.1 80.0 74.3 69.1	1 Saturati Jun 101.7 100.1 99.0 96.8 94.2 90.1 84.8 78.3 70.9 62.3	on (%) 199 Jul 98.5 96.2 95.6 93.4 90.1 84.2 78.3 72.0 63.9 55.6	98 to 2015 Aug 100.6 98.7 95.8 93.3 88.5 81.0 74.8 69.5 61.9 54.2	5 (Post Bac Sep 95.8 92.9 90.9 89.0 86.3 78.3 66.1 61.8 57.2 50.0	Oct 87.4 88.8 88.3 87.6 84.6 72.1 56.1 53.4 45.8	89.2 88.4 87.8 87.5 87.3 86.9 83.1 62.8 49.8	88.0 85.7 85.7 85.2 84.9 84.9 83.7 76.3 54.5 40.0
Measurement Readi	975 to 990 960 to 975 945 to 960 930 to 945 915 to 930 900 to 915 885 to 900 870 to 885 855 to 870 < 855 Jocassee C_2_5 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945	Jan 85.8 83.3 82.8 83.1 82.0 82.1 81.9 81.7 73.2 58.6 40.4	Feb 84.8 84.3 82.1 81.6 80.9 80.1 77.9 76.6 76.4 69.8 61.3	Mar 94.3 92.9 90.9 88.6 86.7 84.0 82.3 80.3 78.0 74.5 68.5	98.7 97.4 94.8 92.2 88.9 87.5 84.6 81.0 76.1 71.8 66.5	en Percer May 99.4 96.2 94.5 92.2 88.8 87.5 84.1 80.0 74.3 69.1 63.4	101.7 100.1 99.0 96.8 94.2 90.1 84.8 78.3 70.9 62.3 55.5	on (%) 199 Jul 98.5 96.2 95.6 93.4 90.1 84.2 78.3 72.0 63.9 55.6 49.0	98 to 2015 Aug 100.6 98.7 95.8 93.3 88.5 81.0 74.8 69.5 61.9 54.2 48.9	5 (Post Bac Sep 95.8 92.9 90.9 89.0 86.3 78.3 66.1 61.8 57.2 50.0 45.7	Oct 87.4 88.8 88.3 87.6 84.6 72.1 56.1 53.4 45.8 40.5	89.2 88.4 87.8 87.5 87.3 86.9 83.1 62.8 49.8 43.1 39.2	88.0 85.7 85.7 85.2 84.9 84.9 83.7 76.3 54.5 40.0 32.6
Measurement Readi	975 to 990 960 to 975 945 to 960 930 to 945 915 to 930 900 to 915 885 to 900 870 to 885 855 to 870 < 855 Jocassee C_2_6 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930	Jan 85.8 83.3 82.8 83.1 82.0 82.1 81.9 81.7 73.2 58.6 40.4 30.1	Feb 84.8 84.3 82.1 81.6 80.9 80.1 77.9 76.6 76.4 69.8 61.3 54.3	Mar 94.3 92.9 90.9 88.6 86.7 84.0 82.3 80.3 78.0 74.5 68.5 64.4	98.7 97.4 94.8 92.2 88.9 87.5 84.6 81.0 76.1 71.8 66.5 61.4	en Percer May 99.4 96.2 94.5 92.2 88.8 87.5 84.1 80.0 74.3 69.1 63.4 60.4	101.7 100.1 99.0 96.8 94.2 90.1 84.8 78.3 70.9 62.3 55.5 50.8	on (%) 199 Jul 98.5 96.2 95.6 93.4 90.1 84.2 78.3 72.0 63.9 55.6 49.0 46.9	98 to 2015 Aug 100.6 98.7 95.8 93.3 88.5 81.0 74.8 69.5 61.9 54.2 48.9 45.6	5 (Post Bac Sep 95.8 92.9 90.9 89.0 86.3 78.3 66.1 61.8 57.2 50.0 45.7 44.0	Oct 87.4 88.8 88.3 87.6 84.6 72.1 56.1 53.4 45.8 40.5 37.5	89.2 88.4 87.8 87.5 87.3 86.9 83.1 62.8 49.8 43.1 39.2 37.5	88.0 85.7 85.7 85.2 84.9 84.9 83.7 76.3 54.5 40.0 32.6 29.4
Measurement Readi	975 to 990 960 to 975 945 to 960 930 to 945 915 to 930 900 to 915 885 to 900 870 to 885 855 to 870 < 855 Jocassee C_2_5 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915	Jan 85.8 83.3 82.8 83.1 82.0 82.1 81.9 81.7 73.2 58.6 40.4 30.1 23.3	Feb 84.8 84.3 82.1 81.6 80.9 80.1 77.9 76.6 76.4 69.8 61.3 54.3 50.8	Mar 94.3 92.9 90.9 88.6 86.7 84.0 82.3 80.3 78.0 74.5 68.5 64.4 58.1	98.7 97.4 94.8 92.2 88.9 87.5 84.6 81.0 76.1 71.8 66.5 61.4 52.3	en Percer May 99.4 96.2 94.5 92.2 88.8 87.5 84.1 80.0 74.3 69.1 63.4 60.4 56.3	101.7 100.1 99.0 96.8 94.2 90.1 84.8 78.3 70.9 62.3 55.5 50.8 47.2	on (%) 198 Jul 98.5 96.2 95.6 93.4 90.1 84.2 78.3 72.0 63.9 55.6 49.0 46.9 39.7	98 to 2015 Aug 100.6 98.7 95.8 93.3 88.5 81.0 74.8 69.5 61.9 54.2 48.9 45.6 39.5	5 (Post Bac Sep 95.8 92.9 90.9 89.0 86.3 78.3 66.1 61.8 57.2 50.0 45.7 44.0 39.3	Oct 87.4 88.8 88.3 87.6 84.6 72.1 56.1 53.4 45.8 40.5 37.5 34.2	89.2 88.4 87.8 87.5 87.3 86.9 83.1 62.8 49.8 43.1 39.2 37.5 33.9	88.0 85.7 85.7 85.2 84.9 84.9 83.7 76.3 54.5 40.0 32.6 29.4 24.9
Measurement Readi	975 to 990 960 to 975 945 to 960 930 to 945 915 to 930 900 to 915 885 to 900 870 to 885 855 to 870 < 855 Jocassee C_2_5 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900	35.8 83.3 82.8 83.1 82.0 82.1 81.9 81.7 73.2 58.6 40.4 30.1 23.3 18.8	Feb 84.8 84.3 82.1 81.6 80.9 80.1 77.9 76.6 76.4 69.8 61.3 54.3 50.8 47.5	Mar 94.3 92.9 90.9 88.6 86.7 84.0 82.3 80.3 78.0 74.5 68.5 64.4 58.1	98.7 97.4 94.8 92.2 88.9 87.5 84.6 81.0 76.1 71.8 66.5 61.4 52.3 51.1	en Percer May 99.4 96.2 94.5 92.2 88.8 87.5 84.1 80.0 74.3 69.1 63.4 60.4 56.3 54.3	101.7 100.1 99.0 96.8 94.2 90.1 84.8 78.3 70.9 62.3 55.5 50.8 47.2 44.1	on (%) 199 Jul 98.5 96.2 95.6 93.4 90.1 84.2 78.3 72.0 63.9 55.6 49.0 46.9 39.7 39.1	98 to 2015 Aug 100.6 98.7 95.8 93.3 88.5 81.0 74.8 69.5 61.9 54.2 48.9 45.6 39.5 38.6	95.8 92.9 90.9 89.0 86.3 78.3 66.1 61.8 57.2 50.0 45.7 44.0 39.3 37.2	Oct 87.4 88.8 88.3 87.6 84.6 72.1 56.1 53.4 45.8 40.5 37.5 34.2 30.6	89.2 88.4 87.8 87.5 87.3 86.9 83.1 62.8 49.8 43.1 39.2 37.5 33.9 29.7	88.0 85.7 85.7 85.2 84.9 84.9 83.7 76.3 54.5 40.0 32.6 29.4 24.9 22.4
Measurement Readi	975 to 990 960 to 975 945 to 960 930 to 945 915 to 930 900 to 915 885 to 900 870 to 885 855 to 870 < 855 Jocassee C_2_5 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885	Jan 85.8 83.3 82.8 83.1 82.0 82.1 81.9 81.7 73.2 58.6 40.4 30.1 23.3 18.8 18.2	Feb 84.8 84.3 82.1 81.6 80.9 80.1 77.9 76.6 76.4 69.8 61.3 54.3 50.8 47.5 41.5	Mar 94.3 92.9 90.9 88.6 86.7 84.0 82.3 80.3 78.0 74.5 68.5 64.4 58.1 51.0 49.8	98.7 97.4 94.8 92.2 88.9 87.5 84.6 81.0 76.1 71.8 66.5 61.4 52.3 51.1 49.2	en Percer May 99.4 96.2 94.5 92.2 88.8 87.5 84.1 80.0 74.3 69.1 63.4 60.4 56.3 54.3 53.9	1 Saturati Jun 101.7 100.1 99.0 96.8 94.2 90.1 84.8 78.3 70.9 62.3 55.5 50.8 47.2 44.1 42.3	on (%) 199 Jul 98.5 96.2 95.6 93.4 90.1 84.2 78.3 72.0 63.9 55.6 49.0 46.9 39.7 39.1 37.9	98 to 2015 Aug 100.6 98.7 95.8 93.3 88.5 81.0 74.8 69.5 61.9 54.2 48.9 45.6 39.5 38.6 38.4	5 (Post Bac Sep 95.8 92.9 90.9 89.0 86.3 78.3 66.1 61.8 57.2 50.0 45.7 44.0 39.3 37.2 33.2	Oct 87.4 88.8 88.3 88.3 87.6 84.6 72.1 56.1 53.4 45.8 40.5 37.5 34.2 30.6 27.4	89.2 88.4 87.8 87.5 87.3 86.9 83.1 62.8 49.8 43.1 39.2 37.5 33.9 29.7 29.4	88.0 85.7 85.7 85.2 84.9 84.9 83.7 76.3 54.5 40.0 32.6 29.4 24.9 22.4 25.0
Measurement Readi	975 to 990 960 to 975 945 to 960 930 to 945 915 to 930 900 to 915 885 to 900 870 to 885 855 to 870 < 855 Jocassee C_2_5 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870	Jan 85.8 83.3 82.8 83.1 82.0 82.1 81.9 81.7 73.2 58.6 40.4 30.1 23.3 18.8 18.2 22.7	Feb 84.8 84.3 82.1 81.6 80.9 80.1 77.9 76.6 76.4 69.8 61.3 54.3 50.8 47.5 41.5 39.7	Mar 94.3 92.9 90.9 88.6 86.7 84.0 82.3 80.3 78.0 74.5 68.5 64.4 58.1 51.0 49.8 42.8	98.7 97.4 94.8 92.2 88.9 87.5 84.6 81.0 76.1 71.8 66.5 61.4 52.3 51.1 49.2 40.5	en Percer May 99.4 96.2 94.5 92.2 88.8 87.5 84.1 80.0 74.3 69.1 63.4 60.4 56.3 54.3 53.9 50.9	101.7 100.1 99.0 96.8 94.2 90.1 84.8 78.3 70.9 62.3 55.5 50.8 47.2 44.1 42.3 42.7	on (%) 199 Jul 98.5 96.2 95.6 93.4 90.1 84.2 78.3 72.0 63.9 55.6 49.0 46.9 39.7 39.1 37.9 39.2	98 to 2018 Aug 100.6 98.7 95.8 93.3 88.5 81.0 74.8 69.5 61.9 54.2 48.9 45.6 39.5 38.6 38.4 34.7	95.8 92.9 90.9 89.0 86.3 78.3 66.1 61.8 57.2 50.0 45.7 44.0 39.3 37.2 33.2 33.2	Oct 87.4 88.8 88.3 88.3 87.6 84.6 72.1 56.1 53.4 45.8 40.5 37.5 34.2 30.6 27.4 26.4	89.2 88.4 87.8 87.5 87.3 86.9 83.1 62.8 49.8 43.1 39.2 37.5 33.9 29.7 29.4 28.3	88.0 85.7 85.7 85.2 84.9 84.9 83.7 76.3 54.5 40.0 32.6 29.4 24.9 22.4 25.0 19.9
Measurement Readi	975 to 990 960 to 975 945 to 960 930 to 945 915 to 930 900 to 915 885 to 900 870 to 885 855 to 870 < 855 Jocassee C_2_6 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870 870 to 855	Jan 85.8 83.3 82.8 83.1 82.0 82.1 81.9 81.7 73.2 58.6 40.4 30.1 23.3 18.8 18.2 22.7 17.9	Feb 84.8 84.3 82.1 81.6 80.9 80.1 77.9 76.6 76.4 69.8 61.3 54.3 50.8 47.5 41.5 39.7 43.3	Mar 94.3 92.9 90.9 88.6 86.7 84.0 82.3 80.3 78.0 74.5 68.5 64.4 58.1 51.0 49.8 42.8 46.4	98.7 97.4 94.8 92.2 88.9 87.5 84.6 81.0 76.1 71.8 66.5 61.4 52.3 51.1 49.2 40.5 41.7	en Percer May 99.4 96.2 94.5 92.2 88.8 87.5 84.1 80.0 74.3 69.1 63.4 60.4 56.3 54.3 53.9 50.9 42.9	101.7 100.1 99.0 96.8 94.2 90.1 84.8 78.3 70.9 62.3 55.5 50.8 47.2 44.1 42.3 42.7 38.3	on (%) 199 Jul 98.5 96.2 95.6 93.4 90.1 84.2 78.3 72.0 63.9 55.6 49.0 46.9 39.7 39.1 37.9 39.2 33.1	98 to 2015 Aug 100.6 98.7 95.8 93.3 88.5 81.0 74.8 69.5 61.9 54.2 48.9 45.6 39.5 38.6 38.4 34.7 33.3	5 (Post Bac Sep 95.8 92.9 90.9 89.0 86.3 78.3 66.1 61.8 57.2 50.0 45.7 44.0 39.3 37.2 33.2 33.2 27.7	Oct 87.4 88.8 88.3 88.3 87.6 84.6 72.1 56.1 53.4 45.8 40.5 37.5 34.2 30.6 27.4 26.4 19.7	89.2 88.4 87.8 87.5 87.3 86.9 83.1 62.8 49.8 43.1 39.2 37.5 33.9 29.7 29.4 28.3 20.3	88.0 85.7 85.7 85.2 84.9 84.9 83.7 76.3 54.5 40.0 32.6 29.4 24.9 22.4 25.0 19.9 18.1

	Jocasse	e D_2_56	4.0: Montly	Averaged	d Dissolve	d Oxygen	Percent S	aturation	(%) (Pre	Bad Creek	Construc	tion)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095												
	1095 to 1080												
Isu	1080 to 1065												
T	1065 to 1050												
е (1050 to 1035												
l Bu	1035 to 1020												
Ra	1020 to 1005												
ng	1005 to 990												
adi	990 to 975					DO Satu	ration Read	linas Reas	n in 1000				
Re	975 to 960					DO Gala	ration read	iiigs bega	1111111999				
Measurement Reading Range (ft msl)	960 to 945												
me	945 to 930												
<u> </u>	930 to 915												
ası	915 to 900												
¥e	900 to 885												
	885 to 870												
	870 to 855												
	< 855	- F 6	-040	L - A				0-4 **	(0/) (- 10)		
	Jocass		564.0: Mont		I	1	1		1	1	1	T	Doc
	1095 to 1110	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1080 to 1095												
(Es	1065 to 1080												
ng Range (ft msl)	1050 to 1065												
E E	1035 to 1050												
ıge	1020 to 1035												
Rar	1005 to 1020												
l gr	990 to 1005												
	975 to 990					5004	5	5					
Measurement Readi	960 to 975					DO Satu	ration Read	lings Bega	ın ın 1999				
"=	945 to 960												
ner	930 to 945												
<u>re</u>	915 to 930												
nse	900 to 915												
Μe	885 to 900												
	870 to 885												
	855 to 870												
	< 855												
	Jocassee D_2_				T	1	1 1		T	_	1		1
	1110 1- 1005	Jan 97.0	Feb	Mar	Apr	May	Jun 101.9	Jul	Aug	Sep	Oct	Nov	Dec 99.7
	1110 to 1095 1095 to 1080	87.0 83.8	86.4 84.2	94.6 92.3	99.0 96.8	99.8 96.1	101.8 100.4	98.9 96.5	101.0 98.2	95.8 92.4	87.5 88.4	88.7 87.8	88.7 85.9
-	1080 to 1065	83.3	82.3	92.3 89.8	96.8	96.1	99.2	96.5 95.1	98.2 95.9	92.4	88.1	87.8 87.5	85.9
Range (ft msl)	1065 to 1050	83.3	62.3 82.2	88.3	94.4	94.5 92.7	99.2 97.2	93.7	93.7	90.7 88.9	87.8	87.0	85.5
Œ,	1050 to 1035	82.5	81.2	86.7	89.5	89.3	94.3	90.3	93.7 89.2	87.1	86.9	87.0	85.1
ıge	1030 to 1033	82.4	80.5	83.9	87.2	87.4	89.7	83.2	81.7	78.8	84.8	86.5	85.3
₹an	1020 to 1005	82.2	79.3	81.9	83.4	83.6	83.6	77.1	73.3	65.3	72.9	82.7	83.6
J G	1005 to 990	82.4	78.6	79.5	79.5	78.9	76.6	69.0	64.4	56.9	50.9	63.0	78.1
Measurement Reading	990 to 975	74.7	77.6	77.1	74.6	72.9	69.8	59.3	55.8	50.2	45.6	42.8	55.2
(ea	975 to 960	55.3	71.9	73.6	69.7	67.7	60.0	50.7	48.9	42.1	36.0	34.0	34.6
 	960 to 945	44.7	65.2	67.8	63.8	60.8	51.1	44.3	43.8	36.1	28.4	26.7	26.0
ner	945 to 930	31.2	57.2	61.7	56.7	56.8	45.2	40.0	38.0	32.0	22.7	20.4	18.2
ren	930 to 915	25.6	49.9	55.2	45.7	51.8	39.6	32.1	31.2	25.5	18.8	17.0	15.2
ısı	915 to 900	21.4	47.8	46.9	44.2	50.0	35.6	31.9	27.4	25.1	15.5	13.8	14.4
<u>ea</u>	900 to 885	19.7	35.7	38.9	32.8	20.4	20.0	7.3	22.1	11.2	4.1	1.0	11.1
	885 to 870	20.9	31.2	7.9	44.5	21.1	52.4	6.6	25.3	3.8	2.0	0.6	5.8
≥													0.0
_ ≥	870 to 855	1.2	0.0					3.1					0.0
2	870 to 855 < 855	1.2	0.0			M	inimum Rea		8 ft				0.0
≥		1.2 Legend	0.0			M	inimum Rea		8 ft				100.00

	Jocasse	e D_2_564	4.1: Montly	Averaged	d Dissolve	d Oxygen	Percent S	aturation	(%) (Pre	Bad Creel	k Construc	ction)	
		<u> </u>	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095												
	1095 to 1080												
Measurement Reading Range (ft msl)	1080 to 1065												
ᆂ	1065 to 1050												
<u>e</u>	1050 to 1035												
l gu	1035 to 1020												
88	1020 to 1005												
ng	1005 to 990												
adi	990 to 975					DO Satur	ration Read	dinas Reas	an in 1999				
Re	975 to 960					DO Gatai	alloll read	inigo bege	11111111000				
, i	960 to 945												
L E	945 to 930												
nre	930 to 915												
ası	915 to 900												
ĕ	900 to 885												
	885 to 870												
	870 to 855												
	< 855	D 0 7	CA 4. 14 · ·	d., A	ad Dieseri	vod 0	m Da 1	. Oct 11	· (0/) /=	al C! 1	3ama6 (1	- m\	
	Jocass		64.1: Mont Feb	ly Averag Mar		ved Oxyge May	Jun	Saturatio	1	1	Oct	On) Nov	Dec
	1095 to 1110	Jan	reb	IVIar	Apr	iviay	Jun	Jui	Aug	Sep	Oct	NOV	Dec
	1080 to 1095												
sI)	1065 to 1080												
E	1050 to 1065												
(f	1035 to 1050												
nge	1020 to 1035												
Rai	1005 to 1020												
ing Range (ft msl)	990 to 1005												
Ē	975 to 990					50.0.4		<i>"</i> 5					
Sea	960 to 975					DO Satul	ration Read	dings Bega	an in 1999				
 	945 to 960												
Je I	930 to 945												
ē	915 to 930												
ası	900 to 915												
Measurement Read	885 to 900												
_	870 to 885												
	855 to 870												
	< 855												
<u> </u>	Jocassee D_2_		1			1	T	I	1	1	_	1	1
	1110 to 1095	Jan 88.1	Feb 88.0	Mar	Apr 96.7	May 98.2	Jun 99.7	Jul 96.3	98.0	Sep 90.4	Oct 85.5	Nov 88.6	Dec 88.9
	1095 to 1080	84.9	85.0	92.0 90.2	96.7 95.1	98.2 95.3	98.9	96.3	96.3	90.4 89.7	87.2	86.9	85.8
Î	1080 to 1065	84.9	84.1	89.3	93.1	93.9	98.2	94.5 95.2	96.3	89.7	87.2	86.5	86.0
Ë	1065 to 1050	85.2	83.8	89.1	92.8	92.7	98.0	94.5	93.4	88.5	87.0	86.0	85.8
Ħ,	1050 to 1035	84.6	83.7	88.9	91.4	91.1	97.8	92.4	93.4	88.4	86.4	85.4	85.2
ge	1035 to 1035	84.8	83.7	88.2	90.9	91.4	97.6	90.9	93.1	88.3	86.2	85.7	85.5
₹ar	1020 to 1005	84.2	83.0	88.5	89.5	90.7	96.8	90.9	92.9	87.7	86.2	85.4	85.7
<u>p</u>	1005 to 990	84.5	83.1	88.1	88.9	89.4	96.2	90.2	92.2	87.6	85.8	85.0	84.8
ğ	990 to 975	83.6	84.2	88.2	87.4	87.4	97.0	86.8	93.9	87.4	86.0	85.9	84.2
}ea	975 to 960	86.0	77.6	89.1	86.3	92.4	93.7	92.3	86.3	92.3	86.4	86.8	85.8
Measurement Reading Range (ft msl)	960 to 945												
πel	945 to 930												
<u>re</u>	930 to 915												
asn	915 to 900					Λ <i>Λ</i> ;	nimum Rea	adina 061	Q ff				
Ž K	900 to 885					IVII	illiniuiii Ke	auniy 904.	J IL				
	885 to 870												
	870 to 855												
	< 855												
		Legend	0.0										100.00

Whitewater River Cove pH Concentration

		J	ocassee C_2	2_560.0: N	lonthly pl	H (SI) 1975	to 1985 (F	re Bad C	reek Cons	truction)			
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	5.8	6.1	6.3	6.5	6.7	7.1	7.2	7.2	7.0	6.3	6.6	6.1
	1095 to 1080	5.8	6.0	6.4	6.5	6.5	7.0	7.4	6.8	7.0	6.3	6.5	6.0
msl)	1080 to 1065	5.8	5.9	6.3	6.4	6.3	6.9	7.1	6.5	6.6	6.2	6.5	6.0
# 1	1065 to 1050	5.8	5.8	6.2	6.3	6.2	6.5	6.6	6.3	6.2	6.1	6.3	6.0
Range (ft	1050 to 1035	5.8	5.7	6.2	6.2	6.1	6.2	6.3	6.1	6.1	6.0	6.4	6.0
ang	1035 to 1020	5.8	5.7	6.2	6.1	6.0	6.1	6.1	6.0	6.1	5.8	6.1	5.9
	1020 to 1005	5.8	5.7	6.1	6.0	5.9	6.1	6.1	5.9	6.2	5.8	5.8	5.7
ing	1005 to 990	5.6	5.6	6.0	6.0	5.9	6.0	6.0	5.9	6.2	5.7	5.7	5.5
äd	990 to 975	5.5	5.6	6.0	6.0	5.9	6.0	5.9	5.8	6.2	5.7	5.7	5.4
æ	975 to 960	5.3	5.6		6.0	5.9	6.0	5.8	5.9	6.1	5.6	6.0	5.4
ınt	960 to 945		5.9	5.9	5.7			5.6	6.0		5.6		l
l m	945 to 930		5.6		5.7	5.1	6.0	5.2	5.8	6.2	5.6	6.4	
Measurement Reading	930 to 915	0.0		0.0	5.6	0.0	0.0	5.2	0.0	0.5	5.4	0.0	
as	915 to 900	6.0	5.7	6.3	6.0	6.0	6.3	6.1	6.0	6.5	5.9	6.2	5.5
Me	900 to 885				0.0					6.0	5.3	6.4	
	885 to 870				6.2						5.3		
	870 to 855					h 4*	nineura Da	adina 050	1 #		5.3		
	< 855		loosess C) 0 ECO 0	Mandala		nimum Rea			iotic=\			
		lan	Jocassee C	2_560.0 Mar		1	35 to 1991 Jun	(Bad Cred			Oct	Nov	Dec
	1110 to 1095	Jan 6.4	6.5	6.2	Apr 6.8	May 7.1	7.0	7.4	Aug 7.4	Sep 6.8	6.6	6.6	6.2
	1095 to 1080	6.5	6.5	6.6	6.8	6.8	7.0	7.4	7.4	6.9	6.7	6.7	6.3
(Is	1080 to 1065	6.5	6.5	6.5	6.8	6.8	7.1	7.1	7.0	6.8	6.7	6.7	6.3
(ft msl)	1065 to 1050	6.4	6.5	6.6	6.7	6.8	7.1	6.9	6.7	6.7	6.7	6.6	6.3
(#	1050 to 1035	6.4	6.4	6.4	6.6	6.6	6.9	6.8	6.6	6.5	6.6	6.6	6.3
Jge	1035 to 1020	6.3	6.4	6.4	6.6	6.6	6.8	6.6	6.4	6.3	6.6	6.6	6.3
Range	1020 to 1005	6.4	6.4	6.4	6.5	6.5	6.8	6.5	6.2	6.1	6.4	6.5	6.3
ng I	1005 to 990	6.4	6.3	6.4	6.5	6.5	6.8	6.5	6.3	6.2	6.1	6.3	6.3
	990 to 975	6.3	6.3	6.3	6.4	6.4	6.7	6.6	6.2	6.3	6.2	6.0	6.1
Rea	975 to 960	6.3	6.2	6.2	6.4	6.4	6.6	6.5	6.2	6.1	6.1	6.0	5.8
#	960 to 945	6.0	6.1	6.3	6.3	6.3	6.5	6.4	6.1	6.2	6.1	5.9	5.7
ner	945 to 930	5.9	6.0	6.2	6.2	6.2	6.4	6.3	6.1	6.2	6.0	5.8	5.6
ē	930 to 915	5.7	6.0	6.1	6.2	6.2	6.4	6.3	6.1	6.1	6.0	5.8	5.5
nsı	915 to 900	5.7	5.9	6.1	6.1	6.1	6.3	6.3	6.0	6.1	6.0	5.8	5.6
Measurement Read	900 to 885	5.6	5.8	6.0	6.1	6.1	6.2	6.3	6.0	6.1	6.0	5.8	5.5
=	885 to 870	5.6	5.8	5.9	6.0	6.0	6.2	6.2	5.9	6.1	6.0	5.7	5.5
	870 to 855	5.8	6.0	5.9	6.0	6.0	6.2	6.2	5.9	5.9	6.0	5.7	5.5
	< 855	5.7	5.9	6.0	6.0	6.2	6.2	6.2	6.0	6.2	6.2	5.7	5.6
			Jocassee C		1	T		ī	1				
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	6.3	6.2	6.6	6.7	7.0	6.8	6.8	6.8	6.6	6.3	6.6	6.4
=	1095 to 1080	6.4	6.3	6.6	6.8	6.9	6.8	6.7	6.9	6.7	6.6	6.7	6.5
(ft msl)	1080 to 1065	6.4	6.3	6.5	6.7	6.8	6.7	6.6	6.8	6.7	6.7	6.7	6.5
Ħ,	1065 to 1050	6.4	6.3	6.5	6.6	6.7	6.6	6.5	6.6	6.6	6.6	6.7	6.5
Range (1050 to 1035	6.4	6.2	6.4	6.5	6.6	6.5	6.4	6.5	6.4	6.6	6.7	6.5
an	1035 to 1020	6.3	6.3	6.4	6.4	6.5	6.4	6.3	6.3	6.3	6.5	6.7	6.5
B &	1020 to 1005 1005 to 990	6.3	6.2 6.2	6.4	6.4 6.3	6.4	6.3 6.2	6.2	6.2	6.1	6.3	6.6	6.5 6.3
ļ iņ	990 to 975	6.4 6.2	6.2	6.3 6.3	6.2	6.3 6.2	6.2	6.1 6.0	6.2 6.1	6.0 6.0	6.0 5.9	6.2 6.0	5.9
eac	990 to 975 975 to 960	6.1	6.2	6.2	6.2 6.1	6.2 6.1	6.0	5.9	6.0	5.9	5.9 5.9	6.0	5.9 5.8
Measurement Reading	960 to 945	5.9	6.1	6.2	6.0	6.1	5.9	5.9 5.8	5.9	5.9 5.8	5.9 5.8	5.9	5.6 5.7
ē	945 to 930	5.9 5.8	6.0	6.1	5.9	6.0	5.9 5.8	5.6 5.8	5.9 5.9	5.6 5.8	5.6 5.8	5.9 5.9	5.7 5.7
e m	930 to 915	5.6 5.7	5.9	6.1	5.9 5.9	6.0	5.8	5.6 5.8	5.9 5.9	5.6 5.8	5.6 5.8	5.9 5.9	5.7 5.7
Ĭuř	930 to 913 915 to 900	5.7	5.9	6.0	5.9	6.0	5.8	5.7	5.8	5.8	5.8	5.9	5.7
eas	900 to 885	5.7	5.9 5.8	5.9	5.9 5.8	6.0	5.8	5.7 5.7	5.8	5.8	5.6 5.7	5.9	5.7 5.7
Σ	885 to 870	5.7	5.9	6.0	5.8	5.9	5.8	5.7 5.7	5.8	5.8	5.7 5.7	5.9	5.7
	870 to 855	5.7	5.9	6.0	5.9	5.8	5.8	5.7 5.7	5.8 5.8	5.8	5. <i>1</i>	5.9	5.7
	< 855	5.5	5.7	5.8	5.6	5.6	5.6	5.7	5.8	5.7	5.6	6.0	5.9
	< Acidic		0.1	0.0	0.0	Neutral	0.0	0.7	0.0	0.1		Basic >	0.0
1	2	3	4	5	6	7	8	9	10	11	12	13	14
		,		3	U	-	0		10		12	13	

		J	ocassee D_2	2_564.0: N	onthly pl	H (SI) 1976	to 1985 (F	re Bad C	reek Cons	truction)			
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	5.9	6.1	6.2	6.5	6.9	7.2	7.5	7.3	7.1	6.5	6.7	6.1
	1095 to 1080	5.9	6.0	6.3	6.4	6.6	7.1	6.8	6.7	7.1	6.5	6.6	6.0
Range (ft msl)	1080 to 1065	5.9	5.9	6.3	6.3	6.2	6.6	6.6	6.4	6.6	6.3	6.6	6.1
Ε	1065 to 1050	5.9	5.9	6.2	6.2	6.0	6.3	6.2	6.0	6.1	6.3	6.5	6.0
£	1050 to 1035	5.9	5.8	6.2	6.1	6.0	6.1	6.0	6.0	5.9	6.1	6.5	6.0
ge	1035 to 1020	5.9	5.8	6.1	6.0	5.8	5.9	5.8	5.8	5.9	5.9	6.2	6.0
kar	1020 to 1005	5.9	5.8	6.1	6.0	5.8	5.8	5.7	5.7	5.9	5.7	6.0	5.8
	1005 to 990	5.9	5.8	6.0	6.0	5.8	5.7	5.7	5.7	5.9	5.6	5.8	5.5
Ë			5.8				5.7		5.7		5.6		
∋a c	990 to 975	5.9		6.1	5.9	5.7		5.7		5.9		5.8	5.5
Ř	975 to 960	5.9	5.9	0.0	5.9	5.4	5.7	5.8	5.6	6.0	5.6	6.3	5.5
) I	960 to 945		6.0	6.6	5.7			5.5			5.5		
Ĕ	945 to 930		5.9		5.7						5.5		
ure	930 to 915												
Measurement Reading	915 to 900												
Me	900 to 885					Mi	nimum Rea	adina 937	5 ft				
_	885 to 870					14111	minam rec	Juling 501.	0 11				
	870 to 855												
	< 855												
			Jocassee D	_2_564.0	Monthly	pH (SI) 198	35 to 1991	(Bad Cre	ek Constru	uction)			
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	6.4	6.4	6.2	6.9	7.0	7.0	7.4	7.2	6.9	6.7	6.3	6.2
_	1095 to 1080	6.5	6.5	6.6	6.8	6.9	7.2	7.5	7.4	6.9	6.8	6.7	6.3
(ft msl)	1080 to 1065	6.6	6.5	6.5	6.8	6.9	7.2	7.2	7.1	6.8	6.7	6.7	6.3
t m	1065 to 1050	6.5	6.4	6.5	6.7	6.8	7.0	6.9	6.8	6.7	6.7	6.6	6.3
(f	1050 to 1035	6.5	6.3	6.4	6.6	6.7	6.9	6.8	6.7	6.6	6.6	6.6	6.3
Range	1035 to 1020	6.4	6.3	6.3	6.6	6.7	6.8	6.6	6.4	6.4	6.6	6.6	6.3
Rar	1020 to 1005	6.5	6.3	6.4	6.5	6.6	6.7	6.5	6.3	6.1	6.4	6.6	6.3
9	1005 to 990	6.5	6.2	6.3	6.5	6.6	6.7	6.5	6.3	6.2	6.2	6.4	6.2
븚	990 to 975	6.4	6.2	6.2	6.4	6.5	6.6	6.5	6.2	6.3	6.2	6.0	6.1
eac	975 to 960	6.5	6.2	6.2	6.4	6.4	6.5	6.4	6.2	6.2	6.1	6.1	5.9
Measurement Reading	960 to 945	6.3	6.2	6.2	6.3		6.4		6.2	6.2	6.0	5.9	5.7
ent						6.3		6.3					
E	945 to 930	6.2	6.2	6.1	6.2	6.2	6.3	6.3	6.1	6.1	6.1	5.9	5.6
בַּ	930 to 915	6.1	6.1	6.1	6.2	6.2	6.3	6.3	6.1	6.0	6.0	5.8	5.5
as	915 to 900	6.1	5.8	6.1	6.1	6.1	6.2	6.2	6.0	6.0	6.0	5.8	5.6
Ĕ	900 to 885	6.1	5.8	6.1	6.1	6.2	6.1	6.1	5.9	6.0	6.0	5.8	5.5
	885 to 870	6.0	5.8	6.0	6.2	6.0	6.3	6.1	5.9	5.9	6.1	5.7	5.6
	870 to 855	5.4		5.9	6.4	6.1	6.0	6.1	6.2	5.6	5.9	5.5	5.6
	< 855						nimum Rea						
			Jocassee D_		1	1		1		1	1	T	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	6.4	6.3	6.6	6.8	7.1	6.9	6.9	7.0	6.8	6.5	6.6	6.6
	1095 to 1080	6.5	6.5	6.6	6.8	7.0	6.9	6.8	7.0	6.8	6.7	6.8	6.6
ısı	1080 to 1065	6.4	6.4	6.6	6.7	6.9	6.8	6.7	6.9	6.7	6.7	6.8	6.6
Range (ft msl)	1065 to 1050	6.5	6.4	6.5	6.6	6.8	6.7	6.6	6.7	6.7	6.7	6.7	6.6
e (1	1050 to 1035	6.5	6.4	6.5	6.6	6.7	6.6	6.5	6.6	6.6	6.6	6.8	6.6
ng	1035 to 1020	6.4	6.4	6.5	6.5	6.6	6.5	6.4	6.5	6.4	6.6	6.7	6.6
Ra	1020 to 1005	6.4	6.4	6.4	6.4	6.5	6.4	6.3	6.3	6.2	6.4	6.6	6.6
ور	1005 to 990	6.5	6.3	6.4	6.3	6.4	6.2	6.1	6.2	6.1	6.0	6.3	6.4
Measurement Reading	990 to 975	6.4	6.4	6.4	6.3	6.3	6.1	6.0	6.0	6.0	5.9	6.0	6.1
ea	975 to 960	6.2	6.3	6.3	6.2	6.2	6.0	5.9	6.0	5.9	5.9	5.9	5.9
# R	960 to 945	6.1	6.2	6.3	6.1	6.2	5.9	5.8	6.0	5.8	5.8	5.9	5.8
ien	945 to 930	5.9	6.1	6.2	6.0	6.1	5.9	5.8	5.9	5.9	5.8	5.9	5.8
em	930 to 915	5.8	6.1	6.2	6.0	6.0	5.9	5.8	5.9 5.9	5.8	5.8	5.9	5.8
ŭ	930 to 915 915 to 900	5.6 5.9	6.1	6.1	6.0	6.1	5.8	5.8	5.9 5.9	5.8	5.8	5.9 5.9	5.8
3as													
Ĕ	900 to 885	5.7	5.8	6.0	5.8	5.8	5.8	5.7	5.9	5.7	5.7	5.7	5.5
	885 to 870	5.7	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.7	5.9	5.7
	870 to 855	5.6	5.7	5.7	5.6	<u>.</u>	5.8	6.3	6.0		5.7	6.1	
	< 855						nimum Rea	ading 864.	4 ft				
	< Acidic					Neutral					В	Basic >	
1	2	3	4	5	6	7	8	9	10	11	12	13	14

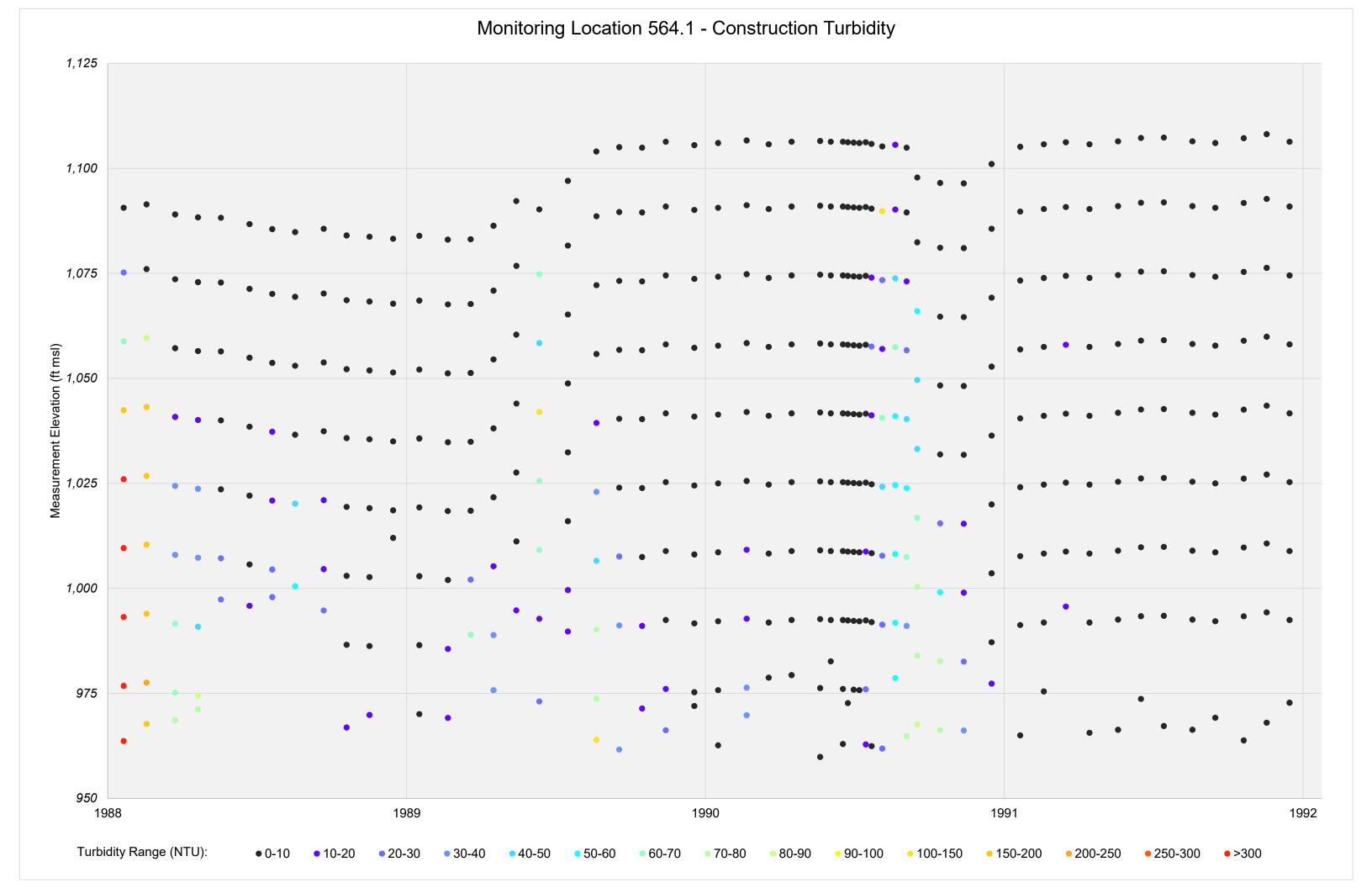
			Jocass	see D_2_5	64.1: Mon	thly pH (S	SI) (Pre Bac	Creek C	onstructio	n)			
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095												
_	1095 to 1080												
Measurement Reading Range (ft msl)	1080 to 1065												
# #	1065 to 1050												
) <u>ə</u>	1050 to 1035												
anç	1035 to 1020												
æ	1020 to 1005												
ing	1005 to 990												
ad	990 to 975				pH Read	dinas Beaa	an Durina B	ad Creek	Constructio	n (1987)			
Re	975 to 960				printed	go 2 0go	2 ug 2	aa oroon		(1001)			
în	960 to 945												
E E	945 to 930												
ure	930 to 915												
ası	915 to 900												
Me	900 to 885												
	885 to 870												
	870 to 855												
	< 855				B.B. 4***	11 /80 / -	O= 1 1000	(B. 1.5	1.6	41 .			
	 	1	Jocassee D		1		1	T	1		.	A1 -	
	1110 to 1095	Jan 6.3	6.2	Mar 6.3	Apr 6.3	May 6.3	Jun 6.8	Jul 7.4	Aug 7.2	Sep 6.9	Oct 6.5	Nov 6.5	Dec 6.3
	1095 to 1080	6.5	6.5	6.6	6.6	6.6	6.8	7.4	7.3	6.8	6.7	6.7	6.4
(Es	1080 to 1065	6.6	6.5	6.7	6.6	6.7	6.8	6.9	6.9	6.7	6.8	6.8	6.4
ng Range (ft msl)	1065 to 1050	6.5	6.4	6.6	6.5	6.5	6.6	6.6	6.6	6.6	6.6	6.6	6.4
#)	1050 to 1035	6.7	6.4	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.6	6.4	6.3
əbı	1035 to 1020	6.7	6.3	6.4	6.4	6.3	6.3	6.3	6.3	6.2	6.4	6.4	6.3
Rar	1020 to 1005	7.1	6.3	6.4	6.4	6.4	6.4	6.2	6.1	6.0	6.3	6.3	6.3
9 F	1005 to 990	6.9	6.3	6.4	6.2	6.2	6.3	6.2	6.1	6.1	6.3	6.3	6.1
	990 to 975	6.9	6.3	6.4	6.2	5.9	6.1	6.2	6.0	6.0	6.5	6.2	6.1
Measurement Readi	975 to 960	7.3	6.4	7.0	6.6	5.7	6.1	6.2	6.1	6.1	7.0	6.2	6.2
# %	960 to 945	7.0	0.4	7.0	0.0	5.8	0.1	0.2	0.1	0.1	7.0	0.2	0.2
Jen	945 to 930					0.0							
œ.	930 to 915												
ıns	915 to 900												
lea	900 to 885					М	inimum Rea	adina 959	9 ft				
Σ	885 to 870							aamig 000.	o n				
	870 to 855												
	< 855												
		Jo	cassee D_2	_564.1: N	lonthly pH	(SI) 1991	to 2017 (P	ost Bad C	reek Cons	truction)			
		Jan	Feb	 Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	6.5	6.3	6.6	6.6	7.0	6.8	6.8	6.9	6.6	6.4	6.7	6.5
_	1095 to 1080	6.5	6.4	6.6	6.6	6.9	6.8	6.7	6.9	6.7	6.6	6.7	6.6
JSL	1080 to 1065	6.5	6.4	6.6	6.6	6.8	6.7	6.7	6.8	6.7	6.7	6.7	6.6
ft n	1065 to 1050	6.5	6.3	6.5	6.6	6.8	6.6	6.6	6.6	6.6	6.6	6.7	6.5
e (.	1050 to 1035	6.5	6.4	6.5	6.5	6.7	6.6	6.6	6.6	6.6	6.6	6.7	6.6
ıng	1035 to 1020	6.4	6.3	6.6	6.5	6.7	6.6	6.6	6.6	6.6	6.6	6.7	6.6
Ra	1020 to 1005	6.5	6.4	6.6	6.5	6.8	6.6	6.6	6.6	6.6	6.6	6.7	6.6
ng	1005 to 990	6.4	6.3	6.5	6.4	6.7	6.5	6.5	6.6	6.6	6.5	6.7	6.6
adi	990 to 975	6.4	6.3	6.6	6.4	6.7	6.6	6.5	6.5	6.5	6.5	6.7	6.5
Measurement Reading Range (ft msl)	975 to 960	6.2	6.0	6.4	6.3	6.4	6.4	6.3	6.1	6.2	6.3	6.5	6.3
ı,	960 to 945												
me	945 to 930												
ıre	930 to 915												
asn	915 to 900					Λ	1inimum Re	adina 063	R ff				
Me,	900 to 885					IV	mmuuni Re	aung 903	, 11				
_	885 to 870												
	870 to 855												
	< 855												
	< Acidic					Neutral					E	Basic >	
1	2	3	4	5	6	7	8	9	10	11	12	13	14

Whitewater River Cove Conductivity

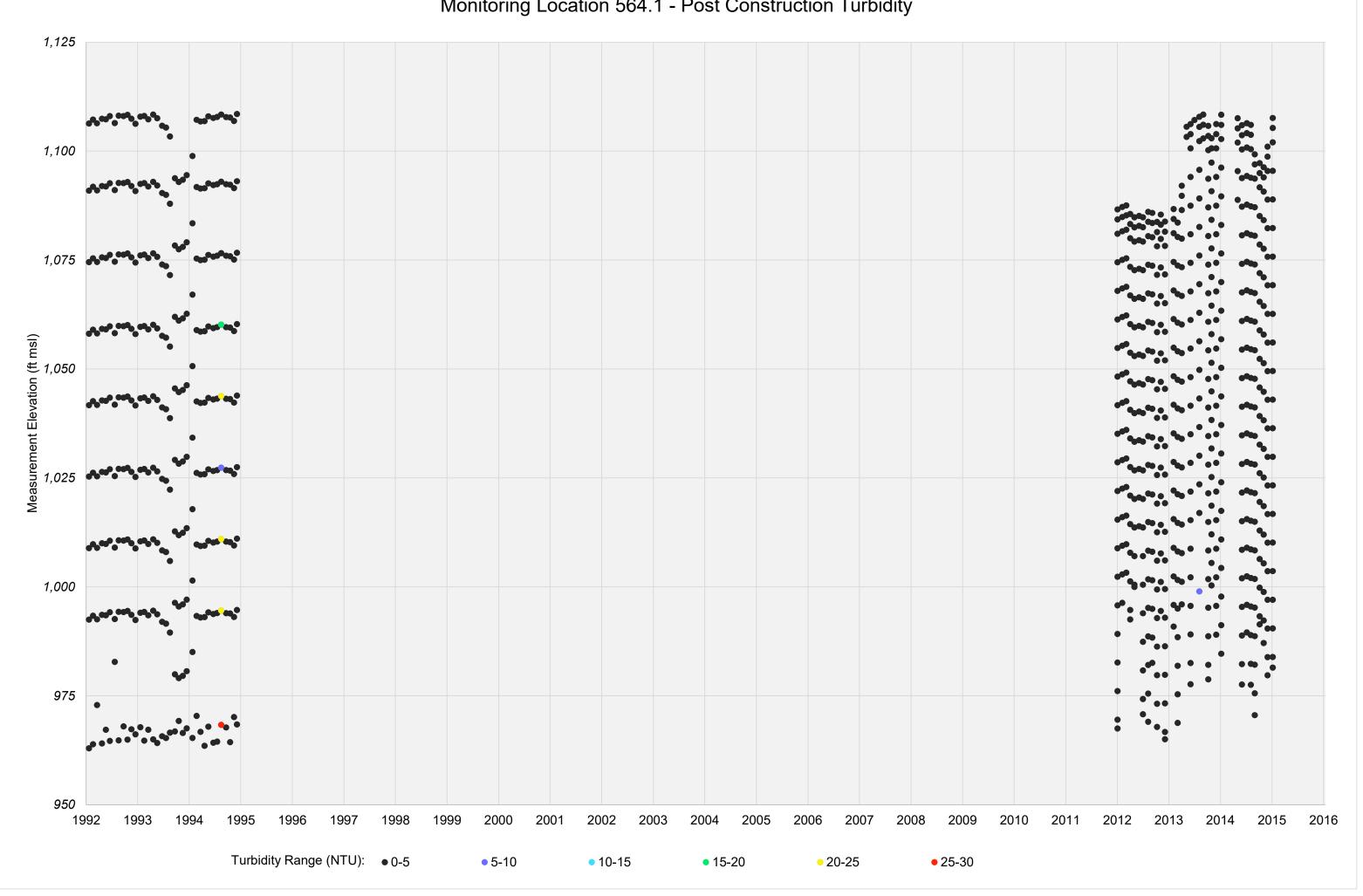
	Jocas	ssee C_2_	560.0: Mo	nthly Aver	aged Con	ductivity (uS/cm) 19	75 to 1985	(Pre Bad	Creek Co	nstruction)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	13.6	16.3	16.3	16.2	14.7	14.4	17.5	15.7	13.9	16.2	14.0	14.1
	1080 to 1095	13.4	16.3	16.4	16.5	13.9	14.3	16.3	16.1	14.7	16.3	14.9	14.7
Range (ft msl)	1065 to 1080	13.5	17.1	15.9	17.0	14.6	15.0	17.1	15.9	14.1	16.6	14.4	14.6
T =	1050 to 1065	13.6	16.0	16.0	16.0	14.1	14.8	17.4	16.5	14.3	16.4	14.8	14.5
	1035 to 1050	13.3	16.6	15.5	16.5	14.4	14.1	16.4	15.8	13.5	16.4	15.0	15.9
Jge	1020 to 1035	13.0	16.6	16.0	16.2	13.8	14.1	15.8	15.7	13.6	15.8	14.1	14.3
Sar	1005 to 1020	13.0	16.5	15.6	16.6	14.1	14.3	16.7	15.0	12.1	15.5	13.8	14.1
9	990 to 1005	13.0	16.4	15.1	16.0	14.5	14.4	15.5	14.3	13.1	15.5	13.8	15.4
l ë	975 to 990	13.3	16.1	15.3	17.0	14.4	14.4	15.8	15.6	12.4	16.0	13.5	15.1
ea	960 to 975	13.5	18.7	10.0	19.0	13.0	14.4	16.0	14.8	14.2	16.0	13.6	15.8
 	945 to 960	10.0	10.7	18.0	18.0	10.0	17.7	20.0	12.0	17.2	16.0	10.0	10.0
Ē	930 to 945		21.0	10.0	17.3	18.0	15.0	22.0	21.0	14.0	17.8	12.0	
e u	915 to 930		21.0		19.0	10.0	13.0	22.0	21.0	14.0	17.0	12.0	
Measurement Reading	900 to 915	22.5	17.8	15.0	18.2	17.5	15.0	16.4	18.1	14.5	17.0	15.2	20.3
eas		22.5	17.0	13.0	10.2	17.5	15.0	10.4	10.1	14.5	17.0	16.0	20.3
Š	885 to 900				1E O							10.0	
	870 to 885				15.0								
	855 to 870 < 855					Mii	nimum Rea	ading 873.3	3 ft				
		28800 ('	2 560 O M	lonthly Av	eraged Co	nductivity	/ (uS/cm)	1985 to 19	91 (Bad C	rook Cono	truction\		
-		Jan	2_560.0: IV	Mar			Jun	Jul	`		Oct	Nov	Dec
	1110 to 1095	18.0	16.7	18.0	Apr 17.6	May 20.5	18.0	19.6	Aug 21.1	Sep 20.5	17.9	19.8	20.0
	1095 to 1080	20.5	17.0	19.5	18.8	20.5	19.9	20.1	22.4	20.5	17.9	19.8	21.0
<u>=</u>		20.5	16.7		18.0	20.9	19.9	19.5	21.5	20.7	19.4		20.9
Range (ft msl)	1080 to 1065 1065 to 1050	20.6	16.7	19.8 20.2	18.0	20.9	19.9	20.0	21.5	20.7	19.2	20.7 20.1	20.9
Ħ)													
ge	1050 to 1035	20.0	16.8	20.0	18.1	20.5	19.8	20.0	20.8	20.5	18.4	20.0	20.8
an	1035 to 1020	19.8	16.4	19.8	17.8	20.2	19.6	19.5	21.4	20.5	18.3	20.3	20.9
	1020 to 1005	19.4	15.6	20.0	16.9	19.9	19.2	20.2	21.4	20.8	18.7	20.3	20.7
Measurement Reading	1005 to 990	19.3	16.0	20.2	17.3	20.1	18.9	20.1	22.7	21.5	18.0	19.4	20.1
) ac	990 to 975	19.2	15.7	19.8	17.1	19.7	19.0	19.3	21.6	20.2	16.6	19.2	20.6
~	975 to 960	18.4	17.5	19.8	17.9	19.5	18.9	19.5	20.3	19.9	17.1	19.2	19.9
e I	960 to 945	18.8	16.0	19.8	17.3	19.5	18.6	19.5	20.1	19.6	16.7	18.2	19.8
ĹĚ	945 to 930	18.5	16.0	19.3	17.6	19.4	18.9	19.6	20.1	19.9	16.9	18.2	19.9
<u> </u>	930 to 915	19.2	16.4	19.2	18.0	19.6	18.8	19.9	20.3	20.2	16.6	18.5	20.9
as	915 to 900	19.6	16.5	19.5	17.8	19.6	19.3	20.0	20.5	20.0	17.0	19.1	20.0
Ĕ	900 to 885	19.8	17.0	20.0	18.2	19.6	19.1	20.0	20.6	20.3	16.5	18.2	20.0
	885 to 870	20.0	17.7	20.6	18.5	20.2	19.4	20.1	20.3	20.8	16.5	19.3	20.9
	870 to 855	19.6	16.8	21.0	19.1	20.5	19.6	20.4	20.0	20.9	18.7	20.1	21.1
	< 850	24.5	15.7	21.0	21.3	19.1	19.9	21.1	26.4	21.3	17.8	20.0	21.1
	Jocas				aged Cond			1	1	T			<u> </u>
	44404 4005	Jan 40.7	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	16.7	16.5	17.0	17.3	18.1	17.9	18.2	18.5	18.1	17.8	17.9	17.2
=	1095 to 1080	16.5	16.9	17.4	17.7	18.1	18.2	18.5	18.7	18.2	18.3	17.7	17.2
■ B	1080 to 1065	16.7	16.9	17.2	17.8	18.1	18.2	18.5	18.8	18.3	18.4	17.6	17.4
(ft msl)	1065 to 1050	16.7	16.7	17.2	17.7	18.1	18.2	18.5	18.8	18.1	18.4	17.7	17.5
g မ	1050 to 1035	16.6	16.6	17.1	17.6	18.0	18.2	18.5	18.6	17.9	18.3	17.7	17.5
Range	1035 to 1020	16.6	16.8	17.4	17.7	18.0	18.0	18.3	18.6	17.9	18.3	17.6	17.5
<u>~</u>	1020 to 1005	16.6	16.8	17.1	17.6	17.8	17.5	17.8	18.1	17.4	18.2	17.4	17.4
ii.	1005 to 990	16.8	16.5	17.2	17.6	17.6	17.1	17.3	17.4	17.1	17.7	17.4	17.4
∍ad	990 to 975	16.5	16.8	17.5	17.4	17.4	17.3	17.5	17.4	17.1	17.7	17.3	17.5
ď	975 to 960	16.8	16.8	17.1	17.5	17.5	17.3	17.4	17.5	17.1	17.9	17.4	17.8
Measurement Reading	960 to 945	17.5	16.8	17.2	17.4	17.5	17.4	17.4	17.6	17.0	17.9	17.6	18.1
l Ĕ	945 to 930	18.2	17.2	17.3	17.5	17.7	17.6	17.5	17.5	17.1	17.9	17.7	18.3
n re	930 to 915	18.5	17.6	17.7	17.8	18.0	17.8	17.7	17.9	17.6	18.1	18.0	18.4
as	915 to 900	19.0	17.8	17.8	18.0	17.9	18.0	17.8	18.2	18.0	18.3	18.4	19.1
ĕ	900 to 885	19.3	18.3	17.9	18.1	18.1	18.0	17.8	18.1	18.0	18.3	18.6	18.9
	885 to 870	19.1	18.9	18.7	18.2	18.2	18.3	18.1	18.5	18.5	18.6	18.6	19.4
	870 to 855	20.0	19.3	18.8	18.7	18.8	18.8	18.9	18.8	20.3	19.6	20.2	21.1
	< 850	19.6	20.5	19.5	23.3	17.7	17.9	17.5	18.7	18.6	20.1	18.4	26.8
		Legend	15.0										25.0


	Jocas	ssee D_2_	564.0: Mo	nthly Aver	raged Con	ductivity (uS/cm) 19	976 to 1985	(Pre Bad	Creek Co	nstruction)	
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	14.0	16.4	15.3	16.3	15.2	15.4	19.2	15.4	13.3	15.8	13.6	14.7
	1095 to 1080	14.0	16.8	15.0	15.3	14.4	14.5	16.8	14.2	14.3	16.5	14.8	15.0
(Isi	1080 to 1065	13.5	17.2	15.2	15.5	14.4	14.2	18.0	14.4	12.7	16.3	14.3	15.0
Measurement Reading Range (ft msl)	1065 to 1050	13.0	16.8	14.7	15.0	14.4	14.3	18.9	15.3	12.7	16.0	14.5	14.7
Ĵ.	1050 to 1035	13.0	16.2	14.0	14.9	14.8	14.0	17.9	15.7	12.0	16.4	14.6	16.0
ιge	1035 to 1020	13.0	17.0	14.6	14.5	15.3	14.0	17.4	16.5	13.8	15.9	14.4	14.5
≀ar	1020 to 1005	13.0	16.7	13.7	15.4	15.4	15.1	18.8	16.7	13.6	16.1	14.1	14.0
g R	1005 to 990	13.0	16.4	13.6	15.1	15.3	14.8	17.8	17.0	15.4	18.6	16.0	17.6
ä	990 to 975	13.0	16.7	14.3	15.7	16.0	15.0	19.0	19.2	14.4	20.9	20.3	22.2
eac				14.5									
Ř	975 to 960	13.0	19.3	16.0	15.4	16.0	14.8	21.7	17.5	16.8	24.3	25.8	23.3
ent	960 to 945			16.0				20.0			18.0		
Ĕ	945 to 930												
ure	930 to 915												
as	915 to 900								_				
Me	900 to 885					Mi	nimum Re	ading 937.5	5 ft				
	885 to 870												
	870 to 855												
	< 855												
	Joc	assee D_2	2_564.0: N	Ionthly Av	eraged Co	onductivit	y (uS/cm)	1985 to 19	91 (Bad C	reek Cons	struction)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	18.0	16.1	18.0	17.0	21.0	18.7	19.6	21.3	20.6	17.8	19.0	20.0
	1095 to 1080	20.5	15.9	19.5	18.3	20.8	19.7	19.9	22.5	21.2	19.3	19.5	21.0
ng Range (ft msl)	1080 to 1065	20.6	15.9	19.5	17.2	21.0	19.6	19.5	20.9	20.8	19.6	20.4	21.0
ה ה	1065 to 1050	20.0	15.5	20.2	17.5	21.0	19.5	19.8	21.1	20.9	18.4	19.9	21.0
t) e	1050 to 1035	20.0	15.9	20.0	17.8	20.5	19.4	19.7	21.0	21.1	18.5	19.6	20.8
ng	1035 to 1020	19.6	15.6	19.8	17.5	20.4	19.4	19.4	21.4	20.6	18.3	19.3	20.9
Ra	1020 to 1005	19.4	14.3	20.0	16.7	20.0	19.1	19.8	22.2	21.9	19.1	19.8	20.8
ַם	1005 to 990	19.0	14.5	19.8	17.8	20.1	18.6	20.0	23.4	21.7	18.9	19.1	20.0
dir	990 to 975	19.2	14.4	18.6	16.8	19.7	18.9	19.1	22.5	21.5	17.2	19.2	20.6
ea	975 to 960	18.2	15.4	19.3	17.5	19.6	19.1	19.4	20.8	20.2	17.7	20.0	20.6
# F	960 to 945	18.5	14.2	19.8	17.3	19.5	18.8	19.3	20.8	20.5	17.4	19.9	21.2
Jen	945 to 930	18.3	14.4	19.5	17.6	19.5	19.3	19.7	20.8	20.6	18.0	20.1	21.8
æn.	930 to 915	17.8	15.4	19.2	18.4	21.0	20.9	20.8	22.3	22.1	19.5	20.5	22.8
sur	915 to 900	18.0	16.1	20.0	19.6	21.6	21.2	21.8	23.2	21.9	19.4	20.9	22.1
Measurement Readi	900 to 885	20.3	17.8	20.0	20.9	21.5	21.2	21.7	24.3	22.0	19.4	21.9	22.6
Σ	885 to 870	20.3	18.3	22.0	23.8	21.6	22.5	21.7	25.9	23.6	18.8	22.2	24.0
	870 to 855	26.0	10.0	22.0	26.0	21.0	22.0	26.3	24.3	26.0	26.7	24.0	22.0
	< 850	20.0			20.0			20.3 eading 864.7		20.0	20.7	24.0	22.0
		600 D 2 4	564 O: Mas	thly Aver	anad Casa			91 to 2015		Crook Co	netructic	<u>,\</u>	
	Jocas			1	T		1			I		•	Das
	1110 +- 1005	Jan 17 1	Feb	Mar	Apr	May	Jun 10 1	Jul	Aug	Sep	Oct	Nov	Dec 17.5
	1110 to 1095	17.1	16.7	17.7	17.5	18.4	18.1	18.4	18.8	18.1	17.6	17.7	17.5
	1095 to 1080	16.7	17.1	17.8	17.7	18.3	18.4	18.8	18.9	18.3	18.5	17.6	17.6
ms	1080 to 1065	16.9	17.0	17.7	18.0	18.4	18.4	18.7	19.1	18.4	18.5	17.7	17.5
(ft	1065 to 1050	16.8	16.9	17.5	17.9	18.4	18.5	18.8	18.8	18.2	18.5	17.6	17.5
Measurement Reading Range (ft msl)	1050 to 1035	17.0	16.8	17.6	17.9	18.4	18.4	18.7	18.7	18.0	18.3	17.7	17.7
anç	1035 to 1020	16.8	16.9	17.7	17.9	18.3	18.2	18.5	18.8	17.9	18.3	17.5	17.5
Ř	1020 to 1005	16.6	16.9	17.7	17.9	18.1	17.9	18.1	18.4	17.6	18.4	17.4	17.3
ing	1005 to 990	16.9	16.6	17.8	17.8	17.9	17.5	17.7	17.9	17.6	18.1	17.6	17.5
ad	990 to 975	16.7	17.0	17.9	17.6	17.8	17.6	18.0	18.0	17.7	18.2	17.7	17.8
Re	975 to 960	17.1	17.0	17.7	17.9	18.1	17.7	18.0	18.0	17.9	18.5	18.2	18.3
'nt	960 to 945	17.6	17.0	17.6	17.8	18.1	17.9	18.1	18.3	17.9	18.7	18.4	18.9
me	945 to 930	18.9	17.2	17.7	18.0	18.3	18.1	18.4	18.4	18.4	19.1	19.2	19.9
<u>re</u>	930 to 915	19.5	17.6	18.0	18.5	18.5	18.6	19.0	19.1	19.0	19.5	20.0	20.8
nsı	915 to 900	20.5	17.8	18.4	18.8	18.6	19.0	19.2	19.6	19.7	20.2	21.2	21.3
Леа	900 to 885	22.2	19.4	18.5	19.2	19.0	18.9	18.5	18.5	20.5	19.7	21.8	21.6
2	885 to 870	22.7	24.0	21.8	18.0	17.8	19.1	19.6	18.9	24.7	20.7	23.6	26.3
	870 to 855	30.9	23.0	28.0	18.3		23.0	27.0	21.5		25.0	28.0	
	< 850					Mi		ading 864.4					ı
		Legend	15.0					J = 2 . 7					25.0
		550.14	. 5.5										_5.5

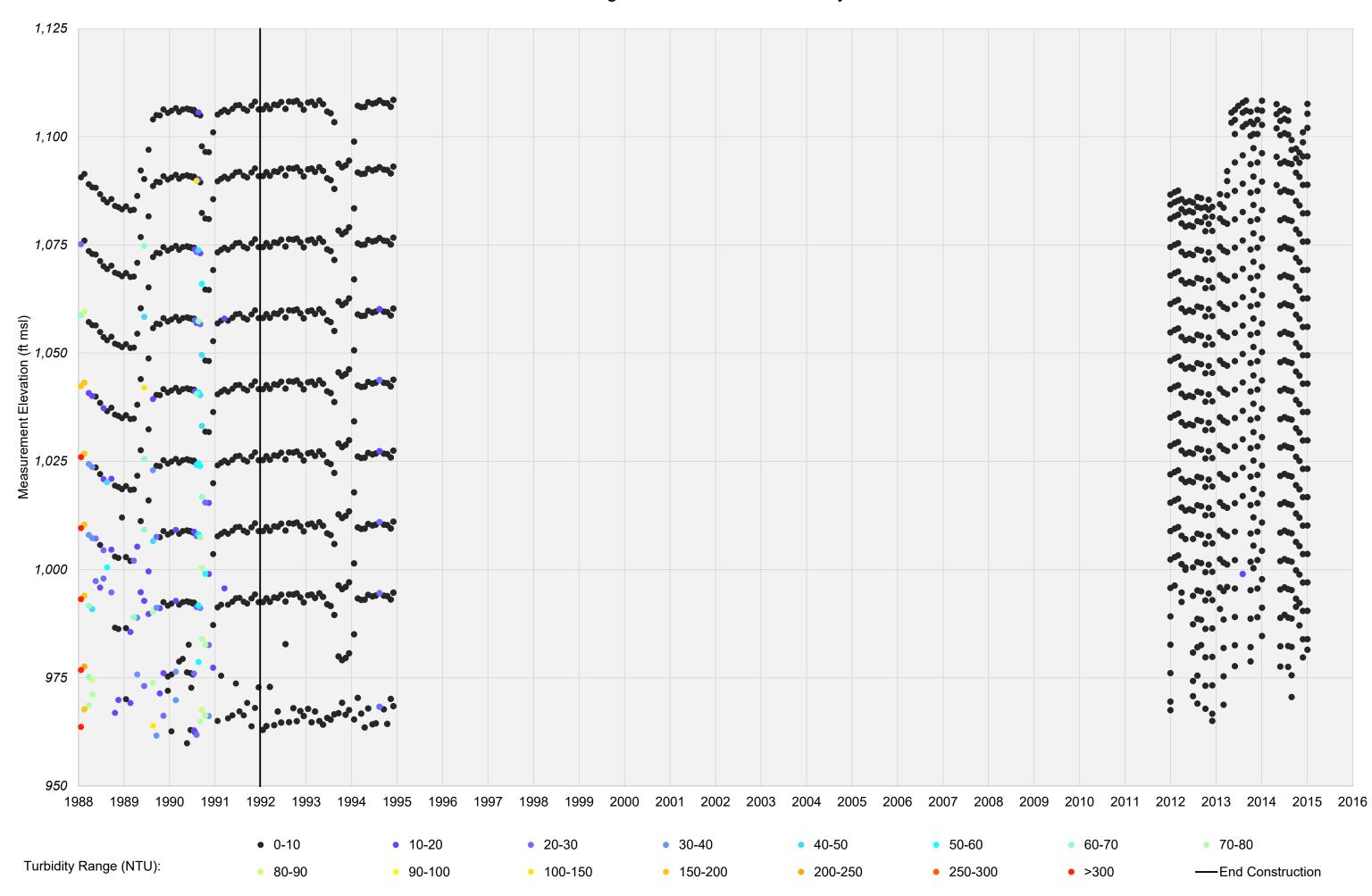
	Joc	assee D_2	2_564.1: N	lonthly Av	eraged Co	onductivity	y (uS/cm)	1987 to 19	91 (Bad C	reek Cons	truction)		
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1095 to 1110	20.0	18.0	17.0	18.0	20.7	19.7	20.4	21.2	20.8	18.8	19.0	20.5
	1080 to 1095	20.6	18.3	18.7	18.8	19.8	19.7	20.3	22.3	21.2	19.7	19.6	21.1
ısı	1065 to 1080	18.2	17.4	18.8	18.4	20.3	20.8	19.7	21.2	21.0	20.9	20.6	21.4
T.	1050 to 1065	17.6	15.8	16.5	16.6	17.6	19.5	19.8	21.9	20.6	18.8	18.7	19.2
e (1	1035 to 1050	19.3	16.4	16.8	16.8	17.2	19.3	19.7	23.4	20.6	18.7	17.9	18.7
ng	1020 to 1035	20.0	17.0	16.8	17.6	16.8	19.1	19.5	24.3	23.5	18.5	17.8	19.0
Measurement Reading Range (ft msl)	1005 to 1020	22.2	17.0	18.5	19.6	19.6	21.3	20.9	25.2	27.6	21.1	18.3	18.2
ng	990 to 1005	21.0	17.2	20.3	21.0	22.1	23.7	24.7	28.5	31.9	25.8	18.1	18.
gdi	975 to 990	20.8	17.6	20.2	21.9	22.0	24.3	26.3	29.0	31.1	35.6	25.8	18.
Ze.	960 to 975	22.2	18.7	26.0	25.5	22.5	25.3	28.3	31.3	34.4		34.8	18.
ב	945 to 960					23.0							
nei	930 to 945												
ē	915 to 930												
ısı	900 to 915												
<u>lea</u>	885 to 900												
-						Mil	nimum Rea	ading 959.9	9 ft				
_						Mil	nimum Rea	ading 959.9) ft				
~	870 to 885 855 to 870					Mil	nimum Rea	ading 959.§) ft				
<	870 to 885					Mi	nimum Rea	ading 959.§	9 ft				
	870 to 885 855 to 870 < 850	see D_2_5	564.1: Mor	athly Avera	aged Cond			J		Creek Co	onstruction	1)	
	870 to 885 855 to 870 < 850 Jocas	Jan	Feb	Mar	Apr	luctivity (ı May	uS/cm) 198 Jun	35 to 1991 Jul	(Post Bac	Sep	Oct	Nov	
	870 to 885 855 to 870 < 850 Jocas 1110 to 1095	Jan 17.1	Feb 16.4	Mar 17.4	Apr 17.5	ductivity (u May 18.2	uS/cm) 198 Jun 18.2	35 to 1991 Jul 18.4	(Post Bac Aug 18.8	Sep 18.4	Oct 17.4	Nov 17.8	17.
	870 to 885 855 to 870 < 850 Jocas 1110 to 1095 1095 to 1080	Jan 17.1 16.5	Feb 16.4 16.7	Mar 17.4 17.5	Apr 17.5 17.2	luctivity (u May 18.2 17.9	Jun 18.2 18.2	35 to 1991 Jul 18.4 18.7	(Post Bac Aug 18.8 18.7	Sep 18.4 18.3	Oct 17.4 18.2	Nov 17.8 17.6	17. 17.
	870 to 885 855 to 870 < 850 Jocas 1110 to 1095 1095 to 1080 1080 to 1065	Jan 17.1 16.5 16.7	Feb 16.4 16.7 16.7	Mar 17.4 17.5 17.5	Apr 17.5 17.2 17.6	May 18.2 17.9 18.3	Jun 18.2 18.2 18.3	35 to 1991 Jul 18.4 18.7 18.7	(Post Bac Aug 18.8	Sep 18.4 18.3 18.3	Oct 17.4 18.2 18.4	Nov 17.8 17.6 17.7	17. 17. 17.
	870 to 885 855 to 870 < 850 Jocas 1110 to 1095 1095 to 1080	Jan 17.1 16.5	Feb 16.4 16.7	Mar 17.4 17.5	Apr 17.5 17.2	luctivity (u May 18.2 17.9	Jun 18.2 18.2	35 to 1991 Jul 18.4 18.7	(Post Bac Aug 18.8 18.7	Sep 18.4 18.3	Oct 17.4 18.2	Nov 17.8 17.6	17. 17. 17. 17.
	870 to 885 855 to 870 < 850 Jocas 1110 to 1095 1095 to 1080 1080 to 1065	Jan 17.1 16.5 16.7	Feb 16.4 16.7 16.7 16.3 16.3	Mar 17.4 17.5 17.5	Apr 17.5 17.2 17.6	May 18.2 17.9 18.3	Jun 18.2 18.2 18.3	35 to 1991 Jul 18.4 18.7 18.7	(Post Bac Aug 18.8 18.7 18.5	Sep 18.4 18.3 18.3	Oct 17.4 18.2 18.4	Nov 17.8 17.6 17.7	17. 17. 17. 17.
	870 to 885 855 to 870 < 850 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050	Jan 17.1 16.5 16.7 16.5	Feb 16.4 16.7 16.7 16.3 16.3 16.2	Mar 17.4 17.5 17.5 17.5	Apr 17.5 17.2 17.6 17.4	May 18.2 17.9 18.3 18.4	Jun 18.2 18.2 18.3 18.4	35 to 1991 Jul 18.4 18.7 18.7 18.4	(Post Bac Aug 18.8 18.7 18.5 17.7	Sep 18.4 18.3 18.3 18.0	Oct 17.4 18.2 18.4 18.2 18.3 18.2	Nov 17.8 17.6 17.7 17.6	17. 17. 17. 17. 17.
	870 to 885 855 to 870 < 850 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035	Jan 17.1 16.5 16.7 16.5 16.6	Feb 16.4 16.7 16.7 16.3 16.3	Mar 17.4 17.5 17.5 17.5 17.4	Apr 17.5 17.2 17.6 17.4 17.7	May 18.2 17.9 18.3 18.4 18.4	Jun 18.2 18.2 18.3 18.4 18.4	35 to 1991 Jul 18.4 18.7 18.7 18.4 18.8	18.8 18.7 18.5 17.7 17.9 17.9	Sep 18.4 18.3 18.3 18.0 18.0	Oct 17.4 18.2 18.4 18.2 18.3	Nov 17.8 17.6 17.7 17.6 17.5	17. 17. 17. 17. 17.
	870 to 885 855 to 870 < 850 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020	Jan 17.1 16.5 16.7 16.5 16.6 16.3	Feb 16.4 16.7 16.7 16.3 16.3 16.2	Mar 17.4 17.5 17.5 17.5 17.4 17.5	Apr 17.5 17.2 17.6 17.4 17.7	May 18.2 17.9 18.3 18.4 18.4 18.5	Jun 18.2 18.2 18.3 18.4 18.4 18.3	35 to 1991 Jul 18.4 18.7 18.7 18.4 18.8 18.6	(Post Bac Aug 18.8 18.7 18.5 17.7 17.9	Sep 18.4 18.3 18.3 18.0 18.0 18.0	Oct 17.4 18.2 18.4 18.2 18.3 18.2	Nov 17.8 17.6 17.7 17.6 17.5	17. 17. 17. 17. 17. 17.
	870 to 885 855 to 870 < 850 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005	Jan 17.1 16.5 16.7 16.5 16.6 16.3 16.3	Feb 16.4 16.7 16.7 16.3 16.3 16.2 16.4	Mar 17.4 17.5 17.5 17.5 17.4 17.5 17.3	Apr 17.5 17.2 17.6 17.4 17.7 17.7	18.2 17.9 18.3 18.4 18.4 18.5 18.5	Jun 18.2 18.2 18.3 18.4 18.4 18.3 18.5	35 to 1991 Jul 18.4 18.7 18.7 18.4 18.8 18.6 18.9	18.8 18.7 18.5 17.7 17.9 17.9	Sep 18.4 18.3 18.3 18.0 18.0 18.2 17.9	Oct 17.4 18.2 18.4 18.2 18.3 18.2 18.3	Nov 17.8 17.6 17.7 17.6 17.5 17.2	17. 17. 17. 17. 17. 17. 16.
	870 to 885 855 to 870 < 850 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990	Jan 17.1 16.5 16.7 16.5 16.6 16.3 16.3 16.4	Feb 16.4 16.7 16.7 16.3 16.3 16.2 16.4 15.9	Mar 17.4 17.5 17.5 17.5 17.4 17.5 17.3	Apr 17.5 17.2 17.6 17.4 17.7 17.7 17.8 17.9	18.2 17.9 18.3 18.4 18.4 18.5 18.5	Jun 18.2 18.2 18.3 18.4 18.4 18.3 18.5 18.5	35 to 1991 Jul 18.4 18.7 18.7 18.4 18.8 18.6 18.9 18.3	(Post Bac Aug 18.8 18.7 18.5 17.7 17.9 17.9 17.7	Sep 18.4 18.3 18.3 18.0 18.0 18.2 17.9	Oct 17.4 18.2 18.4 18.2 18.3 18.2 18.3 17.9	Nov 17.8 17.6 17.7 17.6 17.5 17.2 17.3 17.1	17. 17. 17. 17. 17. 17. 16. 16.
	870 to 885 855 to 870 < 850 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975	Jan 17.1 16.5 16.7 16.5 16.6 16.3 16.3 16.4 16.0	Feb 16.4 16.7 16.7 16.3 16.3 16.2 16.4 15.9 15.6	Mar 17.4 17.5 17.5 17.5 17.4 17.5 17.3 17.2 17.1	Apr 17.5 17.2 17.6 17.4 17.7 17.7 17.8 17.9 17.7	May 18.2 17.9 18.3 18.4 18.4 18.5 18.5 18.6 19.3	Jun 18.2 18.2 18.3 18.4 18.4 18.3 18.5 18.5 18.2	35 to 1991 Jul 18.4 18.7 18.7 18.4 18.8 18.6 18.9 18.3 18.6	18.8 18.7 18.5 17.7 17.9 17.9 17.7 17.2 17.8	Sep 18.4 18.3 18.0 18.0 18.2 17.9 17.8 17.9	Oct 17.4 18.2 18.4 18.2 18.3 18.2 18.3 17.9 18.1	Nov 17.8 17.6 17.7 17.6 17.5 17.2 17.3 17.1 16.4	17. 17. 17. 17. 17. 17. 16. 16.
	870 to 885 855 to 870 < 850 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960	Jan 17.1 16.5 16.7 16.5 16.6 16.3 16.3 16.4 16.0	Feb 16.4 16.7 16.7 16.3 16.3 16.2 16.4 15.9 15.6	Mar 17.4 17.5 17.5 17.5 17.4 17.5 17.3 17.2 17.1	Apr 17.5 17.2 17.6 17.4 17.7 17.7 17.8 17.9 17.7	May 18.2 17.9 18.3 18.4 18.4 18.5 18.5 18.6 19.3	Jun 18.2 18.2 18.3 18.4 18.4 18.3 18.5 18.5 18.2	35 to 1991 Jul 18.4 18.7 18.7 18.4 18.8 18.6 18.9 18.3 18.6	18.8 18.7 18.5 17.7 17.9 17.9 17.7 17.2 17.8	Sep 18.4 18.3 18.0 18.0 18.2 17.9 17.8 17.9	Oct 17.4 18.2 18.4 18.2 18.3 18.2 18.3 17.9 18.1	Nov 17.8 17.6 17.7 17.6 17.5 17.2 17.3 17.1 16.4	17. 17. 17. 17. 17. 17. 16. 16.
	870 to 885 855 to 870 < 850 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945	Jan 17.1 16.5 16.7 16.5 16.6 16.3 16.3 16.4 16.0	Feb 16.4 16.7 16.7 16.3 16.3 16.2 16.4 15.9 15.6	Mar 17.4 17.5 17.5 17.5 17.4 17.5 17.3 17.2 17.1	Apr 17.5 17.2 17.6 17.4 17.7 17.7 17.8 17.9 17.7	May 18.2 17.9 18.3 18.4 18.4 18.5 18.5 18.6 19.3	Jun 18.2 18.2 18.3 18.4 18.4 18.3 18.5 18.5 18.2	35 to 1991 Jul 18.4 18.7 18.7 18.4 18.8 18.6 18.9 18.3 18.6	18.8 18.7 18.5 17.7 17.9 17.9 17.7 17.2 17.8	Sep 18.4 18.3 18.0 18.0 18.2 17.9 17.8 17.9	Oct 17.4 18.2 18.4 18.2 18.3 18.2 18.3 17.9 18.1	Nov 17.8 17.6 17.7 17.6 17.5 17.2 17.3 17.1 16.4	17. 17. 17. 17. 17. 16. 16.
	870 to 885 855 to 870 < 850 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930	Jan 17.1 16.5 16.7 16.5 16.6 16.3 16.3 16.4 16.0	Feb 16.4 16.7 16.7 16.3 16.3 16.2 16.4 15.9 15.6	Mar 17.4 17.5 17.5 17.5 17.4 17.5 17.3 17.2 17.1	Apr 17.5 17.2 17.6 17.4 17.7 17.7 17.8 17.9 17.7	18.2 17.9 18.3 18.4 18.5 18.5 18.6 19.3 19.1	Jun 18.2 18.2 18.3 18.4 18.4 18.3 18.5 18.5 18.2 18.7	18.4 18.7 18.7 18.4 18.8 18.6 18.9 18.3 18.6 17.9	18.8 18.7 18.5 17.7 17.9 17.9 17.7 17.2 17.8 18.6	Sep 18.4 18.3 18.0 18.0 18.2 17.9 17.8 17.9	Oct 17.4 18.2 18.4 18.2 18.3 18.2 18.3 17.9 18.1	Nov 17.8 17.6 17.7 17.6 17.5 17.2 17.3 17.1 16.4	17. 17. 17. 17. 17. 16. 16.
	870 to 885 855 to 870 < 850 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915	Jan 17.1 16.5 16.7 16.5 16.6 16.3 16.3 16.4 16.0	Feb 16.4 16.7 16.7 16.3 16.3 16.2 16.4 15.9 15.6	Mar 17.4 17.5 17.5 17.5 17.4 17.5 17.3 17.2 17.1	Apr 17.5 17.2 17.6 17.4 17.7 17.7 17.8 17.9 17.7	18.2 17.9 18.3 18.4 18.5 18.5 18.6 19.3 19.1	Jun 18.2 18.2 18.3 18.4 18.4 18.3 18.5 18.5 18.2	18.4 18.7 18.7 18.4 18.8 18.6 18.9 18.3 18.6 17.9	18.8 18.7 18.5 17.7 17.9 17.9 17.7 17.2 17.8 18.6	Sep 18.4 18.3 18.0 18.0 18.2 17.9 17.8 17.9	Oct 17.4 18.2 18.4 18.2 18.3 18.2 18.3 17.9 18.1	Nov 17.8 17.6 17.7 17.6 17.5 17.2 17.3 17.1 16.4	17. 17. 17. 17. 17. 16. 16.
	870 to 885 855 to 870 < 850 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900	Jan 17.1 16.5 16.7 16.5 16.6 16.3 16.3 16.4 16.0	Feb 16.4 16.7 16.7 16.3 16.3 16.2 16.4 15.9 15.6	Mar 17.4 17.5 17.5 17.5 17.4 17.5 17.3 17.2 17.1	Apr 17.5 17.2 17.6 17.4 17.7 17.7 17.8 17.9 17.7	18.2 17.9 18.3 18.4 18.5 18.5 18.6 19.3 19.1	Jun 18.2 18.2 18.3 18.4 18.4 18.3 18.5 18.5 18.2 18.7	18.4 18.7 18.7 18.4 18.8 18.6 18.9 18.3 18.6 17.9	18.8 18.7 18.5 17.7 17.9 17.9 17.7 17.2 17.8 18.6	Sep 18.4 18.3 18.0 18.0 18.2 17.9 17.8 17.9	Oct 17.4 18.2 18.4 18.2 18.3 18.2 18.3 17.9 18.1	Nov 17.8 17.6 17.7 17.6 17.5 17.2 17.3 17.1 16.4	17. 17. 17. 17. 17. 16. 16.
Measurement Reading Range (ft msl)	870 to 885 855 to 870 < 850 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885	Jan 17.1 16.5 16.7 16.5 16.6 16.3 16.3 16.4 16.0	Feb 16.4 16.7 16.7 16.3 16.3 16.2 16.4 15.9 15.6	Mar 17.4 17.5 17.5 17.5 17.4 17.5 17.3 17.2 17.1	Apr 17.5 17.2 17.6 17.4 17.7 17.7 17.8 17.9 17.7	18.2 17.9 18.3 18.4 18.5 18.5 18.6 19.3 19.1	Jun 18.2 18.2 18.3 18.4 18.4 18.3 18.5 18.5 18.2 18.7	18.4 18.7 18.7 18.4 18.8 18.6 18.9 18.3 18.6 17.9	18.8 18.7 18.5 17.7 17.9 17.9 17.7 17.2 17.8 18.6	Sep 18.4 18.3 18.0 18.0 18.2 17.9 17.8 17.9	Oct 17.4 18.2 18.4 18.2 18.3 18.2 18.3 17.9 18.1	Nov 17.8 17.6 17.7 17.6 17.5 17.2 17.3 17.1 16.4	17. 17. 17. 17. 17. 16. 16.
	870 to 885 855 to 870 < 850 Jocas 1110 to 1095 1095 to 1080 1080 to 1065 1065 to 1050 1050 to 1035 1035 to 1020 1020 to 1005 1005 to 990 990 to 975 975 to 960 960 to 945 945 to 930 930 to 915 915 to 900 900 to 885 885 to 870	Jan 17.1 16.5 16.7 16.5 16.6 16.3 16.3 16.4 16.0	Feb 16.4 16.7 16.7 16.3 16.3 16.2 16.4 15.9 15.6	Mar 17.4 17.5 17.5 17.5 17.4 17.5 17.3 17.2 17.1	Apr 17.5 17.2 17.6 17.4 17.7 17.7 17.8 17.9 17.7	18.2 17.9 18.3 18.4 18.5 18.5 18.6 19.3 19.1	Jun 18.2 18.2 18.3 18.4 18.4 18.3 18.5 18.5 18.2 18.7	18.4 18.7 18.7 18.4 18.8 18.6 18.9 18.3 18.6 17.9	18.8 18.7 18.5 17.7 17.9 17.9 17.7 17.2 17.8 18.6	Sep 18.4 18.3 18.0 18.0 18.2 17.9 17.8 17.9	Oct 17.4 18.2 18.4 18.2 18.3 18.2 18.3 17.9 18.1	Nov 17.8 17.6 17.7 17.6 17.5 17.2 17.3 17.1 16.4	Dec 17.3 17.3 17.3 17.3 16.9 16.9 15.4



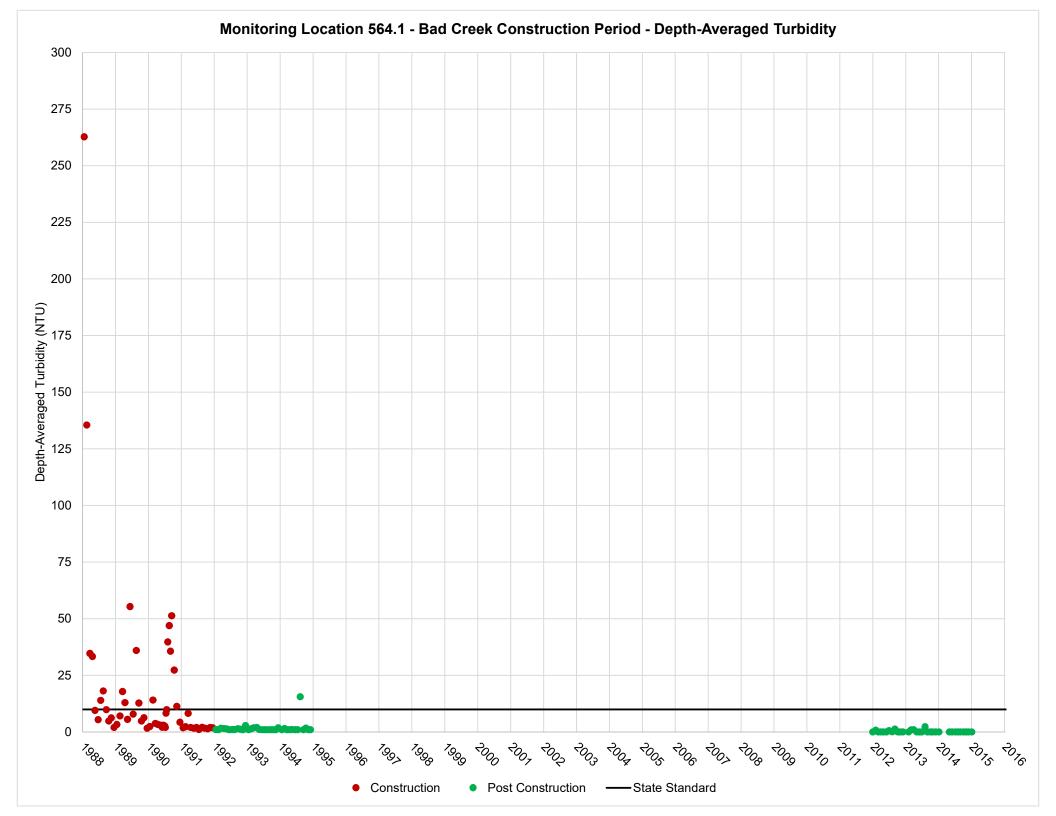
Appendix C Appendix C – Turbidity in Whitewater River Cove

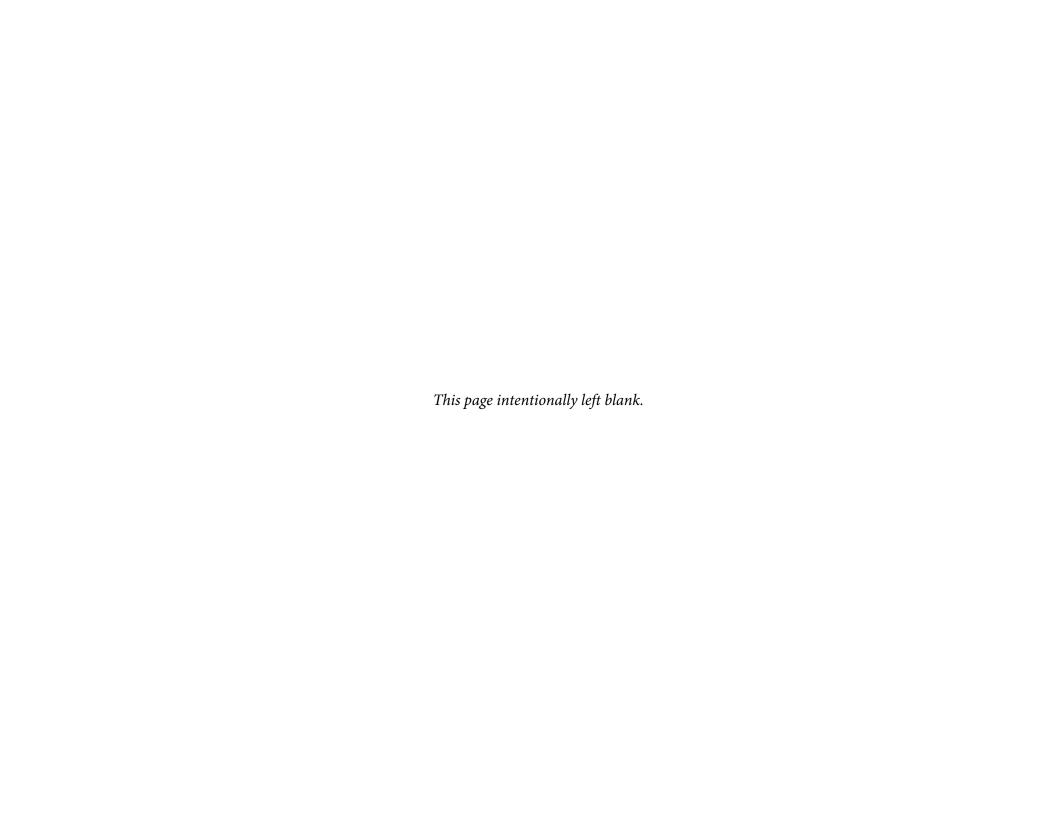


Station 564.1 Post Construction [1992-2015]

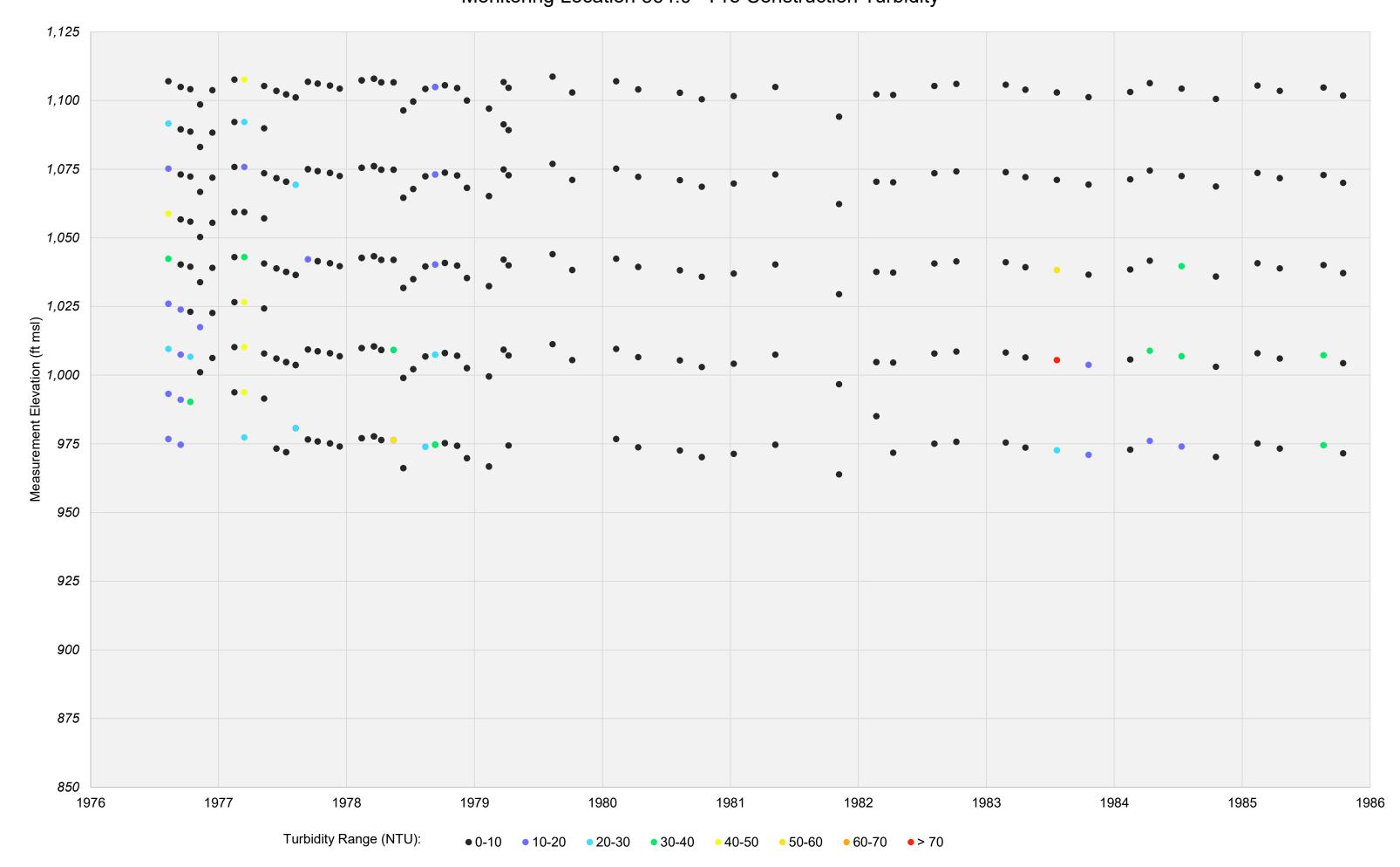


Station 564.1 Full Dataset



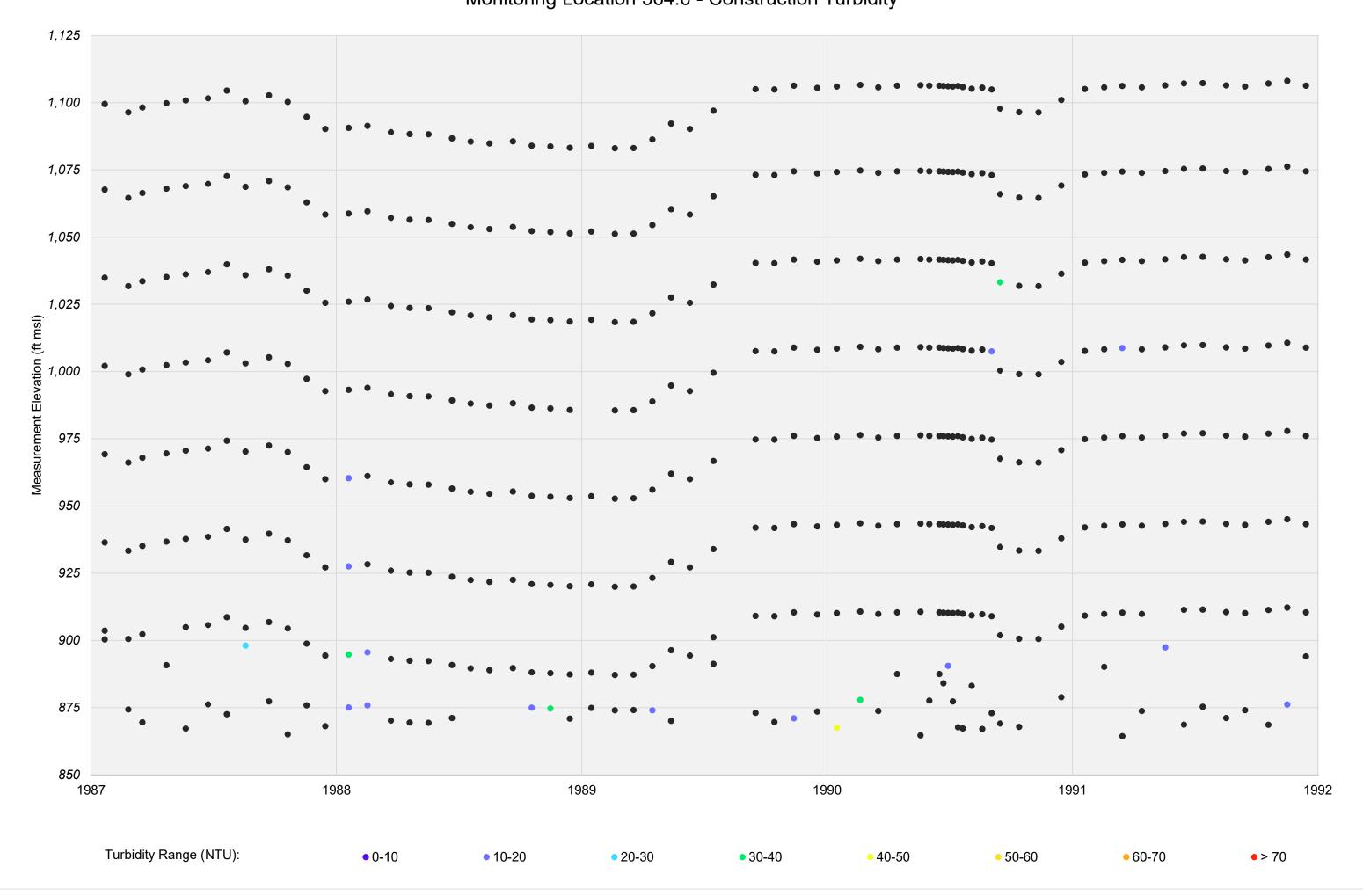


Station 564.1 Depth-Averaged with SC State Standard



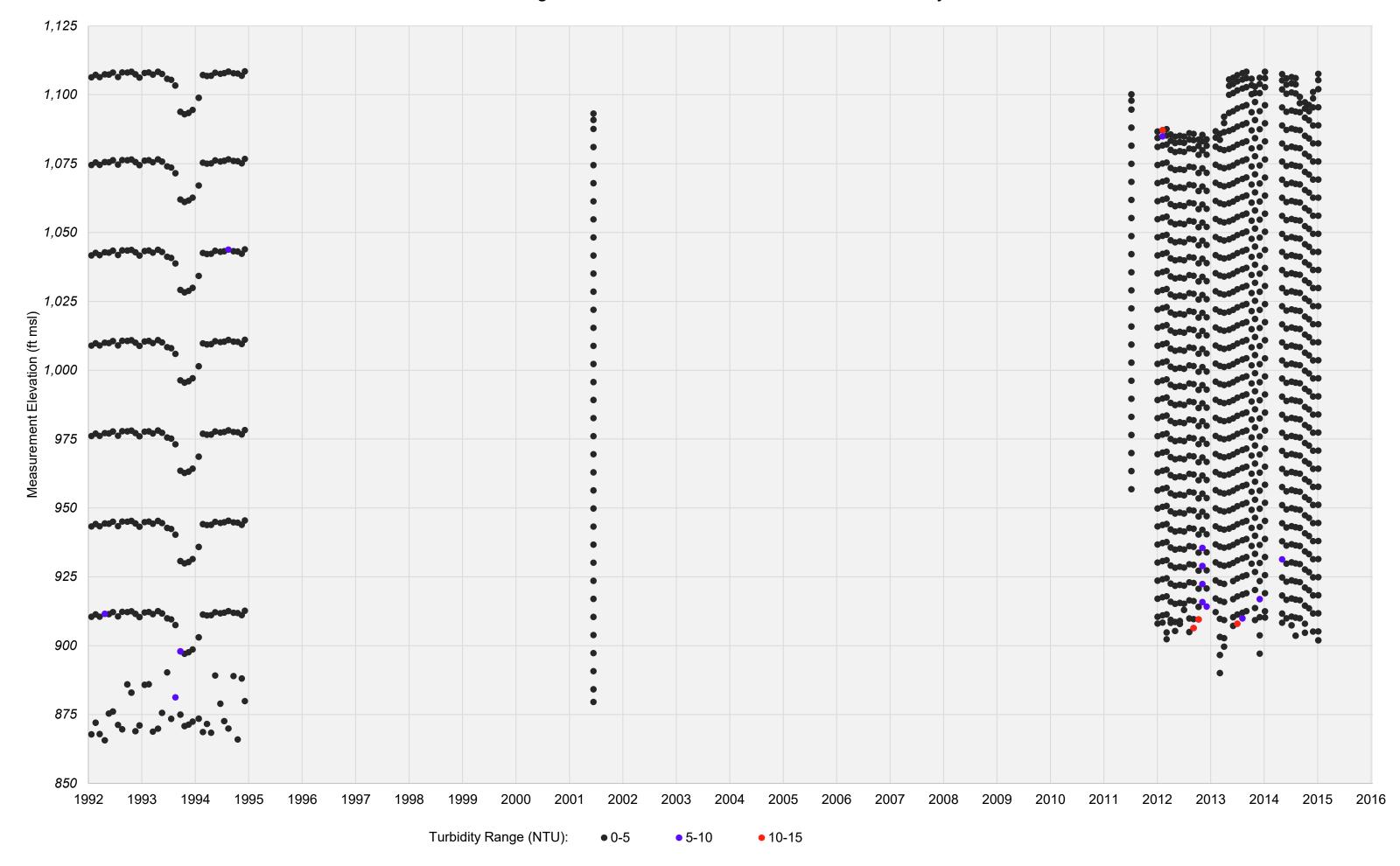
Station 564.0 **Pre Construction** [<1985]

Monitoring Location 564.0 - Pre Construction Turbidity



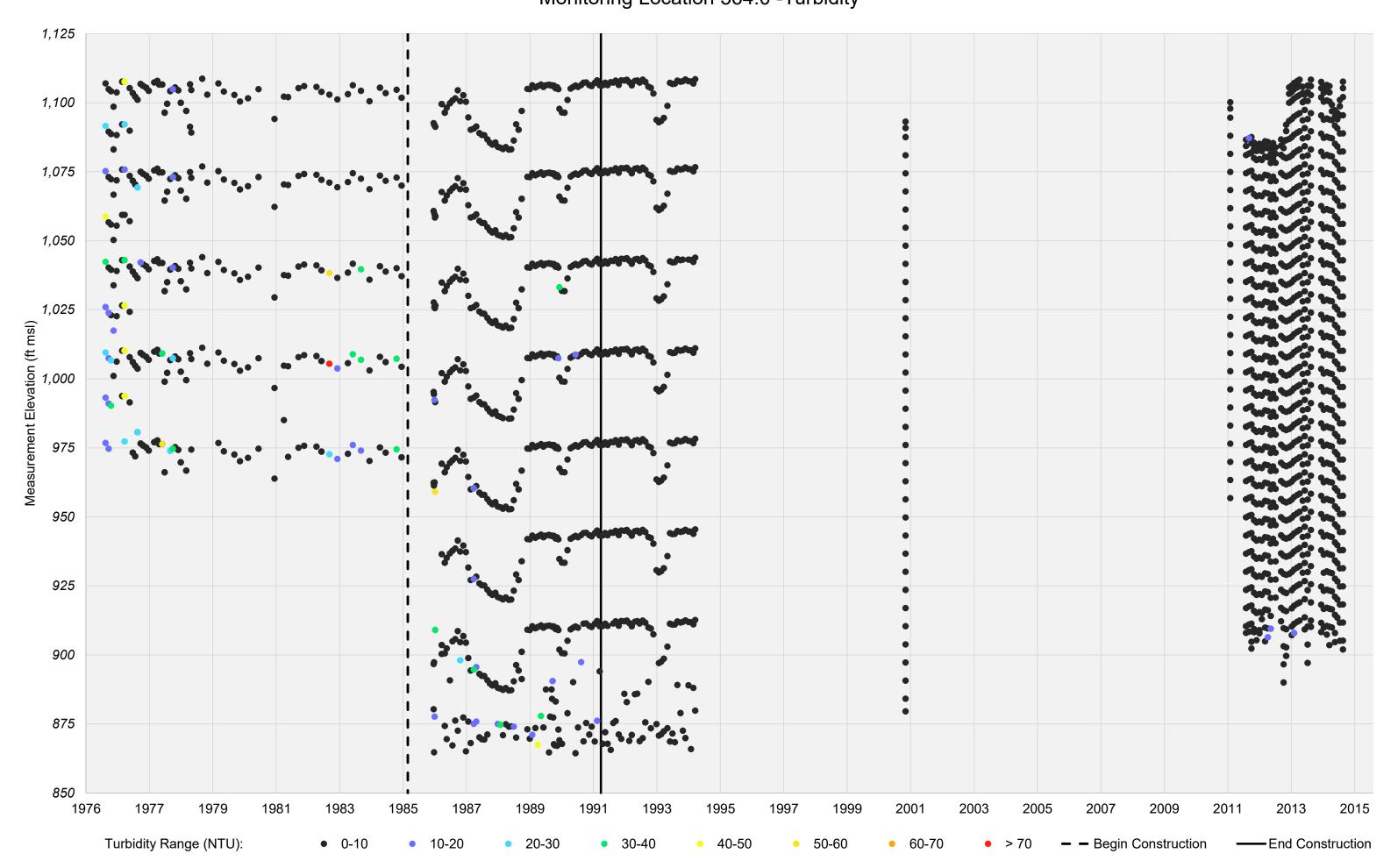
Station 564.0 Construction [1986-1991]

Monitoring Location 564.0 - Construction Turbidity

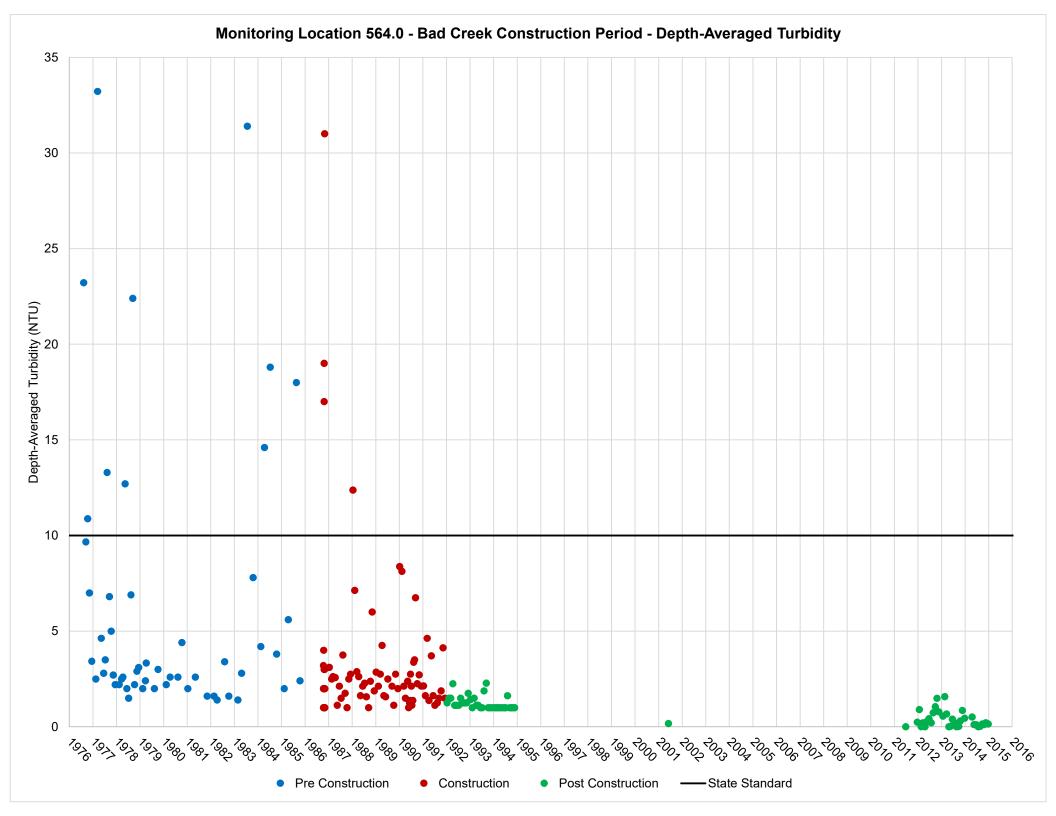


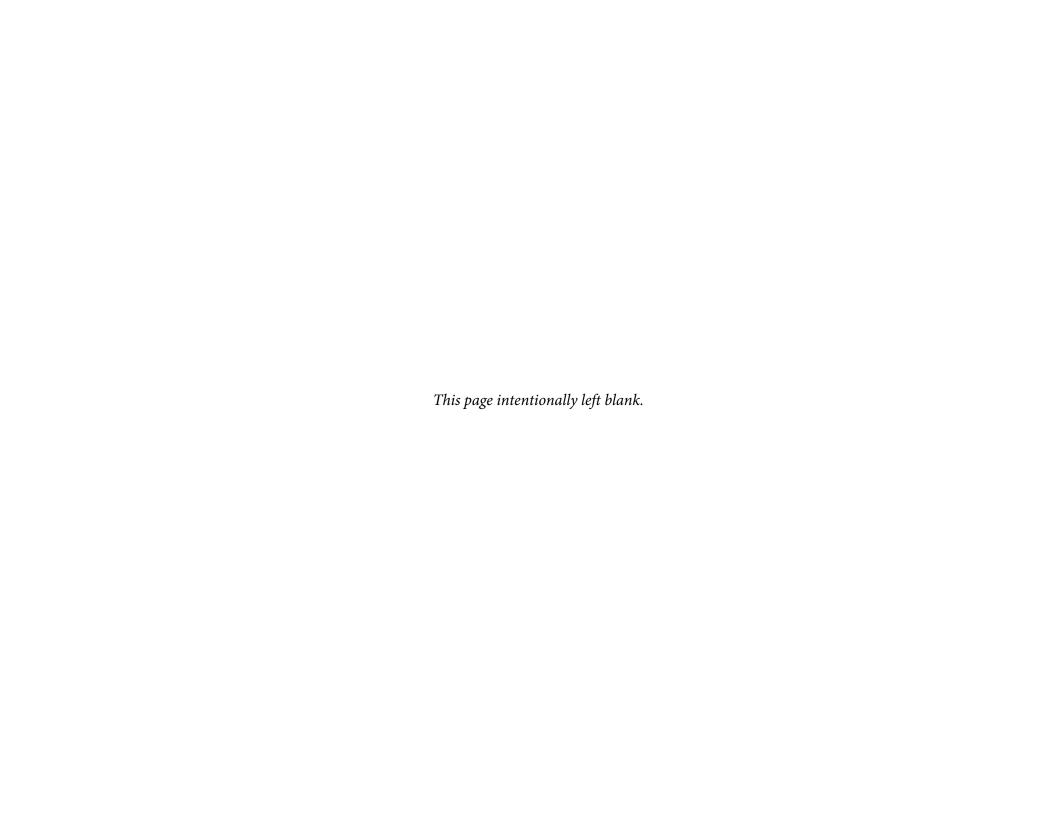
Station 564.0 Post Construction [1992-2015]

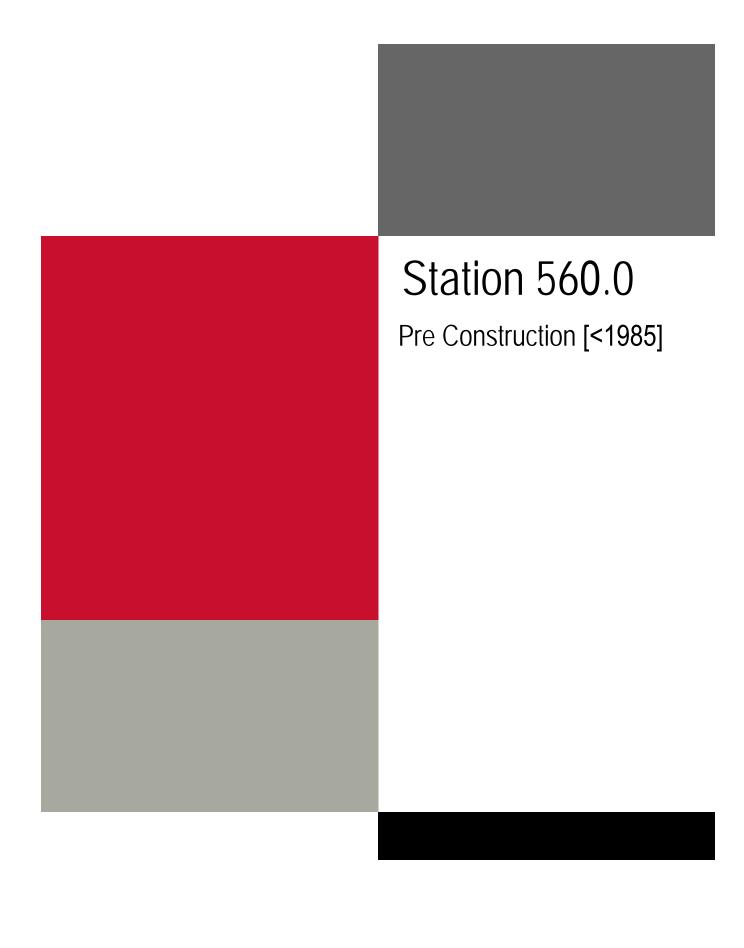
Monitoring Location 564.0 - Post Construction Turbidity



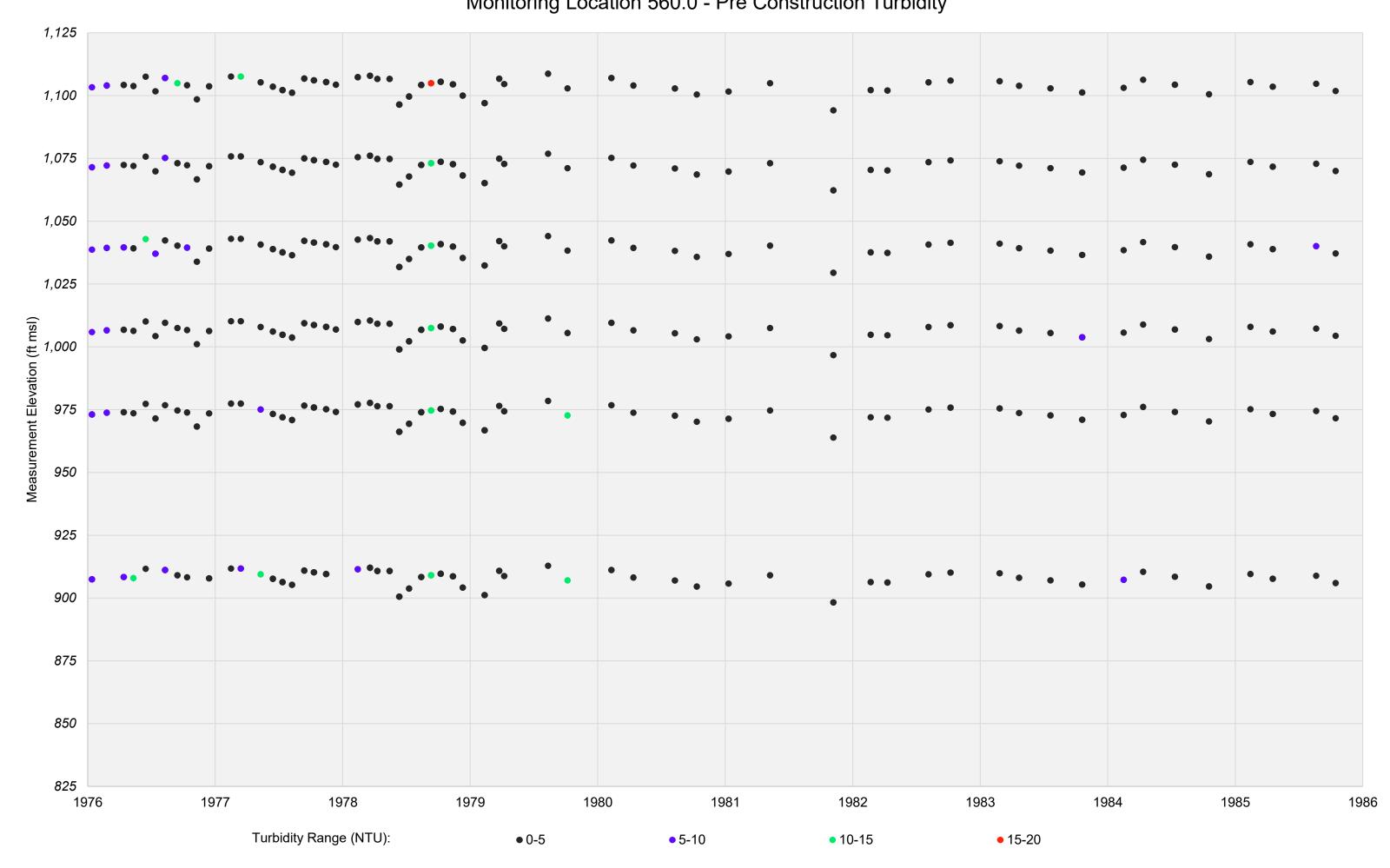
Station 564.0 Full Dataset

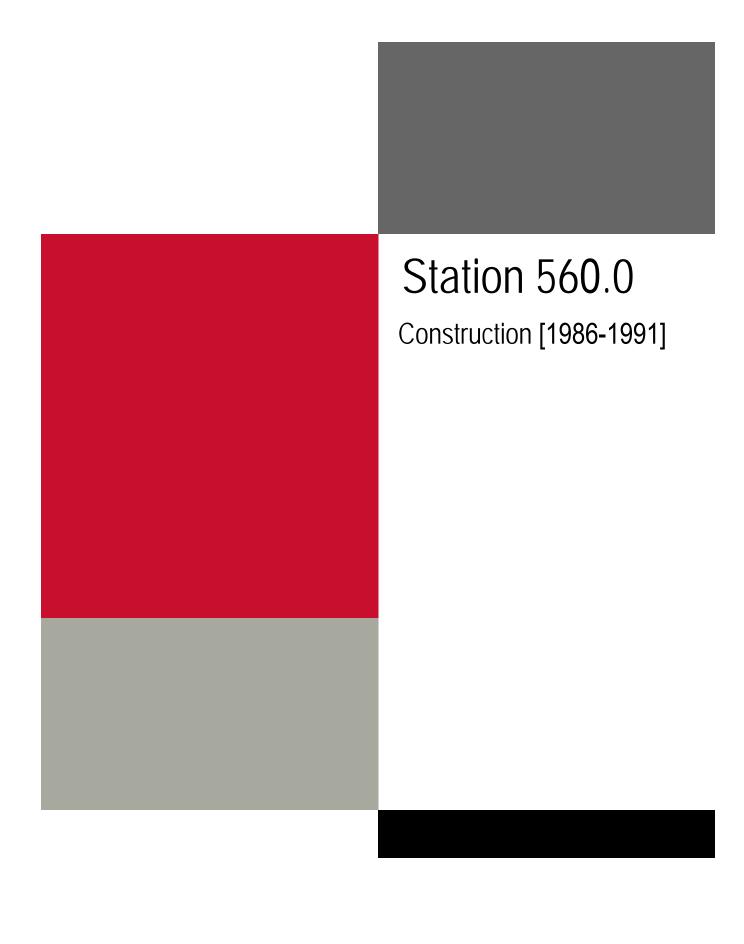

Monitoring Location 564.0 - Turbidity

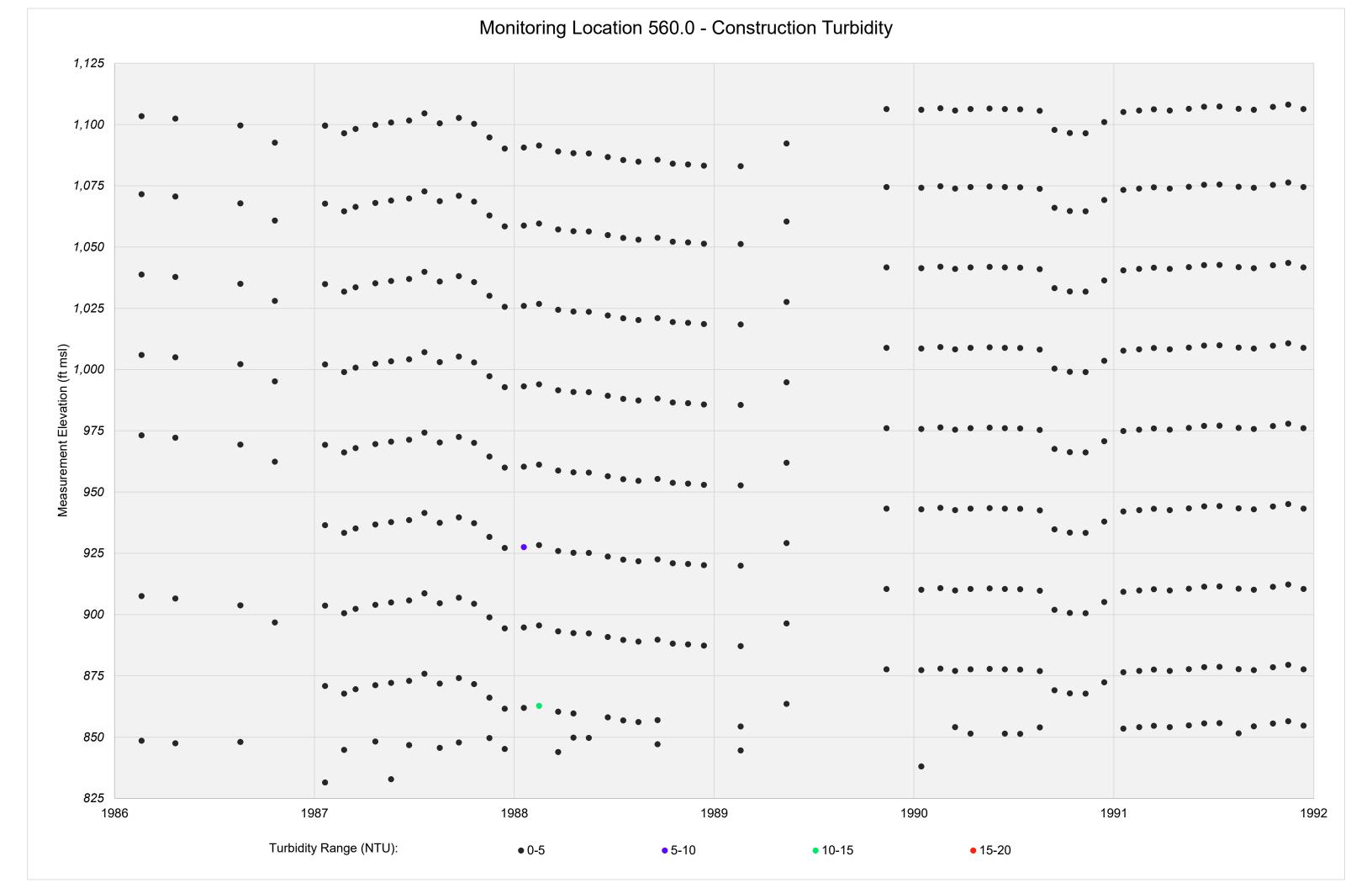


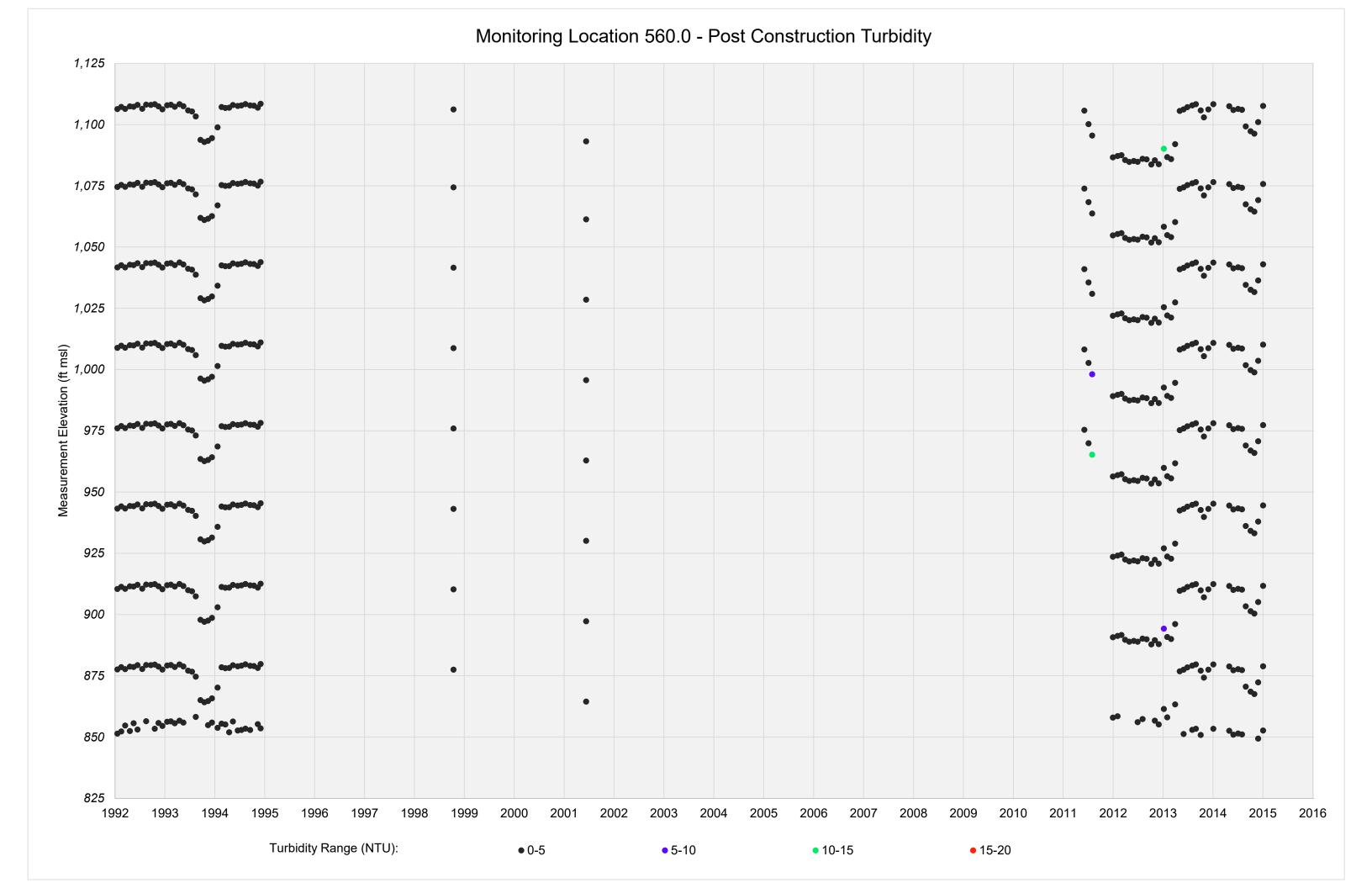


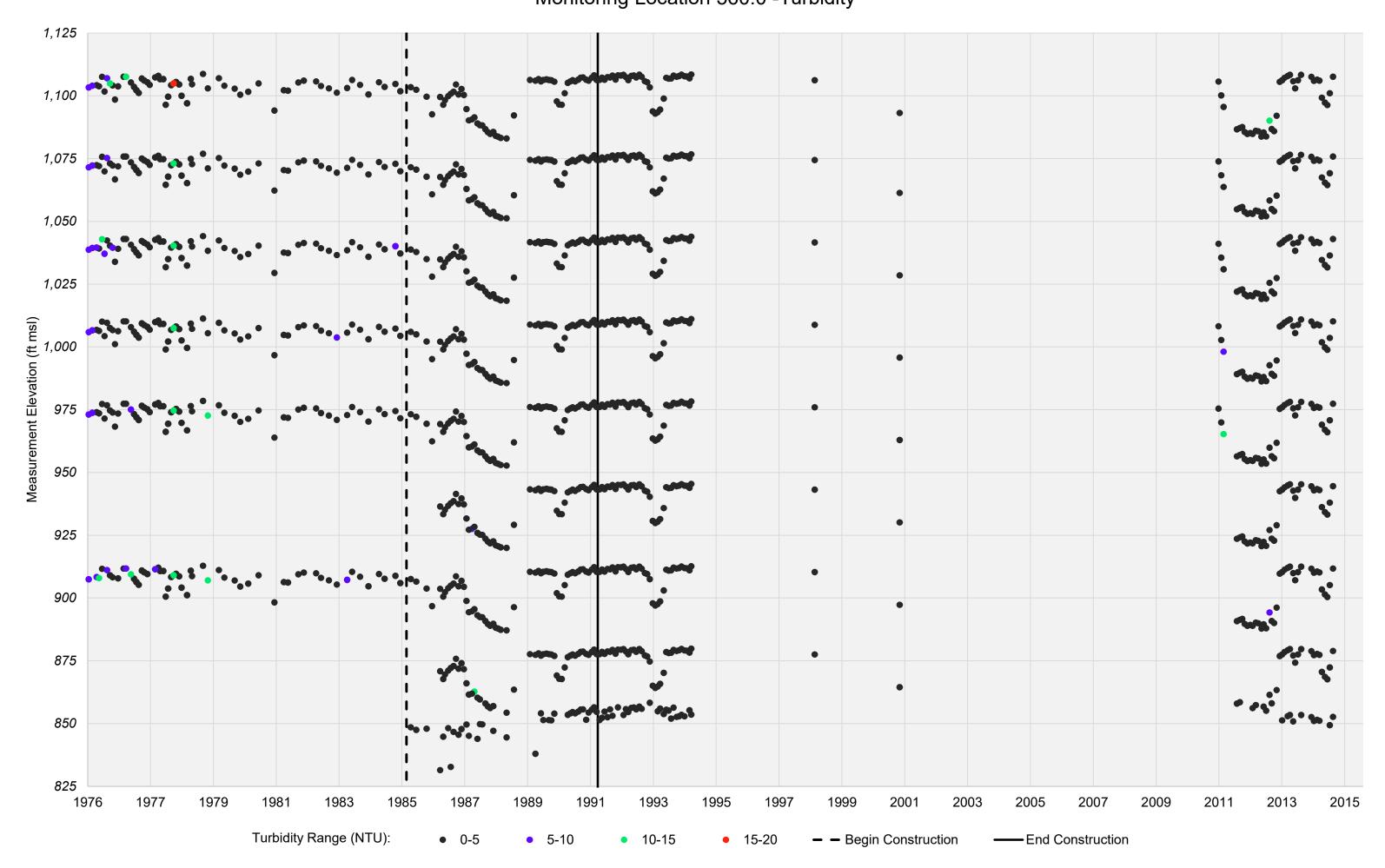
Station 564.0 Depth-Averaged with SC State Standard



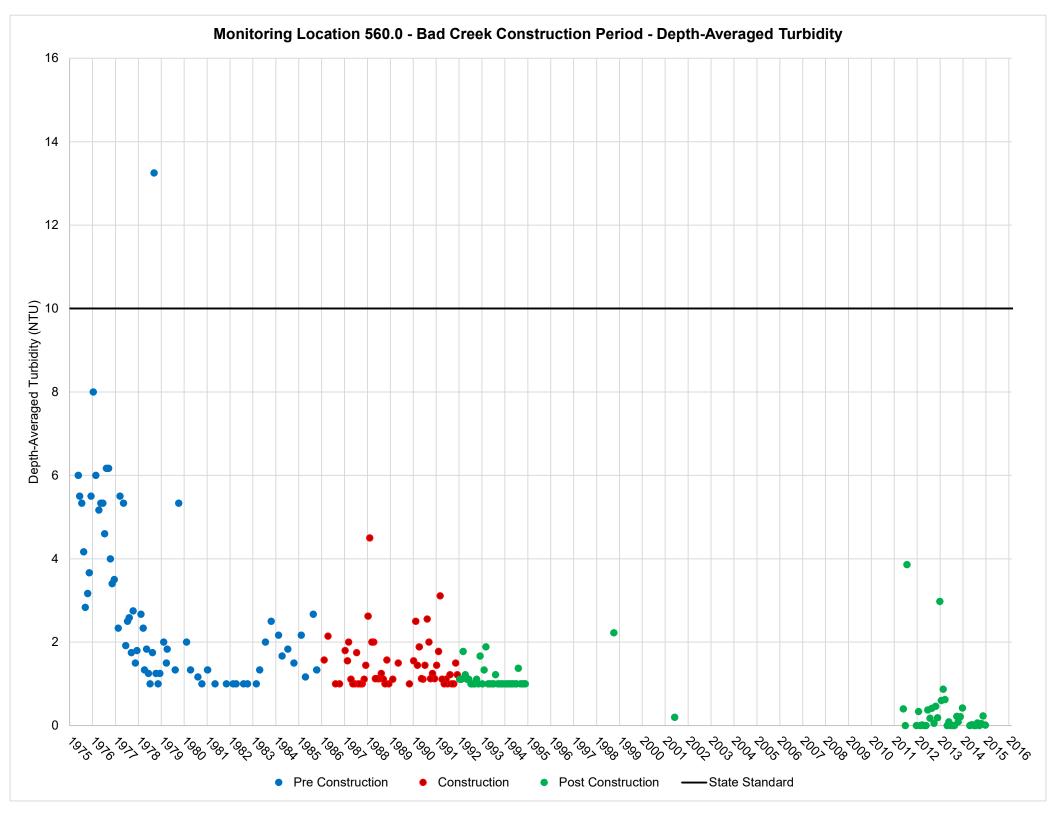


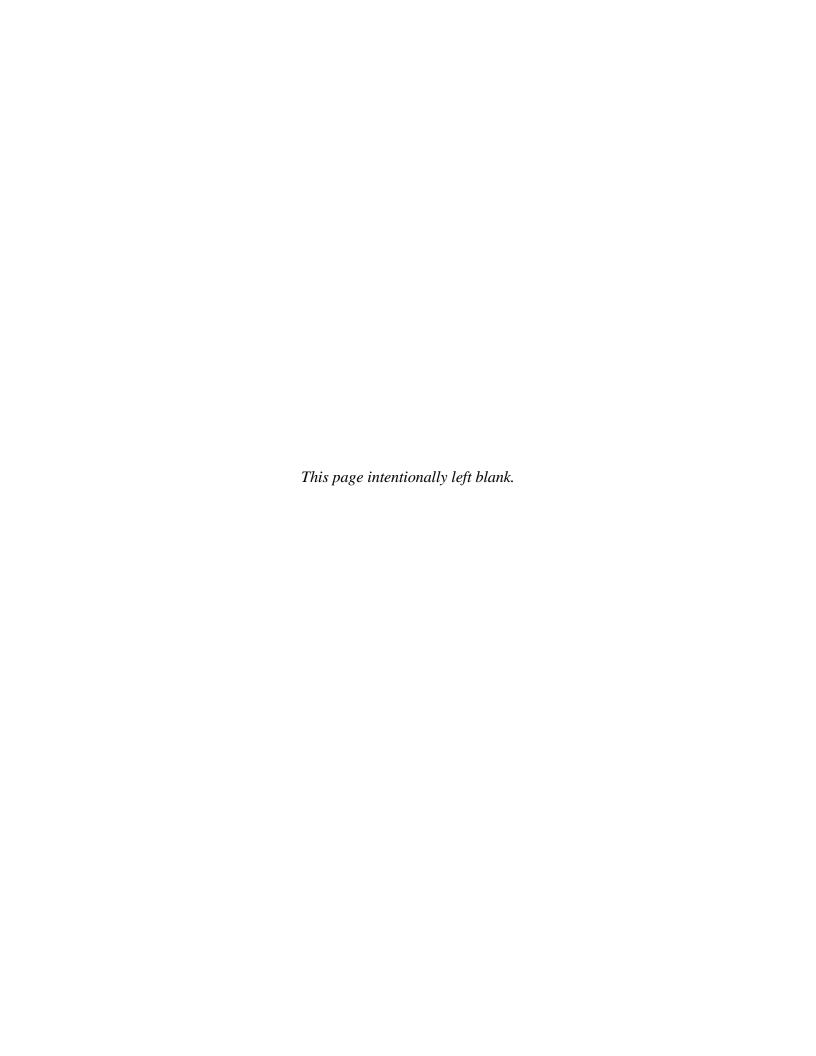

Monitoring Location 560.0 - Pre Construction Turbidity

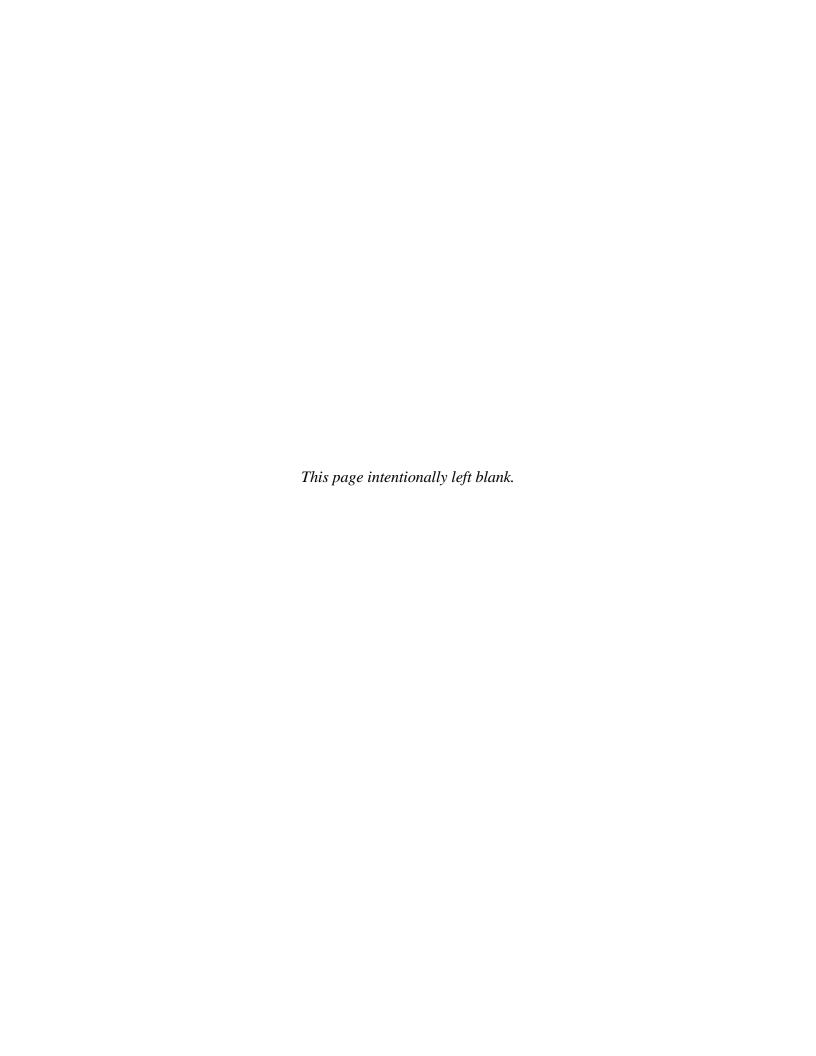




Station 560.0 Full Dataset


Monitoring Location 560.0 - Turbidity




Station 560.0 Depth-Averaged with SC State Standard

Attachment 2 Whitewater River Cove Water **Quality Field Study**

WATER QUALITY MONITORING IN WHITEWATER RIVER ARM

FINAL REPORT

WATER RESOURCES STUDY

Bad Creek Pumped Storage Project FERC Project No. 2740

Oconee County, South Carolina

November 26, 2024

WATER QUALITY MONITORING IN WHITEWATER RIVER ARM BAD CREEK PUMPED STORAGE PROJECT

FERC PROJECT No. 2740

TABLE OF CONTENTS

Section	Title	Page No.
1 Intr	oduction and Background	1
1.1	Project Overview	
1.2	Study Goals and Objectives	
1.3	Study Area	
1.3	Water Quality Monitoring Stations	
	hods and Instrumentation	
	ults	
3.1	Study Season 1 (Summer 2023)	
3.1.	•	
3.1.		
3.1.		
3.2	Study Season 2 (Summer 2024)	
3.2.	•	
3.2.		
3.2.		
3.2.	4 Hurricane Helene	30
4 Sun	nmary	34
	iances from FERC-approved Study Plan	
6 Ger	mane Correspondence and Consultation	34
	LIST OF TABLES	
Table 1 I	Datalogger Depth and Elevation*	3
	Field Dates for Water Quality Measurement and Data Collection	
	LIGHT OF EVEL PER	
F: 1.7	LIST OF FIGURES	
_	Water Quality Monitoring Stations Assessed in the Whitewater River Arm	
	rs on single continuous cable system; (D) Deploying stainless steel cable with datalogge	
	buoy with protective cage for VuLink device	
	Instrumentation Deployment with Boat-mounted Winch (left) and Deployed Water Qua	
	ng Buoy and Datalogger Chain at Station 564.0 (right)	
	Lake Jocassee Pond Elevations - 2023 and 2024 Study Periods	
	Water Temperature Profiles for Monitoring Station 564.1	
-	Dissolved Oxygen Concentrations for Monitoring Station 564.1	
-	Continuous Water Temperature Profiles for Monitoring Station 564.1	
-	Water Temperature Profiles for Monitoring Station 564.0	
	Continuous Water Temperature Profiles for Monitoring Station 564.0	
	. Water Temperature Profiles for Monitoring Station 560.0	
	Dissolved Oxygen Concentrations for Monitoring Station 560.0	
-		

TABLE OF CONTENTS

CONTINUED

Section	Title	Page No.
Figure 13. Co	ntinuous Water Temperature Profiles for Monitoring Station 560	17
Figure 14. Wa	ater Temperature Profiles for Monitoring Station 564.1	19
Figure 15. Dis	ssolve Oxygen Concentrations for Monitoring Station 564.1	20
Figure 16. Co	ntinuous Water Temperature Profiles for Monitoring Station 564.1	21
Figure 17. Wa	ater Temperature Profiles for Monitoring Station 564.0	23
Figure 18. Dis	ssolved Oxygen Concentrations for Monitoring Station 564.0	24
Figure 19. Co	ntinuous Water Temperature Profiles for Monitoring Station 564.0	25
Figure 20. Wa	ater Temperature Profiles for Monitoring Station 560.0	27
Figure 21. Dis	ssolved Oxygen Concentrations for Monitoring Station 560.0	28
Figure 22. Co	ntinuous Water Temperature Profiles for Monitoring Station 564.0	29
_	ntinuous Water Temperature Profiles for Monitoring Station 564.1 (September 26-Ocassee Pond Elevation	
	ntinuous Water Temperature Profiles for Monitoring Station 564.0 (September 26-Ocassee Pond Elevation	
•	ntinuous Water Temperature Profiles for Monitoring Station 560.0 (September 26-Ocassee Pond Elevation	

ACRONYMS AND ABBREVIATIONS

°C degrees Celsius

Bad Creek (or Project)
Bad Creek II Complex
Bad Creek II Power Complex

Bad Creek Reservoir upper reservoir

CFD computational fluid dynamics
CFR Code of Federal Regulations

cfs cubic feet per second DO dissolved oxygen

Duke Energy or Licensee Duke Energy Carolinas, LLC

ft feet/foot

ft msl feet above mean sea level

FERC Federal Energy Regulatory Commission

ILP Integrated Licensing Process

mg/L milligrams per liter
miles per hour miles per hour
RSP Revised Study Plan

SCDHEC South Carolina Department of Health and Environmental Control

USP Updated Study Report

VuLink In-Situ VuLink® CI datalogger and telemetry system

1 Introduction and Background

1.1 Project Overview

Duke Energy Carolinas, LLC (Duke Energy or Licensee) is the owner and operator of the 1,400-megawatt Bad Creek Pumped Storage Project (Project) (FERC Project No. 2740) located in Oconee County, South Carolina, approximately eight miles north of Salem. The Project utilizes the Bad Creek Reservoir as the upper reservoir and Lake Jocassee, which is licensed as part of the Keowee-Toxaway Hydroelectric Project (KT Project; FERC Project No. 2503), as the lower reservoir.

The existing (original) license for the Project was issued by the Federal Energy Regulatory Commission (FERC or Commission) for a 50-year term, with an effective date of August 1, 1977 and expiration date of July 31, 2027. The license has been subsequently and substantively amended, with the most recent amendment on August 6, 2018 for authorization to upgrade and rehabilitate the four pump-turbines in the powerhouse and increase the authorized installed and maximum hydraulic capacities for the Project. Duke Energy is pursuing a new license for the Project pursuant to the Commission's Integrated Licensing Process, as described at 18 Code of Federal Regulations (CFR) Part 5. Given the need for additional significant energy storage and renewable energy generation across Duke Energy's service territories over the Project's new 40 to 50-year license term, Duke Energy is proposing to add pumping and generating capacity at the Project. Additional energy storage and generation capacity would be developed by constructing a new power complex (including a new underground powerhouse) adjacent to the existing Bad Creek powerhouse. Therefore, construction of the 1,400-megawatt Bad Creek II Power Complex (Bad Creek II) is an alternative relicensing proposal presently being evaluated by Duke Energy.

In accordance with 18 CFR §5.11 of the Commission's regulations, Duke Energy developed a Revised Study Plan (RSP) for the Project and proposed six studies for Project relicensing. The RSP was filed with the Commission and made available to stakeholders on December 5, 2022. FERC issued the Study Plan Determination on January 4, 2023, which included modifications to one of the six proposed studies (Recreational Resources).

This report details the methodologies and findings from the first (2023) and second (2024) study seasons for Task 2 (Water Quality Monitoring in Whitewater River Arm) of the Water Resources Study. This study was conducted to support the application for a new license for the Project, in accordance with 18 CFR §5.15, as outlined in the RSP.

¹ Duke Energy Carolinas LLC, 164 FERC ¶ 62,066 (2018)

1.2 Study Goals and Objectives

Tasks carried out for the Bad Creek Water Resources Study employ standard methodologies that are consistent with the scope and level of effort described in the RSP filed with the Commission on December 5, 2022. This report was developed in support of the Water Resources Study and is intended to provide sufficient information to support an analysis of the potential Project-related effects on water resources in the Whitewater River Arm of Lake Jocassee.

The goal of Task 2 was to collect and analyze existing water quality data to evaluate the effect of the submerged weir on vertical mixing upstream and downstream of the weir and the influence of the exchange of water on stratification in the Whitewater River Arm. Objectives were met through continuous and biweekly monitoring of water temperature and dissolved oxygen (DO) at three historic monitoring stations in the Whitewater River Arm of Lake Jocassee. Data collection was carried out over two summers (2023 and 2024) from June 1 through September 30 when water temperatures are expected to be warmest and stratification is at its peak.² Data collected in 2023 represented conditions under three-unit operations at the Project while data collected in 2024 represented conditions under four-unit operations.³

Given the absence of water quality data or monitoring in Bad Creek Reservoir, water quality results from this study serve as a representative indication of conditions in the upper reservoir, as water is directly exchanged between the upper reservoir and the Whitewater River arm of Lake Jocasee.⁴ Although Bad Creek II operations are not anticipated to adversely impact water quality, these baseline data can provide a critical benchmark for comparing existing conditions with those observed under future operational phases of the proposed project.

This report encompasses results from both study years and provides a comprehensive assessment of the water quality impacts (temperature and DO) associated with the Project.

1.3 Study Area

The Whitewater River arm (see Figure 1) is in the northwestern portion of Lake Jocassee and receives direct tributary flow from the Whitewater River. Lake Jocasee has a drainage area of approximately 145 square miles

² While the study period for each year is June 1-Sepember 30 as described in the RSP, continuous data are presented through equipment demobilization.

³ Prior to unit upgrades (completed in March 2024), the maximum hydraulic capacity for the Project was 17,234 cubic feet per second (cfs). After the upgrades, the maximum hydraulic capacity is 19,760 cfs.

⁴ Note that water quality monitoring in the Bad Creek Reservoir is not safe (due to rapid, large fluctuations in water level elevation and typically continuous Project operation) nor is it considered meaningful, given the short retention time in the upper reservoir. Due to pumping and generating cycles, retention time is approximately three days if only a single pump-turbine unit is operating. There are no existing water quality data in the upper reservoir; it is used only for Project operations and there is no public access.

(mi²) and roughly 92 miles of shoreline at full pond (1,110 feet (ft) above mean sea level [msl]). Whitewater River arm also directly receives and exchanges water from the Bad Creek Reservoir through the Project's existing inlet/outlet (I/O) structure; the upper reservoir was formed by damming the Bad Creek and the West Bad Creek tributaries of Howard Creek (a tributary of Lake Jocasee). Bad Creek Reservoir has a drainage area of approximately 1.5 mi².

During construction of the original Project, excavated rockfill was transported to the western shore of the Whitewater River arm. From there, it was moved to the lake via barges and used to construct an underwater weir approximately 1,800 ft downstream of the Project's lower reservoir I/O structure (weir midpoint coordinates are 35.0015, -82.991509). The submerged weir, measuring approximately 567 feet in width and 455 feet in length, with a crest elevation of about 1,060 feet above msl, was constructed to mitigate (i.e., minimize) the effects of Project operations on thermal and DO stratification in Lake Jocassee by dissipating the energy of the water discharged from the Project's lower reservoir I/O structure, thereby preserving trout habitat and supporting Lake Jocassee's high quality fishery.

1.4 Water Quality Monitoring Stations

Duke Energy has conducted water quality monitoring throughout Lake Jocassee for over 40 years. To evaluate the influence of the existing submerged weir and Project operations on water temperature and DO stratification in the lake, continuous temperature data and bi-weekly temperature and DO profiles were collected near historical monitoring stations 564.1, 564.0, and 560.0 (Figure 1). The depth at Station 564.1, which is situated between the Project's I/O structure and the submerged weir, is approximately 140 ft. Station 564.0 is located on the downstream side of the submerged weir, upstream of the confluence of the Whitewater River arm and the Thompson River Arm of Lake Jocassee. The depth at this location is approximately 200 ft. Station 560.0 is located in Lake Jocassee downstream of the confluence of the Whitewater River arm and Thompson River arm and is approximately 260 ft deep. Normal maximum pond elevation is 1,110 ft msl and normal minimum pond elevation is 1,080 ft msl.

Detailed water quality data for all historic monitoring stations in Lake Jocassee was provided in the final Water Quality and Summary Standards report (provided in Attachment 1 of Appendix A of the ISR). The historic monitoring station locations differ slightly from the locations monitored during this study; however, the depths and locations are comparable.

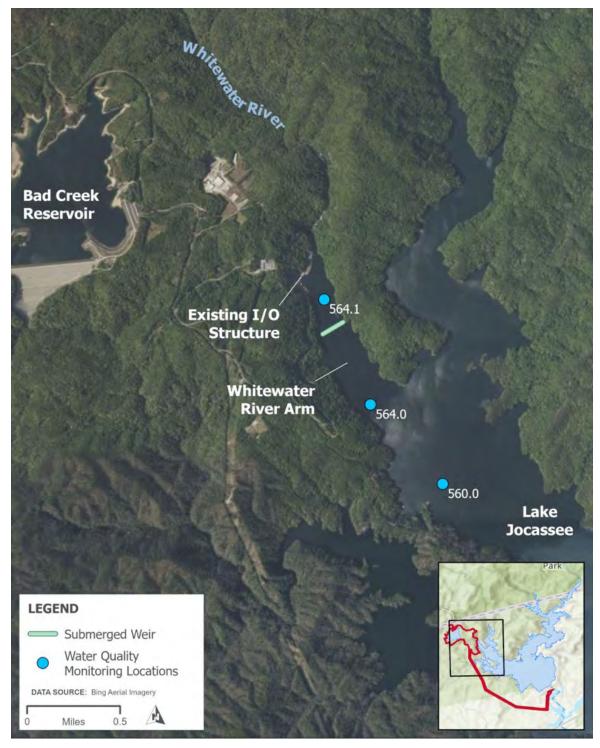


Figure 1. Water Quality Monitoring Stations Assessed in the Whitewater River Arm

2 Methods and Instrumentation

Five individual temperature dataloggers were deployed at each of the three monitoring locations during the 2023 field season (June 1 – October 11) and 2024 field season (May 21 – October 8) using an in-Situ VuLink® CI datalogger and telemetry system (VuLink). ⁵ The dataloggers (In-Situ Level Troll 400; range of 60 meters) were attached to a 3/16-inch stainless steel cable and strategically placed at specific depths (noted in Table 1) to continuously monitor changes in thermal and DO stratification throughout the 2023 and 2024 field seasons (Figure 2). The VuLink system features built-in venting and barometric compensation, configurable alarms based on instrument and device parameters, and the ability to log data at intervals from every minute to every seven days. It has a memory capacity of 512 megabytes and can simultaneously connect to eight instruments.

The VuLink device was enclosed within a telescoping aluminum protective cage and attached to a high-visibility buoy. The stainless-steel cables, with the attached dataloggers, were deployed at each monitoring location using a boat-mounted winch and anchored with a weight (Figure 3). The datalogger depths and corresponding Lake Jocassee Pond elevations are detailed in Table 1, noting that these depths and elevations are approximate, as they depend on the fluctuating water levels of Lake Jocassee. Pond elevations recorded during each field season are shown on Figure 4.

Although the VuLink system offers cellular coverage across multiple networks and bands (e.g., LTE Global, Verizon, 2G Quadband), the existing cellular transmission (i.e., cell towers) in the vicinity of the Whitewater River arm is insufficient which required manual data downloads (via boat) during bi-weekly field visits. Data from the VuLink system were downloaded to a secure laptop and discrete vertical profiles of water temperature and DO were measured using Hach[®] Hydrolab DS5 multiprobe⁶ and an In-Situ Troll[®] 500 multiparameter sonde⁷ from the water surface to the reservoir bottom, with bottom depth varying by location. The water column was sampled at approximately 0.3-meter and 1 meter from the surface, then at 2-meter intervals for the remaining profile at all three monitoring stations. Dates of all field visits are included in Table 2.

⁵ https://in-situ.com/us/vulink

 $^{^{6} \}underline{\text{ott.com/download/user-manual-hydrolab-ds5}x\text{-ds5-and-ms5-water-quality-multiprobes-}1/}\\$

⁷ <u>Level TROLL 500 Data Logger - In-Situ</u>

Figure 2. Water Quality Instrumentation: (A) VuLink device; (B) In-situ datalogger; (C) VuLink device and dataloggers on single continuous cable system; (D) Deploying stainless steel cable with dataloggers; (E) High visibility buoy with protective cage for VuLink device

Figure 3. Instrumentation Deployment with Boat-mounted Winch (left) and Deployed Water Quality Monitoring Buoy and Datalogger Chain at Station 564.0 (right)

Table 1. Datalogger Depth and Elevation*

Logger	Approximate Water Depth (ft)	Approximate Elevation (ft msl)	Notes
1	3	1,107	Near surface
2	30	1,080	Normal maximum Lake Jocassee drawdown elevation
3	50	1,060	Approximate crest of the submerged weir
4	70	1,040	Approximately 20 ft below the crest of the submerged weir
5	100	1,010	Approximate location of the thermocline

^{*}Depths and elevations are dependent on Lake Jocassee elevations.

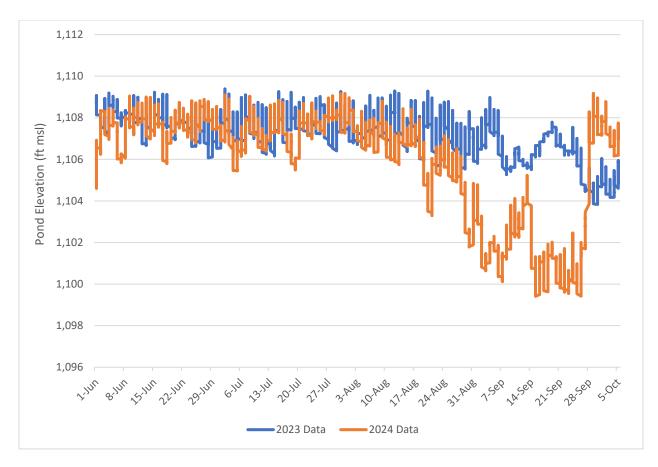


Figure 4. Lake Jocassee Pond Elevations - 2023 and 2024 Study Periods

Table 2. Field Dates for Water Quality Measurement and Data Collection

Study Period	Date	Details
	May 22	Deploy instrumentation
	May 31	Data download and vertical profile
	June 14	Data download and vertical profile
	June 27	Data download and vertical profile
	July 13, 14*	Data download and vertical profile
2023	July 24	Data download and vertical profile
	August 11*	Data download and vertical profile
	August 21	Data download and vertical profile
	September 7	Data download and vertical profile
	September 23*	Data download and vertical profile
	October 11	Data download; Remove instrumentation
	May 21	Deploy instrumentation
2024	June 11	Data download and vertical profile
2024	June 17	Data download and vertical profile
	July 1	Data download and vertical profile

Study Period	Date	Details
	July 16	Data download and vertical profile
	July 30	Data download and vertical profile
	August 14	Data download and vertical profile
	August 26	Data download and vertical profile
	September 9	Data download and vertical profile
	September 25	Data download and vertical profile
	October 7	Data download and vertical profile; Remove instrumentation

^{*}ADCP flow measurements were conducted for computational fluid dynamics (CFD) model verification during this event in support of the Water Resources Study Task 3.

3 Results

3.1 Study Season 1 (Summer 2023)

3.1.1 Station 564.1

Station 564.1 is immediately downstream of the Project I/O structure and upstream of the submerged weir. From June to early September, epilimnetic water temperatures increased, peaking at 27.7 degrees Celsius (°C) in late July, while hypolimnetic water temperatures peaked in early September at 25.4°C (Figure 5). DO concentrations remained above 7.0 milligrams per liter (mg/L) all at datalogger depths throughout the entire monitoring period (Figure 6).

While there was some minor evidence of thermal stratification between 20 and 40 feet in the earliest part of summer, there was no indication of a stable thermocline, indicating vertical mixing occurred throughout the monitoring period. Vertical mixing is associated with the operation of the Project, which facilitates the direct exchange of water between Bad Creek Reservoir and Lake Jocassee. Vertical mixing at this location is further supported by historical water quality monitoring (Task 1 of the Water Resources Study) and computational fluid dynamics (CFD) modeling conducted for Task 3 of the Water Resources Study.

Continuous temperature data generally indicated a gradual increase in water temperature throughout the summer months, which stabilized in September before experiencing a gradual decline into mid-October (Figure 7). The near surface datalogger recorded greater temperature variability, reflecting diurnal atmospheric temperature fluctuations. This observed variability aligns with the anticipated effects of solar heating and nighttime cooling on surface waters. In contrast, dataloggers positioned at depths between 30 ft and 100 ft recorded relatively stable temperatures, indicative of vertical mixing (due to Project operations) and minimal diurnal temperature variability. This stability displayed effective thermal stratification where deeper waters remain less susceptible to short-term atmospheric temperature changes.

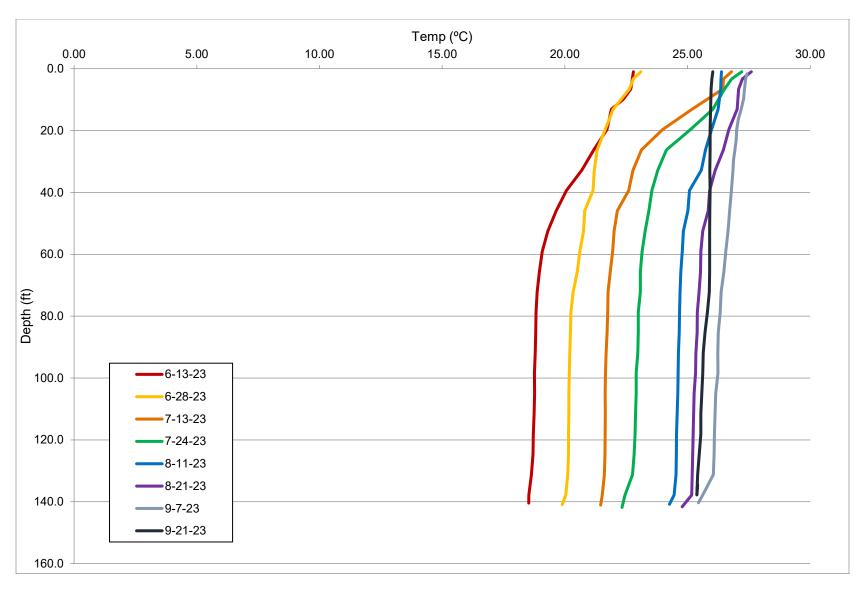


Figure 5. Water Temperature Profiles for Monitoring Station 564.1

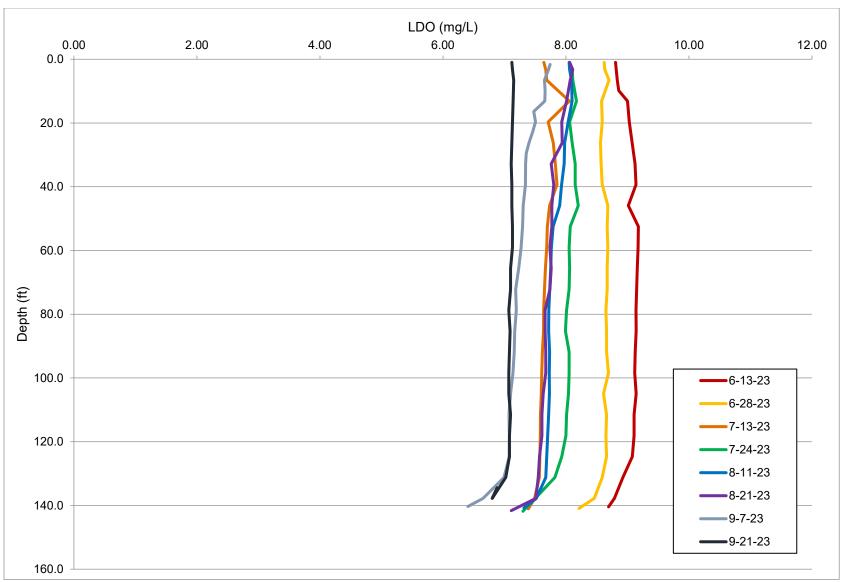
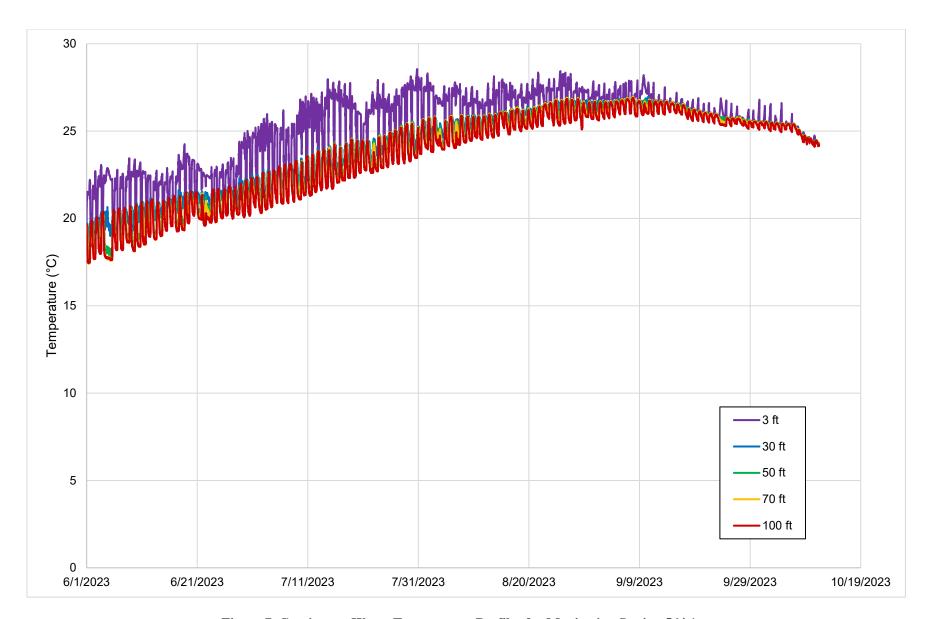



Figure 6. Dissolved Oxygen Concentrations for Monitoring Station 564.1

Figure 7. Continuous Water Temperature Profiles for Monitoring Station 564.1

3.1.2 Station 564.0

Station 564.0 is located on the downstream side of the submerged weir, upstream of the confluence of the Whitewater River arm and the Thompson River arm of Lake Jocassee. The recorded surface water temperature exhibited a seasonal trend, characterized by a steady increase throughout the summer months, with a peak temperature of 27.8°C in early September, followed by a gradual decline towards the end of the month (Figure 8). Thermal stratification shows a well-defined thermocline observed at a depth of approximately 100 ft, separating the epilimnion from the hypolimnion. DO concentrations exhibited a consistent decline over the monitoring period from June through September. Surface DO concentrations ranged from 7.3 to 8.8 mg/L, while concentrations at a depth of approximately 200 ft ranged from 0.0 to 2.3 mg/L (Figure 9).

Temperature and DO profiles at Station 564.0 indicate that the presence of the submerged weir minimizes vertical mixing on the downstream side of the weir, as evidenced by the presence of a stable thermocline. This stratification limits the mixing of oxygenated surface waters at depths greater than 100 ft.

Continuous water temperature monitoring data show distinct thermal dynamics at varying depths. Surface water temperatures (at the 3-ft-depth datalogger) reached a maximum of approximately 28.4° C in late July, while temperatures at greater depths (≥ 30 ft) displayed a delayed peak in early September and continued to decline until the end of data collection on October 11, 2023 (Figure 10). As anticipated, the surface water temperatures showed diurnal fluctuations, reflecting the influence of direct solar heating and atmospheric interactions. In contrast, depths at 30, 50, and 70 ft exhibited more stable profiles, with reduced diurnal variability, which are buffered from rapid surface driven temperature changes.

Daily water temperature fluctuations at a depth of 100 ft were larger than fluctuations at depths above 100 ft (Figure 10), likely due to flow circulation patterns immediately downstream of the submerged weir (also shown in the CFD modeling results near this location) and thermal density gradients associated with the thermocline, which were most pronounced at this depth. The submerged weir significantly reduces vertical mixing on the downstream side of the weir which is why thermal and DO stratification is more pronounced compared to Station 564.1 on the upstream side of the weir.

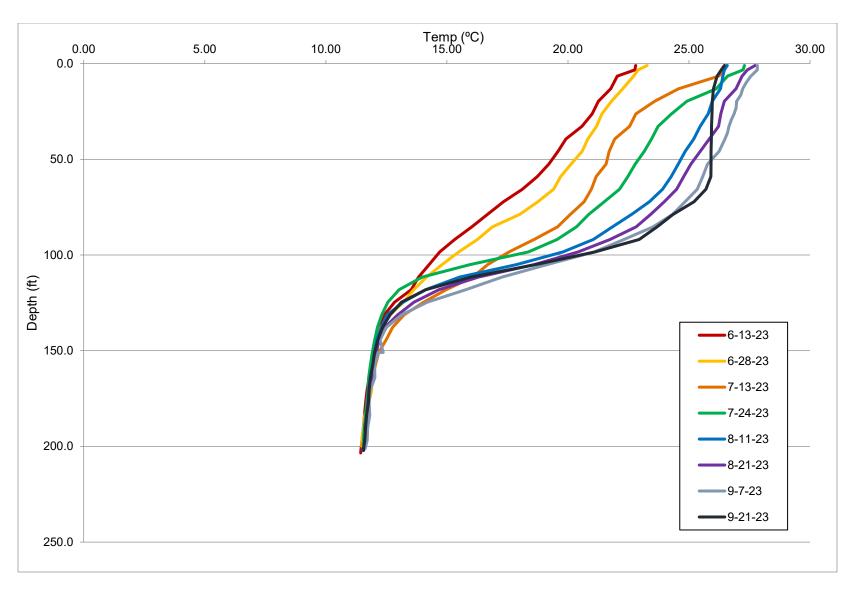


Figure 8. Water Temperature Profiles for Monitoring Station 564.0

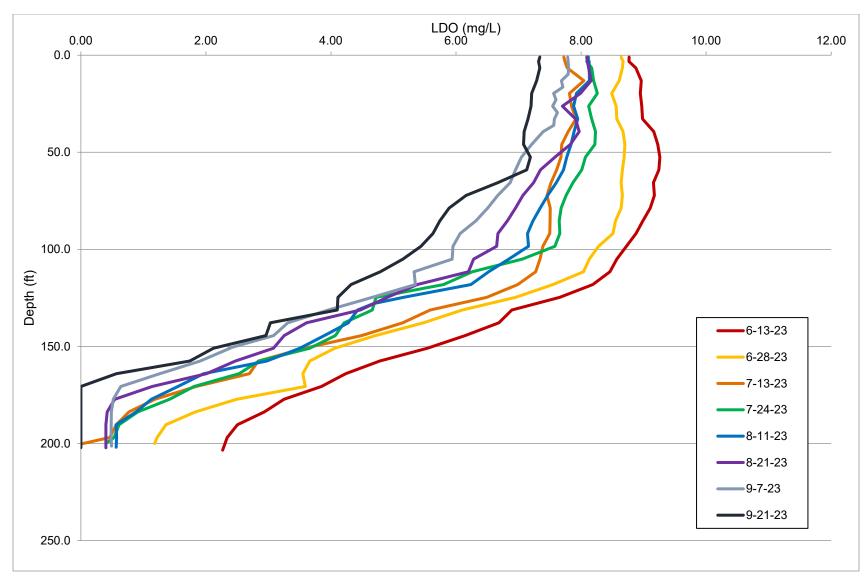


Figure 9. Dissolved Oxygen Concentrations for Monitoring Station 564.0

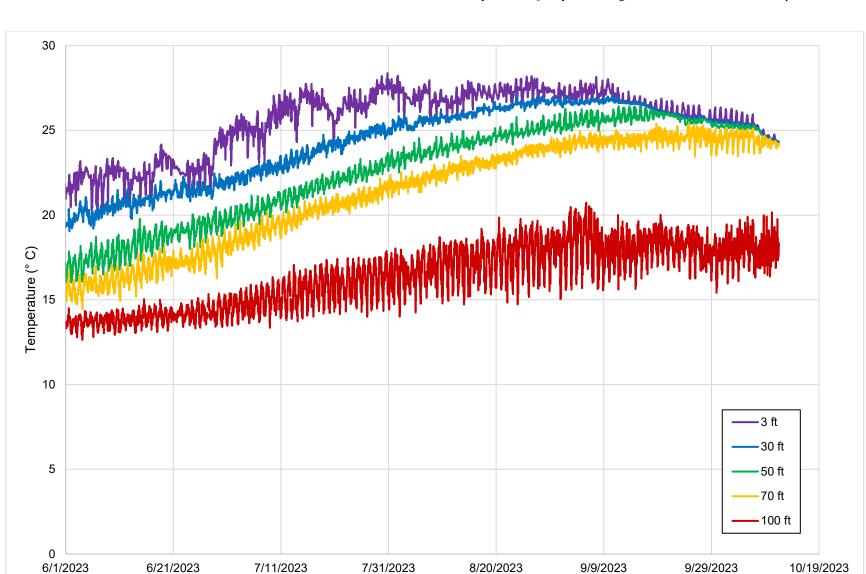


Figure 10. Continuous Water Temperature Profiles for Monitoring Station 564.0

3.1.3 Station 560.0

Thermal and DO profiles at Station 560.0 exhibited stratification patterns similar to those observed at Station 564.0. Throughout the monitoring period, surface water temperatures increased, reaching a peak of 28.1°C, while DO concentrations ranged from 7.8 to 8.9 mg/L (Figure 11 and Figure 12). A thermocline was observed at approximately 100 ft, separating the warmer epilimnion from the cooler hypolimnion.

At Station 560.0, which has a depth of approximately 260 ft, temperatures below the thermocline were approximately 11°C, with DO concentrations ranging from 0.9 to 2.2 mg/L. The deeper and wider channel at this location exhibits less vertical mixing (confirmed by the CFD modeling results) resulting in pronounced thermal and DO stratification.

Continuous water temperature monitoring data are shown on Figure 13. Surface water temperatures reached a maximum of approximately 28.7° C in late August, while temperatures at greater depths (≥ 30 ft) peaked in early September before gradually declining through the end of the study period. Similar to observations at Station 564.0, surface temperatures exhibited diurnal fluctuations.

At 100 ft, water temperature fluctuations were also observed, but the magnitude of the fluctuations were reduced compared to those observed at Station 564.0. This can be attributed to the decreasing influence of flows in the Whitewater River arm as the channel deepens and broadens resulting in a more stable thermal environment.

Pond elevations in Lake Jocassee, as shown on Figure 4, remained within the upper 4 ft of the reservoir's 30-ft operating band from early June through early September. However, during the latter part of the study period, drought conditions resulted in decreased pond elevations (as low as 1,103.3 ft msl, or 6.7 ft below full pond) in early October. Despite this decrease, there was no observable impact on water temperature or DO trends in the recorded data.

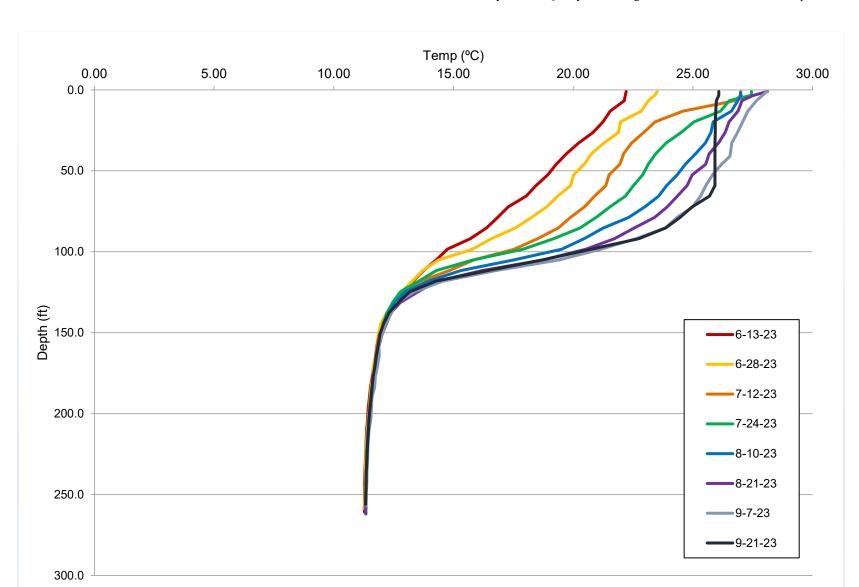


Figure 11. Water Temperature Profiles for Monitoring Station 560.0

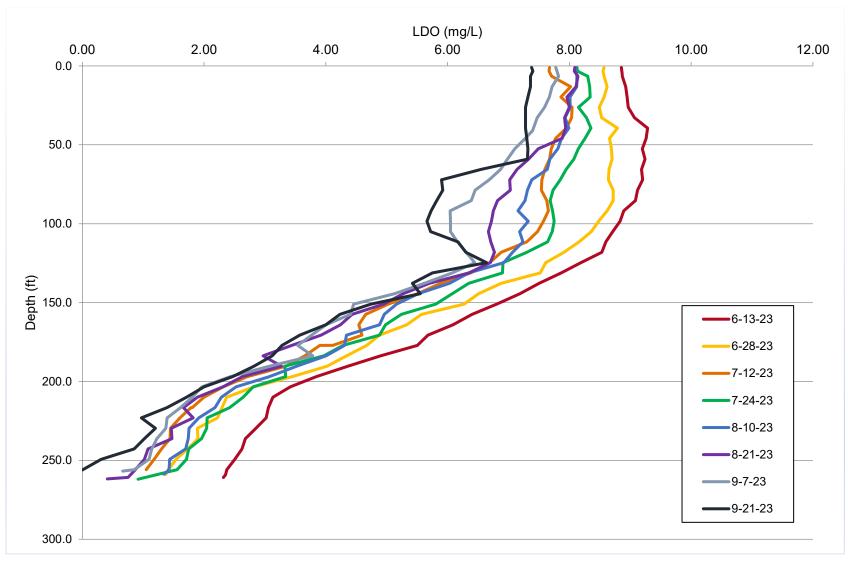


Figure 12. Dissolved Oxygen Concentrations for Monitoring Station 560.0

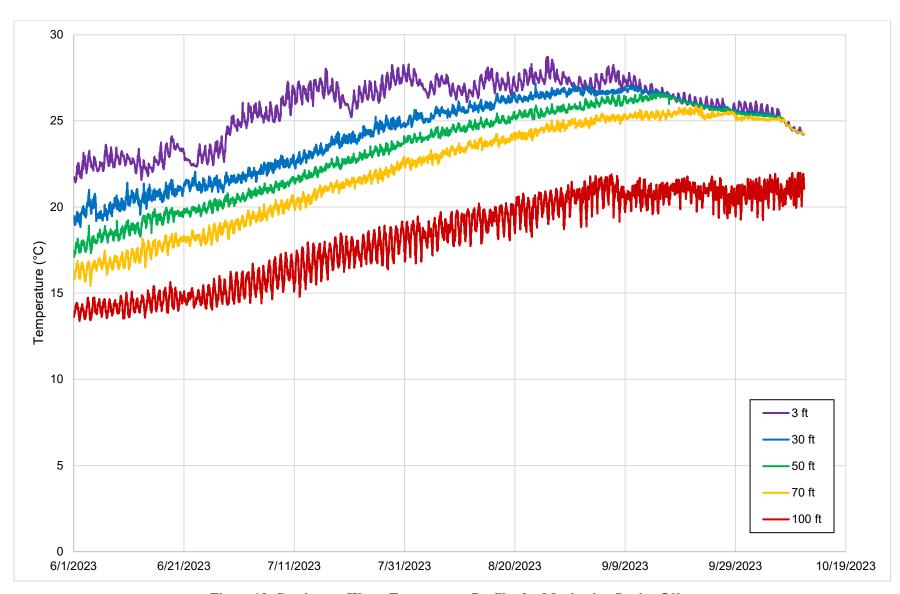


Figure 13. Continuous Water Temperature Profiles for Monitoring Station 560

3.2 Study Season 2 (Summer 2024)

3.2.1 Station 564.1

In the early summer months (June – mid-July) of 2024, similar to the previous year, there was some evidence of thermal stratification between 20 and 40 feet. Epilimnetic temperatures peaked at approximately 28.5°C in mid-July, while deeper hypolimnetic waters reached a maximum temperature around 21.0°C (Figure 14). By August, thermal stratification was less evident in the upper water column (likely due to mixing/Project operations) and relatively isothermal conditions persisted through the end of the study period in early October. DO concentrations remained consistently above 6.0 mg/L across all depths, indicating well-oxygenated conditions during the study period (Figure 15).

Continuous temperature monitoring data showed a gradual increase in water temperatures throughout the summer, plateauing in early September before experiencing a gradual decline into mid-October (Figure 16). The surface datalogger (3 ft) recorded greater temperature variability, likely driven by diurnal fluctuations in atmospheric temperatures, corresponding to solar heating during the day and cooling at night. In contrast, temperature loggers positioned at depths of 30 to 100 feet recorded relatively similar thermal conditions, indicative of effective vertical mixing and minimal influence from diurnal atmosphere variability.

The landfall of Hurricane Helene in the Upstate of South Carolina on September 26-27 directly impacted temperatures in the Whitewater River arm (Figure 16); this is discussed in Section 3.2.4.

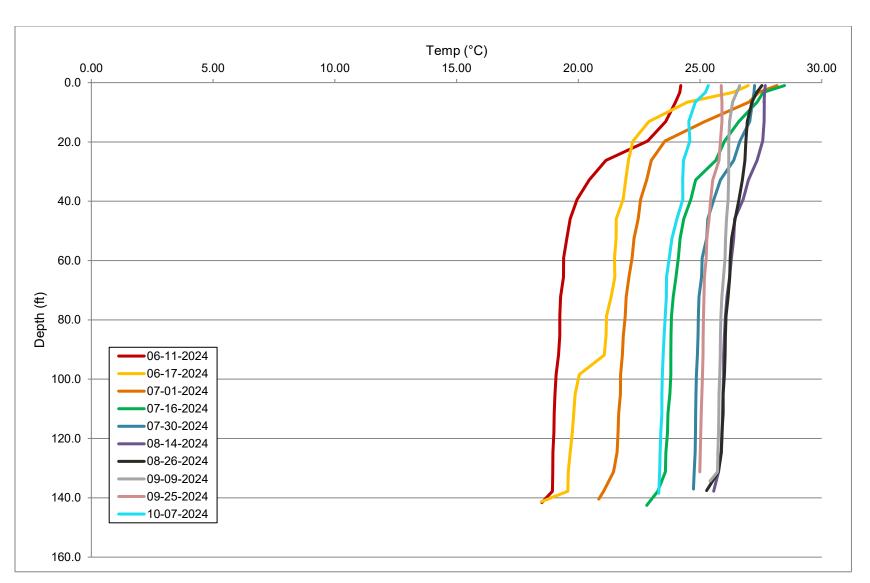


Figure 14. Water Temperature Profiles for Monitoring Station 564.1

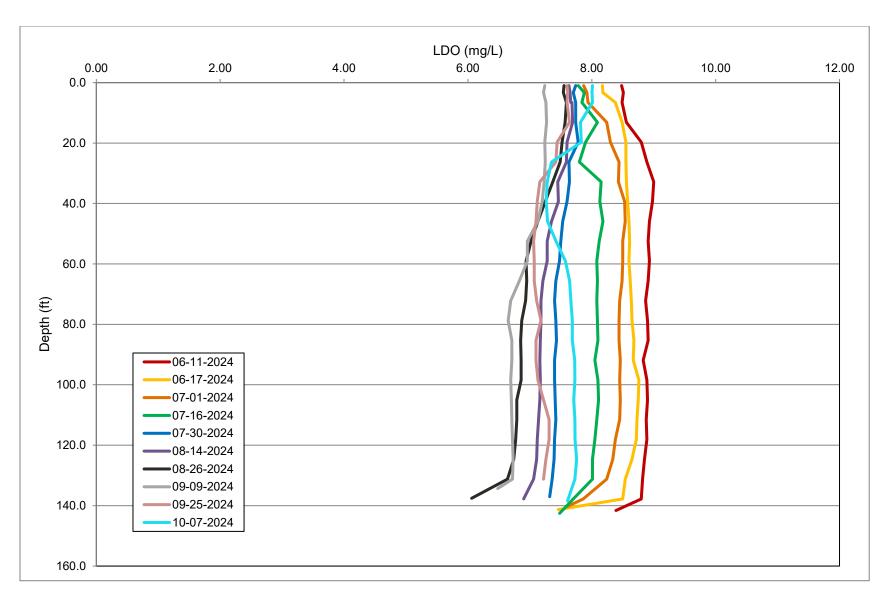


Figure 15. Dissolve Oxygen Concentrations for Monitoring Station 564.1

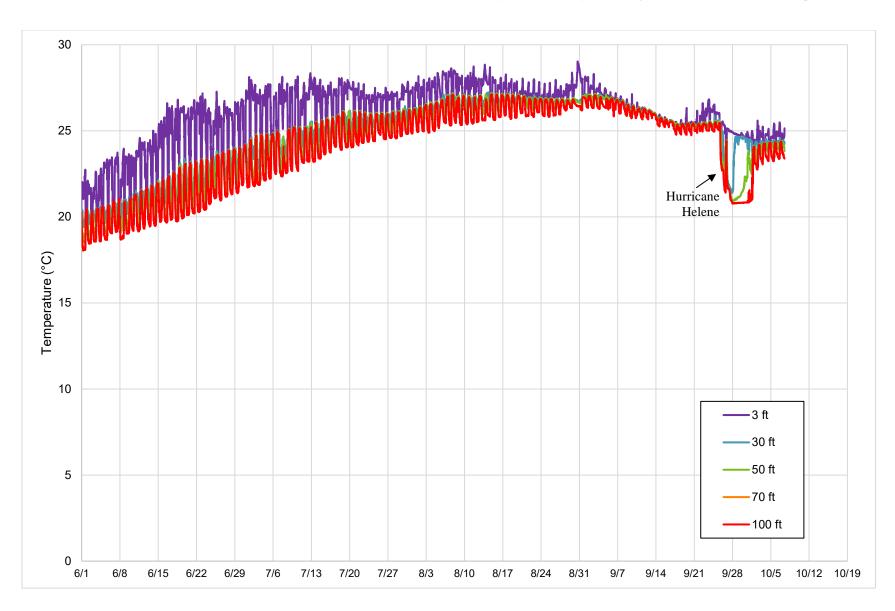


Figure 16. Continuous Water Temperature Profiles for Monitoring Station 564.1

3.2.2 Station 564.0

The recorded surface water temperature at Station 564.0 exhibited a seasonal progression of stratification, characterized by a thermal increase throughout the summer months with a peak temperature of 28.2°C in mid-July followed by a gradual decline throughout the end of the monitoring period (Figure 17). The thermal stratification at this station was more pronounced compared to Station 564.1, with a distinct thermocline observed at approximately 100 feet, separating the epilimnion and hypolimnion. DO concentrations exhibited a decline over the monitoring period, with epilimnetic concentrations ranging from 7.5 to 8.9 mg/L, while concentrations in the hypolimnion ranged from 0.7 to 7.0 mg/L (Figure 18). This stratification, made evident by the thermocline, indicates the presence of hypoxic conditions at depths greater than 150 feet, where vertical mixing does not occur.

The submerged weir is a significant factor in preventing vertical mixing downstream, allowing for natural thermocline development in Lake Jocassee. The stable thermocline at Station 564.0 was also confirmed through CFD modeling and previous water quality monitoring.

Continuous temperature data (Figure 19) also shows distinct thermal characteristics at the various datalogger depths. The surface water temperatures recorded at the 3-ft-deep logger reached a maximum of approximately 28.2° C in early August, while depths ≥ 30 ft displayed a peak in late August, and declined until the end of the monitoring period. As observed in 2023, surface temperatures exhibited diurnal fluctuations, while depths at 30, 50, 30 and 30, 50, 30 ft showed thermally stable profiles (Figure 17).

Continuous temperature data at 100 ft observed higher variability than at other depths, which can be attributed to the complex flow circulation patterns influenced by the submerged weir. CFD modeling supports the conclusion that the presence of the submerged weir minimizes mixing downstream of the weir allowing natural thermal stratification to develop.

The landfall of Hurricane Helene in the Upstate of South Carolina on September 26-27 impacted temperatures in the Whitewater River arm (see Figure 19); this is discussed in Section 3.2.4.

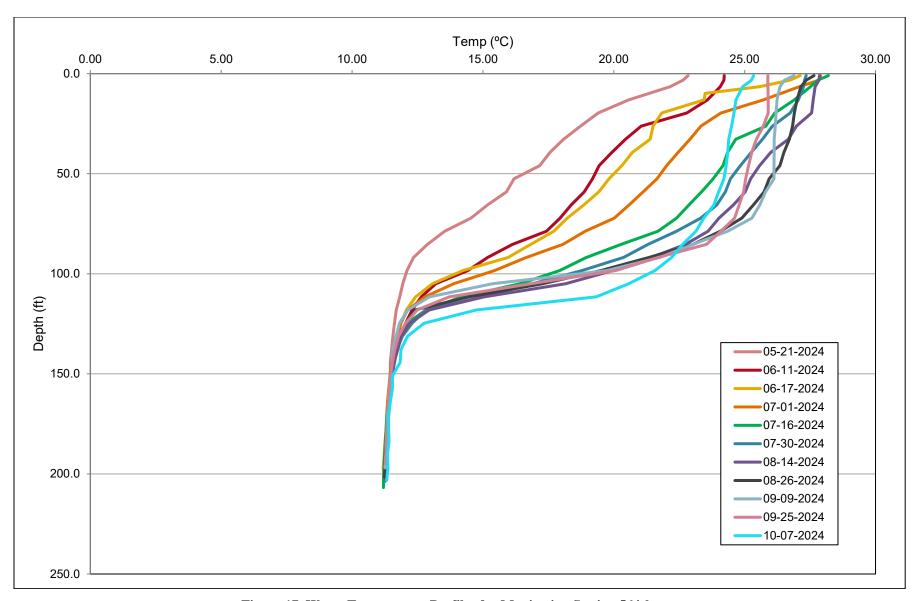


Figure 17. Water Temperature Profiles for Monitoring Station 564.0

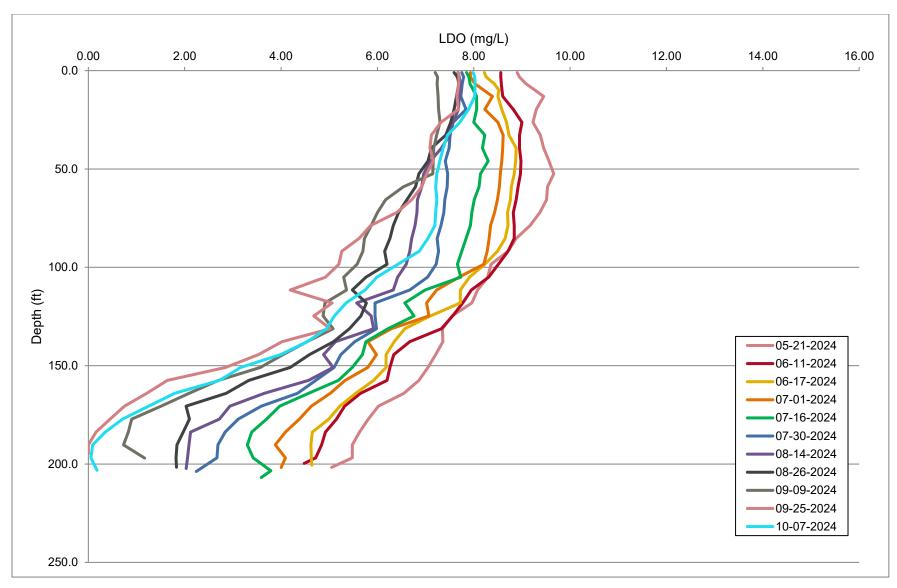


Figure 18. Dissolved Oxygen Concentrations for Monitoring Station 564.0

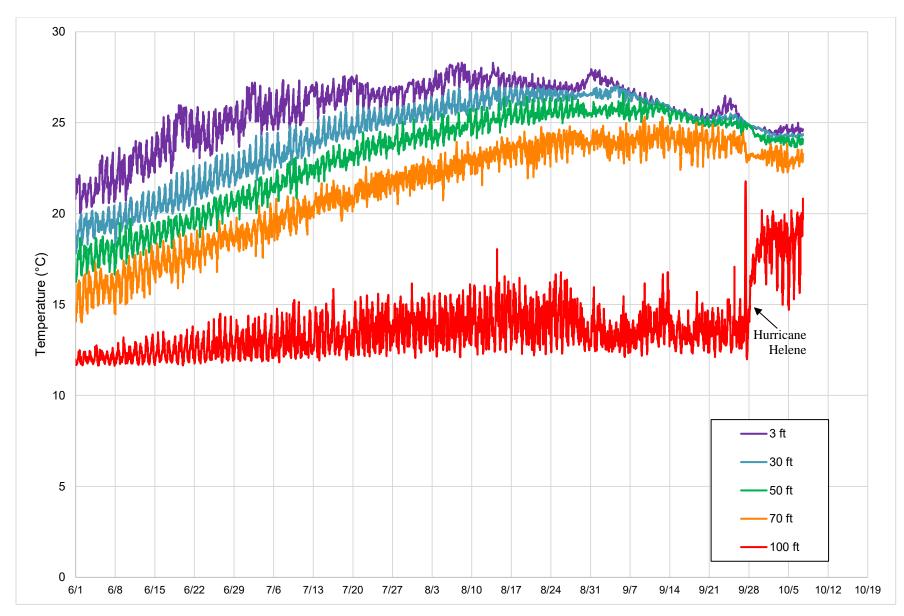


Figure 19. Continuous Water Temperature Profiles for Monitoring Station 564.0

3.2.3 Station 560.0

The temperature and DO profiles at Station 560.0 displayed similar stratification patterns to those observed at Station 564.0. Surface water temperatures peaked near the end of August at 28.3°C while DO concentrations in the epilimnion ranged from 6.3 to 8.9 mg/L to (Figure 20 and Figure 21). Also similar to Station 564.0, a defined thermocline was present at approximately 100 feet.

Temperatures recorded in the hypolimnion ranged from 11.0 to 17.6 °C, while DO concentrations ranged from 3.9 to 6.3 mg/L. The greater depth and wider channel at this station likely contributed to the observed stratification by promoting a stable thermal gradient inhibiting thermal mixing.

Continuous water temperature monitoring further illustrated the seasonal thermal dynamics observed at this station. Surface water temperatures peaked at approximately 28.7°C in early August, while temperatures at greater depths than 30 ft peaked in 25.8°C in early September, followed by a gradual decline toward the end of the monitoring period. Diurnal fluctuations in surface water temperatures were observed, as expected, reflecting diel cycles of solar heating and radiative cooling. Similar to Station 564.0, water temperature fluctuations at the 100-ft depth were also evident, likely influenced by complex circulation patters and thermal density gradients downstream of the weir as discussed above. This effect, supported by CFD modeling, highlights the significant role of the weir, as it dissipates effects of Project operations (Figure 22).

The landfall of Hurricane Helene in the Upstate of South Carolina on September 26-27 impacted temperatures in the Whitewater River arm; this is discussed in Section 3.2.4.

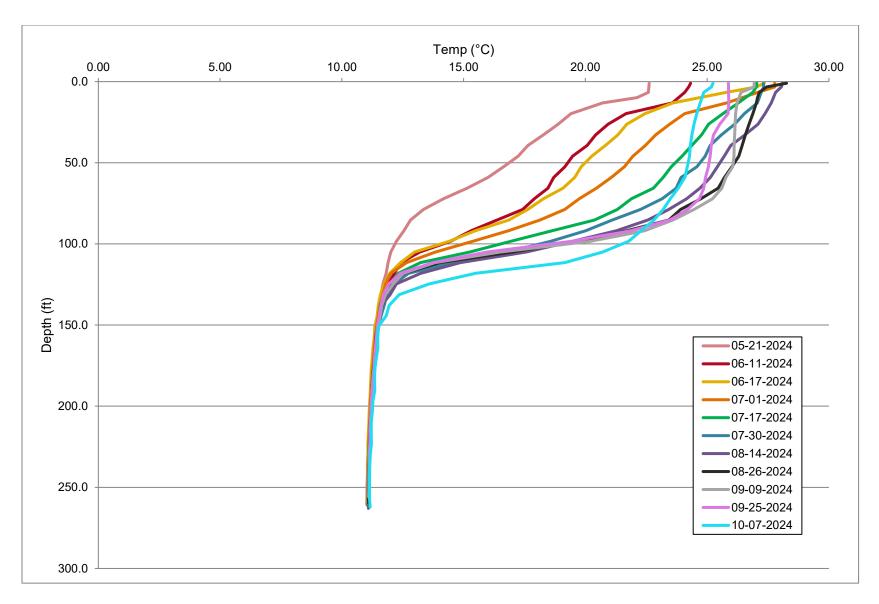


Figure 20. Water Temperature Profiles for Monitoring Station 560.0

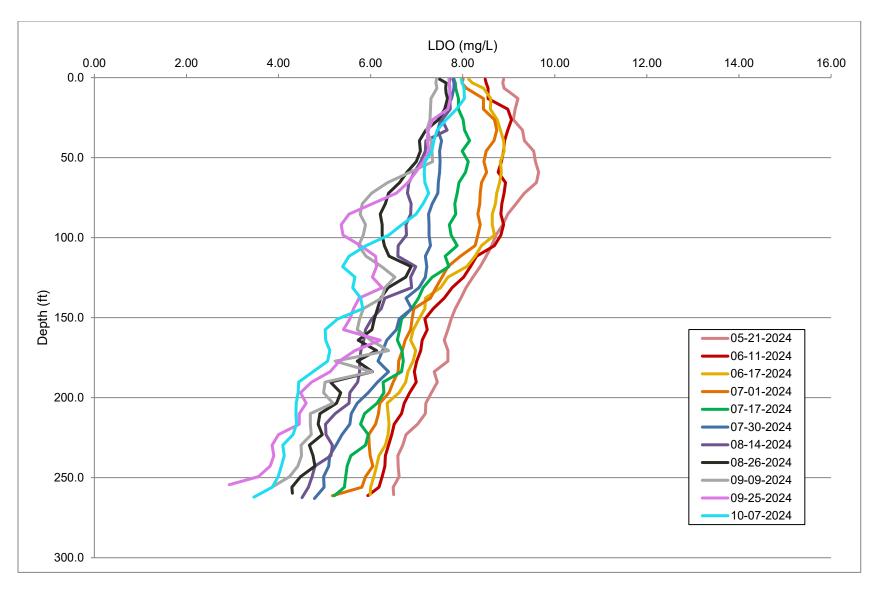


Figure 21. Dissolved Oxygen Concentrations for Monitoring Station 560.0

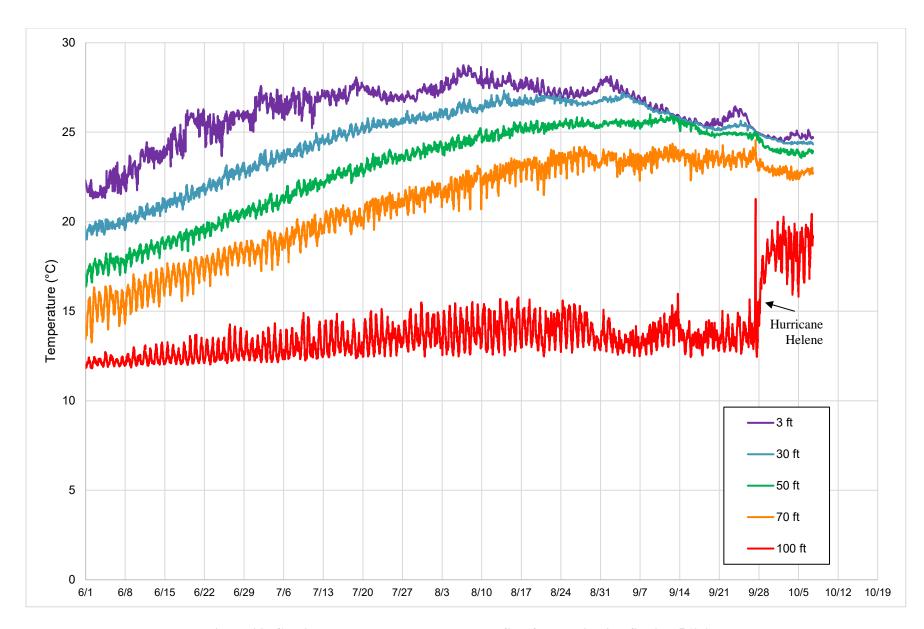


Figure 22. Continuous Water Temperature Profiles for Monitoring Station 560.0

3.2.4 Hurricane Helene

On September 23, 2024, the National Oceanic and Atmospheric Administration classified a developing storm system near the Cayman Islands as a tropical storm, projected to impact northwestern Florida. By September 26, the tropical storm intensified into a Category 4 Hurricane with sustained wind speeds reaching 140 miles per hour (mph) making landfall with a 15-ft storm surge near Tallahassee, Florida. Over the next 24 hours, Hurricane Helene headed northwest affecting Georgia, South Carolina, North Carolina, Tennessee, and Virginia, with a storm radius extending over 300 miles (NOAA 2024).8

During this event, the Jocassee Gorges watershed experienced up to 18 inches of precipitation over a three-day period. Rainfall at the Project totaled 15.89 inches (Alan Stuart, personal communication). This extreme precipitation event is considered a 1,000-year flood, a hydrological occurrent with a 0.1 percent annual probability (NOAA 2024). Continuous temperature data in Lake Jocassee for the day before the event and for several days after the event are shown below on Figure 23 (Station 564.1), Figure 24 (Station 564.0), and Figure 25 (Station 560.0).

Continuous temperature monitoring at Station 564.1 (Figure 23) showed a sudden decline in water temperatures (except for surface temperatures) and temperatures reached approximately 21°C at the three deepest dataloggers. This pattern indicates a substantial influx of cooler water from the Whitewater River into Lake Jocassee consistent with the timing of the hurricane event. Temperatures recovered (i.e., became mixed) after the initial decline, with the lower datalogger (100-ft) taking longest to recover to pre-hurricane temperatures. Figure 23 also shows Lake Jocassee elevations; Duke Energy drew the lake down to 1,099 ft msl on September 26 in preparation for the predicted storm.

As shown on Figure 24 and Figure 25, the combined effects of storm-driven wind stress, colder inflows, and decreasing air temperatures promoted vertical mixing, facilitating the descent of cooler, denser epilimnetic water. This, in turn, caused an upwelling of hypolimnetic water, leading to a temporary downward shift in the thermocline, which was observed at the deepest dataloggers for both stations downstream of the weir.

The rainfall from Hurricane Helene and impacts from this event on water temperatures and mixing in Whitewater River arm, while significant, were temporary and not typical.

Page | 30

⁸ https://www.noaa.gov/

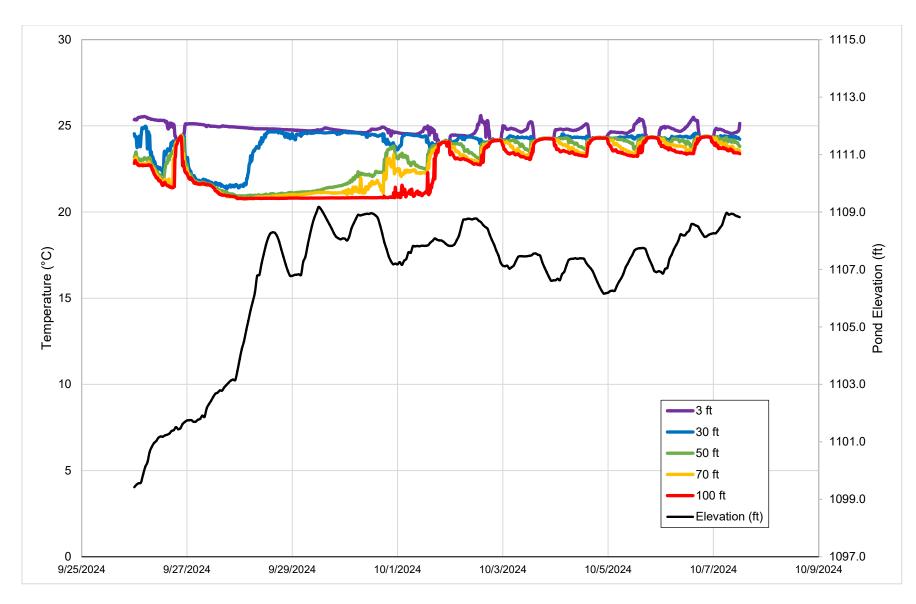


Figure 23. Continuous Water Temperature Profiles for Monitoring Station 564.1 (September 26-October 7, 2024) vs Lake Jocassee Pond Elevation

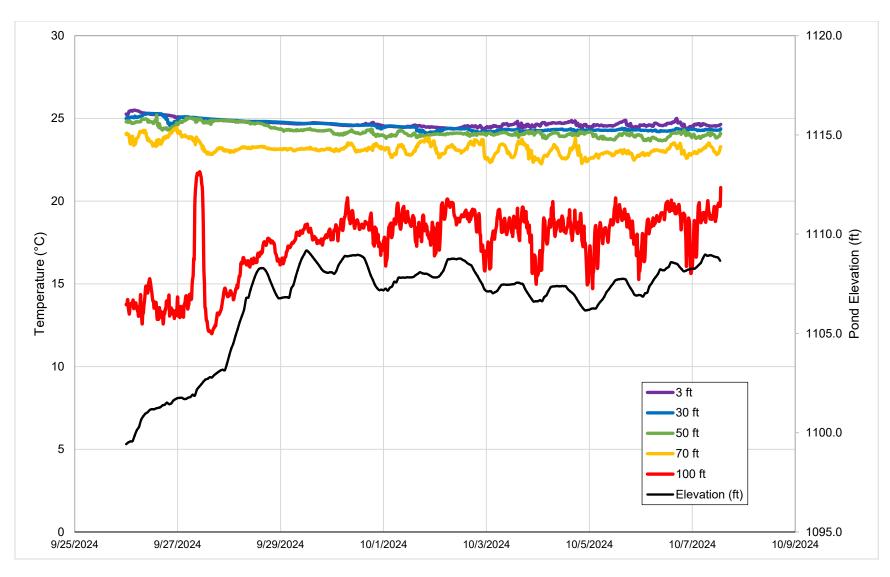


Figure 24. Continuous Water Temperature Profiles for Monitoring Station 564.0 (September 26-October 7, 2024) vs Lake Jocassee Pond Elevation

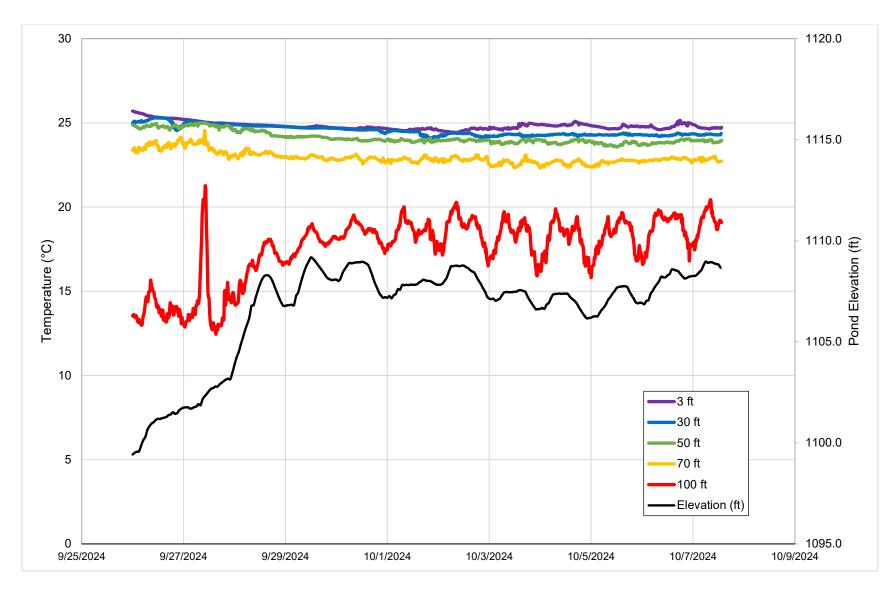
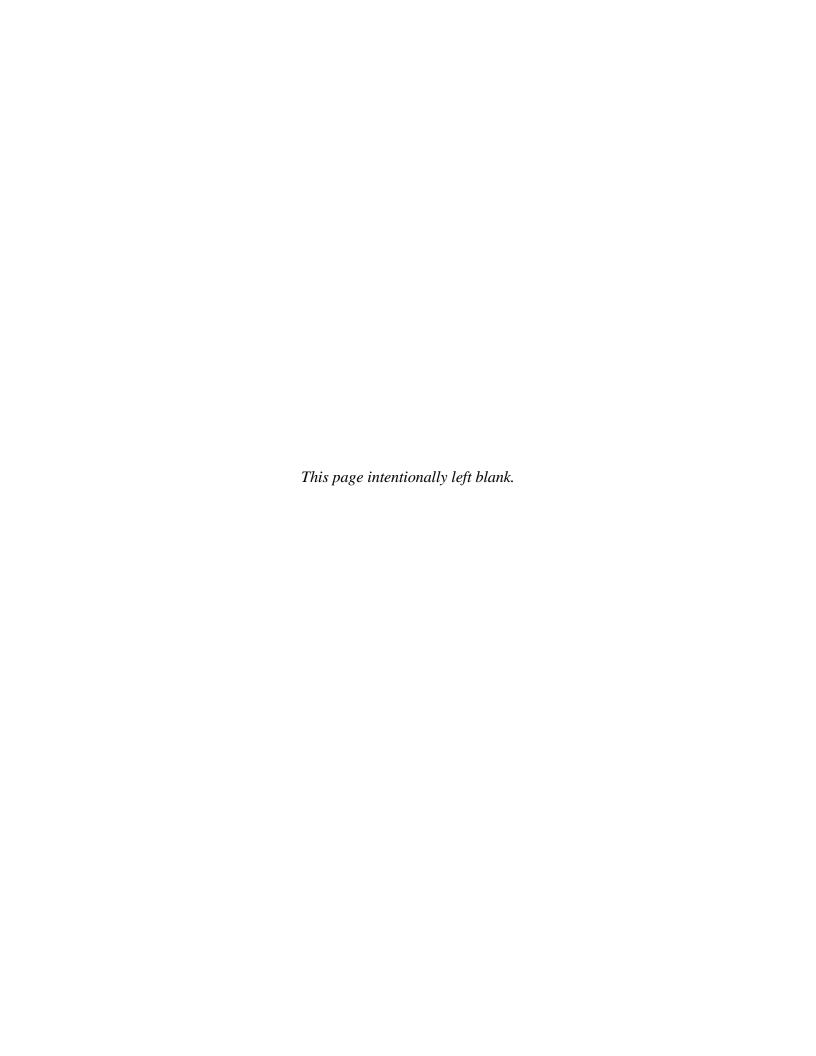


Figure 25. Continuous Water Temperature Profiles for Monitoring Station 560.0 (September 26-October 7, 2024) vs Lake Jocassee Pond Elevation

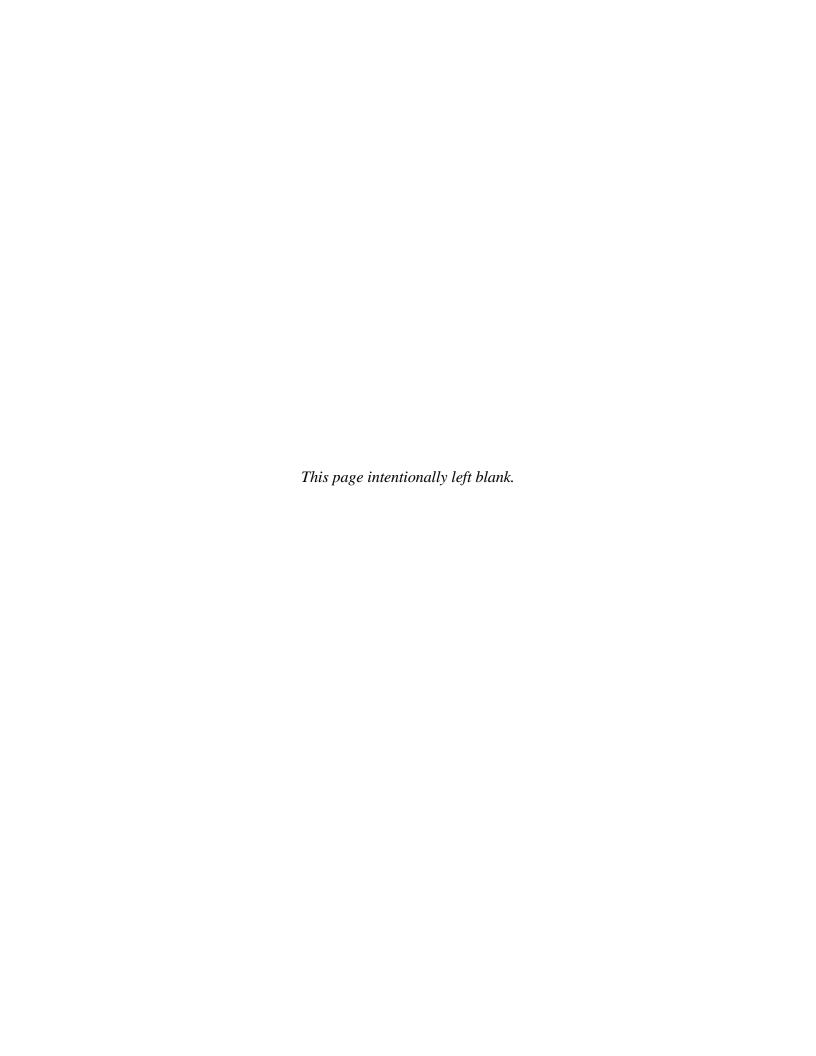
4 Summary

Duke Energy collected continuous water temperature data and periodic DO concentration data (bi-weekly) from locations near three historic monitoring stations to determine current-day representative (i.e., baseline) water quality information. Data collected in 2023 represented conditions under three-unit operations and data collected in 2024 represented conditions under fully upgraded four-unit operations at the Project. There is no noticeable difference in the water quality datasets due to increased pumping or generation. Results from both years indicate water upstream of the submerged weir is, as expected, well-mixed and does not stratify, or is weakly stratified for a short period of time in early summer in the upper water column. Data from monitoring locations downstream of the weir reveal stratification under all pumping and generation scenarios, indicating the weir is functioning as it was designed and helps to dissipate energy from the I/O structure. This preservation of stratification downstream of the weir is also supported by historical water quality monitoring and by CFD model results under current project conditions as well as Bad Creek II conditions, which will have near double the flows generated from the combined powerhouses.

Due to the relatively small surface area, high degree of mixing, and short residence time of water in the Bad Creek Reservoir, warming impacts due to solar radiation in the upper reservoir are limited, therefore, conditions in the Whitewater River arm are reflective of conditions in the upper reservoir.


Duke Energy plans to develop a Water Quality Monitoring Plan in consultation with agencies and other relicensing stakeholders focused on effects of construction and operation of Bad Creek II on water quality in the Whitewater River arm. The Water Quality Monitoring Plan is currently under development and will be submitted with the Draft License Application (March 2025).

5 Variances from FERC-approved Study Plan

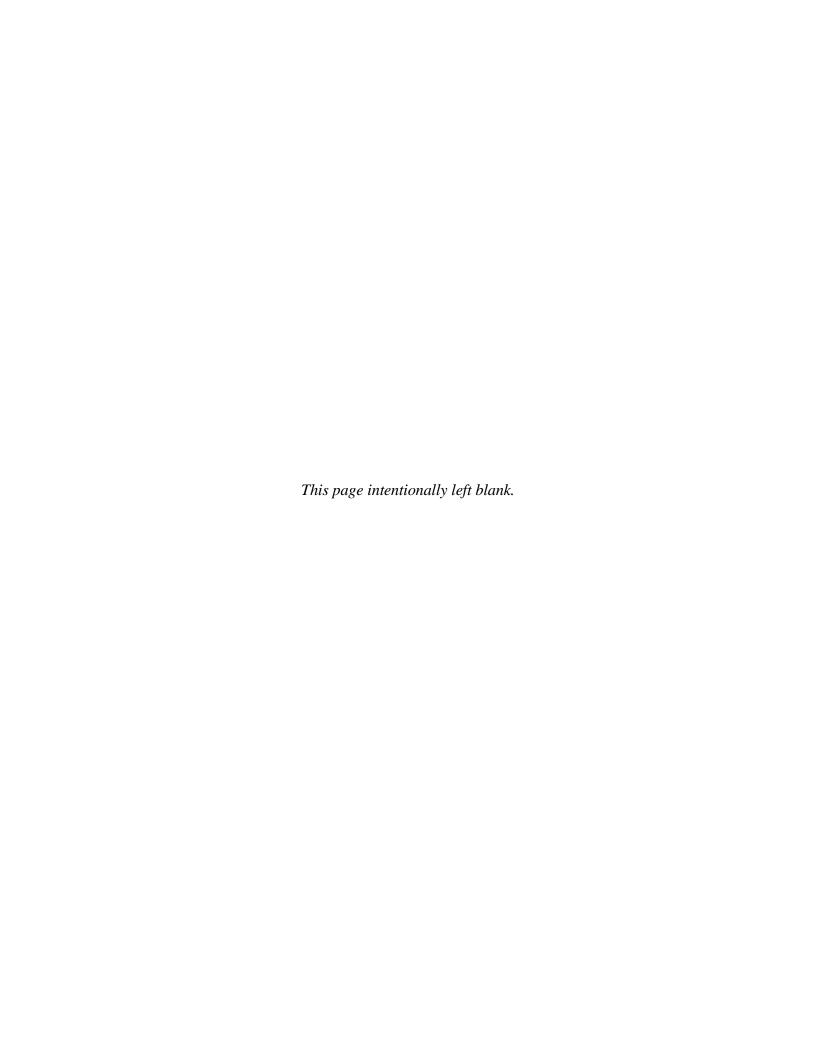

There were no variances from the FERC-approved RSP.

6 Germane Correspondence and Consultation

Consultation documentation for the Water Resources Study is included in Appendix A of the Updated Study Report.

Attachment 3 Velocity Effects and Vertical Mixing in Lake Jocassee Due to a Second Powerhouse

VELOCITY EFFECTS AND VERTICAL MIXING IN LAKE JOCASSEE DUE TO A SECOND POWERHOUSE


FINAL REPORT

WATER RESOURCES STUDY

Bad Creek Pumped Storage Project FERC Project No. 2740

Oconee County, South Carolina

October 27, 2023

VELOCITY EFFECTS AND VERTICAL MIXING IN LAKE JOCASSEE DUE TO A SECOND POWERHOUSE

BAD CREEK PUMPED STORAGE PROJECT FERC PROJECT No. 2740

TABLE OF CONTENTS

Secuo	on 11ue	Page No.
1 P	roject Introduction and Background	
2 S	tudy Goals and Objectives	2
3 S	tudy Areatudy Area	2
4 N	Methods and Model Description	7
4.1	2-D Model Development	7
4	.1.1 Modeling Approach	7
4	.1.2 Digital Terrain Model Development	8
	.1.3 Mesh Development	
4	.1.4 2-D Model Scenarios	
4.2	CFD Model Development	
	.2.1 Modeling Approach	
	.2.2 Model Geometry	
	.2.3 Mesh Development	
	.2.4 Model Scenarios	
	.2.5 Boundary Conditions	
	.2.7 Model and Scenario Evaluation	
4.3		
	-D Model Results	
5.1	Hydraulic Effects	
5.2	CFD Model Domain	
	CFD Model Results	
6.1	Domain Verification	
6.2		
	.2.1 Generation	
_	.2.2 Pumping	
6.3		
	.3.1 Generation	
_	3.2 Pumping	
6.4	Proposed Project, Expanded Weir	
6	.4.1 Generation	
6	.4.2 Pumping	
6.5	Effect of Submerged Weir Geometry	
7 C	Conclusions	
	uture Work	
9 V	ariances from FERC-approved Study Plan	66
10 G	Germane Correspondence and Consultation	66
11 R	eferences	67

TABLE OF CONTENTS CONTINUED

Section Title Page No. LIST OF TABLES **LIST OF FIGURES** Figure 5-1. 2-D Model Results for Existing (Bad Creek) and Proposed (Bad Creek II) Conditions Figure 6-4. Existing Generation at Full Pond – Velocity Contours in Submerged Weir Vicinity Figure 6-5. Existing Generation at Full Pond – Whitewater River Cove Streamlines (Flow is Left Figure 6-7. Existing Generation at Maximum Drawdown – Velocity Contours in Submerged Figure 6-8. Existing Generation at Maximum Drawdown – Whitewater River Cove Streamlines

TABLE OF CONTENTS

CONTINUED

Section	Title	Page No.
	Full Pond – Velocity Contours in Submerged W	
	ull Pond – Whitewater River Cove Streamlines	
Figure 6-12. Existing Pumping at M	Maximum Drawdown – Velocity Contours	41
	Maximum Drawdown – Velocity Contours in S	
	Maximum Drawdown – Whitewater River Cove	
	(Existing Weir) at Full Pond – Velocity Contou	
0 1	(Existing Weir) at Full Pond – Velocity Contou Left to Right)	
	(Existing Weir) at Full Pond – Whitewater Rive	
-	(Existing Weir) Maximum Drawdown – Veloci	•
	(Existing Weir) at Maximum Drawdown – Vel is Left to Right)	
<u> </u>	(Existing Weir) at Maximum Drawdown – Whi	
Figure 6-21. Proposed Pumping (E.	xisting Weir) at Full Pond – Velocity Contours	50
	xisting Weir) at Full Pond – Velocity Contours ft)	_
	xisting Weir) at Full Pond – Whitewater River	
Figure 6-24. Proposed Pumping (E.	xisting Weir) at Maximum Drawdown – Veloc	ity Contours 52
	xisting Weir) at Maximum Drawdown – Veloc Right to Left)	
	xisting Weir) at Maximum Drawdown – White Left)	
Figure 6-27. Proposed Generation ((Expanded Weir) at Full Pond – Velocity Conto	ours 55
Submerged Weir Vicinity (Flow is	(Expanded Weir) at Full Pond – Velocity Conto Left to Right)	56
	(Expanded Weir) at Full Pond – Whitewater Ri	
= =	(Expanded Weir) at Maximum Drawdown – Ve	-
	(Expanded Weir) at Maximum Drawdown – Vonity (Flow is Left to Right)	•
-	(Expanded Weir) at Maximum Drawdown – W Right)	
	xpanded Weir) at Full Pond – Velocity Contou	

TABLE OF CONTENTS

CONTINUED

Section	Title	Page No.
	nping (Expanded Weir) at Full Pond – Ve	•
Submerged Weir Vicinity ((Flow is Right to Left)	62
Figure 6-35. Proposed Pun	nping (Expanded Weir) at Full Pond – W	hitewater River Cove
Streamlines (Flow is Right	to Left)	62
	nping (Expanded Weir) at Maximum Dra	-
	nping (Expanded Weir) at Maximum Dra ty (Flow is Right to Left)	•
	nping (Expanded Weir) at Maximum Dra Right to Left)	
	Appendices	

Appendix A – Upgraded Unit Figures

ACRONYMS AND ABBREVIATIONS

°C degrees Celsius 2-D 2-dimensional 3-D 3-dimensional

ADCP acoustic Doppler current profiler
Bad Creek (or Project) Bad Creek II Complex Bad Creek II Power Complex

Bad Creek Reservoir Upper Reservoir

CFD computational fluid dynamics

cfs cubic feet per second DTM digital terrain model

Duke Energy or Licensee Duke Energy Carolinas, LLC

fps feet per second

ft feet

ft msl feet above mean sea level

FERC or Commission Federal Energy Regulatory Commission

ICM Innovyze Catchment Model

ISR Initial Study Report

I/O Inlet/Outlet

KT Project Keowee-Toxaway Hydroelectric Project

mi² square miles

RSP Revised Study Plan

SCDNR South Carolina Department of Natural Resources

STI Supporting Technical Information

STID Supporting Technical Information Document

1 Project Introduction and Background

Duke Energy Carolinas, LLC (Duke Energy or Licensee) is the owner and operator of the 1,400-megawatt Bad Creek Pumped Storage Project (Project) (FERC Project No. 2740) located in Oconee County, South Carolina, approximately eight miles north of Salem. The Project utilizes the Bad Creek Reservoir as the upper reservoir (Upper Reservoir) and Lake Jocassee, which is licensed as part of the Keowee-Toxaway (KT) Hydroelectric Project (FERC Project No. 2503), as the lower reservoir.

The existing (original) license for the Project was issued by the Federal Energy Regulatory Commission (FERC or Commission) for a 50-year term, with an effective date of August 1, 1977 and expiration date of July 31, 2027. The license has been subsequently and substantively amended, with the most recent amendment on August 6, 2018 for authorization to upgrade and rehabilitate the four pump-turbines in the powerhouse and increase the Authorized Installed and Maximum Hydraulic capacities for the Project. Duke Energy is pursuing a new license for the Project pursuant to the Commission's Integrated Licensing Process, as described at 18 Code of Federal Regulations (CFR) Part 5.

In accordance with 18 CFR §5.11 of the Commission's regulations, Duke Energy developed a Revised Study Plan (RSP) for the Project and proposed six studies for Project relicensing. The RSP was filed with the Commission and made available to stakeholders on December 5, 2022. FERC issued the Study Plan Determination on January 4, 2023, which included modifications to one of the six proposed studies (Recreational Resources Study).

This report includes the methods and results of Task 3 (Velocity Effects and Vertical Mixing in Lake Jocassee Due to a Second Powerhouse) of the Water Resources Study. The Water Resources Study is ongoing in support of preparing an application for a new license for the Project in accordance with 18 CFR §5.15, as provided in the RSP.

¹ Duke Energy Carolinas LLC, 164 FERC ¶ 62,066 (2018)

2 Study Goals and Objectives

Tasks carried out for the Bad Creek Water Resources Study employ standard methodologies that are consistent with the scope and level of effort described in the RSP. This report is intended to provide sufficient information to support an analysis of the potential Project-related effects on water resources with clear nexus to the Project.

The main objectives of this task include:

- Use a two-dimensional (2-D) hydrologic model to determine the downstream extent of potential effects (i.e., mixing) from an additional powerhouse in the Whitewater River cove; results of the 2-D modeling will be used to develop physical model boundaries of Lake Jocassee for three-dimensional (3-D) computational fluid dynamics (CFD) modeling.
- Use the CFD model to evaluate flows and the extent of vertical mixing in the Whitewater River cove and downstream of the submerged weir due to the addition of a second inlet/outlet structure.

Note that associated potential effects on shoreline erosion in the Whitewater River cove due to a second powerhouse were assessed during the preliminary feasibility study. Results indicated erosion on the bank opposite the inlet/outlet (I/O) structure would not be affected by additional flows; the final report was included in the RSP.

3 Study Area

The study area encompasses the western portion of Lake Jocassee that includes the Whitewater River arm and the Thompson River arm (Figure 3-1); this is the extent of the CFD model domain.

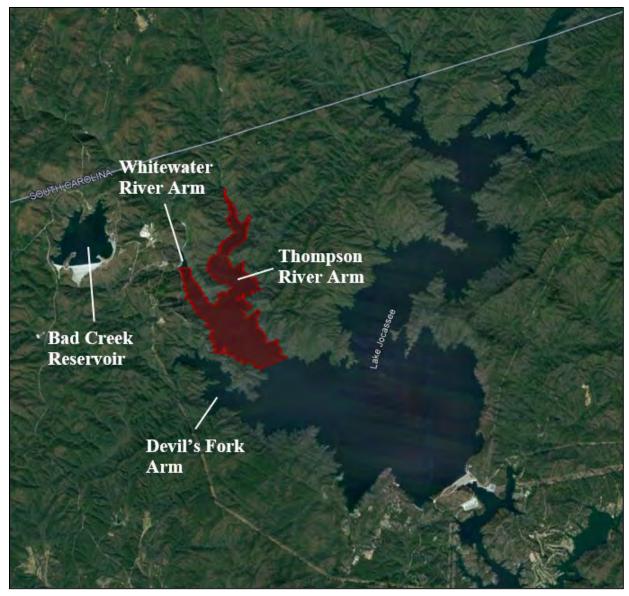


Figure 3-1. CFD Modeling Study Area

As described in the Bad Creek relicensing pre-application document, nearly half a million cubic yards of material from the original Project excavation was placed approximately 550 meters (1,804 feet [ft]) downstream of the Project's I/O structure to form a submerged weir. The function of the weir is to help minimize the effects of Project operations on the natural stratification of Lake Jocassee; the weir prevents the mixing of warmer water from the pumped storage discharge with the cooler water in the lower layer of the lake for the protection of coldwater fish habitat. The weir also serves to dissipate the energy of the discharging water from the I/O structure. Duke Energy is considering expanding the existing submerged weir in the downstream direction with newly excavated rockfill from the proposed Bad Creek II Complex. A

schematic drawing showing a profile of the existing weir in Whitewater River cove as well as the proposed expanded weir is depicted on Figure 3-2.

The Study Area includes three historic Duke Energy water quality monitoring stations (Stations 564.1, 564.0, and 560.0) in the Whitewater River arm of Lake Jocassee as shown on Figure 3-3. Water quality data (e.g., temperature, dissolved oxygen) from these monitoring stations are included in the Summary of Existing Water Quality Data and Standards Report, which was developed as a desktop study under Task 1 of the Water Resources Study and will be included in the Initial Study Report (ISR). Results from that study indicate the water column is completely mixed (i.e., no natural stratification) near the I/O structure upstream of the weir; however, just downstream of the weir, stratification is comparable to rest of the waterbody, indicating the weir is functioning as intended and mixing is confined to the Whitewater River cove upstream of the weir.

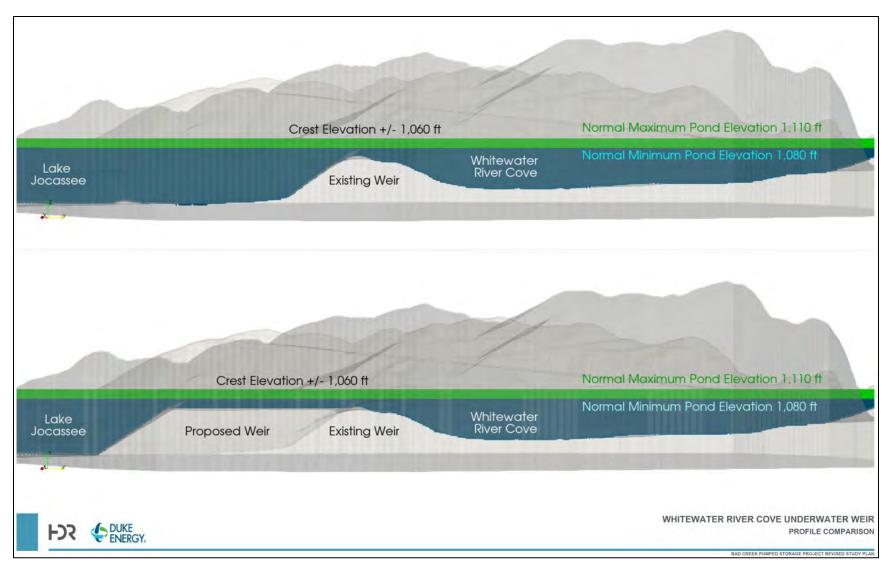


Figure 3-2. Submerged Weir in Whitewater River Cove (Existing and Proposed)

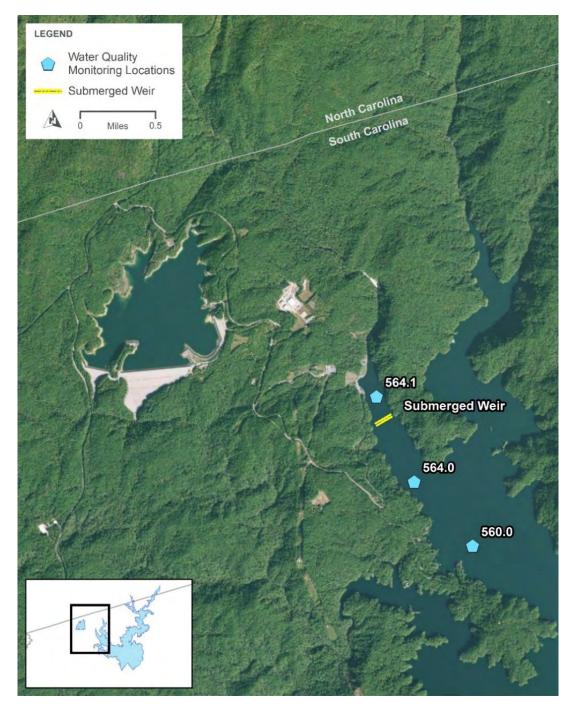


Figure 3-3. Water Quality Monitoring Stations in the Whitewater River Arm of Lake Jocassee

4 Methods and Model Description

4.1 2-D Model Development

A 2-D model was developed using Innovyze Infoworks Integrated Catchment Model (ICM) software (Innovyze Infoworks ICM Version 2023.2.0 [Innovyze 2023]) to evaluate the hydraulics of the Whitewater River cove with the goal of determining the CFD model boundary.

Because CFD modeling is a time-consuming process, the 2-D model was developed prior to the CFD model to more efficiently establish the required modeling extent (i.e., model domain). Results from the 2-D model were used as input into the CFD model to determine the downstream modeling boundary; the significantly reduced computational run time of the 2-D model was able to achieve this step in a single model run as opposed to a lengthy iterative process. The ICM software is considered appropriate to approximate the extent of hydraulic effects in the Whitewater River arm downstream of the submerged weir.

4.1.1 Modeling Approach

The ICM is a fully integrated 2-D hydrodynamic model which facilitates accurate representation of flow paths while enabling complex hydraulics and hydrology to be incorporated into a single model. The model uses the shallow water equations to develop depth-averaged hydraulic results. It does not directly model turbulence, but accounts for energy losses due to bed resistance via the Manning's n roughness coefficient. The model provides detailed hydraulic information and reasonable variability in average flow, depth, and velocity from one water column element to the next throughout the modeled area. For the Bad Creek study, scenarios assume full generation/pumping capacity for the entirety of the simulation.

Simulation length was determined by the time it takes to drain/fill the Bad Creek Reservoir from full pond to maximum drawdown (160 ft). The Bad Creek Reservoir usable storage ranges from elevation 2,310 ft to 2,150 ft and the usable storage volume is 31,808 acre-ft. Table 4-1 presents the simulation run times for various operating conditions under existing, upgraded, and proposed flowrates in cubic feet per second (cfs) using Bad Creek Reservoir storage of approximately 30,000 acre-ft. Upgraded conditions include an ongoing pump-turbine upgrade at the existing Project that will increase the total capacity by 280 megawatts (MW) (70 MW per unit). Proposed conditions refer to the existing Project plus the addition of Bad Creek II.

Table 4-1. Bad Creek Simulation Times

Powerhouse	Generation		Pumping	
Configuration	Max. Hydraulic Capacity (cfs)	Time (hours)	Max. Hydraulic Capacity (cfs)	Time (hours)
Existing	16,000	22.9	13,780	26.5
Upgraded	19,760	18.8	15,000	24.4
Proposed	39,200	9.3	32,720	11.2

4.1.2 Digital Terrain Model Development

The digital terrain model (DTM) used in the 2-D model was constructed with data from two sources:

- Bathymetry measurements collected in Lake Jocassee by Duke Energy in 2010;
- Light Detection and Ranging (i.e., LiDAR) data from the South Carolina Department of Natural Resources (SCDNR) online portal.

The data sources were converted into triangulated irregular network surface files and merged using Environmental Systems Research Institute (ESRITM) ArcGIS Pro version 2.8.8 Geographic Information System (GIS) software (ESRI 2021). The resulting DTM encompassed Lake Jocassee and was used in the 2-D and CFD models. The DTM is presented in Figure 4-1. For increased detail, Figure 4-1 shows the southern portion of Lake Jocassee, but the DTM used in the 2-D model includes the entirety of Lake Jocassee.

The process of creating the terrain model for both the existing and expanded weir geometry was the same; however, existing bathymetry data in the vicinity of the submerged weir and proposed powerhouse was replaced with the proposed weir geometry for the expanded weir model scenarios. The expanded weir and proposed powerhouse terrain model are shown in detail on Figure 4-2.

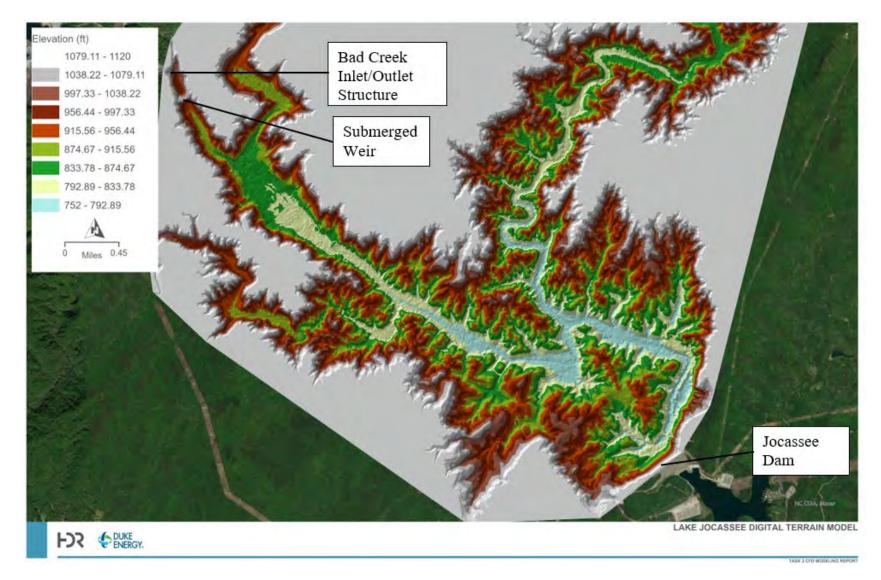


Figure 4-1. Digital Terrain Model of Lake Jocassee

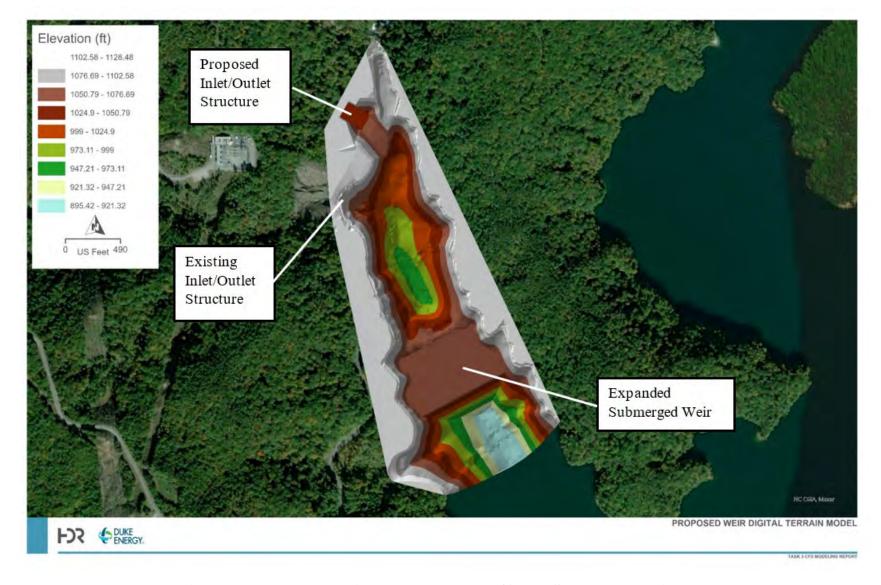


Figure 4-2. Expanded Weir and Proposed Inlet/Outlet Structure Terrain Model

4.1.3 Mesh Development

The 2-D Zone defining the ICM Model includes Lake Jocassee and surrounding contours to elevation 1,120 ft above mean sea level (msl). Figure 4-3 provides a view of a portion of the 2-D Zone extent.

For the 2-D simulation, ICM subroutines were used to perform a meshing of the 2-D Zone. The 2-D mesh is comprised of an irregular array of triangles. Descriptions of the user input 2-D Zone data fields that are pertinent to this analysis are as follows:

- Minimum element area Minimum mesh element area used for calculating results. Mesh elements with area less than the minimum area specified are aggregated with adjoining elements until the minimum area is met. This is done for the purpose of calculating results to improve simulation stability and run time.
- Boundary points Boundary condition for 2-D Zone.
- Terrain-sensitive meshing Meshing is used to increase the resolution of the mesh in areas that have a large variation in height without increasing the number of elements in relatively flat areas.
- Maximum height variation The maximum height variation that is permitted within a single triangle. Triangles with a height variation greater than the assigned value are split provided this would not result in a triangle smaller than the minimum element area.
- Minimum triangle angle Minimum allowable angle between triangle vertices when creating a 2-D mesh.
- Roughness Manning's n roughness values, used when creating a 2-D mesh. The roughness value assigned to mesh elements in areas in the 2-D Zone that are not in a roughness zone. Roughness values were selected from published tables (Innovyze 2023).

Table 4-2 provides a summary of the selected user input values for the ICM meshing routine as well as the total 2-D Zone area.

2D zone Object Properties ■ Polygon definition ID Lake_Joc_2D -• 8063.583 #D Area (acre) Maximum triangle area (ft2) 100.000 Minimum element area (ft2) 50.000 * Mesh generation Classic Boundary points Vertical Wall #D * Terrain-sensitive meshing × -Maximum height variation (ft) 5.000 Minimum angle (degree) 25.00 #D * Roughness (Manning's n) 0.0400 • #D * Roughness definition Apply rainfall etc directly to mes #D Apply rainfall etc everywhere Rainfall profile 1 #D * Infiltration surface #D Turbulence model * #D Rainfall percentage #D * 100,000 Mesh summary -Mesh data General properties Notes 111 * Hyperlinks *** User defined properties

Table 4-2. ICM Meshing User Inputs and Area Summary

A section of the resulting mesh is shown on Figure 4-4. The model mesh contains 1,147,067 elements. The approximate minimum, average, and maximum, element areas are 9.3 ft², 18.2 ft², and 46.5 ft², respectively.

A uniform Manning's *n*-value of 0.04 was used for the entire model which is appropriate for modeling open water such as a large reservoir (Chow 1959).

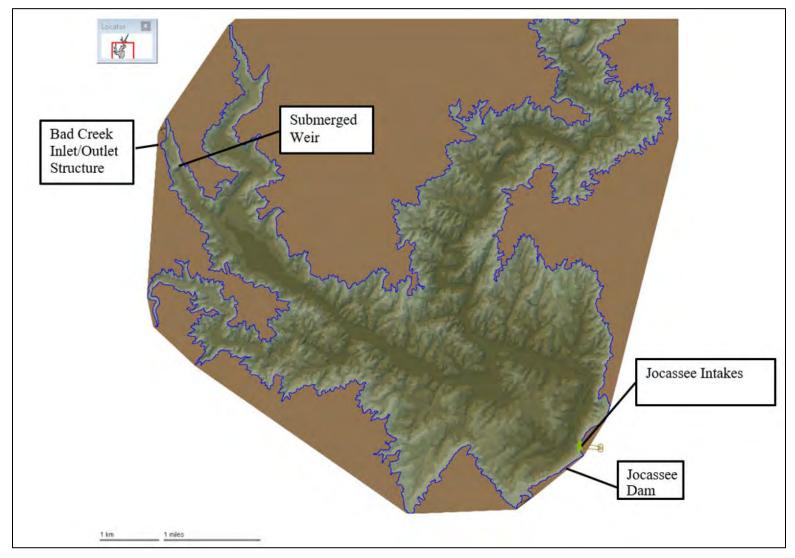


Figure 4-3. Extent of 2-D Zone and ICM Mesh

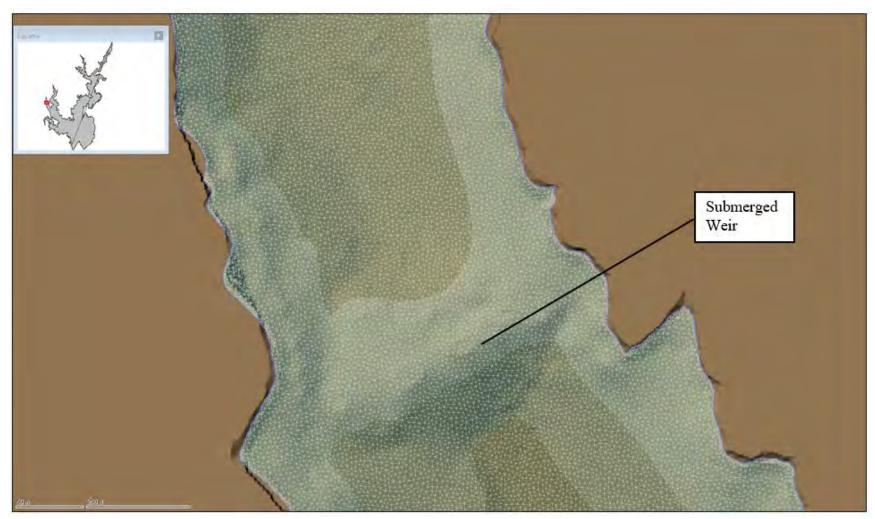


Figure 4-4. Example of 2-D Model Mesh Section

4.1.4 2-D Model Scenarios

It was assumed the scenarios with the greatest effect on the Whitewater River cove would be those where Lake Jocassee was operating at minimum pond (elevation 1,080 ft msl). The extent of those hydraulic effects was then evaluated under the existing and proposed weir configuration (i.e., weir geometry). Table 4-3 presents the two scenarios analyzed with the 2-D model.

The conservative assumption that Jocassee Hydroelectric Station would operate to maintain the lake level at the target elevation (full pond/maximum drawdown) for the entirety of the simulation was used.

Scenario	Flowrate	Operating Mode	Submerged Weir Geometry
Existing	16,000 cfs	Generation	Existing
Proposed	39,200 cfs	Generation	Expanded

Table 4-3. 2-D Model Scenarios

4.2 CFD Model Development

FLOW-3D was developed and is supported by Flow Science, Inc. (Flow Science 2023) and is a commercially available computational model capable of solving three-dimensional (3-D) unsteady Reynolds Averaged-Navier Stokes equations. The software utilizes a Volume of Fluid method to calculate the free surface within the model domain (Hirt and Nichols 1981). The software package contains the meshing module (pre-processor), solver, and post-processor.

4.2.1 Modeling Approach

The FLOW-3D software solves unsteady Reynolds Averaged-Navier Stokes equations on structured grids and the governing equations used in the model are provided in the FLOW-3D user's guide (Flow Science 2023). A model-fitted mesh was developed for the model domain. Depending on the scenario, a specified water surface elevation (full pond or maximum drawdown) was applied to the upstream reservoir mesh boundary.

4.2.1.1 Pressure Solver Options

Two numerical schemes are available for the pressure solver module with multiple options (i.e., implicit and explicit). Within the implicit solver, limited compressibility models can be toggled

to relax the constraints of the pressure solver for cases where solution stability is an issue. The explicit solver allows for improved accuracy of the solution, though it results in longer computational time (Hirt 2000). The explicit pressure solver was applied in the Bad Creek II CFD modeling effort.

4.2.1.2 Turbulence Models

Various one-equation (Prandtl Mixing Length and Turbulent Energy Model) and two-equation (k-e, k-w, and Renormalized Group) turbulence modules are available in FLOW-3D (Yakhot and Orszag 1986). The Renormalized Group model was selected for the model based on anticipated flow patterns in the Whitewater River cove. Additionally, the Renormalized Group model is robust enough to handle the anticipated increased turbulence in the Whitewater River cove as a result of a second I/O structure.

4.2.1.3 Model Domain

The model domain was approximated using the 2-D model. Extents of hydraulic effects due to the operation of the second powerhouse were analyzed in the 2-D model, and the CFD model was appropriately sized based on that analysis. Detailed discussion of this analysis is presented in Section 5.2.

4.2.1.4 Model Limitations

The CFD model is a numerical approximation of hydraulic conditions and, as with all numerical models, results are a product of model input and assumptions. For instance, some hydrodynamic features cannot be precisely modeled, and turbulence closure models and recirculation patterns and vortices are approximate in size and strength; however, the selected features used to produce the results for this study are considered appropriate for the intended use of the model results.

4.2.2 Model Geometry

The DTM developed for the 2-D model was utilized in the CFD model. Detailed information on DTM development is presented in Section 4.1.2.

CFD models can be sensitive to shallow depths. Model iteration convergence is challenging when the depth of water in a given mesh cell is low compared to the mesh size. More discussion of the model mesh is presented in the following section, but to achieve reasonable run times for this model, a larger mesh was used.

Because shorelines can be difficult to resolve, geometry modifications were made along the shoreline of the CFD model. Vertical walls were assumed along the shoreline starting 10 ft below the target elevation (i.e., 1,070 ft msl) for the minimum pond level, and 1,100 ft msl for the full pond level. This modification ensured that a minimum depth of 10 ft was present throughout the model, and significantly improved model stability and simulation run times. An example of vertical walls at full pond is shown on Figure 4-5.

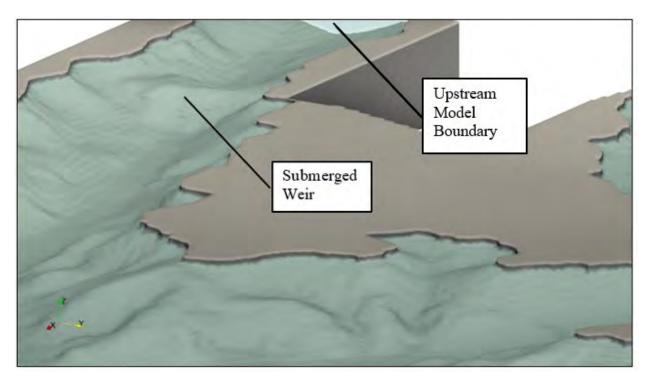


Figure 4-5. CFD Model Geometry with Vertical Walls

4.2.3 Mesh Development

The CFD model determines flow field throughout the volume of water in discrete sections. A computational mesh is used to discretize the solution within the domain. FLOW-3D requires the computational mesh to be comprised of orthogonal elements (faces align with the x, y, or z direction). The model topography and features were translated to represent significant features with fewer elements.

The CFD model domain covers approximately 922 acres. To manage simulation run times for a model of this size, a coarse mesh was required. As a general rule with CFD modeling, there is a trade-off between computational run time and mesh density. A denser, more refined mesh will

more accurately resolve complicated hydraulic phenomena such as vortices and turbulence. A coarser mesh will have less resolution of these features but allows the model domain to be much larger without creating unreasonable model simulation times.

Flow in Lake Jocassee is deep, and very slow, meaning a coarse mesh is appropriate for the CFD model. The computational mesh block used was 20-ft by 20-ft by 10-ft (length by width by height). Figure 4-6 presents a plan and profile view of the model mesh in the vicinity of the existing submerged weir.

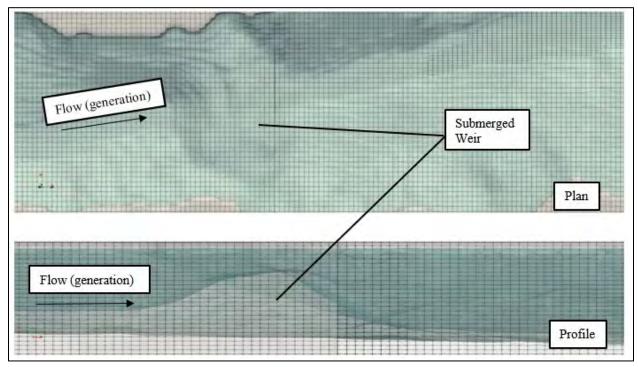


Figure 4-6. CFD Model Mesh

4.2.4 Model Scenarios

Sixteen scenarios listed in Table 4-4 were evaluated to help determine effects of Project operations on vertical mixing in the Whitewater River arm. Scenarios modeled the existing and expanded submerged weir configuration in both generating and pumping mode; and at full pond (elevation 1,110 ft msl) and maximum drawdown (elevation 1,080 ft msl). Results under full pond and maximum drawdown provide potential upper and lower limits of hydraulic effects of Bad Creek II operations. Figure 4-7 provides an exceedance plot of the Lake Jocassee pond level from 1975 to 2020. This plot shows the percentage of time the reservoir is at or above a given elevation. Lake Jocassee operates within 5 ft of the full pond elevation of 1,110 ft roughly 50

percent of the time, and in the 45-year period of record Lake Jocassee has never reached the

Table 4-4. CFD Model Scenarios

minimum drawdown elevation.

Station	Operating Mode	Submerged Weir Geometry	Scenario	Flow (cfs)	Jocassee Reservoir Elevation (ft msl)
Bad Creek Only	Generating	Existing	1	16,000	1,110
Omy			2	16,000	1,080
	Pumping		7	13,780	1,110
			8	13,780	1,080
	Upgraded Generation Upgraded Pumping	- Existing	13	19,440	1,110
			14	19,440	1,080
			15	15,000	1,110
			16	15,000	1,080
Bad Creek & Bad Creek II	Generating Pumping	- Existing	3	39,200	1,110
Dau Creek II			4	39,200	1,080
			9	32,720	1,110
			10	32,720	1,080
	Generating	Expanded	5	39,200	1,110
			6	39,200	1,080
	Pumping		11	32,720	1,110
			12	32,720	1,080

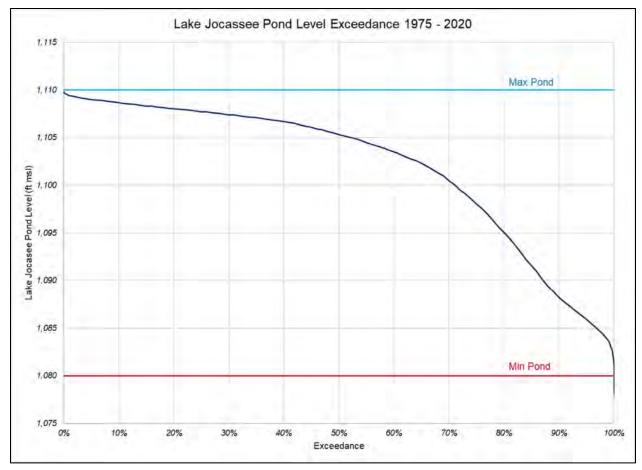


Figure 4-7. Lake Jocassee Pond Level Exceedance 1975-2020

4.2.5 Boundary Conditions

Boundary conditions for the CFD model were applied through multiple boundary types; boundary types are briefly described in the following sections. Boundary condition definitions were consistent between existing and proposed model configurations.

4.2.5.1 Volume Flowrate

A volume flowrate boundary condition was used to define the upstream boundary of the model where generation flows enter the Whitewater River cove, and where pumping flows exit the model extent. Because the focus of this model is to determine hydraulic effects downstream of the submerged weir, detailed resolution of the hydraulics in the vicinity of the I/O structures was not necessary. The inflow to the CFD model was held constant throughout the scenarios and assumed to be a uniform flow pattern approaching the weir at a scenario's specific flowrate.

Additionally, the long-term average flowrate from the Thompson River arm was included in the model to incorporate flows downstream of the weir. Because there is no gaging station on the Thompson River near Lake Jocassee, a drainage area proration² was performed between the now-retired U.S. Geological Survey (USGS) Howard Creek gage (USGS 02184475) (2.16 square miles [mi²]) and the Thompson River (11.6 mi² at confluence with Lake Jocassee). Data from the Howard Creek gage extend from 1988 to 1996. Monthly average flows in the Thompson River range from 10 cfs to 130 cfs with an annual average of 40 cfs. This 40 cfs was introduced to the model at the upstream end of the Thompson River arm. Table 4-5 presents the prorated monthly average Thompson River flows entering Lake Jocassee.

Feb May June July Sept Oct Nov Dec Annual Jan Mar Apr Aug 1988 13.4 13.3 22.2 18.8 18.6 23.1 24.4 18.6 19.1 1989 60.1 79.9 103.0 25.8 36.4 45.8 45.6 111.2 97.8 76.3 66.8 61.4 67.5 103.9 1990 81.5 129.9 60.2 63.7 24.2 31.0 31.5 33.8 45.3 28.0 55.5 32.8 1991 33.1 31.9 33.6 43.3 46.8 33.6 33.8 35.5 56.9 40.6 26.4 35.0 37.5 58.7 43.4 1992 29.4 41.2 28.7 35.1 21.2 47.5 31.8 67.3 42.8 40.0 68.8 1993 53.8 48.1 50.0 57.0 43.0 13.5 13.2 10.0 14.4 18.1 29.7 21.5 13.7 35.2 47.0 23.2 25.9 27.7 42.3 1994 28.2 38.2 81.7 43.7 31.2 34.2 38.2 1995 48.0 55.8 47.0 24.8 18.0 22.6 20.0 27.1 20.1 44.6 39.6 29.7 33.1 1996 58.1 43.1 32.1 23.2 23.4 19.5 46.9 61.3 40.5 56.6 44.4 54.8 43.1 32.5 34.6 32.1 44.5 39.4 40.8 38.1 37.3 40.4 Average 56.6

Table 4-5. Thompson River Prorated Average Monthly Flows (cfs)

4.2.5.2 Outflow Boundary

The outflow boundary was applied to the downstream limit of the model. This boundary allows pressure to be balanced through the model. A hydrostatic pressure condition was applied at the outflow and set to the target reservoir water surface elevation of 1,110 or 1,080 ft msl for the full and maximum drawdown Lake Jocassee levels, respectively.

It was assumed that Jocassee operations would maintain the target pond elevation (full pond/maximum drawdown) for the entirety of the simulation.

² The drainage-area ratio method commonly is used to estimate streamflow for sites where no streamflow data are available using data from one or more nearby streamflow-gaging stations.

4.2.5.3 Boundary Type Wall

The boundary type wall applied the no-slip condition at the outer boundary of the mesh blocks as well as a zero-velocity condition normal to the boundary.

4.2.6 CFD Simulation Evaluation

Model runs focused on the flow patterns and velocities downstream of the submerged weir. Multiple methods were used to monitor the progress of the model during the simulation. This section highlights the methods used to evaluate the model during the simulation and in post-processing. Flux surfaces and monitoring points provided data during the simulations.

4.2.6.1 Flux Surfaces

Flux surfaces were used to monitor the volumetric flow through over the weir and near the model outlet. The flux surfaces are vertical planes placed at specific locations in the CFD model. The surfaces were monitored for mass/volume balance of flow through the model.

4.2.6.2 Monitoring Points

Monitoring points were placed within the model to gather point data in Lake Jocassee during model simulations. Modeled velocities and water surface elevations were actively monitored during the simulation to track model stability.

4.2.7 Model and Scenario Evaluation

4.2.7.1 Model Verification

An acoustic Doppler current profiler (ADCP) was used to measure velocities throughout the water column along transects in the Whitewater River arm in July and August of 2023 under pumping and generation. Operations data (i.e., individual unit generation in megawatts, forebay elevation, and tailwater elevation) during field data collection were obtained from Duke Energy for Bad Creek and Jocassee Hydro Station. The field conditions were compared to modeled scenarios and, where appropriate, transects of modeled velocity were compared qualitatively against the field data. Preliminary evaluations of the data show the CFD model is a reasonable numerical estimation of flow patterns and velocities in the Whitewater River arm.

Model verification scenarios will be built using operations and reservoir elevation data from the time of the field data collection to present a range of error or confidence in the modeled results. These runs will provide a direct comparison between the modeled and field data under the same hydraulic conditions. This analysis will be performed in fall of 2023; an addendum to the study report will be provided with the final report.

4.2.7.2 Reservoir Elevation Criteria

The purpose of analyzing two reservoir elevations (i.e., pond levels) was to determine if the hydraulic effects vary between minimum and maximum water surface elevations (i.e., 1,080 ft msl and 1,110 ft msl, respectively). Flow velocity or other hydraulic thresholds or criteria were not established, and for a given operating configuration hydraulic results were directly compared between reservoir elevations.

4.2.7.3 Operation Mode Criteria

Pump and generation operating modes were analyzed with the CFD model. Scenarios were compared against each other to assess how pumping and generating affect the hydraulics downstream of the submerged weir. No specific hydraulic thresholds or criteria were established for the comparison.

4.2.7.4 Submerged Weir Geometry

The effect of varying the submerged weir geometry was studied using the CFD model. Scenarios were compared against each other to assess how the geometry of the submerged weir affects the flow patterns and vertical mixing downstream of the weir. No specific hydraulic thresholds or criteria were established for the comparison.

4.3 Previous CFD Modeling – Upper Whitewater River Cove

As part of the Bad Creek II Feasibility Study authorized by Duke Energy, a three-dimensional CFD model for the lower reservoir (i.e., Lake Jocassee) was developed to support the evaluation of a second additional I/O structure and the potential associated effects on the Whitewater River

cove of Lake Jocassee. ³ The model boundary for this effort included the area of Whitewater River cove immediately downstream of the I/O structure for the purpose of establishing velocity and flow patterns in the channel and near the east bank of the cove opposite of the discharge structure.

The CFD modeling framework included a calibration phase (phase I) focused on replicating the existing dominant flow and velocity patterns predicted by the Alden Research Laboratory physical model (Larsen and White 1986), followed by phase II, which focused on evaluating the velocity and flow pattern effects of the proposed second I/O structure at two reservoir elevations (1,110 ft and 1,080 ft msl). The second phase utilized discharge flows based on the upgraded Bad Creek units, plus the assumed discharge from the conceptualized Bad Creek II project.

Unit operations in both the turbine and pump mode were simulated with the existing and proposed structures at reservoir levels 1,110 ft msl, 1,096 ft msl, and 1,080 ft msl. Model results indicated that velocities produced by full generation from the existing project at the upper and lower reservoir levels are similar to the velocities physically modeled in 1986. Additional discharge from proposed Bad Creek II operations created a concentrated area of higher velocity flows extending downstream to the existing Bad Creek I/O structure. As expected, this effect was more pronounced at lower reservoir levels. The concentrated area of high velocity and change in location of velocities would not affect existing bank conditions/erosion assuming the geology of the east bank is consistent along the shoreline (i.e., predominantly exposed bedrock). Additional scenarios to simulate pumping operations were performed and showed distinct flow patterns specific to each I/O structure. Velocities and flow patterns in the water column near the expanded submerged weir structure were qualitatively evaluated; velocities increased as the flow depth decreased. Velocities along the eastern bank near the expanded weir were higher when compared to the simulations using the existing weir due to the increased generation flows.

³ The Lower Reservoir CFD Flow Modeling Report (HDR 2022) was filed with the RSP as Appendix I.

5 2-D Model Results

5.1 Hydraulic Effects

The results of the 2-D modeling scenarios are presented on Figure 5-1. Flow vectors colored and sized by velocity are shown for both the existing (left) and proposed (right) scenarios. While velocities of approximately 1.0 ft per second (fps) are shown in the vicinity of the I/O structure and extending across the top of the submerged weir, velocities decrease to approximately 0.2 fps by the time existing generation flows reach the confluence of the Whitewater River arm and the Thompson River arm of Lake Jocassee. For the proposed generation scenario, velocities of approximately 0.2 fps extend about 5,000 ft further downstream, above the confluence with the Devil's Fork arm. As water always follows the path of least resistance, the area of increased velocity follows the original thalweg of the river.

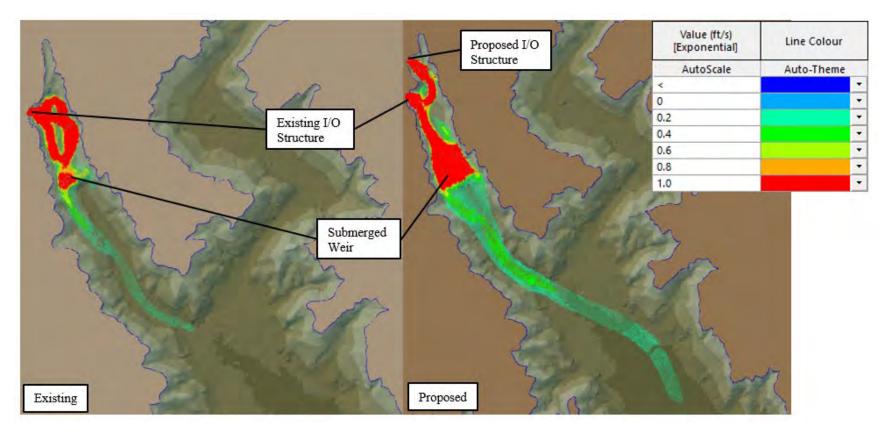


Figure 5-1. 2-D Model Results for Existing (Bad Creek) and Proposed (Bad Creek II) Conditions

5.2 CFD Model Domain

A key purpose of the submerged weir is to dissipate energy and force flows from the Bad Creek I/O structure to the surface of Lake Jocassee (to minimize vertical mixing in the water column downstream of the weir). Because the 2-D model is depth-averaged, the effect of forcing water to the surface over the weir is not fully predicted. To account for the 2-D model's potential underestimation of the extent of hydraulic effects, the CFD model domain was extended approximately 0.5 mile further downstream. Figure 5-2 outlines the approximate CFD model domain.

The CFD model domain volume is approximately 133,000 acre-ft, while the full-pond volume of Lake Jocassee is about 1.2 million acre-ft. The model represents approximately 11 percent of the total volume of the lake. The relative size of the portion of the lake affected by the Project is important to consider when analyzing the effects of proposed powerhouse operations.

There are approximately five river miles between the Whitewater River and the Lake Jocassee dam. The model domain includes a third of this distance. Figure 5-3 shows a profile of the five miles from the Whitewater River to the dam, highlighting the modeled section.

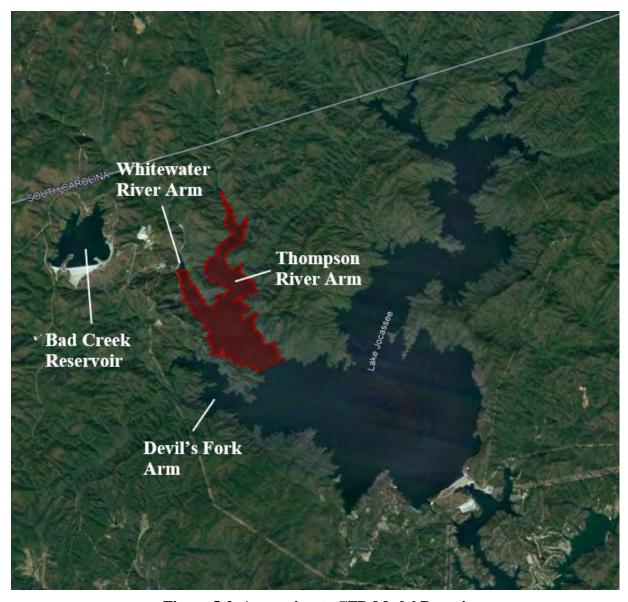


Figure 5-2. Approximate CFD Model Domain

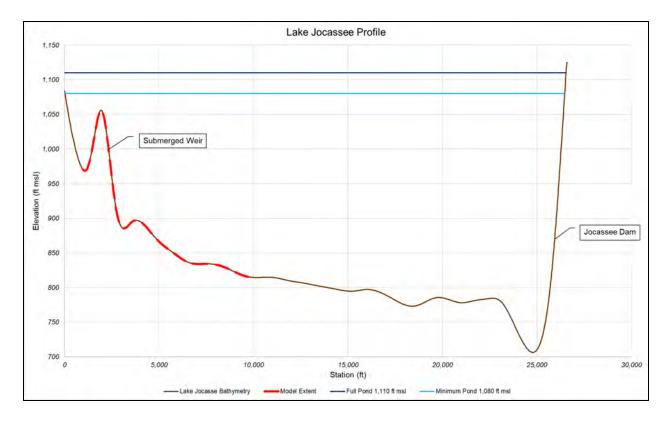


Figure 5-3. Lake Jocassee Profile from the Whitewater River to Jocassee Dam

6 CFD Model Results

6.1 Domain Verification

To confirm the CFD model domain was appropriately sized, the hydraulic profile at the model exit was compared across three scenarios:

- Existing generation with existing submerged weir;
- Proposed generation with existing submerged weir;
- Proposed generation with expanded submerged weir.

Figure 6-1 shows the CFD model domain plan view as well as a vertical slice near the downstream boundary of the model (green). The exit hydraulic profile for the three scenarios was taken at this slice location. When comparing proposed versus existing generation scenarios, the average exit velocity at the downstream extent of the CFD model domain is < 0.1 fps higher on average for the proposed generation scenario (range -0.06 fps to +0.15 fps). This represents a reasonable trade-off in modeling results versus modeling effort as extending the model domain

further would not result in additional useful information but would greatly increase the overall modeling effort (including model run time). The small incremental increase in average velocity at the CFD model domain exit due to the proposed generation is much less than incremental velocity effects due to meteorological conditions (i.e., wind-induced effects in the upper water surface layer). Figure 6-2 compares three profiles (i.e., slices) representing three scenarios (existing, proposed with existing weir, and proposed with expanded weir) at the downstream model domain boundary.

Velocity profiles across the three scenarios are nearly identical and show very low (< 0.2 fps) velocities. Two conclusions are made from these results:

- 1. Because velocities are so low, the model domain has been extended far enough downstream to fully capture hydraulic effects of existing and proposed powerhouse operations.
- 2. Potential hydraulic effects discussed in this report are limited to the model domain (i.e., there are no appreciable hydraulic effects to Lake Jocassee downstream of the model domain).

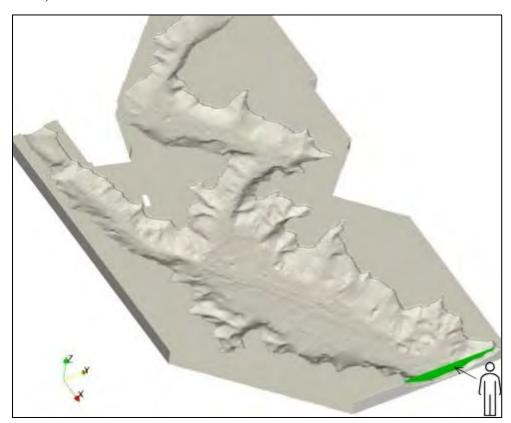


Figure 6-1. Comparison Slice Location (green)

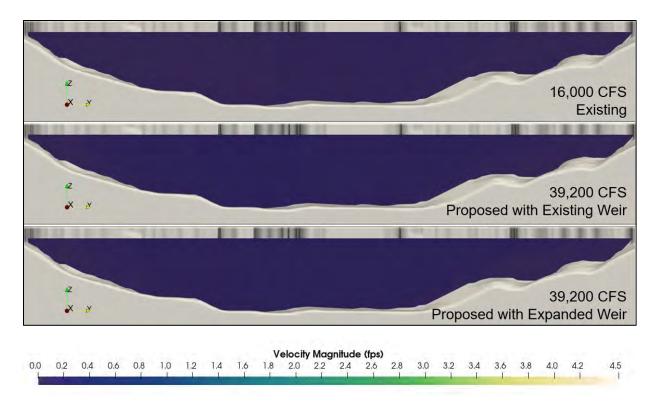


Figure 6-2. Model Exit Hydraulic Profile Comparison

6.2 **Existing Project Configuration**

To establish a baseline for comparison, the existing Bad Creek configuration and operations were modeled under full pond and maximum drawdown. Scenarios included the maximum generating flow of 16,000 cfs, the maximum pumping flow of 13,780 cfs, and the existing submerged weir geometry. Simulation times for the existing generation and pumping scenarios are 22.9 and 26.5 hours, respectively (see Table 4-1).

The four upgraded powerhouse scenarios (Scenarios 13-16 in Table 4-4) figures are presented in Appendix A. Results from these scenarios are consistent with the other 12 scenarios.

6.2.1 Generation

Full Pond

Existing hydraulic conditions at the full pond elevation are characterized by low flow velocities throughout the model domain. Flow velocities peak across the top of the submerged weir at approximately 0.6 fps. Figure 6-3 shows contours of velocity in an aerial view. Figure 6-4 shows the surface velocity contours in the vicinity of the submerged weir, as well as two vertical slices showing vertical velocity profiles in the Whitewater River arm⁴.

Slice A-A' is located approximately across the crest of the submerged weir, and slice B-B' is approximately 800 ft downstream of slice A-A'.

Figure 6-5 presents hydraulic flow paths with velocity magnitudes identified by color (in fps) in the Whitewater River cove. For reference, water quality monitoring stations 564.1 and 564.0 are shown on the figure. Dense areas of streamlines downstream of the submerged weir indicate an area of potential mixing that extends approximately 850 ft downstream of the submerged weir.

More information on water quality and mixing at existing monitoring stations in the Whitewater River cove is provided in the Summary of Existing Water Quality and Standards Report (provided in Appendix A of the ISR). Results from the desktop water quality study indicate that flow is well mixed (i.e., lacks stratification) upstream of the weir at water quality monitoring location 564.1 but stratification is present throughout the year at monitoring location 564.0 just downstream of the weir. Results of the CFD modeling align with these field data observations. While flow appears to be mixing downstream of the submerged weir, velocities are very low (less than 0.25 fps) in the reservoir between the weir and monitoring location 564.0. Because the weir dissipates energy from Bad Creek I/O structure, the slow-moving uniform flow regime downstream of the weir creates conditions suitable for vertical stratification, similar to what occurs at other monitoring stations in the main body of Lake Jocassee. This effect (i.e., mixing on the upstream of the weir and vertical stratification on the downstream side) is present across the range of simulations evaluated.

⁴ For all vertical slices, viewer perspective includes the viewer standing downstream of the slice looking upstream.

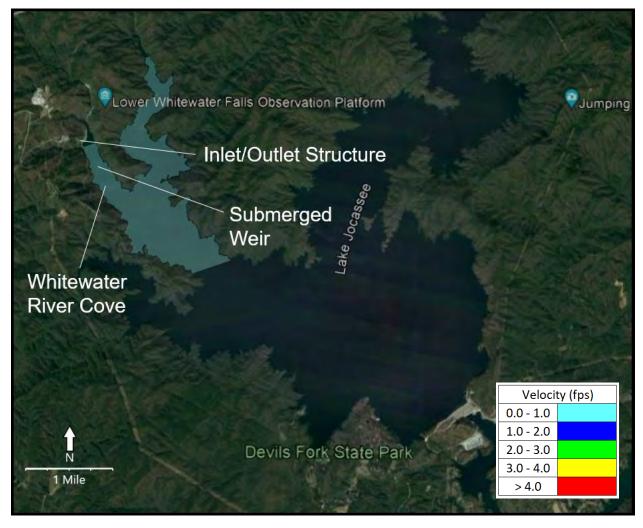


Figure 6-3. Existing Generation at Full Pond – Velocity Contours

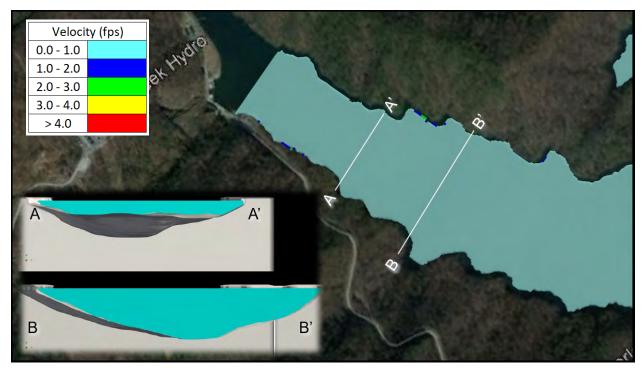


Figure 6-4. Existing Generation at Full Pond – Velocity Contours in Submerged Weir Vicinity (Flow is Left to Right)

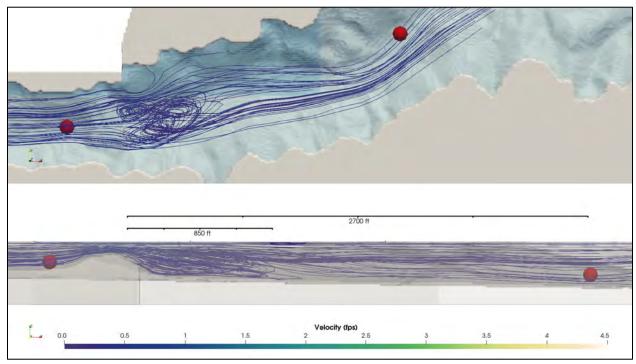


Figure 6-5. Existing Generation at Full Pond – Whitewater River Cove Streamlines (Flow is Left to Right)

Maximum Drawdown

At maximum drawdown, the effect of the submerged weir is more pronounced. Surface velocity contours show an area of slightly elevated velocity in the immediate vicinity of the submerged weir. This area of slightly elevated velocity extends approximately 200 ft from the weir crest and peaks at 1.1 fps. This area of elevated velocity is shown on Figure 6-6 and Figure 6-7. Vertical slices A-A' and B-B' in Figure 6-7 indicate the area of higher velocity is present through the majority of the water column across the top of the weir, but as flow expands into the downstream section of the Whitewater River Cove, this effect has dissipated. Figure 6-8 shows hydraulic flow paths with velocity magnitudes identified by color which have a similar flow pattern to those shown in Figure 6-5 (full pond streamlines), however the effect of the weir is more pronounced. At lower reservoir elevations (i.e., pond levels), water velocities are accelerated across the top of the weir as flows are forced to the surface. This results in an area of slightly higher surface velocities, and a slightly shorter potential mixing length downstream of the weir.

As with the full pond scenario, the weir limits downstream mixing and because of the very low velocities downstream of the weir, stratification trends at monitoring station 564.0 mimic the rest of Lake Jocassee.

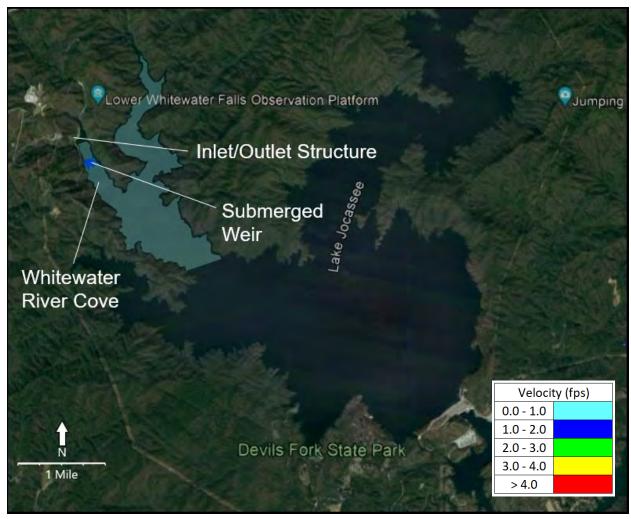


Figure 6-6. Existing Generation at Maximum Drawdown – Velocity Contours

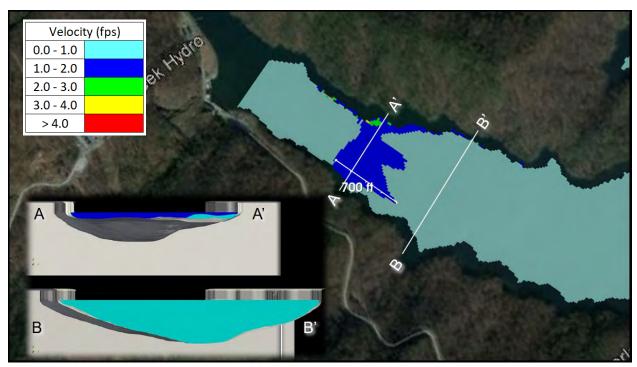


Figure 6-7. Existing Generation at Maximum Drawdown – Velocity Contours in Submerged Weir Vicinity (Flow is Left to Right)

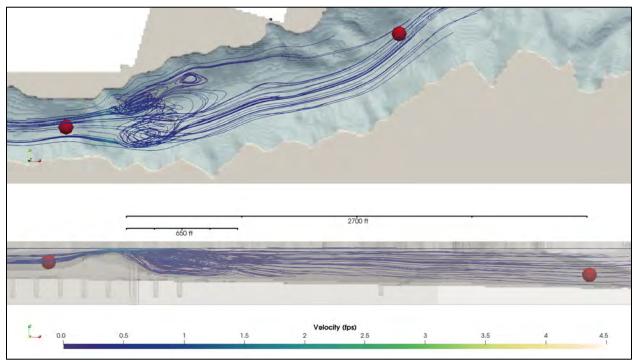


Figure 6-8. Existing Generation at Maximum Drawdown – Whitewater River Cove Streamlines (Flow is Left to Right)

6.2.2 Pumping

Full Pond

Existing pumping conditions at full pond are similar to existing generation conditions at full pond. Low velocities are seen throughout the model domain, and peak across the top of the submerged weir at approximately 0.5 fps. Surface velocities are shown in Figure 6-9 and Figure 6-10, and the same vertical slices A-A' and B-B' presented in previous figures are shown on Figure 6-10. Hydraulic flow paths with velocity magnitudes identified by color in the Whitewater River cove are presented in Figure 6-11. There is little to no vertical mixing downstream of the submerged weir under pumping operations. As flow is pumped to Bad Creek Reservoir, it is gradually pulled from the upper surface layer of Lake Jocassee over the submerged weir resulting in a very uniform, laminar flow regime downstream of the weir. Flow patterns at monitoring location 564.0 extending upstream to the weir are uniform and have velocities less than 0.2 fps indicating seasonal stratification would be maintained throughout the reservoir downstream of the weir.

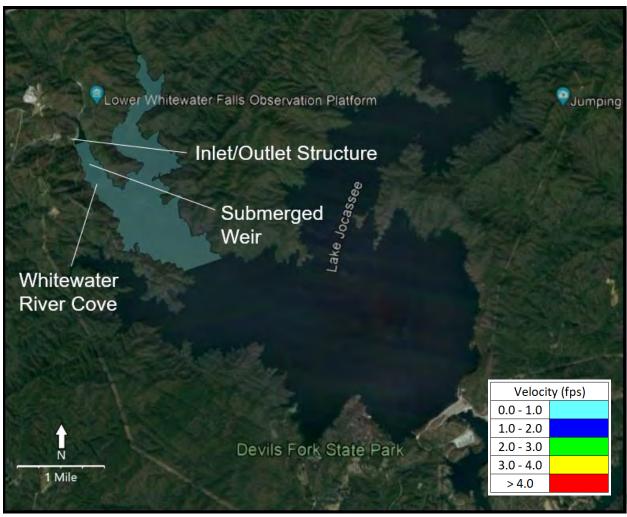


Figure 6-9. Existing Pumping at Full Pond – Velocity Contours

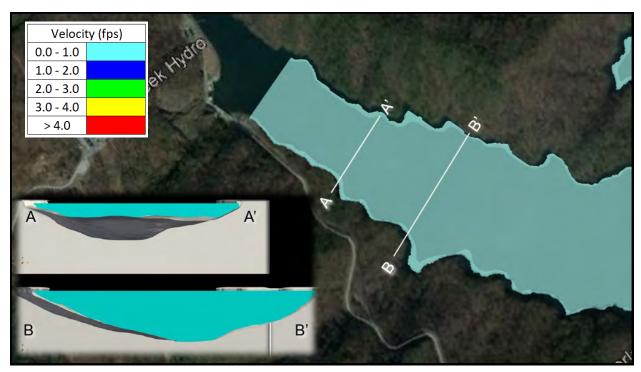


Figure 6-10. Existing Pumping at Full Pond – Velocity Contours in Submerged Weir Vicinity (Flow Right to Left)

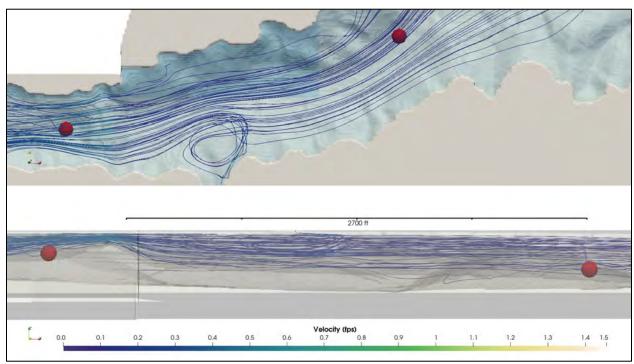


Figure 6-11 Existing Pumping at Full Pond – Whitewater River Cove Streamlines (Flow Right to Left)

Maximum Drawdown

Similar to generating at maximum drawdown, pumping at maximum drawdown increases the effect of the submerged weir. An area of higher velocity extends approximately 1,200 ft upstream of the submerged weir peaking at 1.9 fps. Surface velocities for pumping at maximum drawdown are shown in Figure 6-12 and Figure 6-13. Vertical slices in Figure 6-13 indicate minimal vertical mixing effects are observed downstream of the submerged weir. Velocity streamlines in the Whitewater River cove shown on Figure 6-14 are uniform and slow moving, indicating stratification would be present downstream of the weir. As flow is pulled across the top of the weir it is accelerated near the surface into the upstream section of the Whitewater River cove.

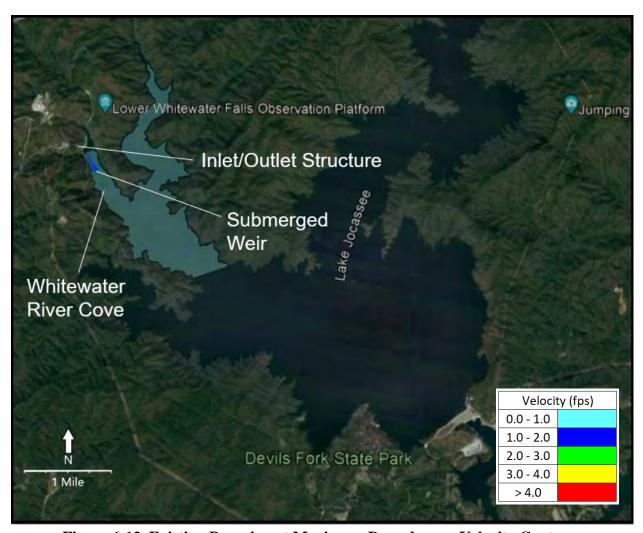


Figure 6-12. Existing Pumping at Maximum Drawdown – Velocity Contours

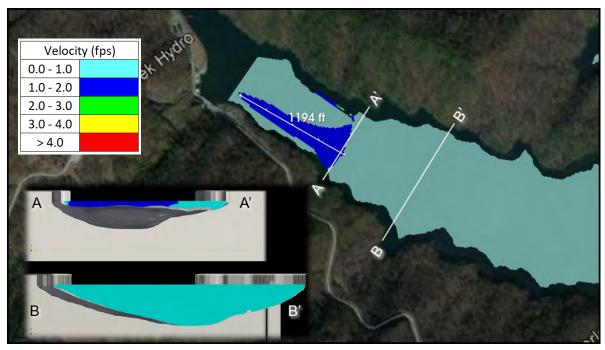


Figure 6-13. Existing Pumping at Maximum Drawdown – Velocity Contours in Submerged Weir Vicinity (Flow Right to Left)

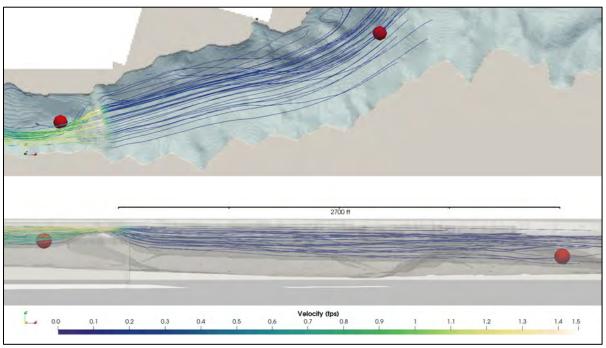


Figure 6-14. Existing Pumping at Maximum Drawdown – Whitewater River Cove Streamlines (Flow Right to Left)

6.3 Proposed Project, Existing Weir

6.3.1 Generation

Full Pond

The proposed generation flow is more than double the existing flow (39,200 cfs vs 16,000 cfs). This significant increase in flow results in a localized increase in velocity at the surface and through the water column. Conditions at the full pond elevation are characterized by low flow velocities throughout the model domain. Flow velocities peak across the top of the submerged weir at approximately 1.4 fps. Figure 6-15 shows contours of velocity in an aerial view. Figure 6-16 shows the surface velocity contours in the vicinity of the submerged weir, as well as the two vertical slices showing vertical velocity profiles in the Whitewater River arm. The area of elevated velocity (1-2 fps) extends approximately 1,000 ft downstream of the weir crest.

Figure 6-17 presents hydraulic flow paths with velocity magnitudes identified by color in the Whitewater River cove. Note water quality monitoring points 564.1 and 564.0 are shown on the figure. The dense areas of streamlines downstream of the submerged weir indicates that an area of potential mixing extends approximately 850 ft downstream of the submerged weir, which is a similar mixing length as existing generation at full pond. While flow appears to be mixing downstream of the submerged weir, velocities are very low, less than 0.25 fps, between the weir and monitoring location 564.0. These slow, uniform flow patterns are very similar to existing conditions and facilitate conditions for stratification within the water column at water quality monitoring station 564.0 just downstream of the weir.

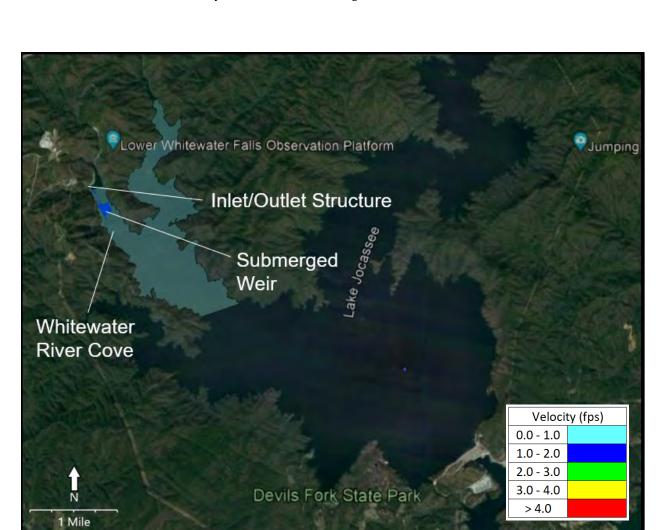


Figure 6-15. Proposed Generation (Existing Weir) at Full Pond – Velocity Contours

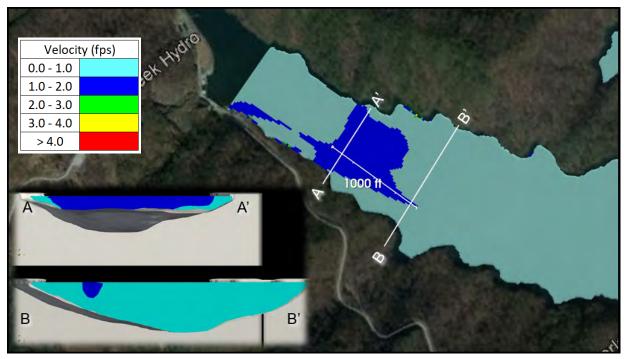


Figure 6-16. Proposed Generation (Existing Weir) at Full Pond – Velocity Contours in Submerged Weir Vicinity (Flow is Left to Right)



Figure 6-17. Proposed Generation (Existing Weir) at Full Pond – Whitewater River Cove Streamlines (Flow is Left to Right)

Maximum Drawdown

At maximum drawdown, the effect of the submerged weir is more pronounced. Contours of surface velocity show an area of slightly elevated velocity in the immediate vicinity of the weir. This area of slightly elevated velocity extends downstream approximately 2,100 ft from the weir crest and peaks at 3.7 fps. This area of elevated velocity is shown on Figure 6-18 and Figure 6-19. Vertical slices A-A' and B-B' shown on Figure 6-19 indicate the area of higher velocity is present through the majority of the water column across the top of the weir, but as flow expands into the downstream section of the Whitewater River cove, flow is concentrated on the right descending bank, and only in this section are velocities elevated throughout the water column. Figure 6-20 shows hydraulic flow paths with velocity magnitudes identified by color which have a similar flow pattern as shown in Figure 6-17 (full-pond streamlines), however the effect of the weir is more pronounced. At lower pond levels, water velocities are accelerated across the top of the weir and flows are forced to the surface. This results in an area of slightly higher surface velocities, and a slightly shorter potential mixing length downstream of the weir.

As with the full pond scenario, because of the very low velocities downstream of the weir at water quality monitoring location 564.0, it can be reasonably expected that flow conditions would promote stratification.

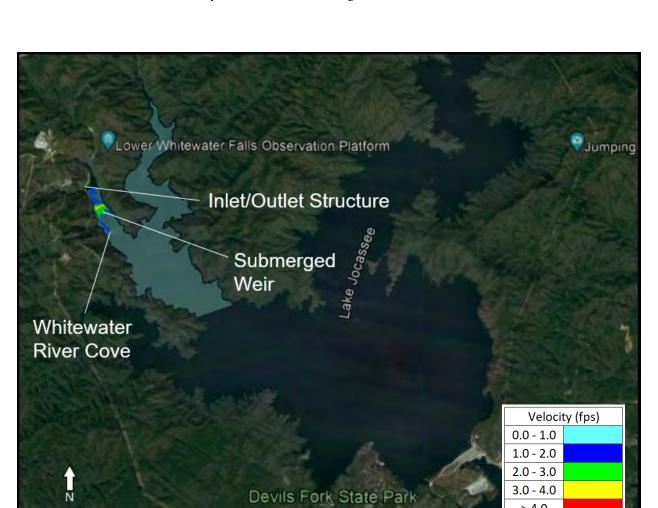


Figure 6-18. Proposed Generation (Existing Weir) Maximum Drawdown – Velocity **Contours**

1 Mile

> 4.0

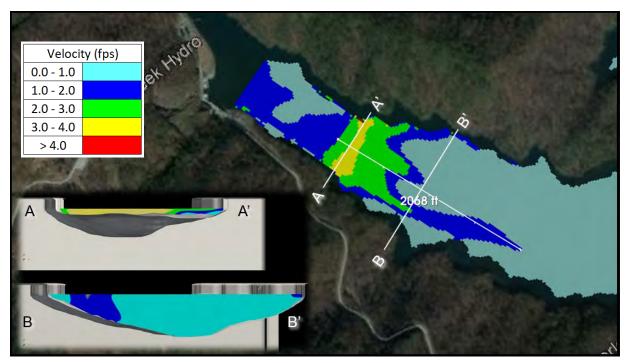


Figure 6-19. Proposed Generation (Existing Weir) at Maximum Drawdown – Velocity Contours in Submerged Weir Vicinity (Flow is Left to Right)

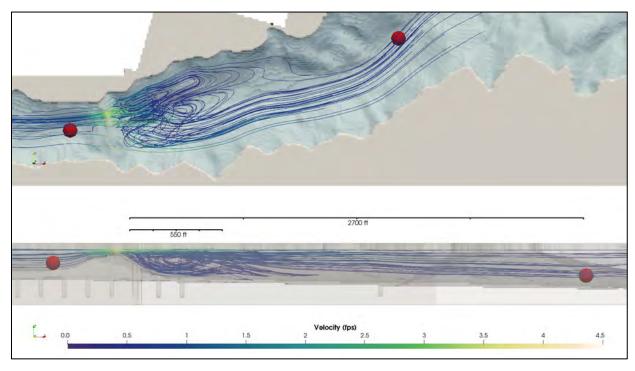


Figure 6-20. Proposed Generation (Existing Weir) at Maximum Drawdown – Whitewater River Cove Streamlines (Flow is Left to Right)

6.3.2 Pumping

Full Pond

The proposed pumping flow is more than double the existing flow (32,720 cfs vs 13,780 cfs). This significant increase in flow results in a localized increase in velocity at the surface and through the water column. Conditions at the full pond elevation are characterized by low flow velocities throughout the model domain. Flow velocities peak across the top of the submerged weir at approximately 1.1 fps. Figure 6-21 shows contours of velocity in an aerial view. Figure 6-22 shows the surface velocity contours in the vicinity of the submerged weir, as well as the two vertical slices showing vertical velocity profiles in the Whitewater River arm. The area of elevated velocity (1-2 fps) extends approximately 160 ft upstream of the weir crest.

Figure 6-23 presents hydraulic flow paths with velocity magnitudes identified by color in the Whitewater River cove. There is little to no vertical mixing downstream of the submerged weir under pumping operations. As flow is pumped to Bad Creek Reservoir, it is gradually pulled from Lake Jocassee across the top of the submerged weir resulting in a very uniform, laminar flow regime downstream of the weir. Flow patterns at monitoring location 564.0 extending upstream to the weir are uniform and have velocities less than 0.2 fps indicating stratification would be present throughout the reservoir downstream of the weir.

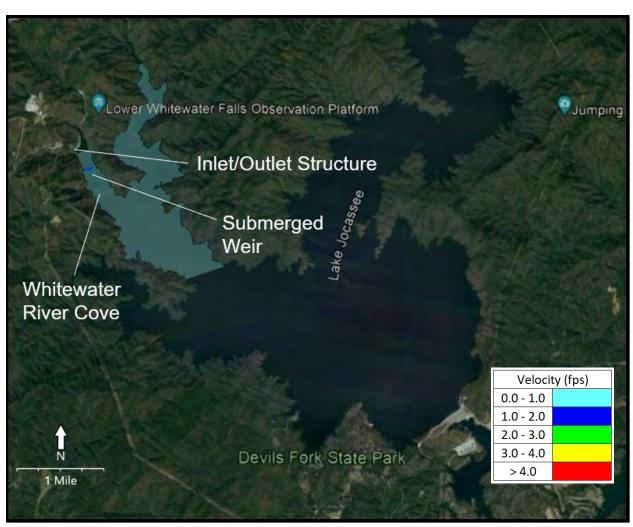


Figure 6-21. Proposed Pumping (Existing Weir) at Full Pond – Velocity Contours

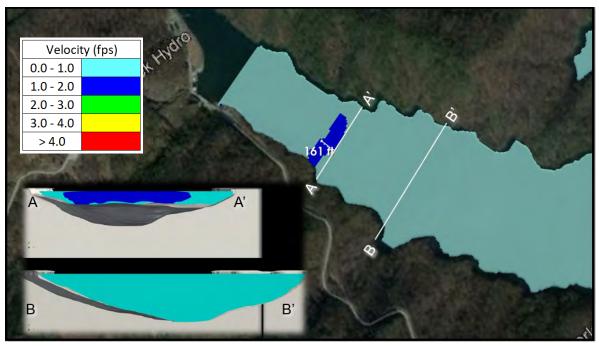


Figure 6-22. Proposed Pumping (Existing Weir) at Full Pond – Velocity Contours in Submerged Weir Vicinity (Flow is Right to Left)

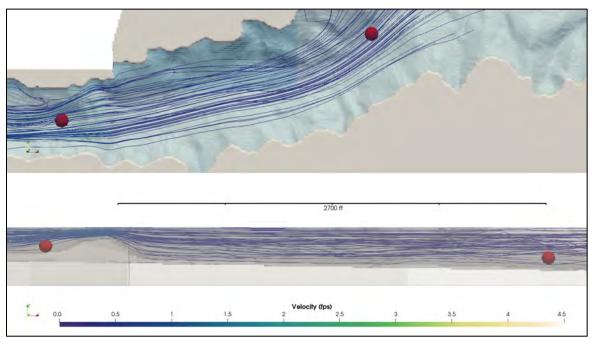


Figure 6-23. Proposed Pumping (Existing Weir) at Full Pond – Whitewater River Cove Streamlines (Flow is Right to Left)

FDS

Maximum Drawdown

Similar to generating at maximum drawdown, pumping at maximum drawdown increases the effect of the submerged weir. An area of higher velocity extends approximately 1,200 ft upstream of the submerged weir peaking at 1.9 fps. Surface velocities for pumping at maximum drawdown are shown in Figure 6-24 and Figure 6-25. Vertical slices in Figure 6-25 indicate minimal vertical mixing effects are observed downstream of the submerged weir. Velocity streamlines in the Whitewater River cove shown on Figure 6-26 are uniform and slow moving, indicating stratification would be present downstream of the weir. As flow is pulled across the top of the weir it is accelerated into the upstream section of the Whitewater River cove.

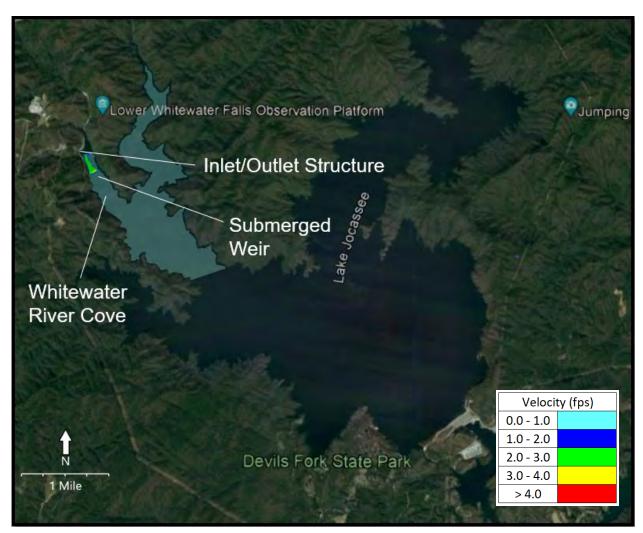


Figure 6-24. Proposed Pumping (Existing Weir) at Maximum Drawdown – Velocity Contours

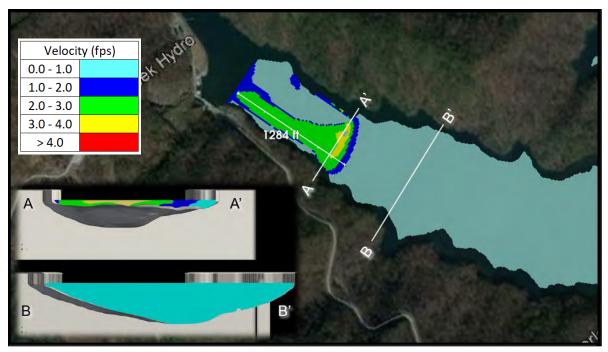


Figure 6-25. Proposed Pumping (Existing Weir) at Maximum Drawdown – Velocity Contours in Submerged Weir Vicinity (Flow is Right to Left)

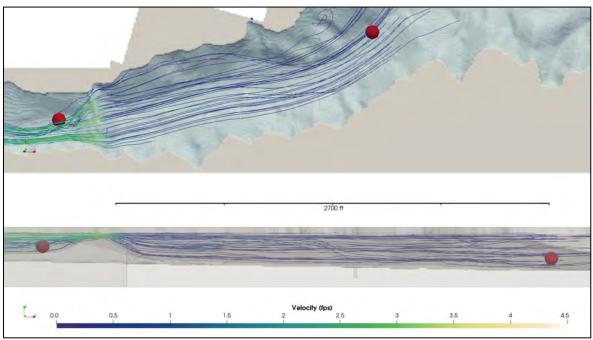


Figure 6-26. Proposed Pumping (Existing Weir) at Maximum Drawdown – Whitewater River Cove Streamlines (Flow is Right to Left)

6.4 Proposed Project, Expanded Weir

6.4.1 Generation

Full Pond

The proposed expanded submerged weir has a slightly stronger effect of accelerating flow across the top of the weir and downstream into the lower Whitewater River cove. Similar to the existing weir configuration, full-pond hydraulic conditions in the Whitewater River cove under proposed flow with the expanded weir geometry are characterized by relatively low velocities. Flow velocities peak across the top of the submerged weir at approximately 1.3 fps. Figure 6-27 shows contours of velocity in an aerial view. Figure 6-28 shows the surface velocity contours in the vicinity of the submerged weir, as well as two vertical velocity profiles in the Whitewater River arm. Slice B-B' indicates an area of elevated velocity is present in the water column 800 ft downstream of the submerged weir, however it is confined to the top portion of the water column, indicating the proposed weir is functioning as intended. The area of slightly elevated velocity (1.0-2.0 fps) extends about 1,800 ft downstream of the submerged weir.

Figure 6-29 presents hydraulic flow paths with velocity magnitudes identified by color in the Whitewater River cove. Dense areas of streamlines downstream of the submerged weir indicate an area of potential mixing that extends approximately 1050 ft downstream of the submerged weir. While flow appears to be mixing downstream of the submerged weir, velocities are very low, less than 0.25 fps, in the reservoir between the weir and monitoring location 564.0. These slow, uniform flow patterns allow for stratification to be established within the water column at water quality monitoring location 564.0. When compared to Figure 6-20, expanding the weir geometry results in flow patterns and magnitudes that are similar to the flow patterns and magnitudes of the existing submerged weir geometry, which limits downstream vertical mixing.

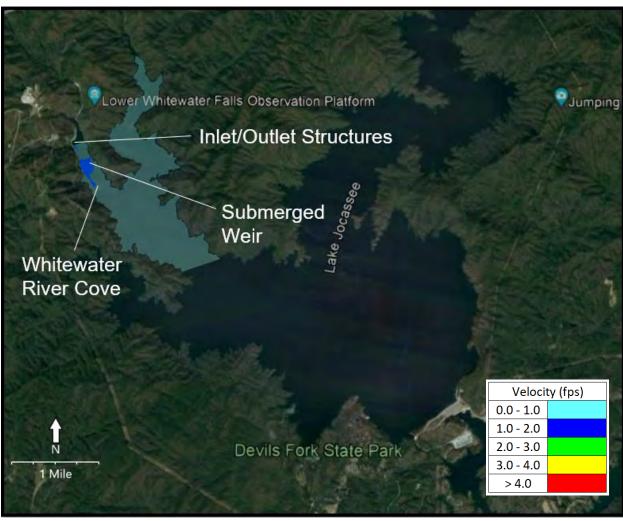


Figure 6-27. Proposed Generation (Expanded Weir) at Full Pond – Velocity Contours

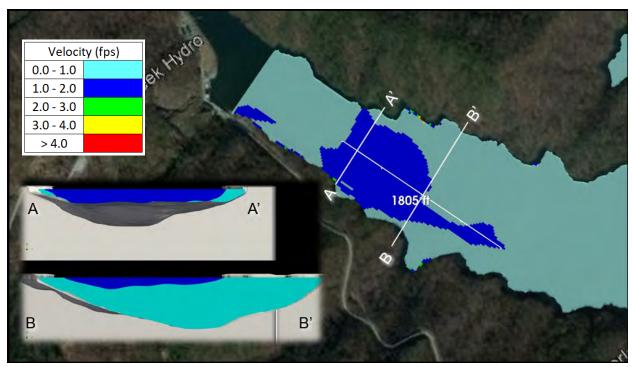


Figure 6-28. Proposed Generation (Expanded Weir) at Full Pond – Velocity Contours in Submerged Weir Vicinity (Flow is Left to Right)



Figure 6-29. Proposed Generation (Expanded Weir) at Full Pond – Whitewater River Cove Streamlines (Flow is Left to Right)

Maximum Drawdown

The scenario with the proposed generating flow and expanded weir at maximum drawdown presents the greatest effect to water velocities and flow patterns in Whitewater River cove. With the lowered pond level, expanded weir geometry (in the downstream direction) and higher flowrate, the effect of the expanded weir is the most pronounced. Contours of surface velocity show an area of elevated velocity in the immediate vicinity of the weir. This area of slightly elevated velocity extends approximately 2,500 ft from the weir crest and peaks at 4.5 fps. For context, 4.5 fps is approximately 3.0 miles per hour or roughly the average adult walking speed.

The area of elevated velocity is shown on Figure 6-30 and Figure 6-31. Vertical slices A-A' and B-B' on Figure 6-31 indicate the area of higher velocity is present through the majority of the water column across the top of the weir, but as flow expands into the downstream section of the Whitewater River cove, flow is concentrated on the right descending bank and near the surface. Velocities in the Whitewater River cove are between 2.0-3.0 fps approximately 1,500 ft downstream of the submerged weir but are concentrated at the surface indicating little downstream mixing potential.

Figure 6-32 shows velocity streamlines that have a similar flow pattern as Figure 6-29 (full pond streamlines), however the effect of the weir is more pronounced. At lower pond levels, water velocities are accelerated across the top of the weir and flows are forced to the surface. This results in an area of slightly higher surface velocities, and a significantly reduced potential mixing length downstream of the weir.

As with the full pond scenario, because of the low velocities within the water column downstream of the weir at water quality monitoring location 564.0, it can be reasonably expected that flow conditions would not inhibit thermal stratification.

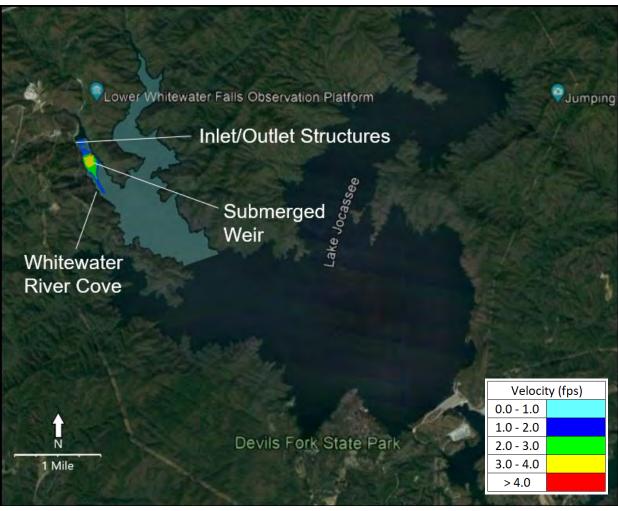


Figure 6-30. Proposed Generation (Expanded Weir) at Maximum Drawdown – Velocity Contours

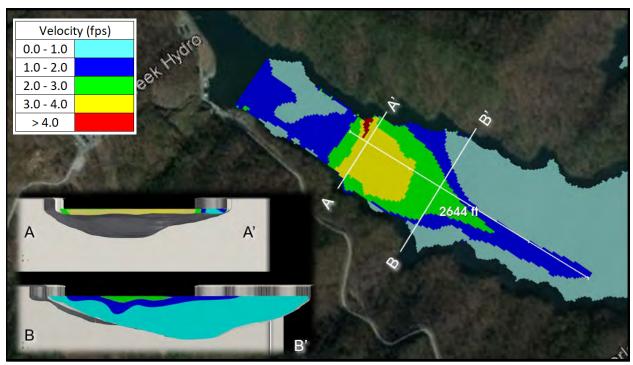


Figure 6-31. Proposed Generation (Expanded Weir) at Maximum Drawdown – Velocity Contours in Submerged Weir Vicinity (Flow is Left to Right)

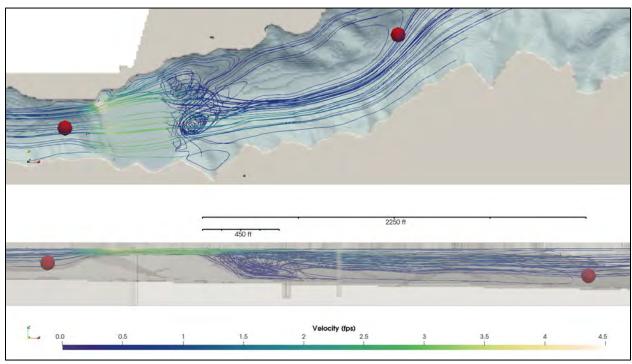


Figure 6-32. Proposed Generation (Expanded Weir) at Maximum Drawdown – Whitewater River Cove Streamlines (Flow is Left to Right)

6.4.2 Pumping

Full Pond

The expanded weir has a slightly stronger effect of accelerating flow across the top of the weir and upstream into the upper Whitewater River cove. Full pond pumping hydraulic conditions in the Whitewater River cove under the proposed flow with the expanded weir geometry are still characterized by relatively low velocities. Flow velocities peak across the top of the submerged weir at approximately 1.1 fps. Figure 6-33 shows contours of velocity in an aerial view. Figure 6-34 shows the surface velocity contours in the vicinity of the submerged weir, as well as two vertical slices showing vertical velocity profiles in the Whitewater River Arm. Slice B-B' indicates little to no elevated velocities downstream of the submerged weir. The area of slightly elevated velocity (1-2 fps) extends 200 ft upstream of the submerged weir.

Figure 6-35 presents hydraulic flow paths with velocity magnitudes identified by color in the Whitewater River cove. There is little to no vertical mixing downstream of the submerged weir under pumping operations. As flow is pumped to Bad Creek Reservoir, it is gradually pulled from Lake Jocassee across the top of the submerged weir resulting in a very uniform, laminar flow regime downstream of the weir. Flow patterns at monitoring location 564.0 extending upstream to the weir are uniform and have velocities less than 0.2 fps indicating stratification would be present throughout the reservoir downstream of the weir. When comparing to Figure 6-26, expanding the weir geometry results in flow patterns and magnitudes that are similar to the flow patterns and magnitudes of the existing submerged weir geometry, which limits downstream vertical mixing.

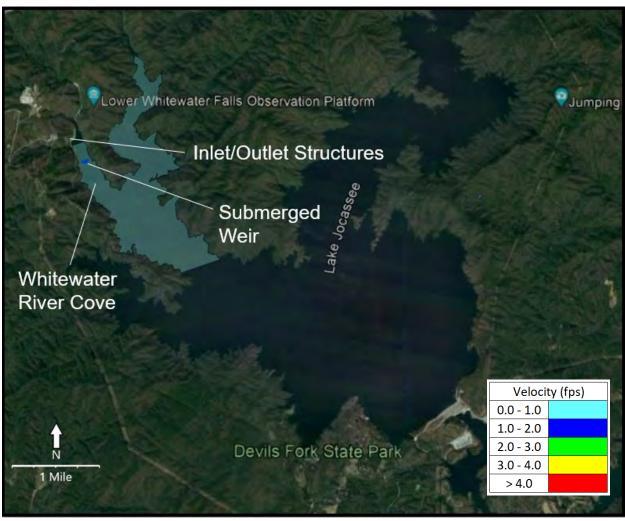


Figure 6-33. Proposed Pumping (Expanded Weir) at Full Pond – Velocity Contours

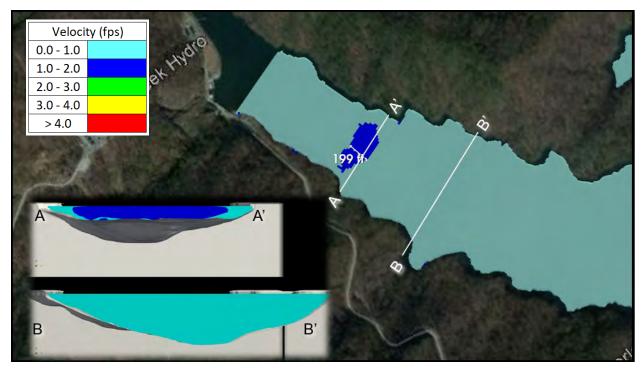


Figure 6-34. Proposed Pumping (Expanded Weir) at Full Pond – Velocity Contours in Submerged Weir Vicinity (Flow is Right to Left)

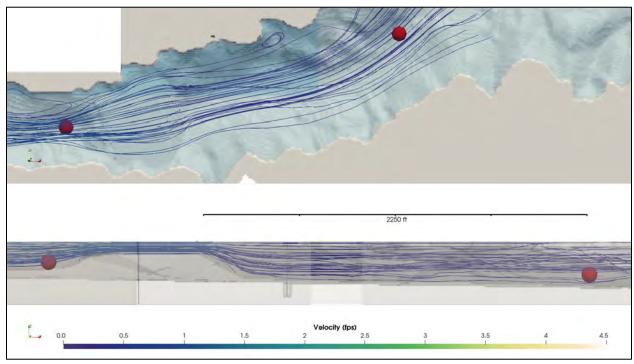


Figure 6-35. Proposed Pumping (Expanded Weir) at Full Pond – Whitewater River Cove Streamlines (Flow is Right to Left)

Maximum Drawdown

Similar to generating at maximum drawdown, pumping at maximum drawdown increases the effect of the submerged weir. An area of higher velocity extends approximately 1,800 ft upstream of the submerged weir peaking at 3.3 fps. Surface velocities for pumping at maximum drawdown are shown in Figure 6-36 and Figure 6-37. Vertical slices in Figure 6-37 indicate minimal vertical mixing effects are observed downstream of the submerged weir. Velocity streamlines in the Whitewater River cove shown on Figure 6-38 are uniform and slow moving, indicating stratification would be present downstream of the weir. As flow is pulled across the top of the weir it is accelerated into the upstream section of the Whitewater River cove.

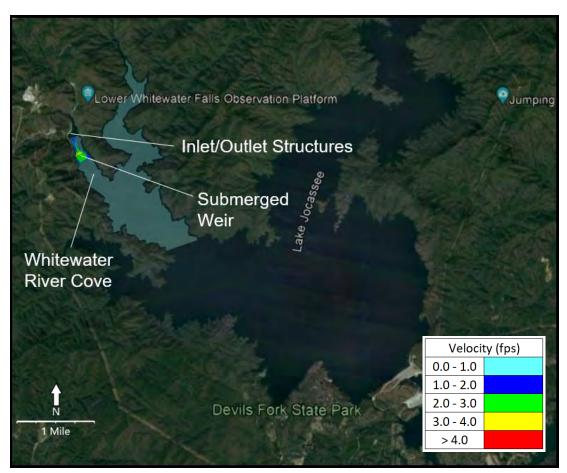


Figure 6-36. Proposed Pumping (Expanded Weir) at Maximum Drawdown – Velocity Contours

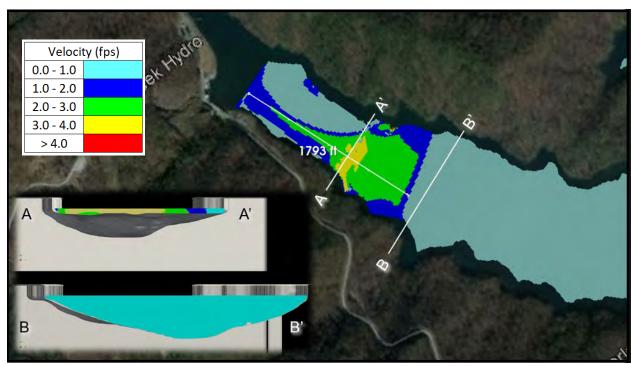


Figure 6-37. Proposed Pumping (Expanded Weir) at Maximum Drawdown – Velocity Contours in Submerged Weir Vicinity (Flow is Right to Left)

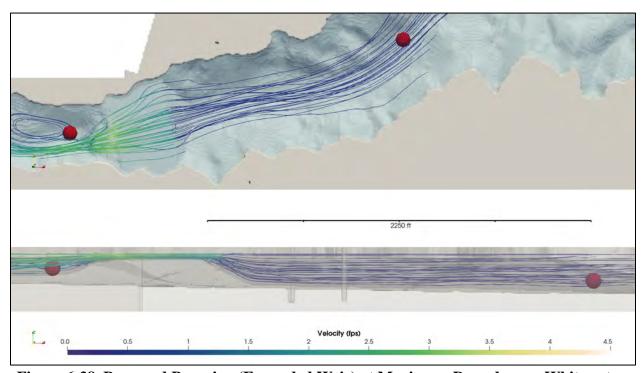


Figure 6-38. Proposed Pumping (Expanded Weir) at Maximum Drawdown – Whitewater River Cove Streamlines (Flow is Right to Left)

6.5 Effect of Submerged Weir Geometry

As previously stated, the expanded weir geometry results in a small increase in flow acceleration as water flows over the crest of the weir (when compared to the existing weir geometry). Comparison of Figure 6-19 and Figure 6-31 shows similar magnitudes of velocity increases, but the area of elevated surface velocity are slightly larger with the expanded weir geometry. Comparison of streamlines downstream of the weir in Figure 6-20 and Figure 6-32 indicate the flow patterns are very similar, and it can be reasonably expected to result in similar stratification patters at water quality monitoring location 564.0.

Comparison of the pumping scenarios leads to the same conclusion. Flow is accelerated over the expanded weir and the increased velocity has a slightly larger footprint compared to the existing weir (Figure 6-25 vs Figure 6-31). However, expanding the weir geometry results in flow patterns and magnitudes that are similar to the flow patterns and magnitudes of the existing submerged weir geometry, which limits downstream vertical mixing. (Figure 6-26 vs Figure 6-38).

7 Conclusions

Each CFD model scenario was run at full pond and maximum drawdown. These two elevations were selected to bookend the potential operating conditions of the existing and proposed powerhouse configurations. Over the last 45 years, Lake Jocassee elevation has been above the minimum pond level 100 percent of the time.

The CFD model domain was appropriately sized to evaluate the hydraulic effects of Bad Creek and Bad Creek II. Results indicate hydraulic effects in Lake Jocassee due to operations are limited to the model domain (i.e., the area upstream of the Devil's Fork arm and Whitewater River arm confluence) and water conditions to maintain natural stratification downstream of the weir exist under all modeled scenarios.

In generation mode, the energy of the water discharged from Bad Creek is dissipated as it is forced across the top of the existing submerged weir. Similar vertical mixing patterns result from the existing and proposed expanded weir geometries under existing and proposed generation flows. Model results indicate Bad Creek II powerhouse operations will not alter existing

stratification patterns observed at Station 564.0 (downstream of weir) or further downstream into Lake Jocassee.

In pumping mode, hydraulic effects due to Bad Creek II operations are limited to the Whitewater River cove upstream of the submerged weir and in the upper water column across the top of the weir. No modeled configuration of pumping operations creates mixing downstream of the submerged weir. Water quality profile data (current and historic) also support CFD model results, indicating stratification is preserved downstream of the submerged weir. As discussed in Section 4.2.7.1, the CFD model will be verified with new computational runs simulating field conditions at the time of data collection. Preliminary verification model runs indicate good agreement between CFD results and velocity data collected in the Whitewater River arm.

8 Future Work

Model verification will be completed in fall 2023 and results will be provided in an addendum to the final study report.

9 Variances from FERC-approved Study Plan

There were no variances from the FERC-approved RSP.

10 Germane Correspondence and Consultation

Germane correspondence and consultation documentation will be included with the Water Resources Study Report to be filed with the ISR in January, 2024.

11 References

- Chow, V.T. 1959. Open Channel Hydraulics. McGraw-Hill, Incorporated, New York, New York.
- Environmental Systems Research Institute (ESRI). 2021. ArcGIS Pro, Release 2.8.8 Redlands, CA: Environmental Systems Research Institute.
- Flow Science, Inc. (Flow Science). 2023. User Manual: FLOW-3D Documentation, release 23.1.0.12. Albuquerque: Flow Science, Inc.
- HDR Engineering, Inc. (HDR). 2022. Bad Creek II Power Complex Feasibility Study. Volume 5: Lower Reservoir CFD Flow Modeling Report. September 1, 2022. Prepared for Duke Energy Carolinas, LLC.
- Hirt, C. W. 2000. Implicit Vs. Explicit Numerical Methods. Santa Fe: Flow Science.
- Hirt, C. W. and Nichols, D. B. 1981. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries. Journal of Computational Physics, 201-225.
- Innovyze Infoworks Integrated Catchment Model (Innovyze). 2023. Version 2023.2; Software 2022.
- Larsen, J., and White, D. K. 1986. Letter Report Bad Creek Discharge Structure Model Study Phase II. Worcester Polytechnic Institute Alden Research Laboratory.
- Yakhot, V and Orszag, S.A. 1986. Renormalization Group Analysis of Turbulence. I. Basic Theory. Journal of Scientific Computing, 1, 3-51.

Appendix A Appendix A – Upgraded Unit Figures

List of Figures

Figure A-1. Upgraded Generation at Full Pond – Velocity Contours
Figure A-2. Upgraded Generation at Full Pond – Velocity Contours in Submerged Weir Vicinity (Flow is
Left to Right)
Figure A-3. Upgraded Generation at Full Pond – Whitewater River Cove Streamlines (Flow is Left to
Right)
Figure A-4. Upgraded Generation at Maximum Drawdown – Velocity Contours
Figure A-5. Upgraded Generation at Maximum Drawdown –Velocity Contours in Submerged Weir
Vicinity (Flow is Left to Right)
Figure A-6. Upgraded Generation at Maximum Drawdown – Whitewater River Cove Streamlines (Flow
is Left to Right)
Figure A-7. Upgraded Pumping at Full Pond – Velocity Contours
Figure A-8. Upgraded Pumping at Full Pond – Velocity Contours in Submerged Weir Vicinity (Flow is
Right to Left)6
Figure A-9. Upgraded Pumping at Full Pond – Whitewater River Cove Streamlines (Flow is Right to
Left)6
Figure A-10. Upgraded Pumping at Maximum Drawdown – Velocity Contours
Figure A-11. Upgraded Pumping at Maximum Drawdown –Velocity Contours in Submerged Weir
Vicinity (Flow is Right to Left)
Figure A-12. Upgraded Pumping at Maximum Drawdown – Whitewater River Cove Streamlines (Flow is
Right to Left)

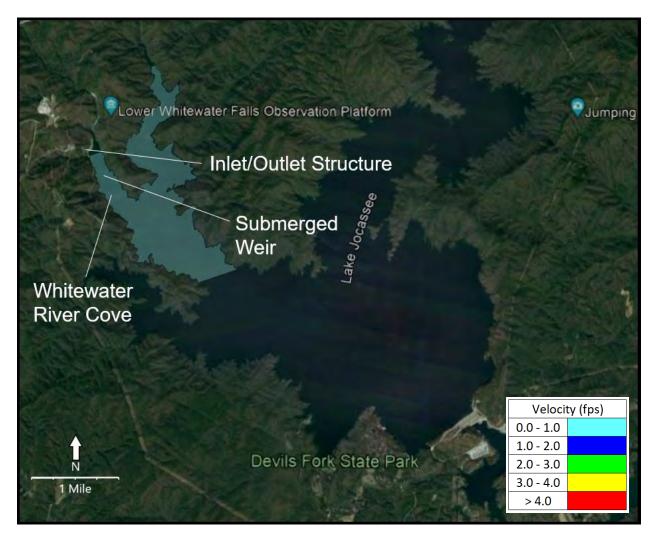


Figure A-1. Upgraded Generation at Full Pond – Velocity Contours

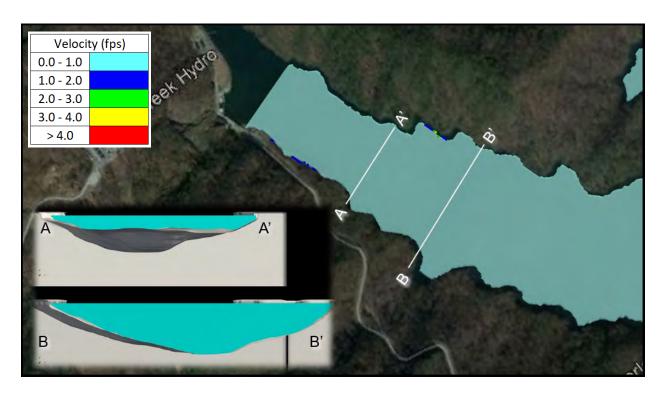


Figure A-2. Upgraded Generation at Full Pond –Velocity Contours in Submerged Weir Vicinity (Flow is Left to Right)

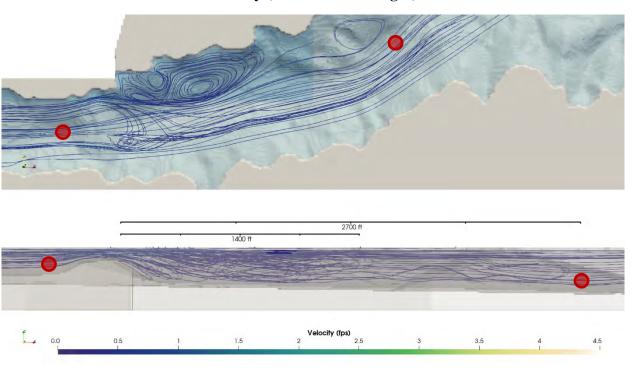


Figure A-3. Upgraded Generation at Full Pond – Whitewater River Cove Streamlines (Flow is Left to Right)

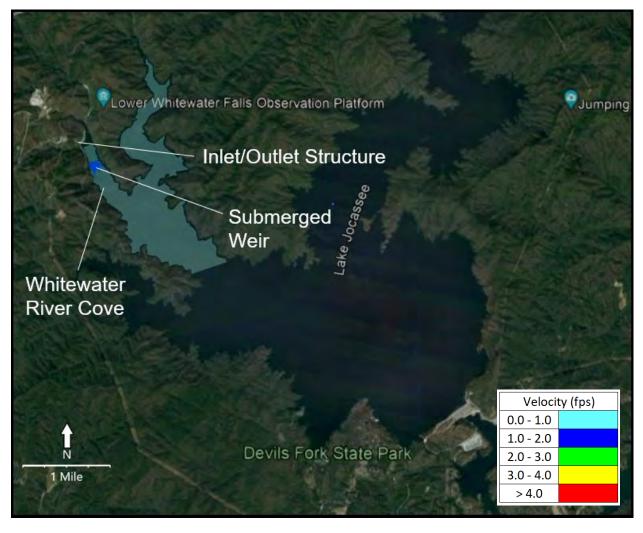


Figure A-4. Upgraded Generation at Maximum Drawdown – Velocity Contours

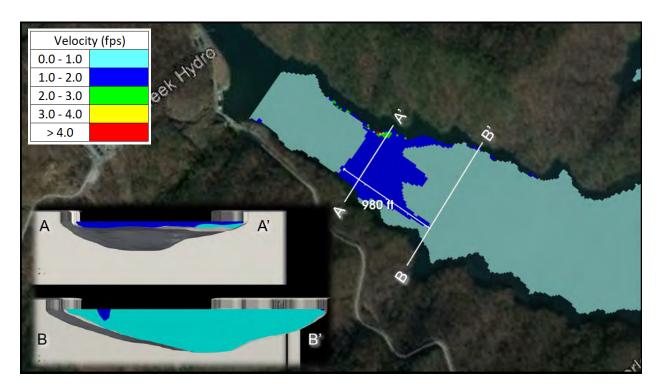


Figure A-5. Upgraded Generation at Maximum Drawdown –Velocity Contours in Submerged Weir Vicinity (Flow is Left to Right)

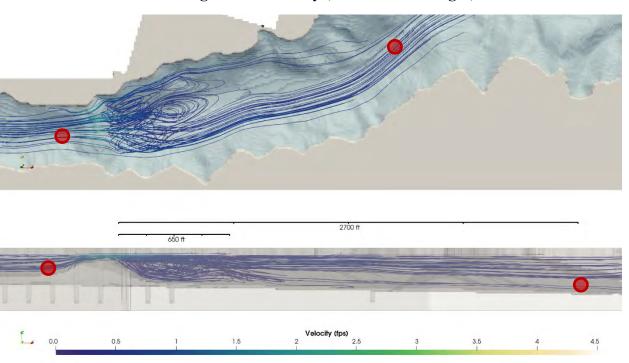


Figure A-6. Upgraded Generation at Maximum Drawdown – Whitewater River Cove Streamlines (Flow is Left to Right)

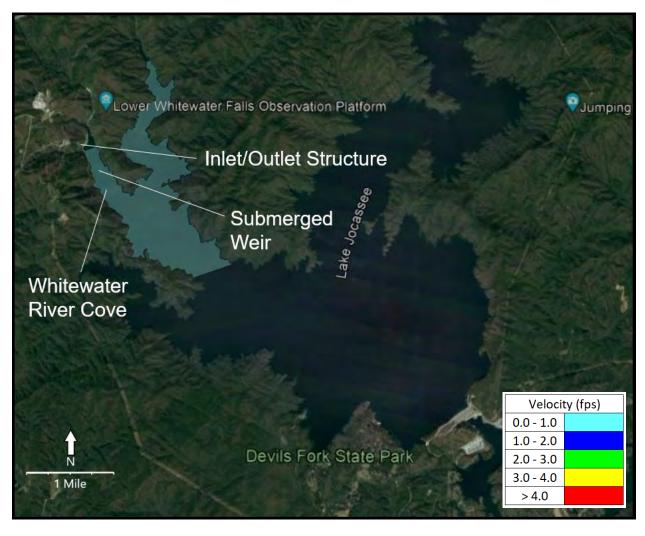


Figure A-7. Upgraded Pumping at Full Pond – Velocity Contours

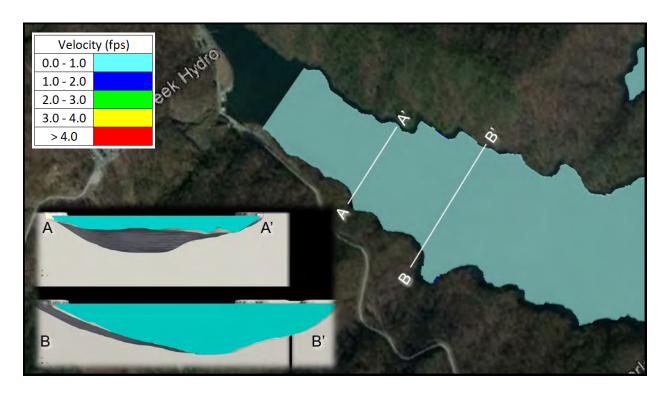


Figure A-8. Upgraded Pumping at Full Pond –Velocity Contours in Submerged Weir Vicinity (Flow is Right to Left)

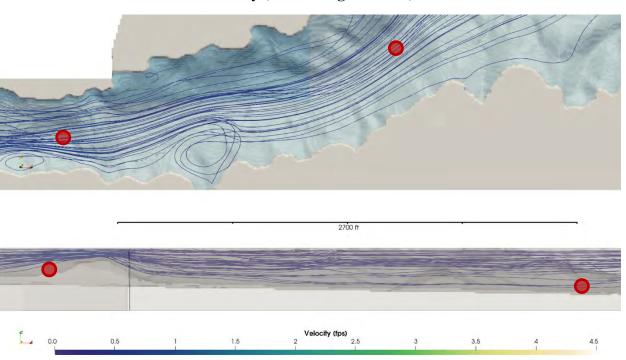


Figure A-9. Upgraded Pumping at Full Pond – Whitewater River Cove Streamlines (Flow is Right to Left)

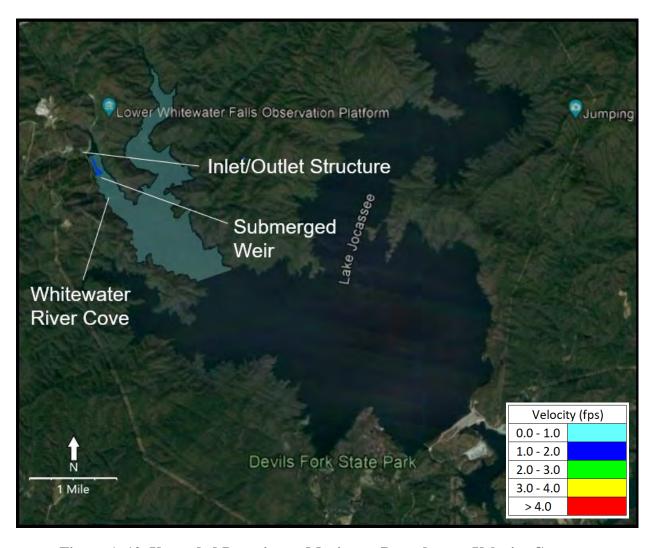


Figure A-10. Upgraded Pumping at Maximum Drawdown - Velocity Contours

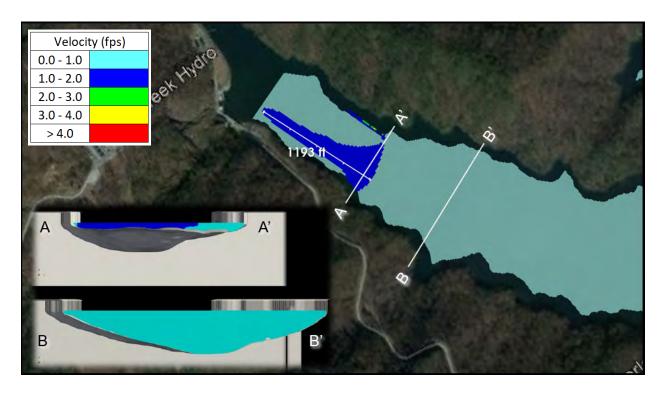


Figure A-11. Upgraded Pumping at Maximum Drawdown –Velocity Contours in Submerged Weir Vicinity (Flow is Right to Left)

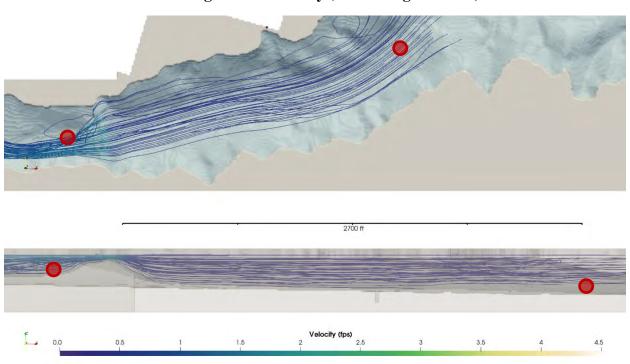
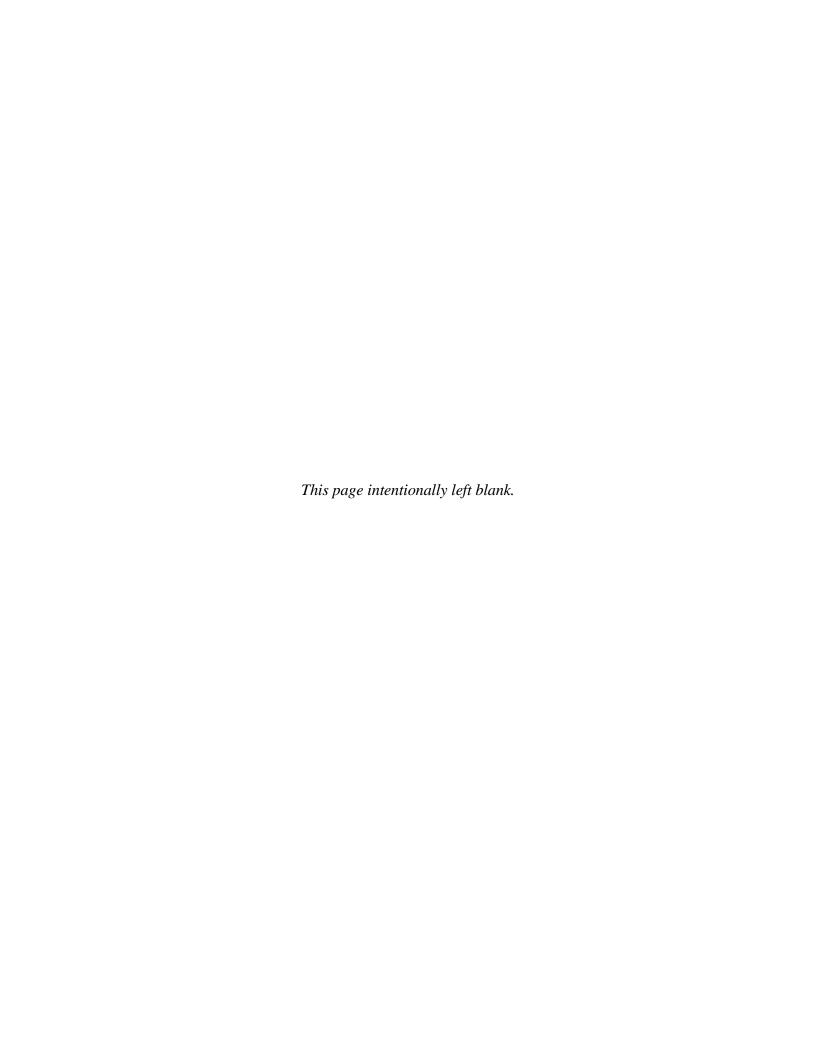


Figure A-12. Upgraded Pumping at Maximum Drawdown – Whitewater River Cove Streamlines (Flow is Right to Left)

BAD CREEK CFD MODEL VERIFICATION


ADDENDUM

WATER RESOURCES STUDY

Bad Creek Pumped Storage Project FERC Project No. 2740

Oconee County, South Carolina

November 6, 2023

BAD CREEK CFD MODEL VERIFICATION BAD CREEK PUMPED STORAGE PROJECT FERC PROJECT NO. 2740

TABLE OF CONTENTS

Section	Title	Page No.			
	1 Project Introduction and Background				
3	ves				
•	Area				
	ds				
	DCP Overview				
4.1.1 4.1.2	Low velocity threshold				
4.1.2	Interference zone and bottom tracking				
4.1.3	Temperature effects				
	eld Data Collection				
4.2.1	Instrumentation				
4.2.2	Data Collection Methods				
4.2.3	Data Collection Challenges				
4.3 Po	st-Processing and Model Verification				
	odeling Assumptions				
	ation Results				
	sions				
7 Referen	nces	23			
	I rom on Tany no				
	LIST OF TABLES	_			
	Teledyne RDI Workhorse Sentinel ADCP Relevant Specifications				
Table 4-2. Teledyne RDI RiverRay ADCP Relevant Specifications					
Table 4-3. C	Operations and Measurement Details	11			
	LIST OF FIGURES				
Figure 3-1. CFD Modeling Study Area					
Figure 3-2. Transects for CFD Model Verification Data in the Whitewater River Cove					
Figure 4-1. Photo of Teledyne RDI Workhorse Sentinel ADCP					
-	Photo of Teledyne RDI RiverRay ADCP				
Figure 4-3. Teledyne RDI Workhorse Sentinel and Retrofitted Flotation Device					
	Teledyne RDI RiverRay ADCP and Trimaran				
•	Measured Velocity (top) vs Modeled Velocity (bottom) Transect 1 (Station				
	Measured Velocity (top) vs Modeled Velocity (bottom) Transect 2 (Top of				
· ·	Measured Velocity (top) vs Modeled Velocity (bottom) Transect 2 (Top of Measured Velocity (top) vs Modeled Velocity (bottom) Transect 3 (Station	*			
· ·	Measured Velocity (top) vs Modeled Velocity (bottom) Transect 4 (Upstream)	*			
	River-Whitewater River Confluence)				

ACRONYMS AND ABBREVIATIONS

3-D 3-dimensional

ADCP Acoustic Doppler Current Profiler
Bad Creek II Complex Bad Creek II Power Complex

Bad Creek Reservoir upper reservoir

CFD computational fluid dynamics

CFD Model Report Velocity Effects and Vertical Mixing in Lake Jocassee Due to a

Second Powerhouse report

cfs cubic feet per second

Duke Energy or Licensee Duke Energy Carolinas, LLC

fps feet per second

ft feet

ft msl feet above mean sea level

FERC or Commission Federal Energy Regulatory Commission
Project Bad Creek Pumped Storage Project

RiverRay Teledyne[©] RD Instruments, Inc. RiverRay ADCP

Sentinel Teledyne® RD Instruments, Inc. Workhorse Sentinel ADCP

Teledyne RDI Teledyne[©] RD Instruments, Inc.

USGS U.S. Geological Survey

1 Project Introduction and Background

Duke Energy Carolinas, LLC (Duke Energy or Licensee) is the owner and operator of the 1,400-megawatt Bad Creek Pumped Storage Project (Project) (FERC Project No. 2740) located in Oconee County, South Carolina, approximately eight miles north of Salem. The Project utilizes the Bad Creek Reservoir as the upper reservoir and Lake Jocassee, which is licensed as part of the Keowee-Toxaway Hydroelectric Project (FERC Project No. 2503), as the lower reservoir. The existing (original) license for the Project was issued by the Federal Energy Regulatory Commission (FERC or Commission) for a 50-year term, with an effective date of August 1, 1977 and expiration date of July 31, 2027.

Task 3 of the Water Resources Study (Velocity Effects and Vertical Mixing in Lake Jocassee Due to a Second Powerhouse) implemented three-dimensional (3-D) computational fluid dynamics (CFD) to determine flows and extent of vertical mixing in the Whitewater River cove (also called Whitewater River arm) due to the addition of a second powerhouse (Bad Creek II Power Complex [Bad Creek II]). Field verification data for the model were collected during summer 2023; however, results were not available prior to submittal of the Velocity Effects and Vertical Mixing in Lake Jocassee Due to a Second Powerhouse draft report (i.e., CFD Model Report) to stakeholders on September 11, 2023. Therefore, Duke Energy is hereby providing enclosed verification results as an addendum to the final CFD Model Report.

2 Objectives

The main objective of Task 3 of the Water Resources Study (i.e., CFD modeling) is to evaluate flow patterns and the extent of vertical mixing in the Whitewater River cove downstream of the submerged weir due to the addition of a second inlet/outlet structure. The purpose of this addendum is to provide a summary of field methods and results of flow and velocity data collected in the Whitewater River cove with the goal of verifying CFD model results, thereby providing confidence in modeled results.

3 Study Area

The study area for the CFD modeling study is shown on Figure 3-1. It encompasses the western portion of Lake Jocassee that includes the Whitewater River arm and the Thompson River arm; this is the extent of the CFD model domain previously presented in the CFD report.

Verification flow data were collected along four transects in the Whitewater River cove as shown on Figure 3-2. Approximate locations of flow transects include Transect 1 (upstream of the weir near water quality monitoring Station 564.1), Transect 2 (across the top of the submerged weir), Transect 3 (downstream of the submerged weir near Station 564.0), and Transect 4 at the confluence of the Whitewater River arm and Thompson Creek arm.

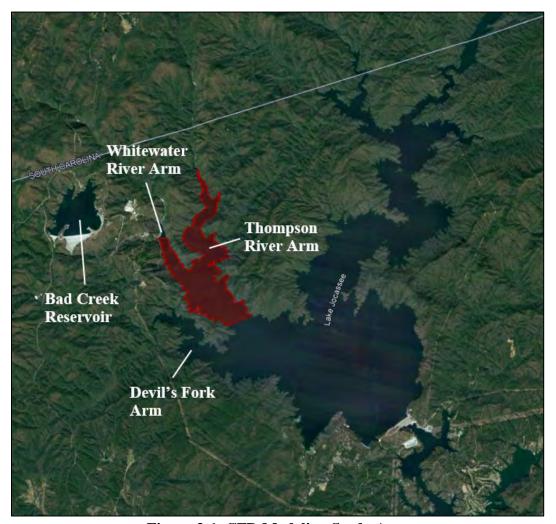


Figure 3-1. CFD Modeling Study Area

Figure 3-2. Transects for CFD Model Verification Data in the Whitewater River Cove

4 Methods

4.1 ADCP Overview

An Acoustic Doppler Current Profiler (ADCP) was used to measure flow velocities along four transects in Whitewater River arm (see Figure 3-2). ADCPs are versatile, widely used instruments for collecting flow measurement profiles in riverine or offshore marine environments; they do not measure the movement of water itself, but instead use sound waves produced by a transducer to measure the speed and direction of currents in the water column. It does this by sending out pulses of sound at a constant frequency and "listening" for echoes (i.e., backscatter) that reflect off particles in the water (typically zooplankton, suspended sediment, or other particles). The echoes have a slightly different frequency than the original sound transmitted, depending on whether the particles are moving towards or away from the device, as well as the speed at which they are moving. Particles moving toward the device will have a higher frequency and particles moving away from the device have a lower frequency. This

difference in frequencies is called the Doppler effect, and it allows the ADCP to calculate the velocity of the water along the path of a sound wave (Nortek 2023). A single ADCP beam can only sense the motion of particles that are moving parallel to the beam (i.e., one-dimensional velocity). However, by using multiple beams of sound in different directions, multi-beam ADCPs can measure particles moving in three-dimensional space (i.e., speed and direction) and at different depths (called bins) in the water column.

4.1.1 Low velocity threshold

While the lower limit of velocity detection can vary depending on site-specific conditions, ADCPs are typically not used to measure discharge in areas where velocities are less than approximately 0.3 feet (ft) per second (fps) (Mueller and Wagner 2009).

4.1.2 Homogeneous flow assumption

An ADCP assumes the flow field being measured is homogenous, meaning the particles in each depth cell (bin) are generally moving in the same direction. If the flow field is non-homogenous, errors or data gaps may result when computing velocity components from multiple beams that are receiving backscatter from particles moving in different directions. Multidirectional flows caused by density currents are common in tidally affected areas and have also been observed in freshwater environments where significant temperature gradients create density currents (Garcia et al. 2007).

4.1.3 Interference zone and bottom tracking

ADCP beams are shaped like cones which widen with increasing depth. Acoustic signals reflecting off particles are relatively weak and travel back to the ADCP along the centerline of the cone. However, reflections off hard surfaces (e.g., river or reservoir bottoms) are much stronger and introduce errors in the velocity calculations as some of the acoustic signal travels back to the ADCP along the sides of the cone. Therefore, ADCPs ignore data collected from the portion of the water column near the river or reservoir bottom. This is called the sidelobe interference layer. The depth of this layer is based on the angle of the ADCPs transducer heads and can also vary depending on the hardness of the bottom surface, but typically covers the bottom 6 to 13 percent of the water column (Nortek 2023).

ADCPs also track the bottom of the water column when measuring velocities to determine the overall depth of each data ensemble. A data ensemble is a single profile of the water velocity through the water column consisting of multiple stacked bins (i.e., each bin represents a single depth cell). If the individual transducer beams hit solid surfaces at different depths (for example, lakebed and submerged trees), the ADCP will only calculate velocity for bins that it can resolve. As a result, in addition to the sidelobe interference layer, additional data gaps may occur for bins near the bottom of the transect due to an inconsistent bottom profile. In this case, the ADCP will only calculate velocities for bins that can be resolved based on moving particles (i.e., higher in the water column).

4.1.4 Temperature effects

ADCPs use the speed of sound traveling through the water column to determine the distance to each depth cell (or bin). Sound speed is affected by water temperature, salinity, and depth. Water temperature is the most important of these three variables in calculating sound speed in water (sound speed increases with increasing water temperature and vice versa). As a result, presence of thermal stratification in the water column affects sound speed which in turn affects velocity measurements. For example, a difference of five degrees Celsius will cause a two percent bias error in the measured discharge (Oberg et al. 2005).

4.2 Field Data Collection

Velocity profiles were measured in the Whitewater River cove during three separate field visits on June 12 & 13, August 10 & 11, and September 20 & 21, 2023. Field work was conducted in parallel with regularly scheduled water quality monitoring in the Whitewater River cove in support of Task 2 of the Water Resources Study. Due to varying water depths along the transects, two different ADCPs were used; a deep-water ADCP and a shallow-water ADCP. Instrumentation and specifications for each are described in the following sections.

4.2.1 Instrumentation

4.2.1.1 Deep-water ADCP

The ADCP used for deep-water measurements in the Whitewater River cove was a Teledyne[©] RD Instruments, Inc. (Teledyne RDI) Workhorse Sentinel ADCP (300kHz) (Sentinel); this

FDS

model is ideally suited for a wide variety of applications (e.g., seafloor monitoring, wave data collection, vessel-mounted, buoy-mounted etc.). 1 It has a low-frequency, four-beam convex configuration (see Figure 4-1), a standard depth rating of 200 meters, and can be deployed upward or downward looking to measure flow velocities in the water column. The signal processing delivers low-noise data, resulting in high resolution data and minimal power consumption; Table 4-1 provides relevant specifications for the Sentinel.

(Photo source: https://www.teledynemarine.com/brands/rdi/workhorse-sentinel-adcp)

Figure 4-1. Photo of Teledyne RDI Workhorse Sentinel ADCP

¹ https://www.uniquegroup.com/wp-content/uploads/2022/08/Teledyne_RDI_Workshorse_Sentinel_ADCP.pdf

Table 4-1. Teledyne RDI Workhorse Sentinel ADCP Relevant Specifications

Component	Attribute	Specification		
	Operating Mode	Broadband		
	Max profiling range	160 m		
W. d. o. D. o. Cilia	Vertical Resolution	1m		
Water Profiling	Range	83 m		
	Stdev	14 cm/s		
	Frequency	300 kHz		
	Velocity accuracy	0.5% of the water velocity relative to ADCP ±0.5cm/s		
	Velocity resolution	0.1cm/s		
Profile Parameters	Velocity range:	± 5 m/s (default) ± 20 m/s (max)		
	Number of depth cells	1–255		
	Ping rate	Up to 10Hz (2 Hz typical)		
Este Lateralia	Vertical resolution	Depth cell size, user configurable		
Echo Intensity	Dynamic range	80dB		
Profile	Precision	±1.5dB		
	Beam angle	20°		
Transducer and	Configuration	4-beam, convex		
Hardware	Internal memory	Two PCMCIA card slots; one memory card included		
Hardware	Communications	RS-232 or RS-422; ASCII or binary output at 1200-115,200		
		baud		
	DC input	20–50VDC		
Power	Number of batteries	1 internal battery pack		
Power	Internal battery voltage	42VDC (new) 28VDC (depleted)		
	Battery capacity @ 0°C	450 watt hours		
	Temperature	Range -5° to 45°C, Precision ±0.4°C, Resolution 0.01°		
Sensors	Tilt	Range ±15°, Accuracy ±0.5°, Precision ±0.5°, Resolution 0.01°		
Selisors	Compass	Accuracy $\pm 2^{\circ}5$, Precision $\pm 0.5^{\circ}5$, Resolution 0.01° ,		
		Maximum tilt ±15°		
	Standard depth rating	200m; optional to 500m, 1000m, 6000m		
Environmental	Operating temperature	-5° to 45°C		
Environmental	Weight in water	4.5kg		
	Weight in air	13.0kg		
Software	TRDI's WindowsTM-based software included: WinSC—Data Acquisition System; WinADCP—Data Display and Export			
	······································			

4.2.1.2 Shallow-water ADCP

The ADCP used for shallow-water measurements in the Whitewater River cove was a Teledyne RDI RiverRay ADCP (RiverRay). The RiverRay is primarily for riverine applications and can sample continuously from bank to bank from rivers as shallow as 0.4 meters to rivers as deep as 40 meters.² The trimaran float (designed by OceanScience[©] specifically for use with this ADCP) provides reduced drag and less disturbance in shallow waters. A photo of the RiverRay is included on Figure 4-3 and Table 4-2 provides relevant specifications for the RiverRay ADCP.

² https://www.comm-tec.com/prods/mfgs/RDI/brochures/riverray_ds_lr.pdf

Table 4-2. Teledyne RDI RiverRay ADCP Relevant Specifications

Component	Attribute	Specification				
	Operation Mode	Broadband / pulse-coherent; automatic / manual				
	Velocity range	±5m/s (default), ±20m/s max				
	Profiling range	0.4m to 60m				
Water Profiling	Accuracy	±0.3% of water ve	locity relative to AD	CP, ±2mm/s		
Profile	Resolution	1mm/s				
Parameters	Number of cells	automatic, 25 typical, 200 max				
	Cell size:	automatic, 10cm min.				
	Surface cell range	25cm ²				
	Data output rate	1-2 Hz (typical)				
	Operation mode	Broadband				
	Velocity range	±9.5m/s				
Bottom	Depth Range	0.4-100m ¹				
Tracking	Maximum depth	70m (@15°C, fres	h water)			
	Accuracy	±0.25% of bottom velocity relative to ADCP, ±2 mm/s				
	Resolution	1mm/s				
Dt.	Range	0.3m to 100 (@15°C, fresh water) ¹				
Depth Measurement	Accuracy	1% (with uniform water temperature and salinity profile)				
Measurement	Resolution	1mm				
	Range	20 cm to 120 m				
Vertical Beam	Accuracy	±1% (with uniform water temperature and salinity profile)				
	Resolution	1 millimeter				
	Frequency	600Hz				
Transducer and	Configuration	Phased array (flat surface), Janus four beams at 30° beam angle				
Hardware	Internal memory	16mb				
	Communications	RS-232, 1200 to 115,200 baud. Bluetooth,115,200 baud, 200m range.				
	Input voltage	10.5–18VDC				
	Power consumption	1.5W typical				
Power	Transmit Power	8W				
	Battery (inside float)	12V, 7A-hr lead acid gel cell (rechargeable)				
	Battery capacity	>40 hours continue	ous operation			
		Temperature	Tilt (solid state)	Compass (solid state)		
Standard	Range	-5° to 45°C	± 15°	0-359.99°		
Sensors	Accuracy	± 0.4°C	± 0.5°	± 2°		
	Resolution	0.01°C	0.01°	0.01°		
Float Configuration Three hulls (trimaran)						
	Material	Polyethylene				
	Dimensions	Length 120 cm, width 80 cm, height 20 cm				
	Weight	10 kg bare; 17 kg with instrument and battery				
Software		for moving-boat measurement				

Assumes fresh water; actual range depends on temperature and suspended solids concentration.

(Source: https://cclynch.com/wp-content/uploads/2020/09/Teledyne-RDI-RiverRay-Datasheet.pdf

Figure 4-2. Photo of Teledyne RDI RiverRay ADCP

4.2.2 Data Collection Methods

Proper field procedures are critical to obtaining high quality discharge measurements using ADCPs. For all transects, the ADCP was mounted to a flotation device and attached to a lead line which was held parallel to the boat as the boat motored along the transects. The deep-water ADCP (Sentinel) was mounted to a flotation device retrofitted with sections of high-density foam attached to the bottom and back of the float for additional vertical stability and to reduce backward tilt of the instrument as it was pulled through the water (Figure 4-3). The shallow-water (RiverRay) ADCP was mounted to a trimaran platform (Figure 4-4). Previous studies have shown velocity and discharge measurement errors are directly proportional to the speed of the boat; average boat speed during transect measurements should be less than or equal to the average water speed if possible (Mueller and Wagner 2009), therefore, very slow boat speeds were maintained during field measurements.

Operational data were obtained from Duke Energy for dates of flow data collection. Project operations data information is listed in Table 4-3 and includes pumping, generation, and reservoir elevation for Bad Creek Reservoir and Lake Jocassee. Table 4-3 also provides ADCP measurement details during field data collection.

Figure 4-3. Teledyne RDI Workhorse Sentinel and Retrofitted Flotation Device

Figure 4-4. Teledyne RDI RiverRay ADCP and Trimaran

Table 4-3. Operations and Measurement Details

Transect	Date	Time	Measured Flowrate (cfs)	Lake Jocassee Reservoir Elevation (ft above mean sea level [msl])	Maximum Depth (ft)	Transect Width (ft)	Operations	Measurement Details
Transect 1	July 13	08:00	8,800	1,107.5	143	716	3 Units Pumping	1.1 Ensemble/ft
Transect 2	August 10	18:00	8,500	1,107.7	53	934	2 Units Generating	1.7 Ensemble/ft
Transect 3	Sept 20	16:40	12,400	1,107.2	208	1,146	2 Units Generating	4.4 Ensemble/ft
Transect 4	Sept 21	17:00	13,000	1,107.0	234	1,352	2 Units Generating	1.7 Ensemble/ft

4.2.3 Data Collection Challenges

There are many well-documented data collection challenges when measuring flows with an ADCP in the field; some of these were listed in Section 4.1 associated with ADCP assumptions. The U.S. Geological Survey (USGS) recommends the following guidelines for properly measuring flow velocities with an ADCP (Mueller and Wagner 2009).

- The cross section of a stream should be within a straight reach, and streamlines are parallel to each other. Flow should be relatively uniform and free of eddies, slack water, and excessive turbulence (Rantz et al. 1982).
- Desirable measurement sections should be roughly parabolic, trapezoidal, or rectangular. Asymmetric channel geometries should be avoided, if possible (Simpson 2002), as should cross sections with abrupt changes in channel bottom slope.
- The streambed cross section should be as uniform as possible and free from debris and vegetation or plant growth.
- Depth at the measurement site should allow for the measurement of velocity in two or more depth cells at the start and stop points near the left and right edges of the measurement section.
- Measurement sections with mean velocities less than 0.3 fps should be avoided if an alternative measurement location is available (Oberg et al. 2005). If maintaining a slow boat speed is not possible, maintain the slowest speed that allows smooth boat operation. (Additional transects may be needed to average turbulence and instrument noise.)
- Sites with non-uniform flow lines should be avoided. This condition is often indicative of non-homogenous flow, which is a condition that violates one of the assumptions required for accurate ADCP velocity and discharge measurements.

Several of the data collection challenges listed above are relevant to Lake Jocassee measurements. Additionally, turbidity in the water column and temperature affect measurements in the lake. Lake Jocassee is a very clear, oligotrophic reservoir with low concentrations of nutrients and thus, relatively sparse growth of algae and other organisms. Chlorophyll a concentrations collected in the Whitewater River cove are typically in the upper 105 ft of the water column (i.e., from full pond [1,110 ft msl] down to approximately 1,005 ft msl) with sporadic (both spatial and temporal) concentrations deeper than 105 ft. This is likely a combination light penetration through the upper layers of the water column and the depth of the thermocline (below which water temperatures are cooler and dissolved oxygen concentrations are lower compared to the upper surface layers). As a result, zooplankton densities are also likely to be relatively sparse (as they use plankton as a primary food source) and mostly present in the

upper 105 ft of the water column. Lake Jocassee also has very low turbidity levels, typically less than 1.0 NTU³. Because ADCP technology measures particles moving in the water column, lack thereof results in an insufficient amount of acoustic energy reflected back to the transducer to allow the ADCP to measure the Doppler shift; thus resulting in data gaps, particularly in deeper areas that are devoid of both organisms and turbidity.

Additionally, the Whitewater River arm of Lake Jocassee is deep with most of the flow on the downstream side of the submerged weir contained in the upper portion of the water column. Deeper areas have very slow-moving water (less than 0.3 fps) and coupled with areas that may have non-homogenous flow (due to density currents near the thermocline) and/or very few particles to measure, therefore, it is reasonable to expect bins where the velocity cannot be resolved.

Finally, the area that was flooded to form Lake Jocassee was not cleared prior to filling, therefore, it is reasonable to expect submerged trees that are either still standing and/or have fallen but have not yet decomposed. As a result, bottom tracking is challenging in some areas as the ADCP beams backscatter off hard objects at different elevations at the same location. This causes decorrelation of the acoustic pulse and results in bins where the velocity cannot be computed.

Erroneous and/or inconsistent data values at lower depths attributed to challenging field conditions in the Whitewater River cove are discussed in Section 4.3.

4.3 Post-Processing and Model Verification

WinRiver II is a real-time discharge data collection software developed by Teledyne RDI for collecting and processing data gathered by an ADCP. To make accurate comparisons between measured and modeled data, ADCP data was post processed using WinRiver II. The number of horizontal readings per transect is provided in Table 4-3 (i.e., ensembles per ft). The density of these readings or ensembles (each of which is comprised of stacked "bins" as described in Section 4.1), ranged from 1.1 to 4.4 ensembles/ft. The CFD model mesh used for this study was 20-ft x 20-ft x 10-ft (X,Y,Z directions). To match the CFD model output, the ADCP data was

³ Nephelometric turbidity unit

horizontally averaged into 20-ft ensembles. WinRiver II does not have a method for averaging data in the vertical direction.

4.4 Modeling Assumptions

The CFD model is a numerical approximation of the hydraulics in the Whitewater River arm of Lake Jocassee. Because of the slow-moving nature of the flow patterns in the Whitewater River arm, the model mesh size (i.e., 20-ft x 20-ft x 10-ft) is appropriate to model the velocity magnitudes and direction and mixing / recirculation patterns associated with existing and proposed Bad Creek Project operations.

Inflows to the model were assumed to be constant and uniform in the horizontal and vertical directions. In reality, properties of the water such as temperature (which affects the density of water in thermally stratified waterbodies like Lake Jocassee) play a role in the distribution of flow across a given transect; however, only hydraulics were modeled with the CFD model. Potential hydraulic effects of temperature gradients, flow bulking and buoyancy, or wind-driven vertical mixing were not included. Given these assumptions and model limitations, it is not expected that the CFD model results will exactly replicate real-world conditions within the model domain. However, the CFD model configuration is suitable for purposes of determining potential Project-related operational impacts to flow patterns and vertical mixing in the Whitewater River arm of Lake Jocassee.

5 Verification Results

As described above, two different ADCPs were used to collect velocity data in the Whitewater River arm as part of the CFD model verification effort. The Sentinel and RiverRay transducer heads are mounted with a 20-degree and 30-degree offset from vertical, respectively. This equates to a minimum sidelobe interference zone along the bottom of the reservoir of 5 percent and 8 percent of total depth, respectively. This interference zone is visible as a well-defined band of varying vertical thickness with no data along the bottom of each transect shown on Figure 5-1 through Figure 5-4 (all figures displaying transects are oriented looking in the upstream direction).

As discussed in Section 4.1, there are several assumptions and limitations associated with ADCP data collection. When data collection occurs outside of these assumptions and limitations, erroneous data can occur in the transects, generally in the form of blank cells or artificially high velocity measurements. Data resolution errors in velocity measurements will show up as velocity spikes when compared with the neighboring valid velocity measurements. Mueller and Wagner describe five causes for erroneous or invalid ensembles (Mueller and Wagner 2009):

- 1 Invalid bottom tracking, which would provide no boat reference from which to compute the velocity,
- 2 Decorrelation of the acoustic pulse (from turbulence, high shear, submerged debris, or fish) which would not permit an accurate measurement of the Doppler shift,
- 3 Low backscatter, which results in an insufficient amount of acoustic energy reflected back to the ADCP to measure the Doppler shift,
- 4 The blocking of acoustic pulses by air entrainment, and
- 5 User-specified data quality criteria.

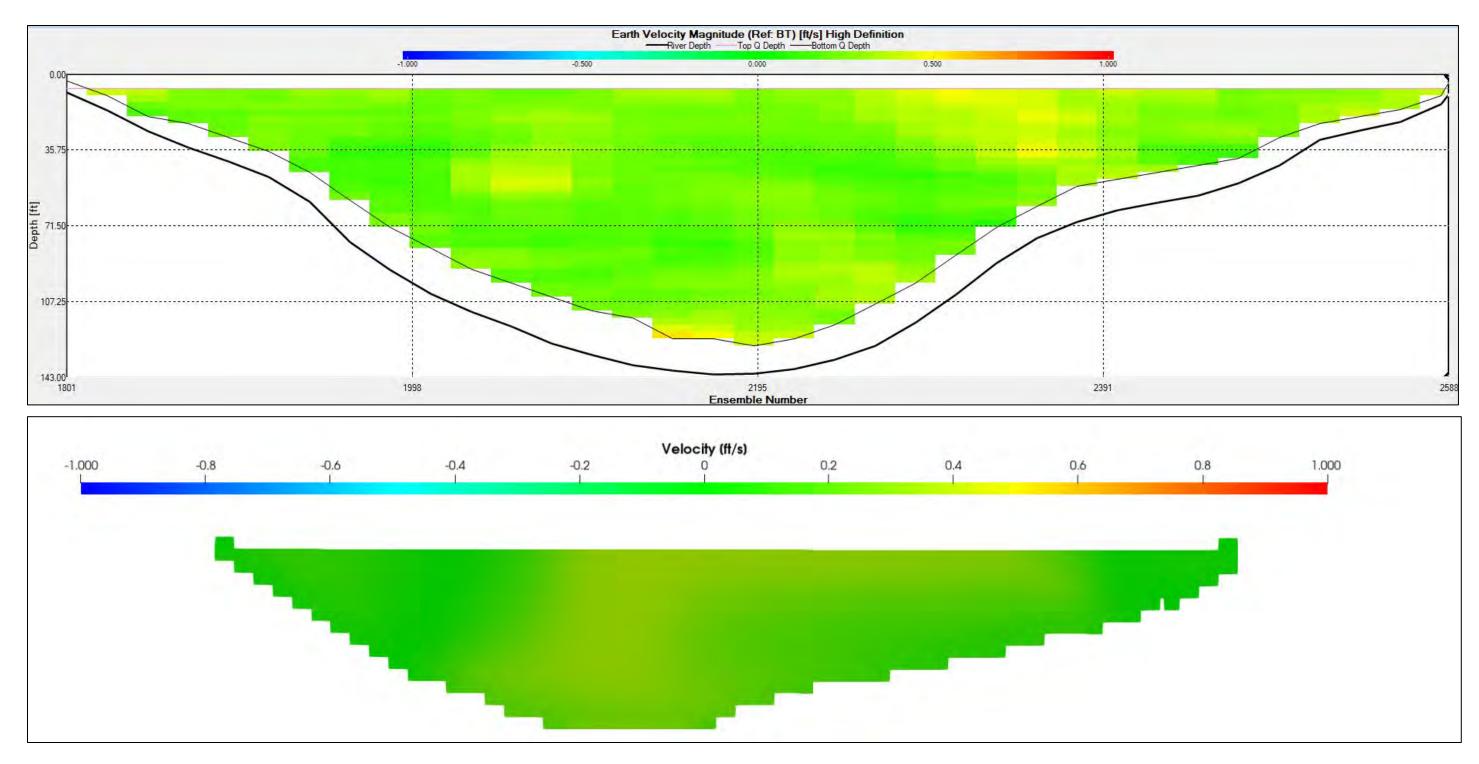
Velocities depicted on Figure 5-1 were measured along Transect 1 which is the furthest upstream transect near water quality monitoring station 564.1. Velocity data shown on Figure 5-1 were collected with the Project in pumping mode to evaluate velocity magnitudes and flow patterns in the area most affected by pumping operations (i.e., near the Project's inlet/outlet structure). Velocities shown on Figure 5-1 are generally moving in the upstream direction towards the Project inlet/outlet structure. The overall measured velocity magnitude is < 0.5 fps from top to bottom (upper panel on Figure 5-1) indicating flows in this area are generally slow moving, but well mixed throughout the water column, which also matches the CFD model results (lower panel on Figure 5-1). Both historic and current water quality profiles at this location also indicate the water column in this area is well-mixed due to Project operations.

Velocities shown on Figure 5-2 were measured across the top of the submerged weir (Transect 2) with the Project in generation mode. The maximum depth along Transect 2 is 53 ft; it is the shallowest of the ADCP transects which range from 53 to 234 ft deep. Due to the smaller cross-sectional area for discharged water to pass through, the area across the top of the weir is also well mixed and exhibits higher velocities compared to the other transects. Maximum measured

velocities across the top of the weir with the Project in generation mode were close to 1.0 fps while the majority of Transect 2 had velocities < 0.5 fps (upper panel on Figure 5-2). The CFD model results for Transect 2 were similar to the measured data and also exhibited areas with higher velocities up to approximately 0.7 fps (lower panel on Figure 5-2).

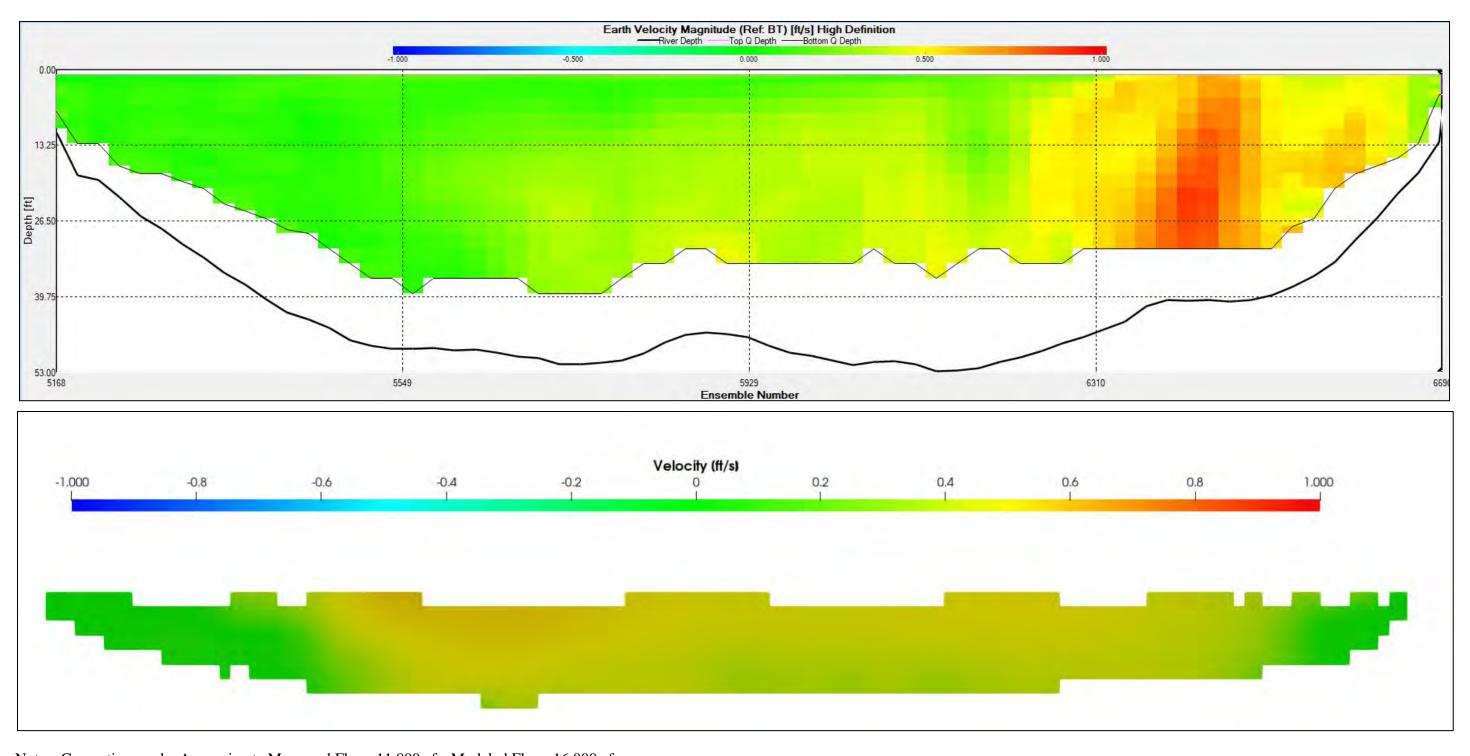
Transects 1 and 2 exhibited complete datasets with no obvious invalid cell measurements or erroneous data, as many of the challenges and limitations associated with ADCP data collection (described above) were not a factor at these two transects.

Figure 5-3 and Figure 5-4 show results of the two downstream transects (Transects 3 and 4). These transects are deeper and the velocities are slower at these two locations compared to Transects 1 and 2. There are numerous invalid ensembles and velocity spikes for both of these transects, indicated by white cells (no data) and artificially high velocities (yellow/orange/red colors at depth or near invalid cells). A review of the ADCP bottom tracking data shows continuous black lines along the bottom of each transect indicating that there were no issues with bottom tracking. Air entrainment (typically due to turbulence) was also not an issue at Transects 3 and 4 and no specific user quality criteria were used in the measurements. This means the invalid ensembles displayed on Figure 5-3 and Figure 5-4 were likely the result of decorrelation of the acoustic pulse and/or low backscatter due to lack of moving particles in the water column (particularly at deeper depths).


Transect 3 (Figure 5-3) is located between the submerged weir and water quality monitoring location 564.0. This location has slightly elevated velocities near the surface which is carry-over from the higher velocities across the top of the submerged weir. Most of the velocities at this location are generally < 0.5 fps which is consistent with the CFD model results. There are several areas along the left-hand side of Figure 5-3 with missing or erroneous data at depth. The first is a series of blank bins around an erroneously high velocity spike (i.e., >1.0 fps) to the left of ensemble 3854. The second is an area of missing data just to the right of ensemble 3854. And the third is an area of missing area approximately halfway between ensembles 3854 and 2625.

As previously discussed in Section 4.2.3, Lake Jocassee has very low turbidity and sparse growth of algae and other organisms. These two factors increase the likelihood of low backscatter, especially at depth. Additionally, because trees and other debris were not cleared before Lake Jocassee was filled, there are likely many areas where trees are still standing, which can cause

decorrelation of the acoustic pulse. The invalid cells farthest to the left of Figure 5-3 appear to be caused by either standing trees and/or low backscatter. The bottom tracking is continuous at the second area, however there is an abrupt change in bottom elevation likely caused by submerged debris. The third location (to the right) is in the deepest part of the transect and the blank cells there are likely caused by low backscatter.


Transect 4 (Figure 5-4) is located just upstream of the confluence of the Whitewater River arm and Thompson River arm. It is the deepest of the four transects (maximum 234 ft) and velocities are very low (<0.50 fps) from the surface to the bottom. There are numerous areas along Transect 4 with either blank cells and/or erroneous high velocities at depth. The combination of low back scatter and submerged debris interrupting the acoustic pulse are feasible explanations for these areas of invalid data; most of the invalid data points are below depths of 100 feet, where there is little turbidity or organic growth present to reflect the acoustic energy back to the ADCP.

While Transects 3 and 4 exhibit some blank cells and erroneous data, this is to be expected when measuring velocities in deep, clear water with very low velocities (i.e., < 0.3 fps). Knowing that data collection would be a challenge at these two locations, extra time was taken in the field to collect a higher density of data ensembles, including hovering in place over areas where data gaps occurred in an attempt to minimize those gaps. Most of the data ensembles at these two locations are complete and a comparison of measured velocities in the upper panels of Figure 5-3 and Figure 5-4 is consistent with the CFD model results shown in the lower panels of these two figures.

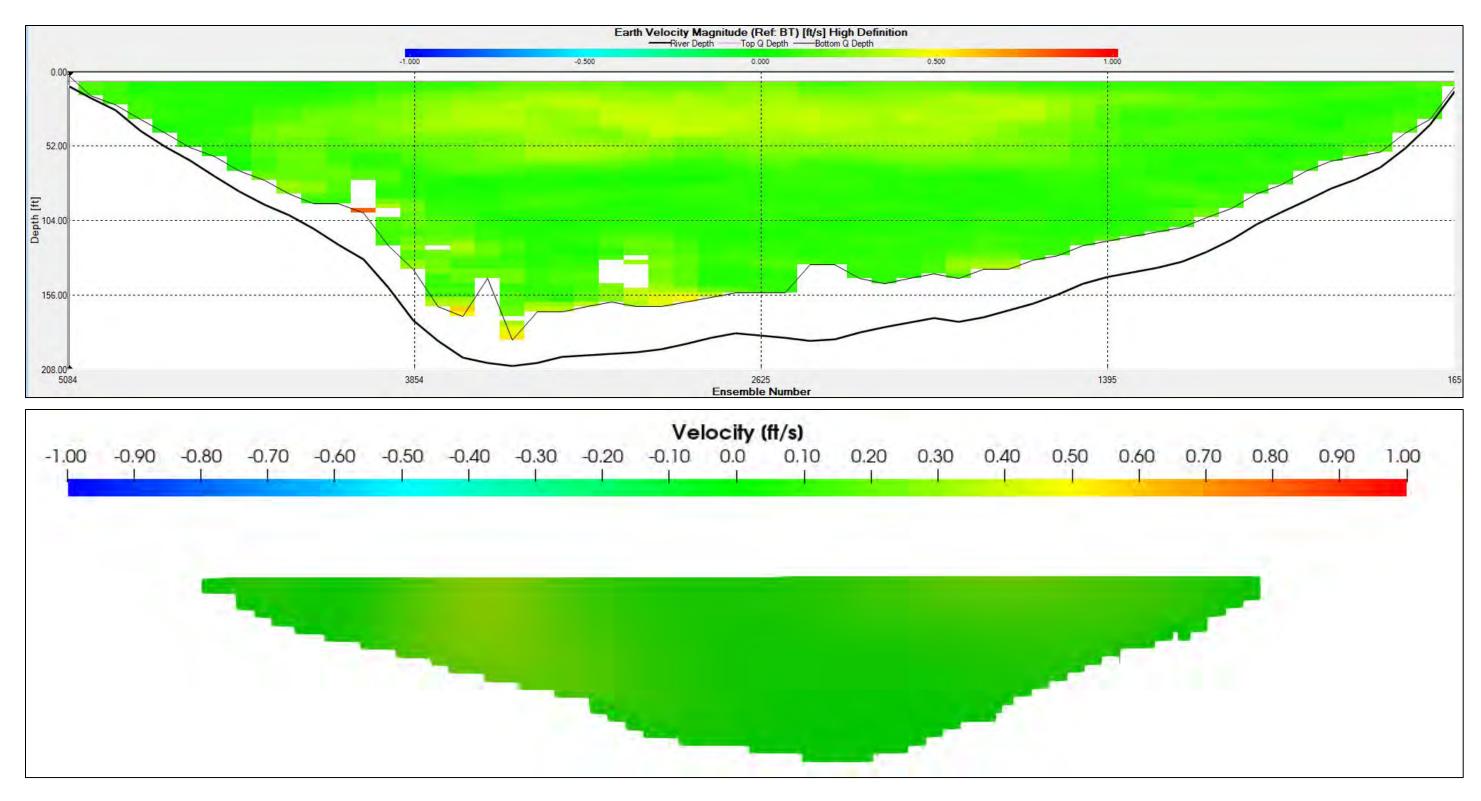

Notes: Pumping mode. Approximate Measured Flow: 13,150 cfs. Modeled Flow: 13,780 cfs

Figure 5-1. Measured Velocity (top) vs Modeled Velocity (bottom) Transect 1 (Station 564.1)

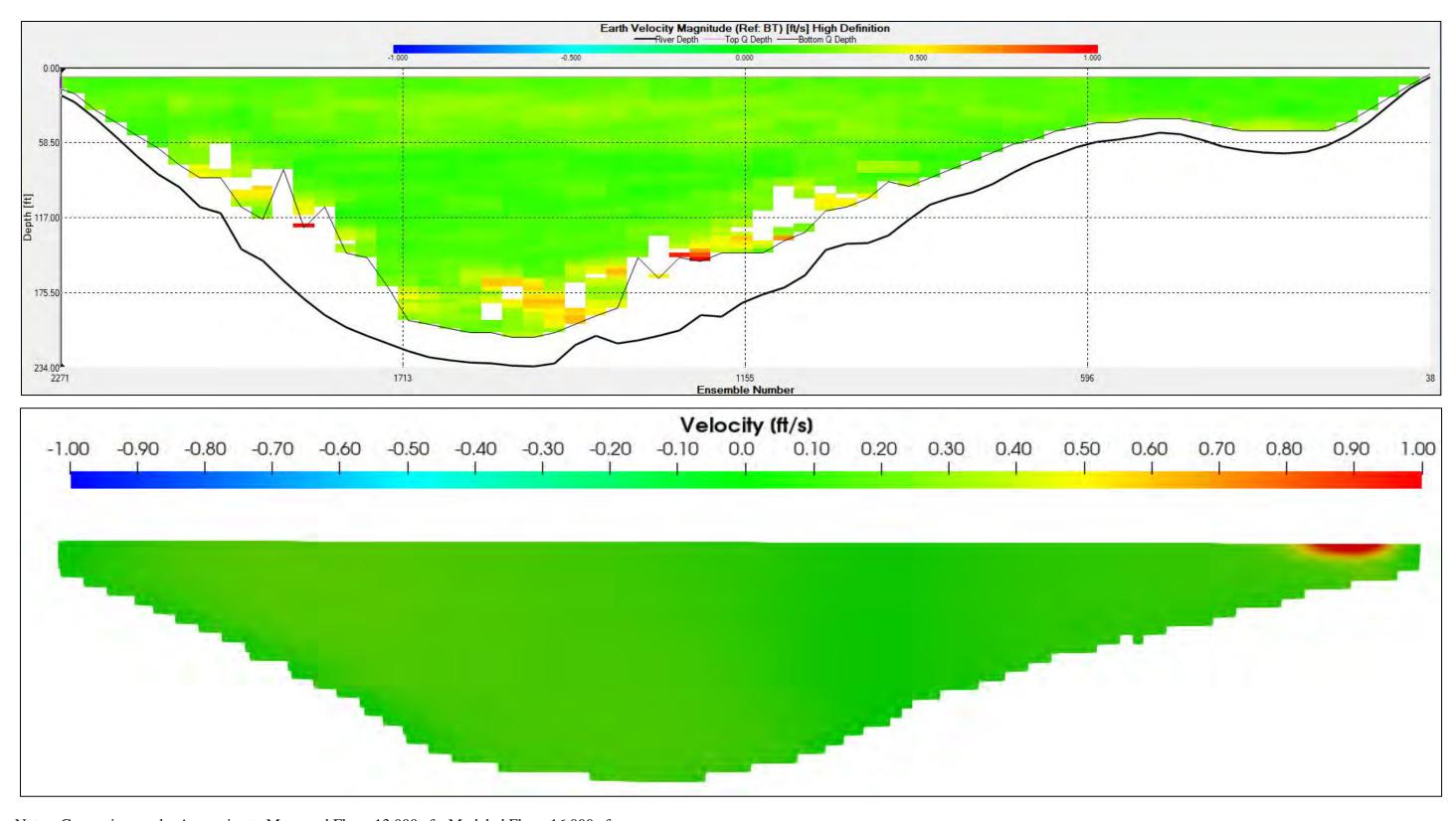

Notes: Generation mode. Approximate Measured Flow: 11,800 cfs. Modeled Flow: 16,000 cfs.

Figure 5-2. Measured Velocity (top) vs Modeled Velocity (bottom) Transect 2 (Top of Weir)

Notes: Generation mode. Approximate Measured Flow: 12,400 cfs. Modeled Flow: 16,000 cfs.

Figure 5-3. Measured Velocity (top) vs Modeled Velocity (bottom) Transect 3 (Station 564.0)

Notes: Generation mode. Approximate Measured Flow: 13,000 cfs. Modeled Flow: 16,000 cfs.

Figure 5-4. Measured Velocity (top) vs Modeled Velocity (bottom) Transect 4 (Upstream of Thompson River-Whitewater River Confluence)

6 Conclusions

ADCP velocity measurements at the four transects located in the Whitewater River arm of Lake Jocassee generally corroborate the CFD model results at these locations. Velocity magnitudes and directions and overall flow patterns are consistent with CFD model results which show a mixed water column on the upstream side of the submerged weir (Transect 1), and area of slightly higher velocities across the top of the submerged weir (Transect 2) and deeper, slower moving water (i.e., < 0.50 fps) towards the Whitewater River arm / Thompson River arm confluence.

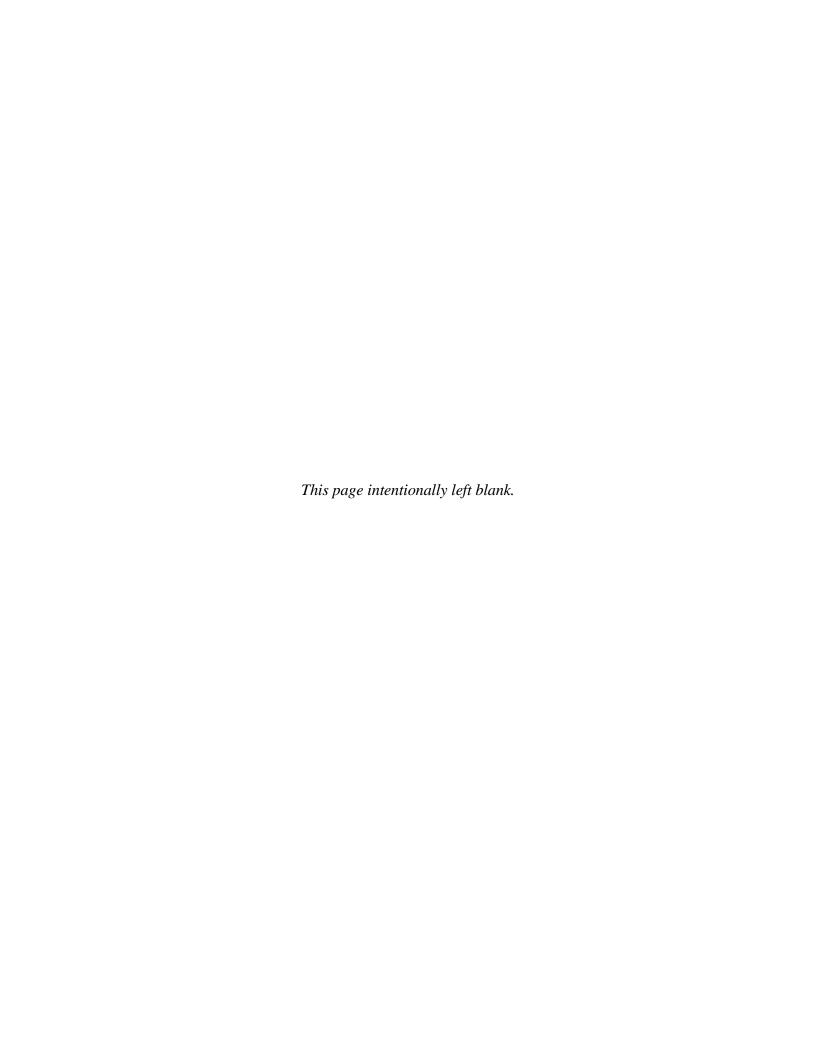
As discussed in Section 4.1, there are several assumptions and limitations associated with ADCP data collection that can make velocity data resolution challenging, especially in deep, clear, slow-moving water such as the Whitewater River arm of Lake Jocassee. In particular, the lack of moving particles in the lower portions of the water column, coupled with very slow-moving water (i.e., <0.30 fps) in many areas resulted in data gaps and erroneous velocity spikes. Even with these challenges, a robust velocity dataset was collected at each of the four transect locations and results are consistent with the CFD model results in both pumping and generation mode.

Overall, velocities predicted with the CFD model compare well with measured velocities across each transect. Modeled velocities are generally within 0.1-0.3 fps of valid measured velocities and accurately represent actual flow dynamics. This study is considered appropriate and sufficient to provide confidence in the CFD model results used to carry out Task 3 of the Water Resources Study.

7 References

- Garcia, Carlos, M., Oberg, K., and Garcia, M.H., 2007. ADCP Measurements of Gravity Currents in the Chicago River, Illinois. Journal of Hydraulic Engineering. ASCE December 2007. DOI: 10.1061/
- Nortek Group (Nortek). 2023. Understanding ADCPs: A guide to measuring currents, waves and turbulence using acoustic sensors. [URL] https://www.nortekgroup.com/knowledge-center/wiki/guide-to-understanding-adcps#7-how-the-surface-or-bottom-affects-adcpdata. Accessed Oct 3, 2023.
- Oberg, K.A., Morlock, S.E., and Caldwell, W.S. 2005. Quality-Assurance Plan for Discharge Measurements Using Acoustic Doppler Current Profilers. U.S. Geological Survey Scientific Investigations Report 2005-5183. [URL]: https://pubs.usgs.gov/sir/2005/5183/SIR_2005-5183.pdf. Accessed October 3, 2023.
- Mueller, D.S. and Wagner, C.R. 2009. Measuring Discharge with Acoustic Doppler Current Profilers from a Moving Boat. U.S. Geological Survey, Techniques and Methods 3–A22. [URL]: http://pubs.water.usgs.gov/tm3a22)
- Rantz, S.E., and others, 1982, Measurement and computation of streamflow, volume 1, Measurement of discharge: U.S. Geological Survey Water-Supply Paper 2175, 631 p.
- Simpson, M.R., 2002, Discharge measurements using a broadband acoustic Doppler current profiler: U.S. Geological Survey Open-File Report 01–01, 123 p., accessed June 22, 2007, at http://pubs.usgs.gov/of/2001/ofr0101/

BAD CREEK CFD MODEL UPDATED PUMPING RATES


ADDENDUM

WATER RESOURCES STUDY

Bad Creek Pumped Storage Project FERC Project No. 2740

Oconee County, South Carolina

September 10, 2024

BAD CREEK CFD MODEL UPDATED PUMPING RATES ADDENDUM BAD CREEK PUMPED STORAGE PROJECT

FERC PROJECT No. 2740

TABLE OF CONTENTS

Section	n Title	Page No.
	oject Introduction and Background	
	bjectives	
	udy Area	
	ydraulic Capacities	
	ake Jocassee Lake Levels	
	oposed Tunnel Configuration	
	ethods	
7.1	Feasibility CFD Model	
7.2	Relicensing CFD Model	
7.3	Updated CFD Model	
	esults	
8.1	Existing Pumping Velocity Profiles	
8.2	Updated Proposed Pumping Velocity Profiles	
8.3	Surface Velocities	
	onclusions	
10 Re	eferences	26
	LIST OF TABLES	
m 11		• • •
	4-1. As-Constructed (Original) and Upgraded (Amended) Project Hydraulic Capa	
Table 4	4-2. Updated Bad Creek II Hydraulic Capacities	5
	LIST OF FIGURES	
Figure	3-1. CFD Updated Modeling Study Area: Whitewater River Cove	3
	5-1. Lake Jocassee Pond Level Exceedance	
	6-1. Proposed Bad Creek II Lower Reservoir I/O Structure Portal Adjacent to Ex	
_	ucture Portal	_
	6-2. Proposed Bad Creek II Powerhouse Tunnel Configuration	
_	8-1. Existing Bad Creek I/O Pumping at 1,110 ft msl	
_	8-2. Existing Bad Creek I/O Pumping at 1,096 ft msl	
_	8-3. Existing Bad Creek I/O Pumping at 1,080 ft msl	
_	8-4. Proposed Bad Creek II I/O Updated Pumping at 1,110 ft msl	
_	8-5. Proposed Bad Creek II I/O Updated Pumping at 1,096 ft msl	
_	8-6. Proposed Bad Creek II I/O Updated Pumping at 1,080 ft msl	
_	8-7. Proposed Bad Creek II I/O Updated Pumping Plan View at Elevation 1,110	
•		
_	8-8. Proposed Bad Creek II I/O Updated Pumping Plan View at Elevation 1,096	
rigure	8-9. Proposed Bad Creek II I/O Updated Pumping Plan View at Elevation 1,080	11 Inst. 18

TABLE OF CONTENTS

CONTINUED

Section Title	Page No.	
Eigen 9 10 Egisting Demoning at Egil Demi	20	
Figure 8-10. Existing Pumping at Full Pond		
Figure 8-11. Existing Pumping at Minimum Pond	21	
Figure 8-12. Proposed Updated Pumping at Full Pond	22	
Figure 8-13. Proposed Updated Pumping at Intermediate Pond	23	
Figure 8-14. Proposed Updated Pumping at Minimum Pond	24	

ATTACHMENTS

Attachment 1 - Updated Pumping Estimated Velocities

ACRONYMS AND ABBREVIATIONS

3-D 3-dimensional

Bad Creek or Project Bad Creek Pumped Storage Project

Bad Creek II Complex or Bad Creek II Bad Creek II Power Complex CFD computational fluid dynamics

cfs cubic feet per second

Duke Energy or Licensee Duke Energy Carolinas, LLC

fps feet per second

ft feet

ft msl feet above mean sea level

FERC or Commission Federal Energy Regulatory Commission

HDR Engineering, Inc.
ISR Initial Study Report

I/O inlet/outlet

WWRC Whitewater River cove

FDS

1 Project Introduction and Background

Duke Energy Carolinas, LLC (Duke Energy or Licensee) is the owner and operator of the 1,400-megawatt Bad Creek Pumped Storage Project (Project) (FERC Project No. 2740) located in Oconee County, South Carolina, approximately eight miles north of Salem. The Project utilizes the Bad Creek Reservoir as the upper reservoir and Lake Jocassee, which is licensed as part of the Keowee-Toxaway Hydroelectric Project (FERC Project No. 2503), as the lower reservoir.

The existing (original) license for the Project was issued by the Federal Energy Regulatory Commission (FERC or Commission) for a 50-year term, with an effective date of August 1, 1977, and expires July 31, 2027. The license has been subsequently and substantively amended, with the most recent amendment on August 6, 2018 for authorization to upgrade and rehabilitate the four pump-turbines in the powerhouse and increase the Authorized Installed and Maximum Hydraulic capacities for the Project.¹

Given the need for additional significant energy storage and renewable energy generation across Duke Energy's service territories over the Project's new 40 to 50-year license term, Duke Energy is evaluating opportunities to add pumping and generating capacity at the Project. Additional energy storage and generation capacity would be developed by constructing a new power complex (including a new underground powerhouse) adjacent to the existing Bad Creek powerhouse. Therefore, construction of the 1,400-megawatt Bad Creek II Power Complex (Bad Creek II Complex or Bad Creek II) is an alternative relicensing proposal presently being evaluated by Duke Energy.

During the feasibility study phase for Bad Creek II, a three-dimensional (3-D) computational fluid dynamics (CFD) model was developed by HDR Engineering, Inc (HDR) to evaluate impacts under combined operation of the existing and proposed projects on water velocities in the Whitewater River cove (WWRC) of Lake Jocassee downstream of the inlet/outlet (I/O) structures. Results from the CFD feasibility modeling study are presented in the Feasibility Study Report as Volume 5 (*Bad Creek II Power Complex Feasibility Study Lower Reservoir CFD Flow Modeling Report*; HDR 2022). This report was also included in the Revised Study Plan

¹ Duke Energy Carolinas LLC, 164 FERC ¶ 62,066 (2018)

submitted to FERC on December 5, 2022. During studies for relicensing in 2023, a second CFD model was developed under Task 3 of the Water Resources Study (*Velocity Effects and Vertical Mixing in Lake Jocassee Due to a Second Powerhouse*) to determine flow patterns and extent of vertical mixing in the WWRC due to the addition of a second powerhouse. Findings from that study were provided in Appendix A of the Initial Study Report (ISR) submitted to the Commission on January 4, 2024 (Duke Energy 2024).

After filing the ISR, Duke Energy provided updated hydraulic capacities, provided by the preferred Original Equipment Manufacturer, for proposed variable speed pump-turbines for Bad Creek II. Based on this information, additional CFD modeling was conducted using the updated proposed hydraulic capacities. This report includes the results of updated CFD modeling and is being provided as an addendum to the Task 3 study report for the Bad Creek relicensing Water Resources Study.

2 Objectives

Increased hydraulic capacities associated with Bad Creek II could affect flow patterns and velocities in the WWRC near the I/O structures. The purpose of this addendum is to provide results of additional CFD model runs carried out to incorporate updated hydraulic capacities associated with Bad Creek II that were not available during original CFD modeling. Updated generating capacity resulted in similar flows as originally estimated (i.e., less than 2 percent difference), so this report's focus is to present the effects of updated pumping capacities on WWRC flows.

3 Study Area

The study area for this assessment includes the area of the WWRC from the immediate vicinity of the Project's existing and proposed I/O structures to the upstream end of the submerged weir (see Figure 3-1; blue rectangle defines study area). Previous CFD modeling results carried out under Task 3 of the Water Resources Study showed the submerged weir limits effects of operations downstream of the weir, therefore, updated modeling focused on the area upstream of the weir only.

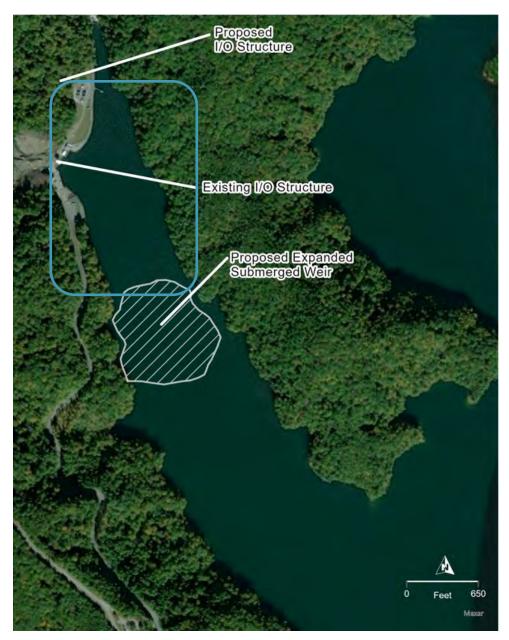


Figure 3-1. CFD Updated Modeling Study Area: Whitewater River Cove

4 Hydraulic Capacities

Existing hydraulic capacities for the Bad Creek Project are included in Table 1. This table shows as-constructed and previously licensed Project capacities and upgraded unit capacities (as amended). On April 23, 2018, Duke Energy filed a Non-Capacity License Amendment Application to upgrade and refurbish the four Francis-type pump-turbines in the powerhouse, replace existing runners with Francis-type pump-turbine runners, and rehabilitate and/or upgrade

the remaining components of the pump-turbine runners at the Bad Creek Project. Authorized installed and maximum hydraulic capacities for the Project were increased to 1,400 megawatts (based upon the definition provided by 18 CFR §11.1[i])² and 19,760 cubic feet per second (cfs), respectively. The upgrades were approved by FERC in an amendment order dated August 6, 2018 and modifications for Units 1 – 3 were completed by March 2023 and Unit 4 was completed in February 2024. The upgraded Project is the baseline for the relicensing and upgraded unit capacities were used for (CFD) modeling existing conditions.

Hydraulic capacities at the Project under previously licensed and upgraded (i.e., as amended in 2018) conditions are included in Table 4-1. Results of CFD modeling incorporating upgraded capacities are presented as existing conditions in Volume 5 of the Feasibility Study Report (HDR 2022) upstream of the submerged weir and in the CFD Task 3 report in the ISR (Duke Energy 2024) for downstream of the submerged weir.

Table 4-1. As-Constructed (Original) and Upgraded (Amended) Project Hydraulic Capacities

Bad Creek (Existing Project)						
Unit	Generation		Pumping			
	Original (cfs)	Upgraded/Existing (cfs)	Original (cfs)	Upgraded/Existing (cfs)		
Unit 1	4,000	4,940	3,690	4,060		
Unit 2	4,000	4,940	3,690	4,060		
Unit 3	4,000	4,940	3,690	4,060		
Unit 4	4,000	4,940	3,690	4,060		
Total	16,000	19,760	14,760	16,240		

Prior CFD modeling for proposed conditions followed the assumption that Bad Creek II would be constructed with four reversible pump-turbine units similar to the configuration at the existing Project with the same generation and pumping capacities (see Table 4-1). However, during recent (2023) optimization studies for the Bad Creek II Complex, variable speed pump-turbine

² Authorized installed capacity means the lesser of the ratings of the generator or turbine units. The rating of a generator is the product of the continuous-load capacity rating of the generator in kilovolt-amperes (kVA) and the system power factor in kW/kVA. If the licensee or exemptee does not know its power factor, a factor of 1.0 kW/kVA will be used. The rating of a turbine is the product of the turbine's capacity in horsepower (hp) at best gate (maximum efficiency point) opening under the manufacturer's rated head times a conversion factor of 0.75 kW/hp. If the generator or turbine installed has a rating different from that authorized in the license or exemption, or the installed generator is rewound or otherwise modified to change its rating, or the turbine is modified to change its rating, the licensee or exemptee must apply to the Commission to amend its authorized installed capacity to reflect the change.

units were selected as the chosen configuration (instead of fixed-speed), which resulted in an increase in proposed hydraulic capacities for Bad Creek II as show in Table 4-2.

Table 4-2. Updated Bad Creek II Hydraulic Capacities

Bad Creek II					
	Generati	on	Pumping		
Unit	Previously Proposed (cfs)	Updated Proposed (2023) (cfs)	Previously Proposed (cfs)	Updated Proposed (2023) (cfs)	
Unit 1	4,940	5,000	4,060	4,890	
Unit 2	4,940	5,000	4,060	4,890	
Unit 3	4,940	5,000	4,060	4,890	
Unit 4	4,940	5,000	4,060	4,890	
Total	19,760	20,000	16,240	19,560	

In consideration of the recent 2023 updated capacities, total generation capacity with both projects operating would be 39,760 cfs (19,760 + 20,0000 cfs). Modeled (CFD) versus updated generation capacity is similar (39,200 cfs vs. 39,760 cfs), resulting in a less than 2 percent difference. It is anticipated this difference would not substantially affect existing results (as reported in the ISR); therefore, generation capacity was not assessed further.

Total pumping capacity (with both projects) would be 35,800 cfs (16,240 + 19,560 cfs), resulting in a 9 percent increase (i.e., 32,720 cfs vs. 35,800 cfs); therefore, additional model runs were performed under proposed configurations for pumping operations under full pond and minimum normal pond elevations in Lake Jocassee.

5 Lake Jocassee Lake Levels

The lower reservoir has a licensed operating band between 1,110 ft msl (full pond) and 1,080 (minimum pond or maximum drawdown). Results under full pond and maximum drawdown provide potential upper and lower limits of hydraulic effects of Bad Creek II operations. Figure 5-1 provides an exceedance plot of the Lake Jocassee pond level from 1975 to 2020. This plot shows the percentage of time the reservoir is at or above a given elevation. Lake Jocassee operates within 5 ft of the full pond elevation of 1,110 ft roughly 50 percent of the time, and in the 45-year period of record Lake Jocassee has never reached the maximum drawdown elevation.

FDS

For this evaluation, unit operations in pumping mode were simulated with the existing and proposed structures at reservoir levels 1,110 ft msl, 1,096 ft msl, and 1,080 ft msl. The elevation of 1,096 ft msl was selected as an intermediate lake elevation operating scenario because it is roughly halfway between full pond and maximum drawdown, and 1,096 ft msl is the elevation below which fish entrainment becomes elevated at Bad Creek (historically, reservoir elevations were lower than 1,096 ft msl approximately 22 percent of the time).

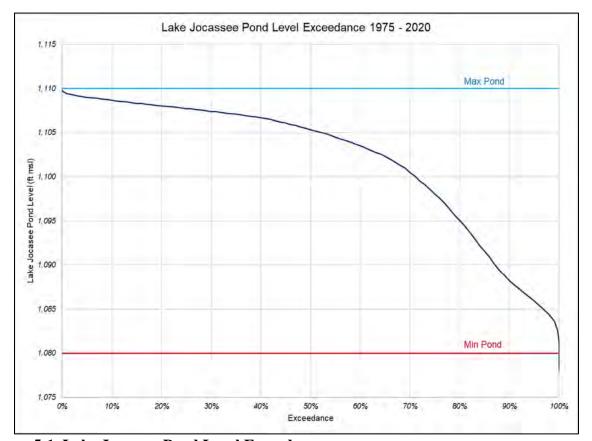


Figure 5-1. Lake Jocassee Pond Level Exceedance

6 Proposed Tunnel Configuration

The Bad Creek II I/O structure will be located in a portal area adjacent to the existing Bad Creek I/O structure (upstream of the existing I/O structure). The proposed location of the new I/O structure portal for Bad Creek II is shown on Figure 6-1.

A schematic of the proposed tunnels extending from the underground powerhouse to the western bank of the WWRC is shown below (Figure 6-2). The proposed I/O structure will be approximately 150 ft wide, 20 ft deep, and 95 ft tall. The location of the structure was selected to

minimize the length of the water conveyance tunnel, permit access, and reduce construction-related environmental impacts to the Whitewater River arm of Lake Jocassee. Two tailrace tunnels extending from the underground powerhouse will penetrate the I/O structure at invert elevation 1,012 ft msl. The two tailrace tunnels are divided into a left and right chamber as the tunnels approach the portal opening. Each tunnel has a diameter of 31 ft and the chambers at the outlet are approximately 38 ft tall by 17.5 ft wide. Flows through the center two chambers (Tunnel 1 Right and Tunnel 2 Left) create higher velocities at the tunnel entrances when compared to the outer two chambers (Tunnel 1 Left and Tunnel 2 Right) which is discussed further in Section 8.

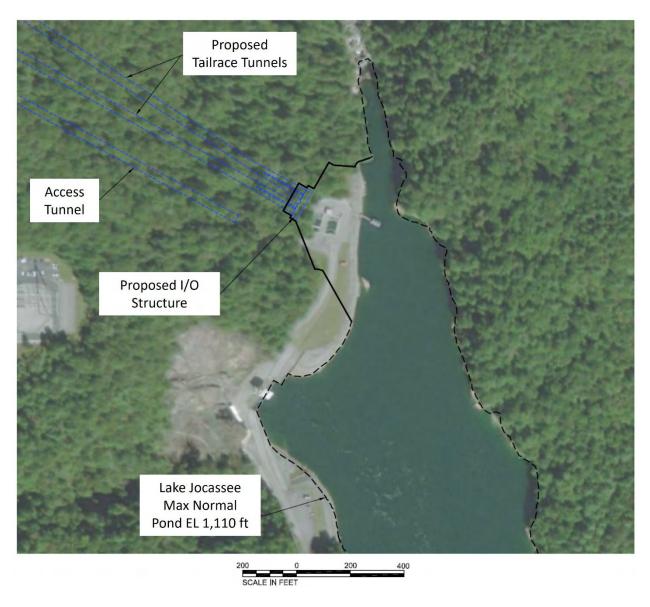
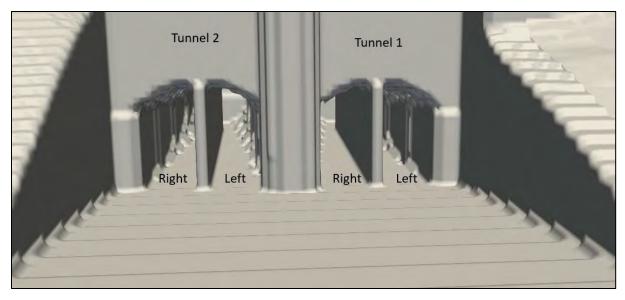



Figure 6-1. Proposed Bad Creek II Lower Reservoir I/O Structure Portal Adjacent to Existing I/O Structure Portal

Note: The left and right tunnel naming convention is based on the direction of flow from the tunnel into Lake Jocassee.

Figure 6-2. Proposed Bad Creek II Powerhouse Tunnel Configuration

7 Methods

7.1 Feasibility CFD Model

As noted in Section 1, two CFD models were previously developed by HDR for the Bad Creek and Bad Creek II projects. The first CFD model was built for the feasibility study (HDR 2022) with the goal of identifying flow velocities and patterns under generation and pumping scenarios with various water level elevations in the WWRC near the I/O structure (upstream of the submerged weir) and to assess the potential for erosion along the opposite (east) shoreline due to increased generation flows from the combined powerhouses. This feasibility model was built with a computational mesh block resolution of 4-ft by 4-ft (length by width by height). Background, methods, and findings of this study are provided in the Bad Creek II Power Complex Feasibility Study Lower Reservoir CFD Flow Modeling Report (HDR 2022) and was also provided in the Revised Study Plan as Appendix I.

7.2 Relicensing CFD Model

The second CFD model was developed for the relicensing study to determine velocity effects and vertical mixing in the WWRC due to operation of a second powerhouse and considering the area downstream of the submerged weir. Inflows to the model were assumed to be constant and

uniform in the horizontal and vertical directions approaching the submerged weir. The long-term average flowrate from the Thompson River arm was also included in the model to incorporate flows downstream of the weir. Because this model incorporated a larger (922 acres) and deeper area of Lake Jocassee (with very slow water circulation), a coarser model mesh was appropriate to meet the objectives and a computational mesh block of 20-ft by 20-ft by 10-ft (length by width by height) was used. Background, methods, and findings of this study were included in the ISR as Appendix A, Attachment 3 (Velocity Effects and Vertical Mixing in Lake Jocassee Due to a Second Powerhouse) (Duke Energy 2024).

7.3 Updated CFD Model

As described above, recent optimization studies have proposed variable-speed turbines for the Bad Creek II Complex, which will result in increased hydraulic capacities compared to those initially proposed and modeled. Because the objective of this report is to assess near-field hydraulics and changes in velocity in the vicinity of the I/O structures due to increased pumping capacity associated with recently proposed variable speed turbines, the Feasibility CFD Model (described in Section 7.1) was considered the most appropriate model (as opposed to the Relicensing CFD Model) to carry out this evaluation. Model description, geometry, evaluation criteria, and mesh development are described in detail in HDR (2022) and are therefore not provided here.

Modeling with variable speed units did not appreciably increase generation flows, however the effects of increased pumping hydraulic capacity did result in a measurable change (i.e., 9 percent), therefore only updated pumping scenarios are discussed in Section 8. Updated generation flows resulted in a flow difference of less than 2 percent, therefore, the results presented in the original Feasibility CFD Model report (HDR 2022) were not revised.

8 Results

8.1 Existing Pumping Velocity Profiles

Existing pumping conditions (16,240 cfs) at cross-section elevations (i.e., model slices) representing full pond (1,100 ft msl), intermediate (1,096 ft msl), and maximum drawdown

(1,080 ft msl) are shown on Figure 8-1, Figure 8-2, and Figure 8-3, respectively. All estimated velocities are included in the attached results table in Attachment 1.

Under existing pumping conditions at the full pond elevation (Figure 8-1), depth-averaged velocities³ approaching the I/O structure (i.e., approach velocities) are 1.8 fps approximately 100 ft from the I/O structure with a maximum velocity of 2.1 fps. Maximum velocities in the water column near the face of the I/O structure vary based on tunnel position and the hydrostatic pressure acting on tunnel flows and range from 5.5 fps to 6.2 fps.⁴

Under existing pumping conditions at the intermediate pond elevation (Figure 8-2), depth-averaged approach velocities are 2.2 fps approximately 100 ft from the I/O structure with a maximum velocity of 2.5 fps. Maximum velocities near the face of the I/O structure range from 7.2 fps to 7.7 fps.

Under existing pumping conditions at the minimum pond elevation (Figure 8-3), depth-averaged approach velocities are 4.6 fps approximately 100 ft from the I/O structure with a maximum velocity of 5.2 fps. Maximum velocities near the face of the I/O structure range from 7.9 fps to 8.4 fps.

Under existing pumping conditions, the maximum velocity inside the I/O tunnel chambers near the structure face is approximately 13.3 fps and approximately 23 fps in the tailrace tunnel based on the 31-ft-diameter tunnel and given flowrates.

The width of the WWRC (see Figure 3-1) at the existing I/O structure is approximately 1,110 ft and the extent of velocity effects (as shown on Figure 8-3) extend approximately 230 ft from the I/O structure into the WWRC at the minimum pond elevation.

³ It is noteworthy that bathymetry of the lake bottom impacts flows as they approach the tunnel openings.

⁴ Trashracks on the I/O structure are not considered, therefore velocities at the face of the tunnels would be higher than shown here.

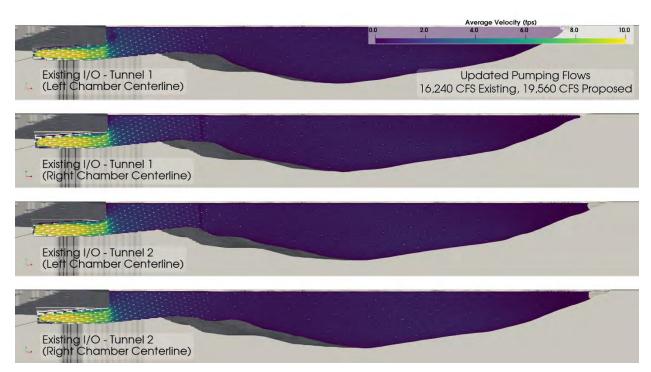


Figure 8-1. Existing Bad Creek I/O Pumping at 1,110 ft msl

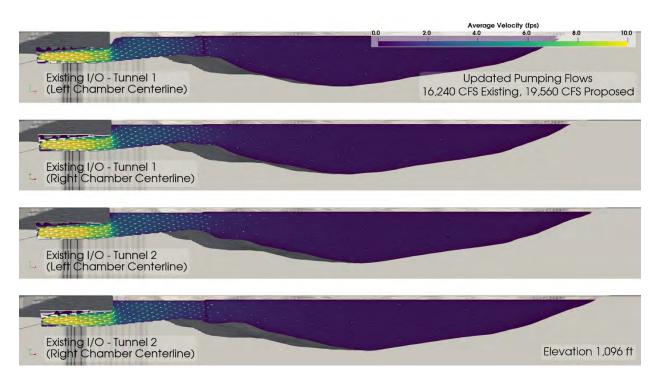


Figure 8-2. Existing Bad Creek I/O Pumping at 1,096 ft msl

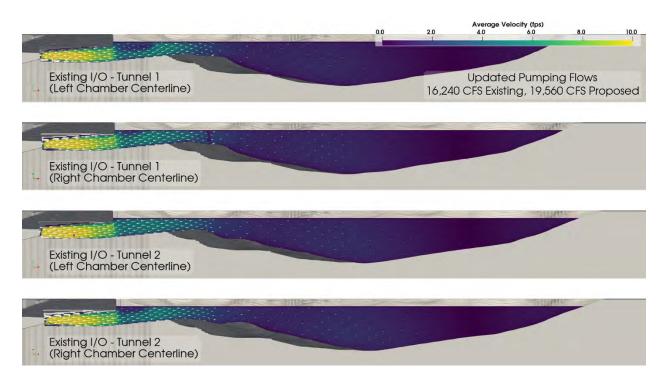


Figure 8-3. Existing Bad Creek I/O Pumping at 1,080 ft msl

8.2 Updated Proposed Pumping Velocity Profiles

As shown on Figure 8-4 through Figure 8-6, the updated increased pumping capacity at Bad Creek II results in higher velocities in the WWRC in the vicinity of the proposed I/O structure when compared to existing velocities at the Bad Creek I/O structure (Figure 8-1 through Figure 8-3). All velocities are included in the attached results table in Attachment 1.

Under updated pumping conditions at the full pond elevation (Figure 8-4), depth-averaged approach velocities for the proposed I/O structure are 1.7 fps approximately 100 ft from the I/O structure with a maximum velocity of 2.0 fps. Maximum velocities in the water column near the face of the I/O structure vary based on tunnel position and hydrostatic pressure and range from 9.6 fps to 10.1 fps.

Under updated pumping conditions at the intermediate pond elevation (Figure 8-5), depth-averaged approach velocities are 2.5 fps approximately 100 ft from the I/O structure with a maximum velocity of 3.1 fps. Maximum velocities near the face of the I/O structure range from 9.2 fps to 9.7 fps.

Under updated pumping conditions at the minimum pond elevation (Figure 8-6), depth-averaged approach velocities are 4.5 fps approximately 100 ft from the I/O structure with a maximum velocity of 8.3 fps. Maximum velocities near the face of the I/O structure range from 7.4 fps to 10.9 fps.

Under updated pumping conditions, the maximum velocity inside the I/O tunnel chambers near the structure face is approximately 16 fps and approximately 28 fps in the tailrace tunnel based on the 31-ft diameter-tunnel and given flowrate.

The width of the WWRC (see Figure 3-1) at the proposed I/O structure is approximately 675 ft and the extent of velocity effects (as shown on Figure 8-6) extend approximately 400 ft from the I/O structure into the WWRC at the minimum pond elevation.

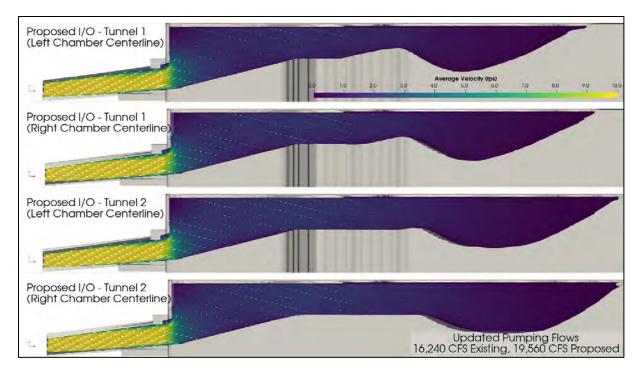


Figure 8-4. Proposed Bad Creek II I/O Updated Pumping at 1,110 ft msl

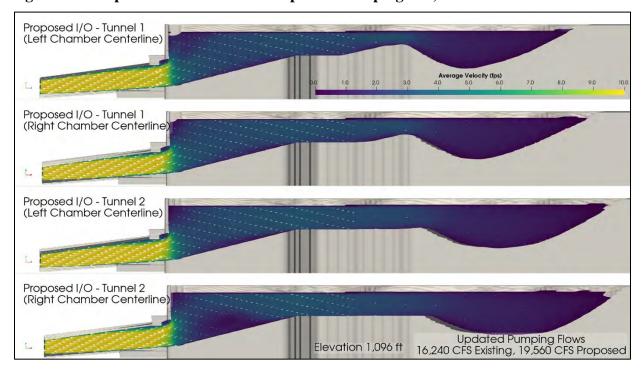


Figure 8-5. Proposed Bad Creek II I/O Updated Pumping at 1,096 ft msl

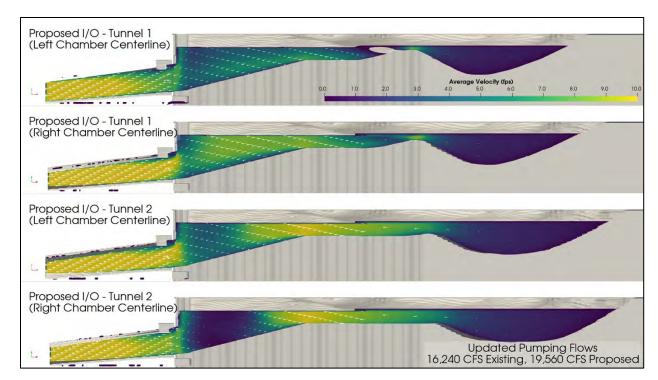


Figure 8-6. Proposed Bad Creek II I/O Updated Pumping at 1,080 ft msl

8.3 Surface Velocities

Plan view flow patterns and velocity vectors at the three reservoir levels (i.e., full, intermediate, and minimum pond) are presented on Figure 8-7, Figure 8-9, and Figure 8-9, respectively. Areas of recirculation occur near the west and east banks under both full pond and minimum pond scenarios, and, similar to the profile figures, velocities increase as reservoir levels decrease and with increased proximity to the proposed I/O structure, as indicated by velocity vectors. Recirculation patterns in the vicinity of the proposed I/O structure under the minimum pond scenario are also indicated on Figure 8-9. These patterns are caused by flow splitting at the tunnel abutments and the restricted flow area near the I/O structure, resulting in increased velocities.

As the pond level decreases, the volume of water decreases and increases the strength of recirculation in the recirculation area. This effect results in concentrated flow through the center of the proposed I/O structure approach channel and center tunnels (Tunnel 1 Right, Tunnel 2 Left) and is more pronounced as the pond level decreases.

Accelerated flows across the weir in the direction of the I/O structure are more pronounced at minimum pond (Figure 8-9). As water is pulled upstream through the WWRC during pumping,

FD3

flows are spread evenly across the submerged weir before converging into a main center channel in the cove, with localized eddies of slower moving water (i.e., recirculation) on both sides of the main flow path.

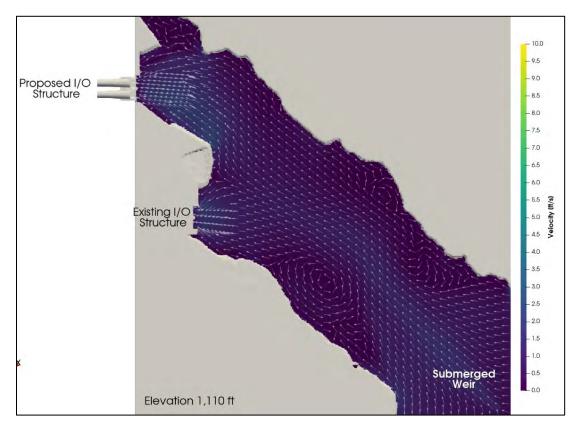


Figure 8-7. Proposed Bad Creek II I/O Updated Pumping Plan View at Elevation 1,110 ft msl

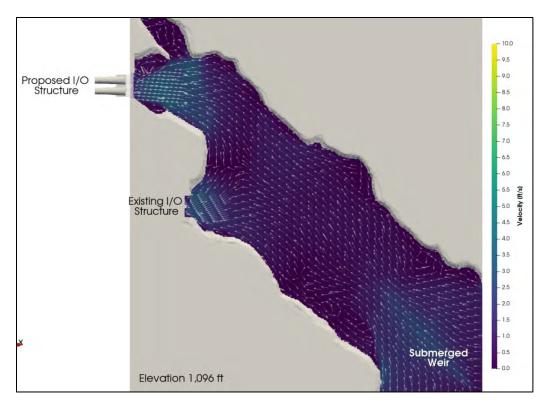


Figure 8-8. Proposed Bad Creek II I/O Updated Pumping Plan View at Elevation 1,096 ft msl

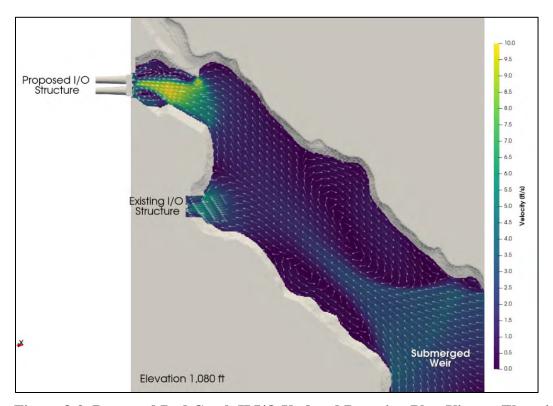


Figure 8-9. Proposed Bad Creek II I/O Updated Pumping Plan View at Elevation 1,080 ft msl

Surface velocity contours are shown on Figure 8-10 and Figure 8-11 for existing conditions⁵ and Figure 8-12 and Figure 8-14 for proposed updated pumping conditions under full, intermediate, and minimum pond levels.

Under existing pumping conditions and full pond levels, surface velocities do not exceed 2.0 fps in the WWRC and are on average below 1.0 fps. At minimum pond, existing maximum surface velocities across the weir could reach 3.0 fps and up to 5.0 fps directly in front of the existing I/O structure.

Under full pond conditions for proposed updated pumping operations, velocities are very similar to existing conditions with maximum velocities of 1.5 fps near the existing and proposed I/O structures. Under proposed updated pumping at the minimum pond level, surface velocities could reach 10.0 fps near the proposed I/O structure (see Figure 8-14 and Figure 8-9); however, these higher velocities are localized and constrained within the small area adjacent to the I/O structure in a recessed alcove. As part of Bad Creek II construction, expansion of the submerged weir (in the downstream direction) is being considered; maximum velocities over the proposed expanded weir are 3.5 fps, which are consistent with maximum velocities over the existing submerged weir.

As indicated above, surface velocities <u>under minimum pond</u> could reach 10.0 fps, which could have implications for non-motorized boats moving northward through WWRC, however, the high flows are constrained to the area immediately adjacent to the I/O structure within the recessed area of the shoreline where the proposed I/O will be constructed. Additionally, as shown on Figure 8-9, at minimum pond the area upstream of the proposed I/O is largely dewatered and therefore would not support boating activities regardless of Bad Creek II operations. It should be noted that Lake Jocassee has never been at the licensed maximum drawdown since its creation; maximum drawdown scenarios in this evaluation provide the most conservative hypothetical condition.

⁵ A surface velocity map was not generated for the existing intermediate pond level as this scenario was not evaluated as part of the feasibility study; however, it is expected that the results would be similar to Figure 8-13.

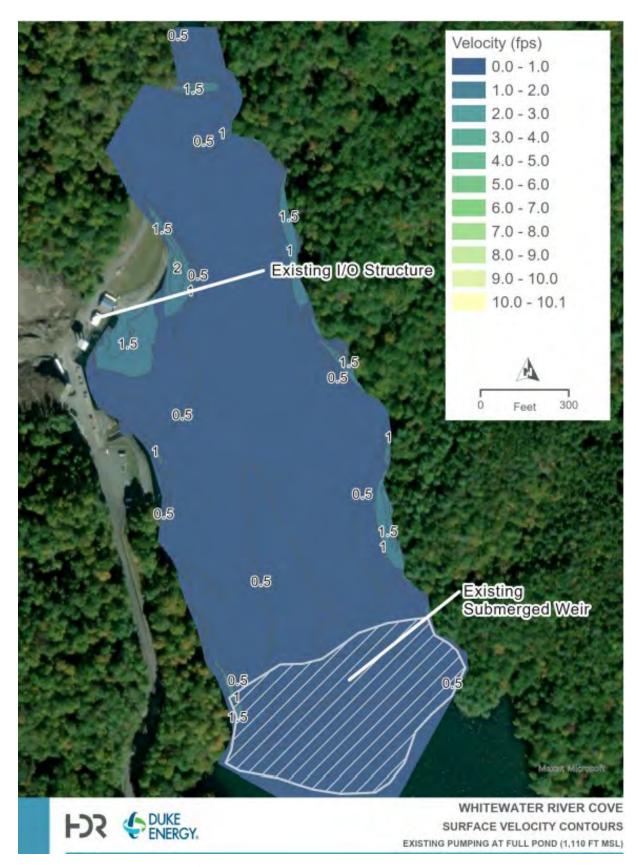


Figure 8-10. Existing Pumping at Full Pond

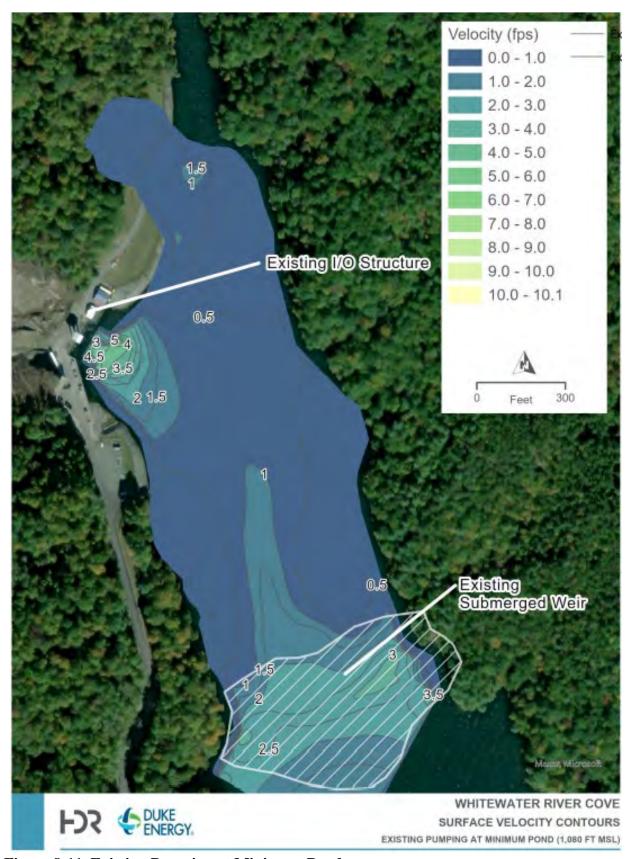


Figure 8-11. Existing Pumping at Minimum Pond

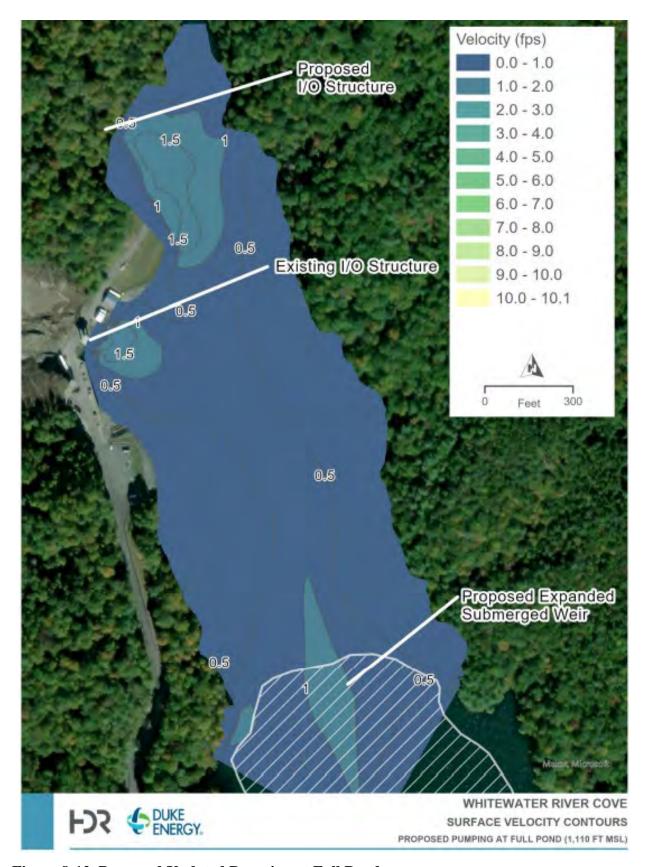


Figure 8-12. Proposed Updated Pumping at Full Pond

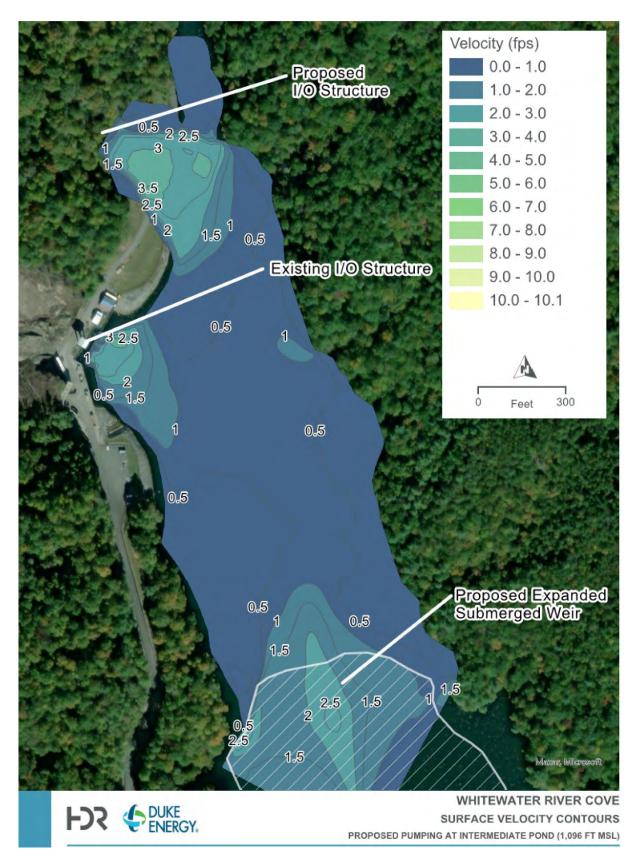


Figure 8-13. Proposed Updated Pumping at Intermediate Pond

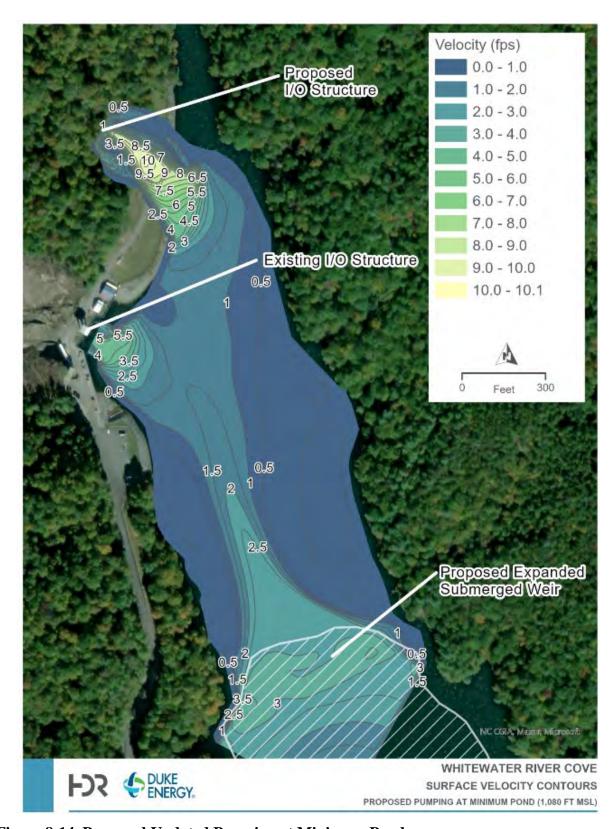


Figure 8-14. Proposed Updated Pumping at Minimum Pond

9 Conclusions

As expected, velocities in the WWRC under all operational scenarios increase with decreased reservoir elevations. As stated in Section 5, Lake Jocassee has never been at the licensed maximum drawdown since its creation and it is worth noting Bad Creek II would likely not operate at maximum hydraulic capacities in the unlikely event of a drawdown (licensed minimum pond level). Therefore, maximum drawdown scenarios with maximum pumping evaluated in this study provide the most conservative results.

As indicated in Section 8.3, surface velocities in the WWRC under minimum pond elevations could reach 10.0 fps, which may have implications for non-motorized boats moving through the WWRC near the Project. To support the relicensing effort, Duke Energy carried out a Whitewater River Cove Existing Recreational Use Evaluation with the goal of characterizing the existing recreational use of Whitewater River cove to inform Duke Energy on the level of boating use disruption that could occur in the cove during the Bad Creek II Complex construction.6 The final Existing Recreational Use Evaluation, which was developed in consultation with relicensing stakeholders, was filed with Initial Study Report in January 2024. Results of this study, which was carried out from Memorial Day through Labor Day in 2023, showed the majority of boats in Whitewater River cove were motorboats (83 percent), followed by personal watercraft (e.g., jet ski) (10 percent), kayaks (7 percent), and canoes (less than 1 percent); therefore, a minor percentage (<10%) of boaters using the WWRC do so in a nonmotorized boat. It is likely from a recreational boater safety perspective, boats would be able to navigate this area of the WWRC by keeping to the east side of the WWRC along the shore opposite the proposed I/O structure since the new I/O structure would be situated approximately 200 ft back from the existing shoreline in a recessed alcove (shown on Figure 6-1). It is important to note that at low reservoir elevations, the northern portion of the WWRC would be dewatered and therefore be inaccessible (depicted on Figure 8-9) as the reservoir bottom elevation in this area is higher than 1,080 ft msl. As a result, boating in this area of WWRC would largely be precluded by low lake levels, regardless of Bad Creek II operations. Duke Energy plans to carry out additional analyses and develop proposed guidelines for boater safety

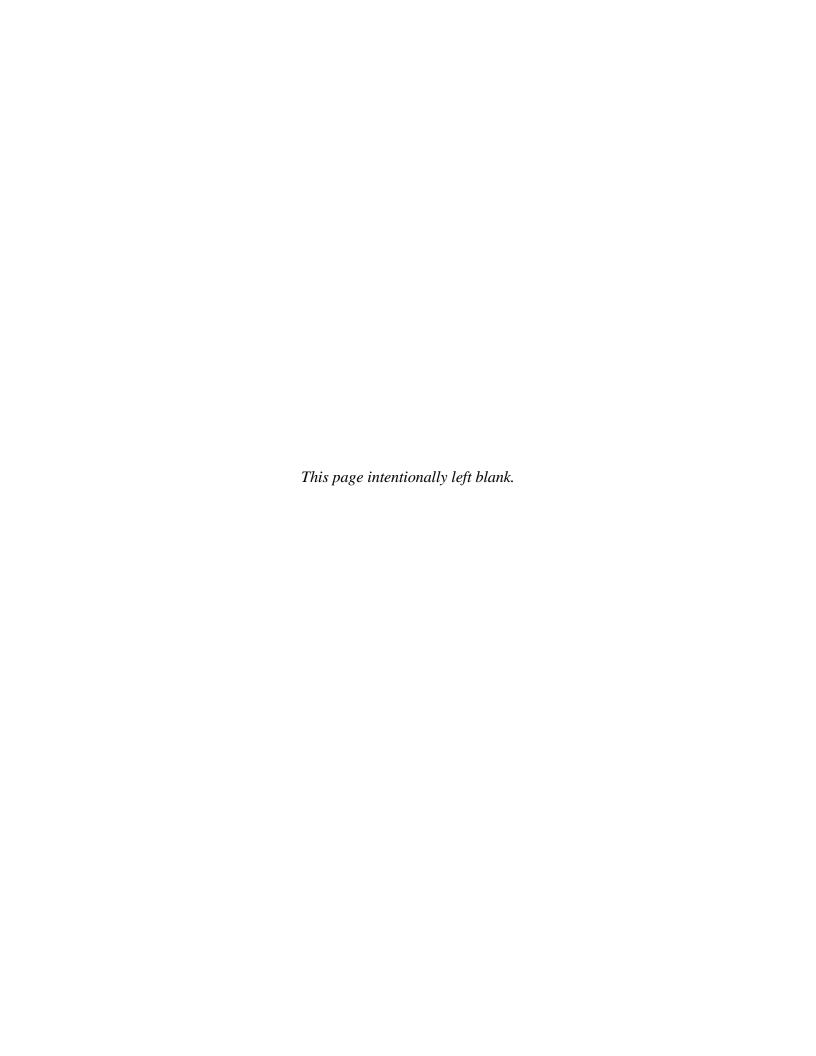
⁶ Whitewater River cove will be closed to recreation during Bad Creek II construction (approximately 7 years) for public safety.

and recreational use under future operations in consultation with relicensing stakeholders; findings from that study will be included in the Updated Study Report.

10 References

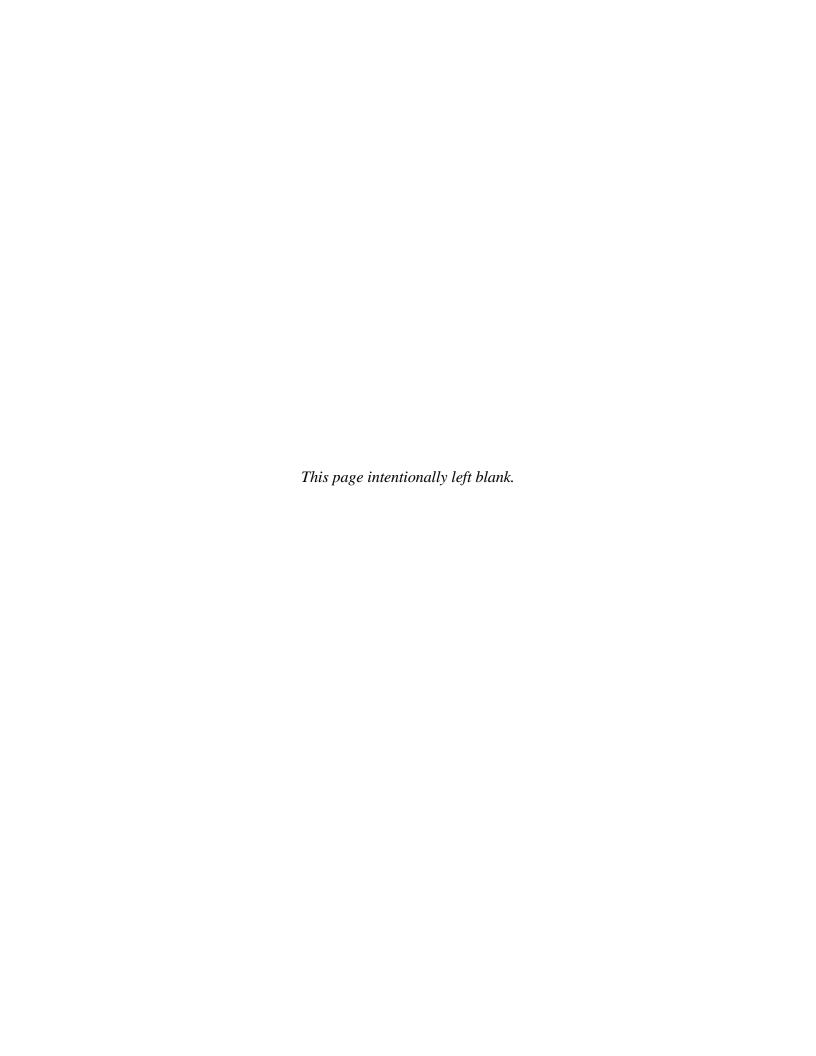
HDR Engineering, Inc. (HDR). 2022. Bad Creek II Power Complex Feasibility Study Lower Reservoir CFD Flow Modeling Report. Prepared for Duke Energy. September 1, 2022.

Duke Energy Carolinas, LLC. 2024. Initial Study Report. Bad Creek Pumped Storage Station. Prepared by HDR. January 4, 2024. Available at FERC eLibrary: https://elibrary.ferc.gov/eLibrary/filelist?accession_num=20240104-5044


Attachment 1

Attachment 1 - Updated Pumping Estimated Velocities

					Velocities (fps)																
Operations	Water Surface Elevation (ft)	IO Structure	Flowrate (cfs)	Tunnel	Max velocity in 31-ft	Max at Tunnel Face**	Max - Tunnel Face Max – 100 ft downstream						Depth Averaged	Depth Averaged							
Operations					Tunnel*		X	Y	Z	Magnitude	X	Y	Z	Magnitude	100 ft Downstream	200 ft Downstream					
				1L		13.3	6.0	0.6	1.3	6.2	1.8	0.7	0.7	2.1	2.0						
		1	16,240	1R	23.0		5.5	0.6	1.3	5.7	1.9	0.2	0.4	2.0	1.9						
			10,240	2L	23.0	13.3	5.4	0.0	1.1	5.5	1.7	0.2	0.2	1.7	1.7						
Pumping	1,110			2R		10.0	5.8	0.9	1.0	6.0	1.7	0.4	0.3	1.8	1.7	No Difference/Lower					
Fullipling	1,110			1L		16.0	9.4	0.4	2.4	9.7	1.3	0.4	0.5	1.4	1.5	Velocity					
		2	19,560	1R	27.7	10.0	9.6	0.0	1.7	9.7	1.7	0.2	0.8	1.9	1.7						
		۷	19,500	2L	21.1	16.0	10.0	0.2	1.5	10.1	1.9	0.1	0.5	2.0	1.8						
				2R		10.0	9.4	0.4	1.9	9.6	1.7	0.3	0.4	1.8	1.7						
	1,096	1		1L	23.0	13.3	7.3	0.1	1.1	7.4	2.4	0.0	0.8	2.5	2.4	No Difference/Lower					
			16,240	1R			7.0	0.1	2.5	7.4	2.4	0.1	0.3	2.4	2.2						
				2L 2R	13.3	7.4	0.2	2.1	7.7	2.3	0.4	0.3	2.3	2.2	Velocity						
Pumping						10.0	6.3	0.5	3.6	7.2	2.3	0.3	0.6	2.4	2.1						
Fullipling			19,560	1L		16.0	8.8	0.2	2.5	9.2	2.8	0.2	0.4	2.8	2.6	3.0					
		2		19,560	19,560	19,560	1R	27.7	10.0	8.8	0.3	3.1	9.3	3.0	0.3	0.1	3.0	2.7	3.1		
		2					2L	21.1	16.0	9.1	0.1	3.3	9.7	3.0	0.4	0.1	3.0	2.7	3.3		
					2R		10.0	9.0	0.8	3.5	9.7	3.0	0.5	0.1	3.1	1.9	3.4				
		4		1L		13.3	8.4	0.6	0.3	8.4	4.6	1.4	1.9	5.2	4.9	No Difference/Lower Velocity					
	1,080		16 240	1R	23.0	13.3	8.1	0.0	1.1	8.2	4.7	0.8	0.3	4.8	4.5						
		1	16,240	2L	23.0	12.2	8.0	0.0	1.0	8.1	4.5	0.4	0.3	4.5	4.3						
Dumning				2R		13.3	7.9	0.0	0.8	7.9	4.6	0.8	0.7	4.7	4.6						
Pumping			2 19,560							1L		16.0	7.3	0.5	0.7	7.4	5.2	0.2	1.2	5.3	4.4
		2		1R	27.7	10.0	10.8	0.0	1.6	10.9	8.2	0.8	1.2	8.3	7.3	8.0					
		2	19,560	2L	21.1	16.0	10.1	0.2	1.8	10.3	4.7	0.6	0.6	4.8	4.3	9.8					
				2R		10.0	8.9	0.2	0.6	8.9	1.5	0.9	0.3	1.8	1.8	9.7					

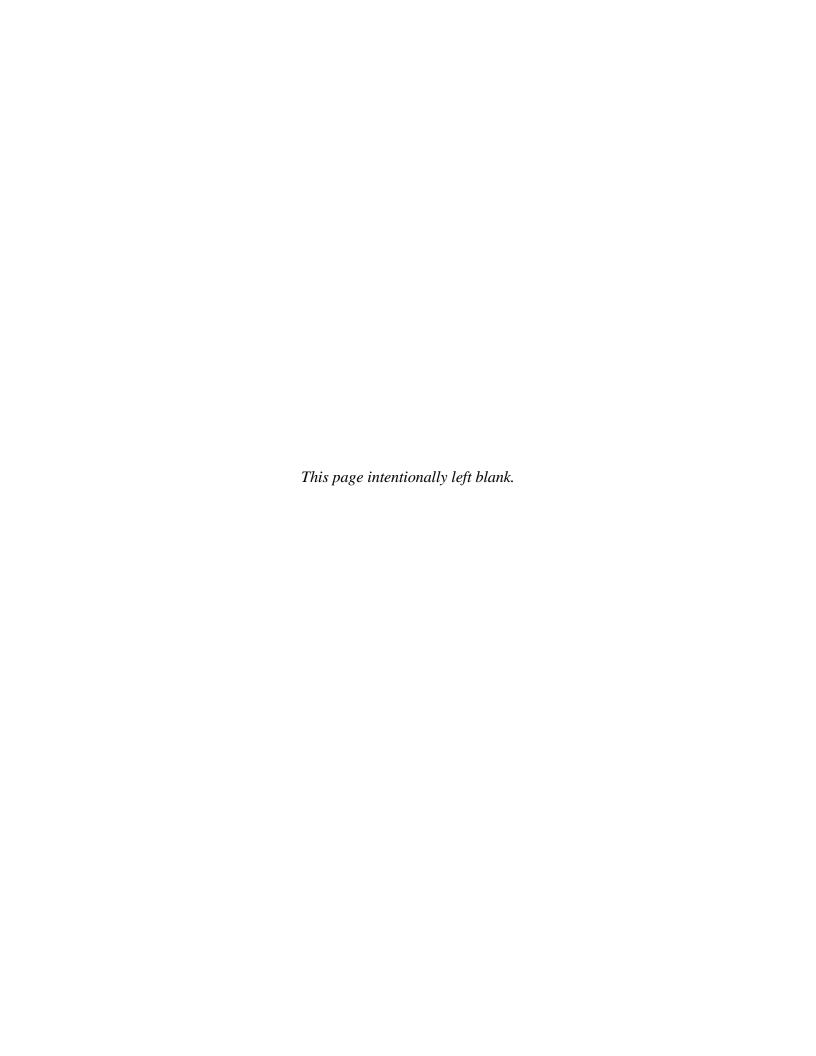

^{*}Velocities will transition from calculated value based on horseshoe shaped chamber opening to calculated velocity in tunnels (circle shaped) as the geometry transitions, these values should be rough bookends for velocities in the intake structure/tunnel.

**Assumes equal flow distribution between each side of screen face, which is unlikely.

Attachment 4

Water Exchange Rates and Lake Jocassee Reservoir Levels

WATER EXCHANGE RATES AND LAKE JOCASSEE RESERVOIR LEVELS


FINAL REPORT

WATER RESOURCES STUDY

Bad Creek Pumped Storage Project FERC Project No. 2740

Oconee County, South Carolina

March 26, 2024

WATER EXCHANGE RATES AND LAKE JOCASSEE RESERVOIR LEVELS BAD CREEK PUMPED STORAGE PROJECT

FERC PROJECT No. 2740

TABLE OF CONTENTS

Section	Title	Page No.
1 Project	Introduction and Background	1
•	oals and Objectives	
•	rea	
•	Development	
	del Overview	
	annah River (SR) CHEOPS Model	
	del Verification	
4.3.1	Summary of Modeled Results versus Historical Operations	
•	ject Data	
4.4.1 4.4.2	Bad Creek Project	
4.4.2	Keowee Development	
4.4.3	Hartwell Development	
4.4.5	Richard B. Russell Development	
4.4.6	J. Strom Thurmond Development	
4.5 Hy	drology	
_	eline Scenario	
4.6.1	Logic	
4.6.2	Input Data	
4.6.3	System Data	
4.6.4	Physical Data	
4.6.5	Operational Data	38
4.6.6	Generation Data	44
4.7 Bac	l Creek II Scenario	53
4.8 Clin	mate Sensitivities	55
4.8.1	Low Impact of Climate Change Sensitivity (CC-01 or ccLow)	55
4.8.2	High Impact of Climate Change Sensitivity (CC-02 or ccHigh)	55
4.9 Per	formance Measures	56
5 Modele	d Results	56
5.1 Sce	nario Results	56
5.1.1	Baseline (Current License)	56
5.1.2	Bad Creek II	
6 Effects	of Bad Creek II	63
6.1 Pro	ject and KT Project Reservoir Levels	63
6.1.1	Lake Level Fluctuations and Shoreline Erosion	
6.1.2	Aquatic Resources	
6.1.3	LIP Stages	
6.2 Effe	ects on USACE Reservoirs	70
7 Conclus	ions	72

CONTINUED

Sec	ction Title	Page No.
8	Need for Protection, Mitigation, and Enhancement Measures to Prot	tect Water Quality 73
9	Variances from FERC-approved Study Plan	73
10	References	74

Appendices

Appendix A - Withdrawals and Return Estimates

Appendix B - Performance Measures Sheets

CONTINUED

Section	Title	Page No.
	LIST OF TABLES	
Table 4-1. Historical Base: Ger	neration Comparison	8
	day Schedule	
	end Schedule	
_	Keowee Low Inflow Protocol Stage Minimur	
	eration from USACE Projects	
• •	pefficients	
*	e Tailwater Rating Curve	
	Powerhouse Tailwater Rating Curve	
	Values	
	ed Spillway Capacity Values	
	ed Spillway Capacity Values	
	ed Spillway Capacity Values	
	Total Gated Spillway Capacity Curves	
	d Total Gated Spillway Capacity Values	
	Minimum Elevations	
Table 4-16. Guide Curve Targe	et Elevation of Duke Energy Reservoirs	40
_	et Elevations of USACE Reservoirs	
_	Monthly Water Use - Historical Baseline Sc	
	Operations	
	erations	
Table 4-21. Richard B. Rusell	Pump Operations	44
Table 4-22. Headloss Coefficie	ents	45
Table 4-23. Bad Creek Develop	pment Units 1 through 4 Turbine Efficiencies	Over a Range of Net
Heads		46
-	nent Units 1 through 4 Turbine Efficiencies C	_
	ent Units 1 and 2 Turbine Efficiencies Over a	C
	. I	
1	nent Units 1 through 4 Turbine Efficiencies C	•
	nent Unit 5 Turbine Efficiencies Over a Rang	
-	Development Units 1 through 4 Turbine Effi	
	Development Omis 1 through 4 Turbine Em	
\mathcal{E}	l Development Units 1 through 7 Turbine Eff	
9	oment Units 1 through 4 Generator Efficiency	
•	nent Units 1 through 4 Generator Efficiency (
-	ent Units 1 and 2 Generator Efficiency Curve	
=	nent Units 1 through 4 Generator Efficiency (

CONTINUED

Section	Title	Page No.
Table 4-34. Hartwell Development Unit	5 Generator Efficiency Curve	50
-	ment Units 1 through 4 Generator Efficiency C	
_	oment Units 1 through 7 Generator Efficiency	
-		
•		
1	ficiency	
=	h 8 Turbine Efficiencies over a Range of Net I	
	h 8 Generator Efficiency Curve	
	cy	
-		
	Pump Operations	
	nulated Reservoir Elevations and Reservoir Op	
	nulated Reservoir Elevations for the Bad Creek	
Scenario (ft msl)		62
Table 6-1. Normal Hydrology Minimum	Simulated Reservoir Elevations Compared to	the
· · · · · · · · · · · · · · · · · · ·		
•	Simulated Reservoir Elevations Compared to t	
· · · ·		
•	Simulated Reservoir Elevations Compared to	
· · · · · · · · · · · · · · · · · · ·		
	n Simulated Reservoir Fluctuation Over 24-hou	
_	es from the Keowee and J. Strom Thurmond	03
<u> </u>	Creek II Scenarios 1939 – 2011 (cfs)	71
Developments for the Baseline and Bad	Creek II Section 1737 – 2011 (cis)	/ 1
Lis	ST OF FIGURES	
Figure 3-1. Study Area for CHEOPS Ev	valuation	3
Figure 4-1. CHEOPS Model Execution F	Flow Chart	17
Figure 4-2. CHEOPS Scheduling Flow C	Chart	18
Figure 4-4. Bad Creek Reservoir Storage	e Volume Curve	27
Figure 4-5. Jocassee Reservoir Storage V	Volume Curve	27
Figure 4-6. Keowee Reservoir Storage V	olume Curve	28
Figure 4-7. Hartwell Reservoir Storage V	Volume Curve	29
_	Volume Curve	
_	r Storage Volume Curve	
_	Curve	
	ırve	

CONTINUED

Section Title	Page No.
Figure 4-12. Keowee Reservoir Area Curve	32
Figure 4-13. Hartwell Reservoir Area Curve	32
Figure 4-14. Richard B. Russell Reservoir Area Curve	33
Figure 4-15. J. Strom Thurmond Reservoir Area Curve	33
Figure 5-1. Bad Creek Simulated Reservoir Elevation Duration Curves for 1939 – 2011	58
Figure 5-2. Jocassee Simulated Reservoir Elevation Duration Curves for 1939 – 2011	59
Figure 5-3. Keowee Simulated Reservoir Elevation Duration Curves for 1939 – 2011	60
Figure 6-1. Normal Hydrology Bad Creek 24-hour Reservoir Fluctuation for 1939 – 20	011 66
Figure 6-2. Normal Hydrology Jocassee 24-hour Reservoir Fluctuation for 1939 – 2011	66
Figure 6-3. Normal Hydrology Keowee 24-hour Reservoir Fluctuation for 1939 – 2011.	67
Figure 6-4. Days in KT LIP Stages for 1939 - 2011	70
Figure 6-5. Keowee and J. Strom Thurmond Cumulative Release for 1939 – 2011 under to Low, and ccHigh hydrology (total volume, thousand acre-ft [TAF])	•

ACRONYMS AND ABBREVIATIONS

Bad Creek (or Project)
Bad Creek II
Bad Creek II Power Complex

Bad Creek Reservoir upper reservoir

CFR Code of Federal Regulations

cfs cubic feet per second

CHEOPS Computerized Hydro Electric Operations Planning Software

DCP Drought Contingency Plan
Duke Energy or Licensee Duke Energy Carolinas, LLC
EPD Environmental Protection Division

ft feet/foot

ft msl feet/foot above mean sea level

FERC or Commission Federal Energy Regulatory Commission

HDR Engineering, Inc.

HEC-DSS Hydrologic Engineering Center Data Storage System

KT Project Keowee-Toxaway Hydroelectric Project

LIP Low Inflow Protocol

OSC Operating Scenario Committee

PM Performance Measures
RC Resource Committee
RSP Revised Study Plan

SCDNR South Carolina Department of Natural Resources

SEPA Southeastern Power Administration

sq mi square miles
SR Savannah River
TAF thousand acre-feet

UIF unimpaired incremental flow USACE U.S. Army Corps of Engineers

USGS U.S. Geological Survey

1968 Operating Agreement 1968 Operating Agreement between USACE, SEPA, and Duke

Energy

2014 Operating Agreement 2014 Operating Agreement between USACE, SEPA, and Duke

Energy

1 Project Introduction and Background

Duke Energy Carolinas, LLC (Duke Energy or Licensee) is the owner and operator of the 1,400-megawatt Bad Creek Pumped Storage Project (Project) (FERC Project No. 2740) located in Oconee County, South Carolina, approximately eight miles north of Salem. The Project utilizes the Bad Creek Reservoir as the upper reservoir and Lake Jocassee, which is licensed as part of the Keowee-Toxaway (KT) Hydroelectric Project (FERC Project No. 2503), as the lower reservoir.

The existing (original) license for the Project was issued by the Federal Energy Regulatory Commission (FERC or Commission) for a 50-year term, with an effective date of August 1, 1977, and expiration date of July 31, 2027. The license has been subsequently and substantively amended, with the most recent amendment on August 6, 2018, for authorization to upgrade and rehabilitate the four pump-turbines in the powerhouse and increase the Authorized Installed and Maximum Hydraulic capacities for the Project. Duke Energy is pursuing a new license for the Project pursuant to the Commission's Integrated Licensing Process, as described at 18 Code of Federal Regulations (CFR) Part 5.

In accordance with 18 CFR §5.11 of the Commission's regulations, Duke Energy developed a Revised Study Plan (RSP) for the Project and proposed six studies for Project relicensing. The RSP was filed with the Commission and made available to stakeholders on December 5, 2022. FERC issued the Study Plan Determination on January 4, 2023, which approved the Water Resources Study in the RSP as proposed.

This study was conducted in consultation with the Water Resources Resource Committee (RC), Aquatic Resources RC, Operations RC, and other interested stakeholders. Copies of consultation records are included in Appendix A of the Updated Study Report. This report includes the findings for Task 4 (Water Exchange Rates and Lake Jocassee Reservoir Levels) of the Water Resources Study.

¹ Duke Energy Carolinas LLC, 164 FERC ¶ 62,066 (2018)

2 Study Goals and Objectives

Tasks carried out for the Bad Creek Water Resources Study have been consistent with the scope and level of effort described in the RSP filed with the Commission on December 5, 2022. This report is intended to provide sufficient information to support an analysis of the potential Project-related effects on water resources with clear nexus to the Project.

Operation of the proposed Bad Creek II Power Complex (Bad Creek II), which will add pumping and generating capacity to the Project, has the potential to affect the magnitude, rate, and frequency of water surface elevation changes² in downstream reservoirs. Therefore, the objective of this task is to update the existing Computerized Hydro Electric Operations Planning SoftwareTM (CHEOPS) model developed during KT Project relicensing to evaluate reservoir elevation effects associated with water exchange rates, magnitude, and duration between Bad Creek Reservoir and Lake Jocassee. In addition, potential impacts to Lake Keowee levels and fluctuations resulting from operation of Bad Creek II are presented.

3 Study Area

The study area for the modeling effort includes the Bad Creek Reservoir, Lake Jocassee (i.e., the lower reservoir), Lake Keowee (Figure 3-1), and to a lesser extent, the three downstream reservoirs owned and operated by the U.S. Army Corps of Engineers (USACE).

² Water levels would be required to conform to the existing requirements of the KT Project License and associated agreements. Additionally, the originally licensed operating band of the upper Bad Creek reservoir (i.e., 160 feet) is not proposed to be modified.

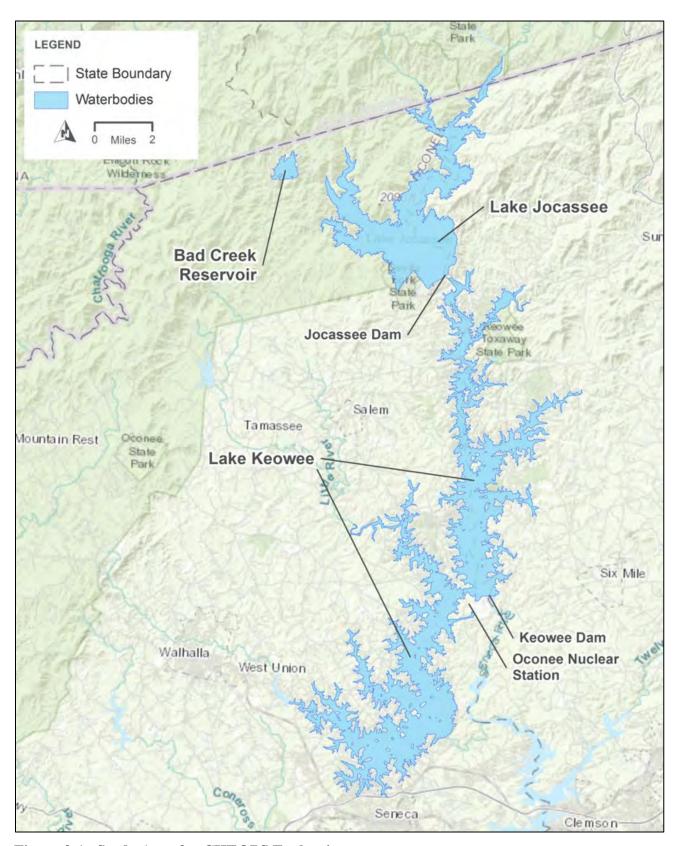


Figure 3-1. Study Area for CHEOPS Evaluation

4 Model Development

4.1 Model Overview

Duke Energy elected to use HDR's proprietary CHEOPS model to assess the effects of operations associated with the addition of Bad Creek II on the system's overall water exchange between the Bad Creek Reservoir and Lake Jocassee. CHEOPS is specifically designed to evaluate the effects of operational changes and physical modifications at multi-development hydroelectric projects. The model is a tool for evaluating a wide range of physical changes and operational constraints associated with relicensing and upgrading hydro facilities. One of the many strengths of the CHEOPS model is the degree of customization available to modelers; it can be tailored to meet the demands of the system being modeled. The CHEOPS program architecture provides a platform for investing project-specific features as defined by stakeholder interests.

CHEOPS utilizes daily flows, plant generating characteristics, and operating criteria of the system to simulate operations, allocate flow releases, and calculate energy production within the system. The model calculates headwater elevation, headlosses, net head, turbine discharge and spill, and power generation. CHEOPS is designed for long-term analysis of the effects of operational and physical changes made to the modeled hydroelectric system.

Modifications to the CHEOPS platform during KT relicensing to support the Savannah River (SR) CHEOPS Model included functionality enhancements enabling simulation of conditions (e.g., Duke Energy Low Inflow Protocol [LIP], and USACE Drought Contingency Plan [DCP]), which were developed during the KT Project relicensing process, as well as improved logic for upstream/downstream plant interactions, specifically with pumped storage plants in the system. The model was also enhanced to add wicket gate leakage for pumped storage plants when in partial pumping operations and the model administrative capabilities were modified to use OpenOffice instead of Microsoft Excel as the application which reads the model input files.

Additionally, a series of SR CHEOPS Model modifications were developed to support specific KT Relicensing Operating Scenario Committee (OSC) member group requests. The modifications included:

- The ability to specify reservoir fluctuation limits that are not a fixed elevation, but rather dependent upon the start-of-period elevation. This feature was added to support the request for fish spawning reservoir stabilization periods identified by the South Carolina Department of Natural Resources (SCDNR), and later was modified to be able to turn off this requirement when the LIP stage is other than "Normal."
- Enhanced support by upstream plants of downstream plant outflow requirements. The outflow enhancements take into account the sum of all required flows on the downstream plant, including required powerhouse outflows, wicket gate leakage, withdrawal requirements, and evaporation. This change prevents an upstream pumped storage or hybrid-pumped storage plant from pumping the downstream reservoir elevation too low when the downstream plant cannot meet its required flows releases.
- Pumped storage plant discharge operations may also be triggered/required without the requisite ability to pump back to support downstream plant outflow requirements.

A CHEOPS model is coded to run day-to-day operations based on a single set of operating conditions or rules. Actual hydroelectric operations generally follow the operating rules; however, human intervention periodically deviates from the general operating rules to accommodate day-to-day realities such as equipment failure and maintenance, changing hydrologic conditions, power demands, and other factors. In addition to differences between model operations versus actual operations that include human interventions, there are also inherent discrepancies due to input data inaccuracies (e.g., differences in calculated hydrology data, turbine or generator efficiencies, or reservoir storage curves). It is important to note CHEOPS model results cannot completely match historical or future operations due to these differences between actual operating conditions and modeled conditions.

Savannah River (SR) CHEOPS Model 4.2

The SR CHEOPS Model was originally developed during 2011-2013 to support relicensing of the KT Project based on input and physical characteristics included in the Savannah River ResSim model (HDR 2014b). It was custom-configured for the Upper Savannah River system based on the specific system constraints such as flow requirements, target reservoir elevations, powerhouse equipment constraints, and reservoir storage balancing between the Duke Energy

hydroelectric reservoirs (Bad Creek Reservoir, Lake Jocassee, and Lake Keowee) and downstream USACE hydroelectric reservoirs (Lake Hartwell, Richard B. Russell Lake, and J. Strom Thurmond Lake). Model output was evaluated by the OSC whose members represented relicensing stakeholder interests.

In support of the ongoing Bad Creek relicensing, the SR CHEOPS Model has been updated to reflect both mechanical and operational changes that have occurred since initial model development (i.e., since KT relicensing) and changes anticipated to occur during the term of the new Bad Creek license. These changes include:

- An updated reservoir storage curve for the Upper Reservoir.
- Upgraded units at the Project.³
- Requirements of the current KT Project FERC license.
- Updated pumping and generation dispatch tables for both Bad Creek and Jocassee
 Pumped Storage Station. These tables were revised to reflect anticipated changes in operation at both facilities as additional renewable generation is incorporated into Duke Energy's generation portfolio.

4.3 Model Verification

Model verification is intended to validate the input data and ability of the programmed logic in simulating daily hydroelectric and reservoir operations. HDR performed model verification of the SR CHEOPS Model during KT relicensing by using comparisons of actual and model-simulated generation and total discharge.

Verification of the model was completed using two different scenarios or model runs. The first performed a verification of the model input data, logic, and conditions for calendar years 1998 through 2008. This scenario is referred to as the historical baseline (A1). In addition to the historical baseline scenario, a second verification scenario (v2007) was developed to simulate the

³ On April 23, 2018, Duke Energy filed a Non-Capacity License Amendment Application to upgrade and refurbish the four Francis-type pump-turbines in the powerhouse, replace existing runners with Francis-type pump-turbine runners, and rehabilitate and/or upgrade the remaining components of the pump-turbine runners at the Bad Creek Project. Authorized Installed and Maximum Hydraulic capacities for the Project were increased to 1,400 megawatts (based upon the definition provided by 18 CFR §11.1[i]) and 19,760 cfs respectively.

detailed operations for calendar year 2007. Based on available historical generation records, modeled and historical generation were compared for the period 1998 through 2008 at all facilities except for Richard B. Russell. Generation at the Richard B. Russell development was only compared for the time period 2006 through 2008 because prior to 2006, Richard B. Russell pump units (four) were rarely operated. Generation data is commonly available for hydropower developments and is a metered value that has good accuracy compared to other forms of data that are not metered or based on estimated values with lower accuracy. The verification simulation was completed for hydrologic years with the best available historical reservoir operations over a wide range of hydrologic and reservoir operations conditions.

Generation is a measure of available flow and storage volume, which relates to inflows and reservoir elevations. When performing verification of water quantity models with power generation, it is common to find discrepancies between observed data and modeled output for generation and reservoir elevation when looking at a small sample of time periods (day, week, or month). This is due to the difference between the set of rules provided in the model vs. the day-to-day decisions common in large power developments that respond to power grid demands as well as storm forecasts and other non-measured impacts on the reservoir and equipment. Modeled results for each verification scenario were compared with historic generation, powerhouse flow, and reservoir levels. In addition to verifying the model under different hydrologic conditions, it was also important to select relatively recent years for model verification under conditions representative of current operating conditions.

As noted previously, the SR CHEOPS Model is coded to run day-to-day operations based on general operating conditions or rules. The model follows these rules strictly, 24 hours per day and 365 days per year, similar to an automated operation. Actual Project operations generally follow the operating rules, but deviations from general operating rules sometimes occur. Therefore, the verification goal is to obtain less than a five percent difference when comparing long-term modeled results to historical generation data over the hydrologic period. In cases where the modeled results exceeded a five percent difference, potential causes for the differences were examined to determine whether the difference was due to deviations in model setup, historical deviations in operations, or discrepancies in the reconstructed hydrology data.

4.3.1 Summary of Modeled Results versus Historical Operations

Verification of the SR CHEOPS Model was performed using historical operations data provided by Duke Energy and the USACE. The modeled flow releases from the hydroelectric facilities were compared to historical data to show whether the model provides a reasonable representation of hydroelectric operations throughout the year (e.g., timing, magnitude, and duration of operations).

The SR CHEOPS Model simulation of the historical baseline scenario (A1) estimated an average annual energy output two percent higher than historical generation for the same period, as shown in Table 4-1. There are significant annual swings in the percent difference between historical and modeled operations for the 1998 through 2008 period, with the largest variations at the Duke Energy facilities (as opposed to USACE facilities).

Table 4-1. Historical Base: Generation Comparison

Year Bad Creek		Jocassee Keowee		Hartwell	Richard B. Russell	J. Strom Thurmond	System Total	
1998	4%	12%	5%	2%		-4%	4%	
1999	7%	52%	-20%	0%		3%	14%	
2000	0%	47%	15%	11%		11%	10%	
2001	15%	16%	28%	11%		2%	14%	
2002	5%	-10%	-9%	12%		24%	3%	
2003	-9%	-9%	28%	24%		9%	-2%	
2004	12%	-5%	17%	2%		4%	6%	
2005	-3%	-10%	10%	3%		-8%	-4%	
2006	5%	1%	-13%	-6%	-4%	-13%	0%	
2007	-9%	6%	43%	21%	5%	12%	-1%	
2008	-14%	-46%	38%	10%	7%	15%	-16%	
Period Total (1998–2008)	0%	1%	10%	7%	2%	3%	2%	

Note: Prior to 2006, the Richard B. Russell pump units (four) were rarely operated, therefore comparisons consider 2006-2008 only.

Duke Energy facilities are operated on demand with a priority on peaking operations to optimize the value of generation based on energy pricing, whereas USACE facilities are operated on a weekly baseload schedule. The result is that the operations of Duke Energy facilities (especially pumping operations) vary greatly depending on the value of generation. For the period assessed (1998-2008), the Duke Energy system was only required to release water to stay in balance with

the system as outlined in the 1968 Operating Agreement⁴ regarding stored water sharing (releases) from the then planned KT Project. The USACE system was driven by a combination of the power requirements to SEPA, the system storage balance, and the minimum discharge requirements from the J. Strom Thurmond Development (HDR 2014a).

As shown in Table 4-1, there are significant swings between modeled and historical generation. There are many factors inherent in the model data and setup that can contribute to output discrepancies (i.e., deviations) when compared to historical data. In many cases, several of these factors may be involved simultaneously, which makes it difficult to isolate individual sources of difference. Four examples of potential sources of deviations from historical data are:

- **Pumping Operations** The model follows a set of defined rules for pumping, but it is seen in the historical records that pumping operations vary greatly from year-to-year, month-to-month, and even day-to-day. This is probably the single greatest contributor to deviations in the generation comparison and is also why the goal of this summary is to compare long-term trends rather than monthly or annual values.
- Hydrology The model uses reconstructed unimpaired flow data as the input for daily inflow to the system. The unimpaired hydrology was synthesized based on streamflow gage data and plant records, both of which have a certain amount of inherent error especially when multiple locations and data sources are involved. The overall hydrologic dataset appears to be a good representation of daily inflows and is acceptable for use in future water management planning.
- **Minimum Streamflow Requirements** The model is set up to account for minimum streamflow requirements automatically. As a result, the model is proactive in automatically addressing minimum streamflow requirements rather than reactive in providing excess flow to avoid potential violations, as may occur during actual operations.

⁴ The 1968 Operating Agreement was an agreement between Duke Energy, the US USACE Savannah District, and the Southeastern Power Administration (SEPA). It was superseded by the 2014 Operating Agreement between the same parties.

• Unit Outages and Performance – The model has been set up with post upgrade/rehabilitation unit performance information and does not take into account detailed unit outage information. For example, Units 1 through 4 at Hartwell were rehabilitated over the 11-year period of 1997 through 2007 but unit outages associated with the rehabilitation were not taken into account in the model.

In interpreting the information provided in the model operations/verification report (HDR 2014b), it is important to consider purpose of the model: to reasonably characterize operations at the generation facility under evaluation. Comparing model results with historical data confirms use of the model as a tool for simulating "real" operations. It is not possible within reasonable time and budget constraints to account for every outside influence or condition to match historical operations and hydrology.

Small changes in input data or model logic can often result in large changes in output. This is due to a number of reasons including (but not limited to) runoff characteristics, reliance on coordinated operations, and numerous/variable flow requirements. Each of these elements individually contributes to the sensitivity of the system. Combined, the sensitivity effects are multiplied. The input data and logic in the historical base scenario is an attempt to consolidate the effects of these variables to achieve an approximation of "characteristic operations."

The sensitivity described above also means that those factors that cannot be accounted for in the model (short-term operations decisions based on pricing, demand, forecasts, etc.) as well as data that are impossible to replicate exactly (synthesized hydrology data, shutdowns due to irregular maintenance, etc.) can result in relatively large discrepancies between modeled output and historical data on a per-month/per-development basis. The factors and sensitivity warrant careful model review with awareness of the potential for outliers. The ultimate acceptance of the results should not hinge on the extremes but rather on the overall impression of consistency between modeled and historical operations.

Most importantly, model verification should be used solely to assess the relative impacts between scenarios. In other words, model verification is really the only time it is appropriate to compare model results with historical data. As previously stated, verification is intended to validate the model input data and model logic so the "Base Case" becomes the baseline for all subsequent analyses.

Verification results show the model compares favorably to historical data, reasonably characterizes study area operations, and is appropriate for use in evaluating the effects of alternative operating scenarios. As with any model, accuracy is highly dependent on input data; consequently, model results should be viewed in a relative, rather than absolute, context. The CHEOPS model is a tool that can be successfully used to evaluate the relative sensitivity and response of the Project to changing operational constraints.

For more information about the validation of the SR CHEOPS model, see "Operations Model Study Savannah River Basin Model Logic and Verification Report" (HDR 2014b).

4.4 Project Data

4.4.1 Bad Creek Project

The Project uses the Bad Creek Reservoir as its upper reservoir and Lake Jocassee as its lower reservoir. The approximately 300-acre upper reservoir, formed by the damming of Bad Creek and West Bad Creek, has a drainage area of approximately 1.5 square miles (sq mi). Due to the small drainage area of Bad Creek Reservoir, inflows are minimal. The Bad Creek Reservoir normal maximum reservoir elevation is 2,310 feet (ft) above mean sea level (msl)⁵ with a minimum elevation of 2,150 ft msl.

The powerhouse contains four reversible motor-pump/turbine-generator units. There is no license-required operating guide curve; rather the reservoir is operated as needed for generation.

4.4.2 Jocassee Development

Lake Jocassee, which operates as the lower reservoir for the Project, was formed by impounding the Keowee River just downstream of the confluence of the Whitewater and Toxaway rivers. Lake Jocassee has a drainage area of 145 sq mi, a surface area of approximately 7,980 acres, and approximately 92 miles of shoreline at normal full pond (1,110 ft msl). Normal minimum pond elevation is 1,080 ft msl.

⁵ All vertical elevations in this report are National Geodetic Vertical Datum 1929 unless noted differently.

The Jocassee Development is a pumped storage facility with four reversible motor-pump/turbine-generator units. The SR CHEOPS Model uses an end of day target elevation of 1,107 ft msl.

The Jocassee Development and the downstream Keowee Development comprise the KT Project.

4.4.3 Keowee Development

Lake Keowee is formed by two parallel watersheds connected by a 2,000-ft-long canal. The watershed draining directly into Lake Keowee is approximately 439 sq mi. The reservoir surface area is approximately 17,660 acres at the normal full pond elevation of 800 ft msl.

Keowee Hydroelectric Station contains two conventional turbine-generator units. For SR CHEOPS modeling purposes, a target curve of 798 ft msl from May 1 to October 15, which then lowers gradually to 797 ft msl on January 1 and refills gradually by May 1, has been simulated to calculate usable storage for coordination with the USACE. Based on a review of historical operations of Lake Keowee, code was added to the SR CHEOPS Model for Lake Keowee to retain water in the Jocassee-Keowee pumped storage system for pumping and generating cycles. Because of this unique requirement, the model's target curve is not followed as strictly specified under normal hydroelectric reservoir operating conditions (HDR 2014b).

Based on the additional SR CHEOPS Model control at Lake Keowee, the model will not schedule discretionary releases from Lake Keowee unless the reservoir is nearing its normal full pond elevation and available storage for capturing runoff is reduced. This additional logic for Lake Keowee was applied and evaluated through verification of the model. This additional logic is user input whereas the SR CHEOPS Model can be adjusted to evaluate operational alternatives.

4.4.4 Hartwell Development

The Keowee Development releases water into the 55,900-acre Hartwell Lake which is operated by the USACE. Hartwell Hydroelectric Station has five conventional turbine-generator units. The Hartwell Development includes 5 ft of flood control storage from an elevation of 660 to 665 ft msl, which contains approximately 293,000 acre-ft of storage. A flood surcharge zone exists from 665 to 679 ft msl. A seasonally varying guide curve provides additional flood control during the winter and early spring. The minimum pool elevation is 625 ft msl (HDR 2014b).

4.4.5 Richard B. Russell Development

The 26,650-acre Richard B. Russell Lake is impounded by the USACE's Richard B. Russell Dam 30 miles downstream of the Hartwell Dam. The powerhouse contains four conventional turbine-generator units and four motor-pump/turbine-generator units. Two small house turbine-generator units were not modeled as part of the previous SR CHEOPS Model effort.

The Richard B. Russell reservoir includes 5 ft of flood control storage from an elevation of 475 to 480 ft msl. The limited conservation storage range between reservoir elevation 470 and 475 ft msl and fluctuation caused by pumping/generating cycles necessitates a constant guide curve with no seasonal drawdown (HDR 2014b).

4.4.6 J. Strom Thurmond Development

The 71,100-acre J. Strom Thurmond Lake is impounded by the J. Strom Thurmond Dam. The dam is located 37 miles downstream of the Richard B. Russell Dam. The powerhouse contains seven conventional turbine-generator units.

The objective of flood control regulation at the J. Strom Thurmond project is to reduce flood damages to the lower Savannah River basin to the extent possible. Normal pool varies seasonally from 330 ft msl April 1 through October 15; and between October 15 and December 15, the pool is drawn down to a seasonal normal pool of 326 ft msl to allow for the statistically higher winter and spring inflows. Starting January 1, the pool is refilled to reach 330 ft msl on April 1 (HDR 2014b).

4.5 Hydrology

The hydrologic dataset, Savannah River Unimpaired Flow 1939-2008 Time Series Extension Report (ARCADIS 2010), applied in the SR CHEOPS Model was provided by ARCADIS and prepared for Duke Energy, the Savannah District of the USACE, and the Georgia Environmental Protection Division (EPD). The study performed by ARCADIS developed unimpaired incremental flow (UIF) time series data (UIF database dated September 16, 2010) for the five hydroelectric developments on the Savannah River from Lake Jocassee to J. Strom Thurmond Lake. Due to the small size of the Bad Creek watershed, HDR developed the UIF to Bad Creek as a portioned one percent of the developed Jocassee UIF. As outlined in the Savannah River

Unimpaired Flow 1939-2008 Time Series Extension Report released by ARCADIS on August 12, 2010, these data are suitable for the following purposes:

- Reservoir system operational modeling by Duke Energy and the USACE, with the USACE serving as a cooperating agency for the FERC relicensing of Duke Energy's **KT** Project
- Reservoir operational planning studies by the USACE
- Determination of desired flow regimes and consumptive water-use assessments for Georgia EPD

The excerpt below from Section 1 of the Savannah River Unimpaired Flow 1939-2008 Time Series Extension Report (ARCADIS 2010) defines the methods applied in the development of the UIF time series data. All time series data were supplied in the USACE'S Hydrologic Engineering Center Data Storage System (HEC-DSS) databases.

Incremental and cumulative UIFs are developed for the Seneca River at the Jocassee and Keowee sites from historical stream flows and reservoir releases at these locations by removing (1) effects of reservoir regulation (holdouts and releases from storage), (2) differential pre- and post-reservoir net evaporation (i.e., evaporation minus precipitation excess from the reservoir surface area), and (3) consumptive water uses within the respective local drainage areas. General assumptions and methods applicable to UIF development under this study are subsequently described as follows.

- The period of record (POR) for UIFs developed under this study uniformly extends from January 1939 through December 31, 2008. UIFs previously developed by Georgia EPD for 1939–2007 (Georgia EPD 2010) were recalculated.
- Daily incremental UIFs were developed at the following nodes within the Savannah River basin: Jocassee (Seneca River); Keowee (Seneca River); Hartwell, Richard B. Russell (U.S. Geological Survey [USGS] gage 02189000, Calhoun Falls); Bell (Broad River, USGS gage 02192000); Thurmond, Augusta (USGS gage 0219700); Burtons Ferry (USGS gage 02197500); Millhaven (Brier Creek, USGS gage 02198000); and Clyo (USGS gage 02198500).

- Georgia EPD has provided daily potential evapotranspiration (PET) time series data computed using the Hamon equation that extend from January 1, 1939 to December 31, 2008. These have been used in the computation of reservoir evaporation following procedures used in the development of the January 1, 1939 to December 31, 2007 UIF time series.
- Federal and non-federal reservoir holdouts, net evaporation, and daily inflows and outflows have been computed and applied as appropriate to UIF derivation. For reservoirs where time series data required for these calculations are not available, run-of-river operation has been assumed. Operational data were provided by Duke Energy, including Bad Creek Reservoir elevation time series data and elevation and outflow time series data for the Jocassee and Keowee projects, in addition to elevation-area-storage paired data for the Keowee and Jocassee projects.
- UIF data development has been primarily accomplished by filling and routing of missing 1939 to 2008 historical flow data and by adjustments for reservoir effects and water uses. Techniques may involve application of Riverside's TSTool software and USACE DSS utilities, interactively and by batch programming. All time series and paired data have been stored in HECDSS databases and map-referenced as approved by Georgia EPD. UIF development has largely relied upon time series previously developed by ARCADIS U.S., Inc. (ARCADIS) for Georgia EPD.
- Historical water use data, on a daily or monthly time step, have been provided by Georgia EPD in electronic form quality-controlled and suitable for UIF development. Water use data extends from 2005 to 2008.
- Routing techniques for observed flow filling and UIF derivation have been selected by ARCADIS for consistency with existing 1939 to 2007 Savannah UIF data previously developed for Georgia EPD.

Additional information on the development of the UIF is available in the Savannah River Unimpaired Flow 1939-2011 Time Series Extension Report revised by ARCADIS in May 2013 (ARCADIS 2010, 2013).

During the initial stages of the model scenario development phase of the KT Project relicensing process, the OSC identified the desire to have a Savannah River Basin inflow dataset that

verified well against the most severe historical drought period on record, the 2007-2008 drought. Through a review of inputs and assumptions used in the SR CHEOPS Model, the OSC concluded there was too much water accounted for in the back calculated incremental inflow time series. The OSC requested an investigation to determine the source of the apparent inconsistency in the inflow time series during 2007-2008 when comparing modeled results to historical data. ARCADIS assisted HDR with a review of the inflow time series development and documentation. The review compared the inflow time series to USACE calculated inflow series and recommended using a different combination of inflow data (from within the September 2010 HEC-DSS database) for all reservoirs with the most significant differences in the Richard B. Russell Lake. These datasets were pulled from the supplied September 2010 HEC-DSS files. The OSC approved revising the model inflow data series in the SR CHEOPS model.

The 1939 through 2008 hydrologic dataset adopted by the OSC in August 2012 was used for KT model relicensing scenario development from September 2010 through December 2012. In the fall of 2012, Duke Energy, following a recommendation from the OSC, funded an extension of the inflow dataset by three years. The inflow dataset was extended by ARCADIS using the same methodology developed to construct the original dataset expanding the period of record (POR) to 1939 through 2011. The final revised dataset was provided by ARCADIS on May 13, 2013, and extended the existing inflow hydrology files in the SR CHEOPS model as described in detail in the May 2013 Savannah River Unimpaired Flow Data Report (ARCADIS 2010, 2013).

4.6 Baseline Scenario

4.6.1 Logic

Figure 4-1 and Figure 4-2 provide an overview of the model logic in sequence.

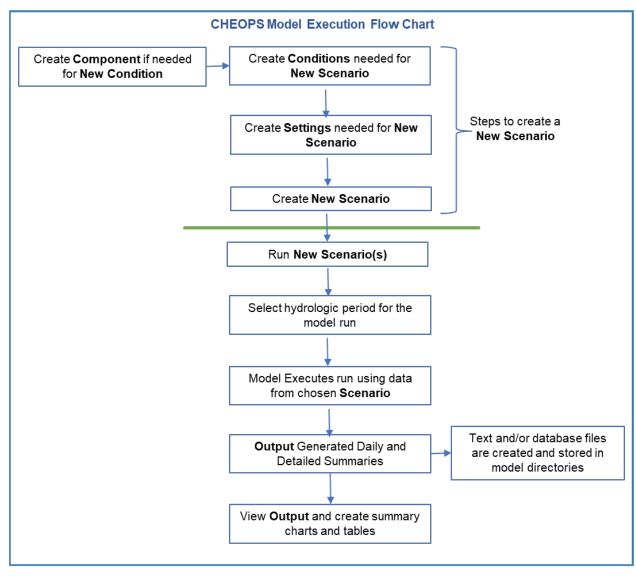


Figure 4-1. CHEOPS Model Execution Flow Chart

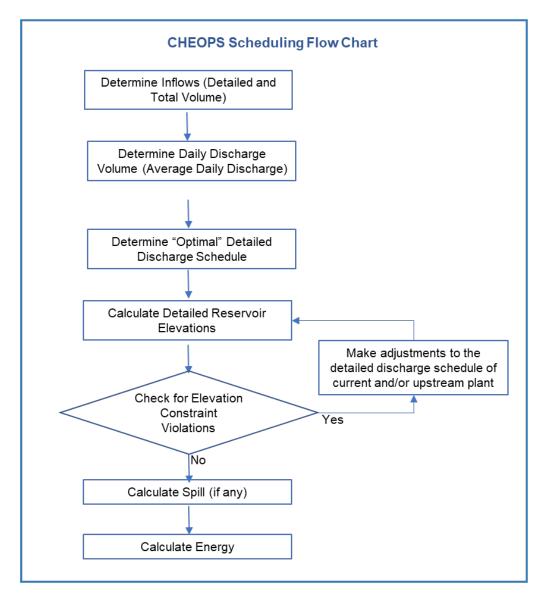


Figure 4-2. CHEOPS Scheduling Flow Chart

4.6.2 Input Data

The input data listed in the following subsections show the general operational constraints and physical parameters used in the SR CHEOPS Model to define the existing system configuration for the Baseline scenario setup. The following subsections are organized by the four components that define a CHEOPS scenario, as shown on Figure 4-3.

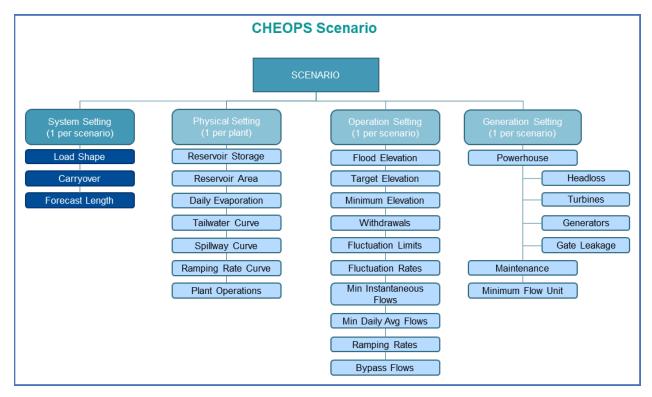


Figure 4-3. CHEOPS Scenario

4.6.3 System Data

4.6.3.1 Load Shapes and Energy Values

This section contains the load shape and energy value data common to the facilities on the Savannah River. The SR CHEOPS Model load shape defines the daily schedule, on an hourly basis, of relative power pricing and the hour durations of each price in the peak, off-peak, and shoulder periods, as presented in Table 4-2 and Table 4-3. The model uses the load shape data to schedule the release of water throughout the day, prioritizing generation during peak periods. Durations for the load shape reflect anticipated changes in operation as additional renewable generation is incorporated into Duke Energy's generation portfolio.

Table 4-2. Load Shape – Weekday Schedule

Weekday Schedule (hours/day)							
Month	Morning Off Peak Peak Morning Peak Afternoon Secondary Peak Peak Peak Peak Evening Secondary Peak Peak						
January	1	5	2	10	3	3	
February	1	5	2	10	4	2	
March	1	5	2	11	2	3	

	Weekday Schedule (hours/day)							
Month	Morning Off Peak	Morning Secondary Peak	Morning Peak	Afternoon Secondary Peak	Afternoon Peak	Evening Secondary Peak		
April	1	5	2	11	2	3		
May	1	5	1	13	1	3		
June	1	0	2	17	2	2		
July	1	0	2	17	2	2		
August	1	0	1	18	2	2		
September	1	5	2	11	1	4		
October	1	5	2	10	2	4		
November	1	5	2	10	3	3		
December	1	5	2	10	1	5		

Table 4-3. Load Shape – Weekend Schedule

	Weekend Schedule (hours/day)						
Month	Morning Off Peak	Morning Peak	Afternoon Off Peak	Afternoon Peak	Evening Off Peak		
January	5	3	10	4	2		
February	5	3	10	3	3		
March	6	2	11	2	3		
April	5	3	11	2	3		
May	1	7	12	2	2		
June	1	7	12	2	2		
July	1	3	15	4	1		
August	1	3	15	4	1		
September	1	3	16	3	1		
October	1	2	16	4	1		
November	6	2	9	5	2		
December	6	2	9	6	1		

4.6.3.2 Carry-Over Elevations Condition

The Carry-Over Elevations Condition controls how to treat the beginning-of-year and end-of-year elevations. The model begins a run (scenario simulation) on January 1 of the start year with each reservoir at its target elevation. If the scenario is run for a multiple year period, then the model can either start subsequent years with the reservoirs at the target elevations or at the end of previous year elevations.

The Carry-Over Elevations is selected (i.e., the checkbox is checked) in this model. Therefore, the model will carry-over the end-of-year elevations to the next year, and reservoirs will start the next year at the ending elevations of the previous year.

4.6.3.3 Forecast Set-Up Condition

The Forecast Set-Up Condition requires two inputs: a number of forecast days, and an accuracy of the forecast. The number of days is how many days the model looks ahead in the inflow file to calculate how much water the system is going to receive. The model is set up to look 1 day ahead with 100 percent accuracy. Since the model has "perfect" forecasting as it looks at the actual inflow file, the accuracy setting allows the user to adjust the model's ability to forecast accurately. The accuracy setting adjusts inflow by a fixed multiple. The model looks ahead the given number of days, adds up the inflows, multiplies those inflows by the entered accuracy value, then schedules releases based on this forecasted inflow volume. If the accuracy setting is not 100 percent (1.0), then the forecasted volume is not accurate. By running the model with 90 percent (0.9) accuracy, and then running again at 110 percent (1.1) accuracy, the user can simulate operations where the operator has an ability to forecast inflows plus or minus 10 percent.

4.6.3.4 Operating Agreement (Storage Balance Operations)

This section provides details of the storage relationship between the Duke Energy and USACE facilities resulting from the development of the 2014 Operating Agreement which is implemented as part of the Baseline scenario for use during ongoing Bad Creek relicensing.

On October 1, 1968, Duke Energy's predecessor company, Duke Power Company, entered into 1968 Operating Agreement with the USACE Savannah District and SEPA regarding stored water sharing (releases) from the planned KT Project. The 1968 Operating Agreement was replaced by the 2014 Operating Agreement in conjunction with KT Relicensing.

The 2014 Operating Agreement defines balancing of the available storage in Duke Energy reservoirs (Bad Creek, Jocassee, and Keowee) with USACE available storage (Hartwell, Richard B. Russell, and J. Strom Thurmond) according to storage balance rules as outlined in the 2014 Operating Agreement. The SR CHEOPS Model incorporates the terms of the 2014 Operating Agreement through a series of programming rules where balance checks are performed on

weekly basis. These rules are integral in simulating the storage relationships between the developments and significant time was spent refining these rules in the SR CHEOPS Model.

When a tandem or parallel reservoir system is defined within the SR CHEOPS Model, the model determines the priority and the amount of release to make from each reservoir to operate towards a user-defined storage balance. For every decision interval, an end-of-period storage is first estimated for each reservoir based on the sum of beginning-of-period storage and period average inflow volume, minus all potential outflow volumes. The estimated end-of-period storage for each reservoir is compared to a desired storage that is determined by using a system storage balance scheme. The priority for release is then given to the reservoir that is furthest above the desired storage. When a final release decision is made, the end-of-period storages are recomputed. Depending on other constraints or higher priority rules, system operation strives for a storage balance such that the reservoirs have either reached their guide curves or they are operating at the desired storage (percent of the active storage zone).

The storage balance operations of the system are simulated in CHEOPS using an OpenOffice-based input sheet referenced by the CHEOPS drought plan input. Each reservoir in the system from Lake Jocassee to J. Strom Thurmond Lake is simulated with a drought plan. The USACE developed and updated the DCP to help sustain the basin's water supply needs for domestic and industrial water users, navigation, and environmental protection. To decelerate the decline in reservoir elevations during the early stages of drought, the USACE reduces weekly average flow releases from the Hartwell and J. Strom Thurmond developments. Once the DCP has been activated, flows are reduced in a step-wise fashion starting with a reduction of downstream releases from J. Strom Thurmond Lake. Reservoir elevations at Lake Hartwell and J. Strom Thurmond Lake are kept in balance during both normal and drought conditions.

During 1988 drought conditions, the J. Strom Thurmond and Hartwell Lakes were almost 17 and 15 ft below the top of their conservation pools, respectively. (The conservation pool is the amount of usable storage in the reservoir.) Accordingly, during the 1988 drought period, the USACE was not able to fully meet authorized project purposes. This led the USACE to initially develop the 1989 DCP with three trigger levels (USACE 1989). In 2006, the DCP was revised to include a fourth trigger level. The 2006 DCP allows the USACE to maintain higher pools at the reservoirs without further impacts to any water intakes upstream or downstream of the dams. In

2012, the DCP flows required out of J. Strom Thurmond Lake were revised, along with the addition of an inflow trigger.

The reservoir storage at the Bad Creek Project and Richard B. Russell developments are not included in the DCP. However, for model stability purposes and implementation of the KT LIP, Bad Creek reservoir and Richard B. Russell Lake storage are included in the CHEOPS Model storage index calculations while using a rule-link but no reservoir storage adjustments are required. Each reservoir in the system is linked to its downstream reservoir (except as noted) with a system storage balance relationship. The storage balance definition defines the rate of drawdown at each reservoir in relation to the next downstream reservoir and is user definable. The application of the storage balance definition simulates the system in accordance with the 2014 Operating Agreement and the USACE DCP.

4.6.3.5 Low Inflow Protocol (LIP)

This section provides details of the SR CHEOPS Model functionality to simulate the LIP.

The LIP specifies how Duke Energy will operate the Bad Creek and KT Projects during droughts. The LIP includes five stages based on specific triggers (i.e., remaining usable storage and DP levels, stream flows, and the U.S. Drought Monitor⁶). The LIP also specifies maximum reservoir drawdowns and maximum downstream flow releases from Keowee Hydro Station based upon the specific LIP stage. It should also be noted the remaining usable storage for determination of LIP stage (only applicable at Duke Energy reservoirs) is based on normal full pond elevations.

The SR CHEOPS Model incorporates the terms of the LIP as outlined in the KT Project FERC license through a series of programming rules. The LIP functionality was added to the SR CHEOPS during KT Relicensing to enable LIP stage definitions and specify required actions for each LIP stage. Model logic measures, on the specified day, the Duke Energy usable storage based on full pond elevations and gage hydrology, then implements the LIP stage change after the appropriate delay. The LIP adds Bad Creek and Richard B. Russell reservoirs to the USACE

⁶ The U.S. Drought Monitor is produced by the National Drought Mitigation Center at the University of Nebraska-Lincoln, the National Oceanic and Atmospheric Administration, and the U.S. Department of Agriculture. It blends precipitation, streamflows, temperatures, evaporative demand, and other factors to interpret drought conditions.

DCP usable storage calculations, which required modifications to the USACE DCP input file. The modifications to the USACE DCP file to reflect the LIP include specifying whether to include the Bad Creek and Richard B. Russell reservoirs in the usable storage calculation, and also provided cells for inputting the elevation which is considered bottom of usable storage pool for all six reservoirs.

Additional SR CHEOPS model parameters associated with the LIP include:

- The minimum elevation for Lake Keowee is 790.0 ft msl. However, the elevation will remain above 791.5 ft msl until the Duke Energy system remaining usable storage is at or below 12 percent (see Table 4-4).
- The percentage of Duke Energy remaining usable storage at which the outflow from Lake Keowee is limited to evaporation, water use, and leakage is 12 percent.
- The LIP minimum reservoir elevations for each LIP stage as listed in Table 4-4.
- The Lake Keowee water release calculation uses 790.0 ft msl as the minimum Lake Keowee reservoir elevation for the calculation of Duke Energy remaining usable storage.
- The Jocassee minimum reservoir elevation for the calculation of Duke Energy remaining usable storage is 1,080.0 ft msl.
- Full pond at the Duke Energy reservoirs is defined as the maximum elevation in the remaining usable storage calculation.
- The volume of storage in the Bad Creek Upper Reservoir from elevation 2,310.0 ft msl to 2,150.0 ft msl is included in the calculation of Duke Energy storage balancing contribution with the USACE system.
- The volume of storage in the Richard B. Russell reservoir between elevations 475.0 ft msl and 470.0 ft msl is included in the USACE remaining usable storage balancing calculations.

The Baseline scenario references USGS gage averaging using a 4-month rolling average and LIP logic to reference "triggered" DCP level versus "in-effect" DCP level during LIP recovery. The referenced DCP level allows the LIP to change more quickly to a lower stage number during the recovery process, eliminating the 2-ft recovery delay in the USACE's DCP.

Table 4-4. Lakes Jocassee and Keowee Low Inflow Protocol Stage Minimum Elevation

I ID Stogo	Lake Jocassee Elevation	Lake Keowee Elevation
LIP Stage	(ft msl)	(ft msl)
0	1,096.0	796.0
1	1,092.0	795.0
2	1,087.0	793.0
3	1,083.0	792.0
4	1,080.0	791.5*

^{*}Note: In LIP Stage 4, the Keowee reservoir elevation will be maintained at or above 791.5 ft msl until the Duke Energy storage balance reaches 12 percent. The minimum elevation used to calculate the usable storage for storage balancing with the USACE is 790.0 ft msl.

Additionally, LIP/DCP functionality includes the following logic:

- Functionality to allow the user to limit spring lake stabilization to LIP Stage 0 (Normal).
- Functionality to allow the user to specify that the USACE and Duke Energy reservoir storage balancing logic use full pond elevation versus target elevation at Duke Energy reservoirs for calculations of usable storage.
- Functionality to fine-tune simulated Lake Keowee operations and limit discharge from Lake Keowee by allowing the user to define a percentage above the target curve (published in the 1968 Operating Agreement) for the model to attempt to maintain a Full Pool.
- Functionality to allow the user to define two Maximum Required Weekly Release volumes from Lake Keowee for LIP Stage 4. The first is based on a Duke Energy Percent Usable Storage Remaining trigger and the second is the default if less than the defined Duke Energy Percent Usable Storage Remaining.
- Functionality to allow the user to revise the LIP logic to reference "triggered" DCP level versus "In-Effect" DCP level during LIP recovery. This allows the LIP to more quickly change to a lower stage number during recovery process, eliminating the 2-foot recovery delay in DCP protocol.
- Ability to set lake level fluctuation base elevation to be set at the lowest instantaneous elevation from the day prior to the start of the lake stabilization period.

4.6.3.6 System Power

The USACE developments have a power generation requirement with SEPA to achieve a minimum generation value (HDR 2014b). The weekly generation requirement can be met by any

s FOR

combination of the three USACE plants, and the requirement value varies by month. The weekly targets are based on power contracts with SEPA, as listed in Table 4-5. These values are currently entered into the model in the Drought Plan input sheet.

Table 4-5. Weekly Target Generation from USACE Projects

Month	Weekly Target Generation (megawatt-hours)
January	27,233
February	26,714
March	20,669
April	18,504
May	21,948
June	25,935
July	31,195
August	32,035
September	30,685
October	27,304
November	26,284
December	27,104

4.6.4 Physical Data

4.6.4.1 Reservoir Storage Curves

The Reservoir Storage Curve is a tabulated link between the reservoir elevation and reservoir volume. The model uses this curve to calculate elevations based on inflows and model-determined releases. Figure 4-4 shows the Bad Creek reservoir storage curve based on LiDAR data collected in 2018.⁷ The Lake Jocassee and Lake Keowee storage-volume relationships were based on bathymetric data collected in 2010 (Figure 4-5 and Figure 4-6) and the USACE storage-volume relationships for Hartwell, Richard B. Russell, and J. Strom Thurmond lakes (Figure 4-7 through Figure 4-9) were based on published storage-volume relationships revised based on applying regional sedimentation rates from the Savannah River basin. Sedimentation rates were converted to sediment volume using methods outlined in USACE Engineer Manual 1110-2-4000 and estimated compressed density of the sediment⁸.

⁷ Values for 2110 feet and lower are based on historic 1974 data.

⁸ Storage volume curves for the USACE reservoirs are identical to those used during KT relicensing. No additional sedimentation was calculated.

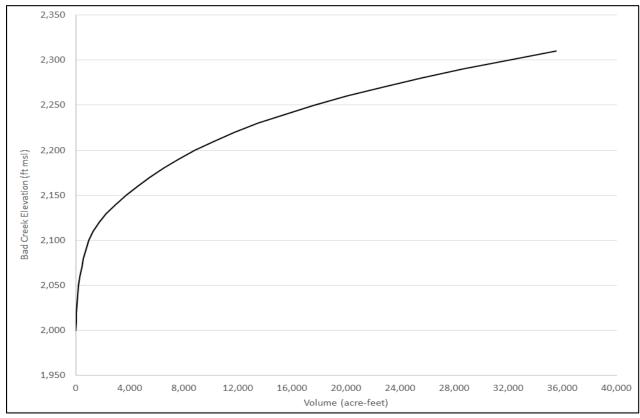


Figure 4-4. Bad Creek Reservoir Storage Volume Curve

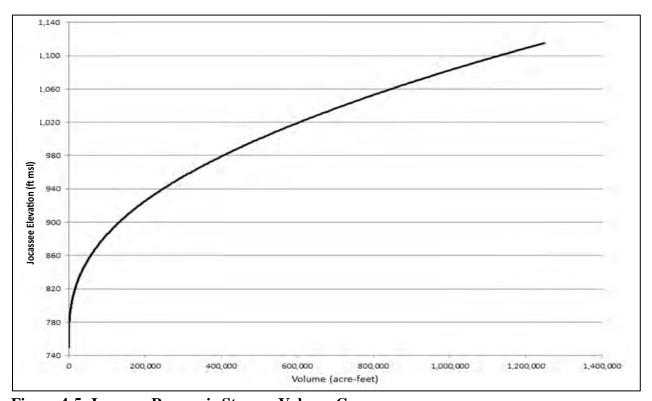


Figure 4-5. Jocassee Reservoir Storage Volume Curve

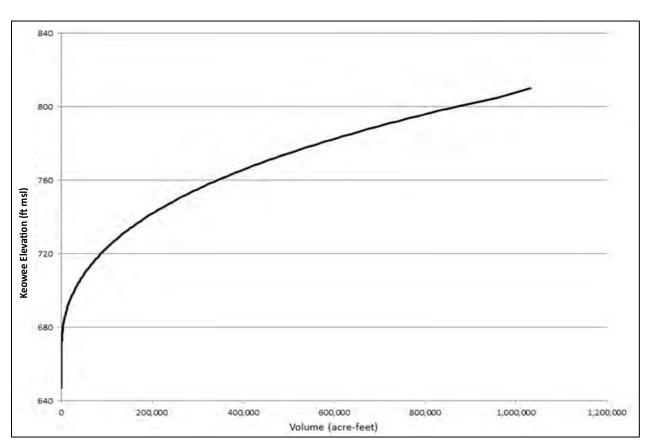


Figure 4-6. Keowee Reservoir Storage Volume Curve

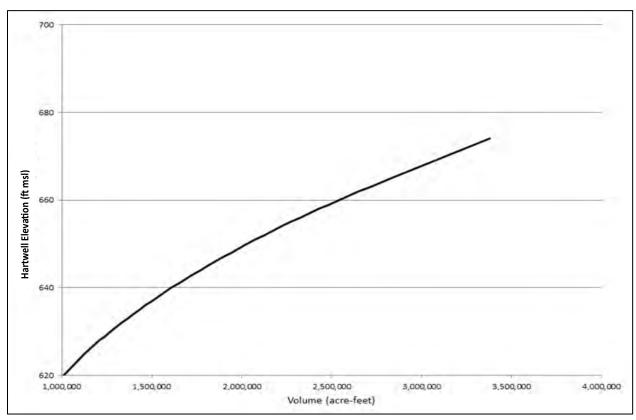


Figure 4-7. Hartwell Reservoir Storage Volume Curve

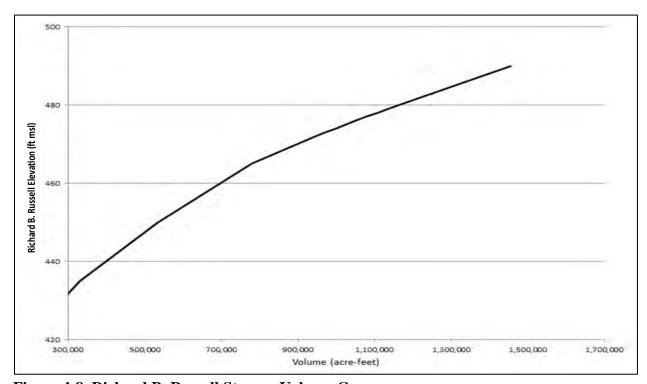


Figure 4-8. Richard B. Russell Storage Volume Curve

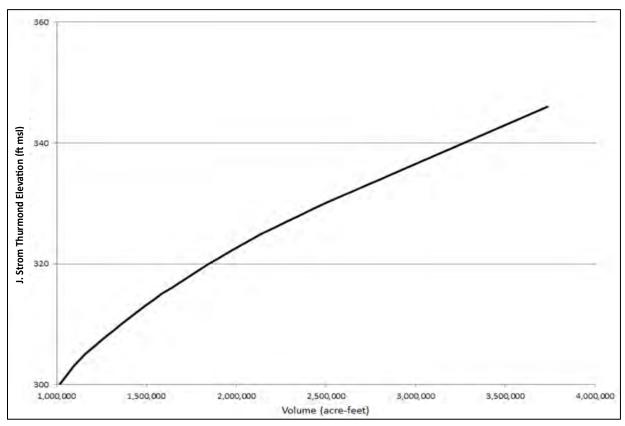


Figure 4-9. J. Strom Thurmond Reservoir Storage Volume Curve

4.6.4.2 Reservoir Area Curves

The Reservoir Area Curve is a tabulated link between the reservoir elevation and reservoir surface area. The model uses this curve to calculate the surface area and uses this data for computing evaporation losses. Figure 4-10 through Figure 4-15 show the reservoir area curves used in the model.

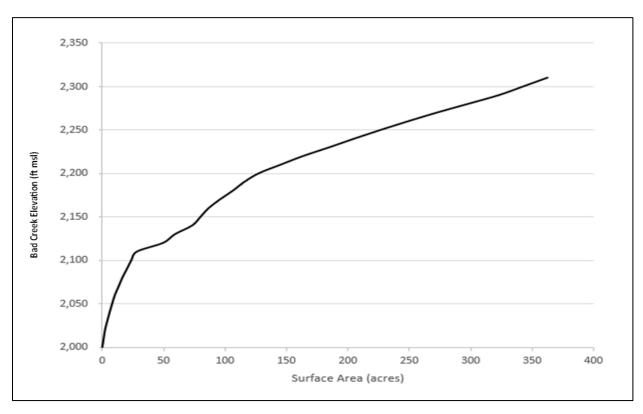


Figure 4-10. Bad Creek Reservoir Area Curve

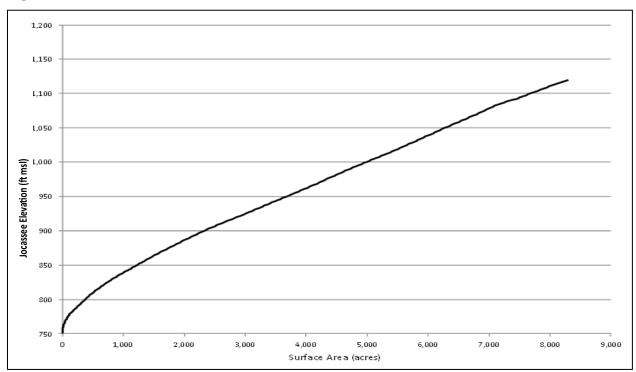


Figure 4-11. Jocassee Reservoir Area Curve

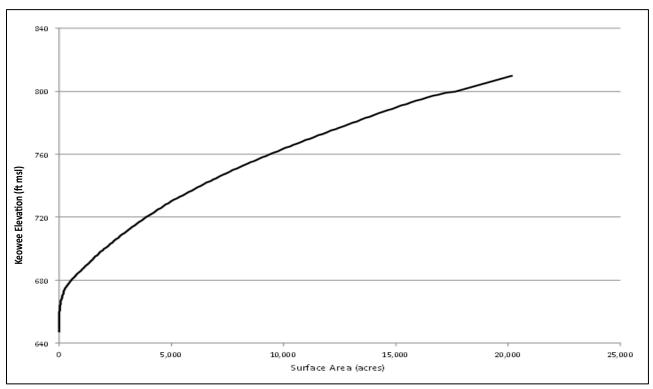


Figure 4-12. Keowee Reservoir Area Curve

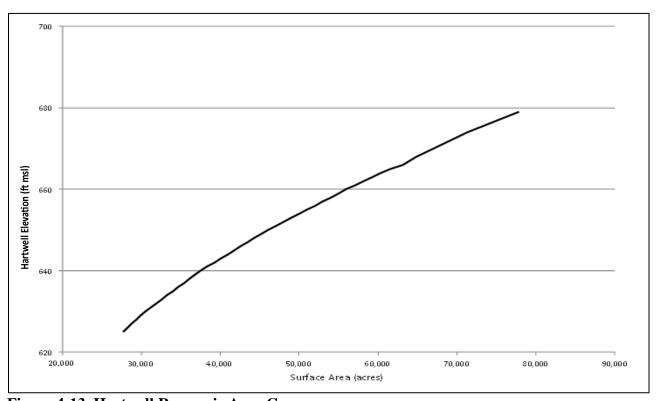


Figure 4-13. Hartwell Reservoir Area Curve

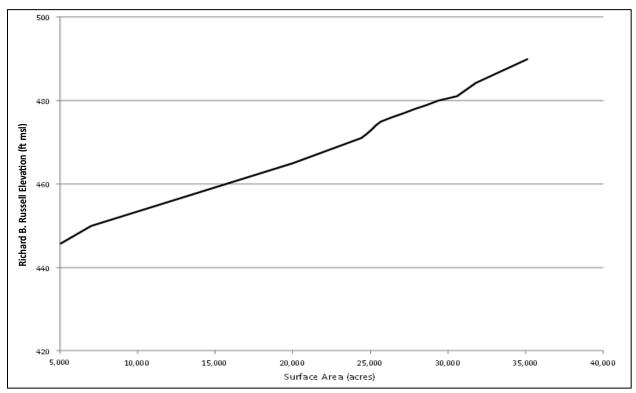


Figure 4-14. Richard B. Russell Reservoir Area Curve

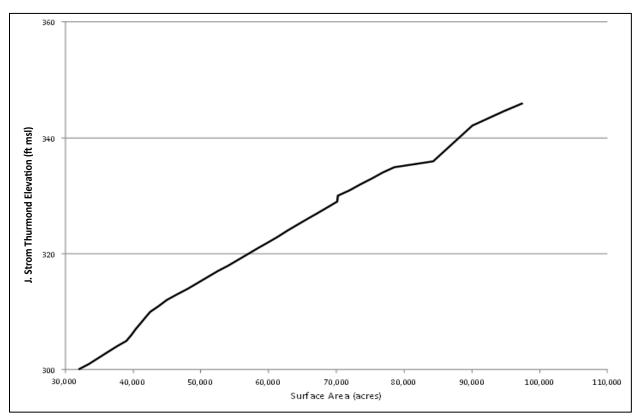


Figure 4-15. J. Strom Thurmond Reservoir Area Curve

4.6.4.3 Monthly Evaporation

Evaporation is based upon a monthly varying coefficient that defines the evaporative loss per reservoir. This evaporative loss is not strictly composed of losses due to evaporation, but rather a net change to inflows due to evaporation, direct precipitation to water surface, precipitation runoff, and changes to evapotranspiration losses. Negative values indicate a net inflow to the reservoir. Based on the median data, the precipitation inflow to the reservoir exceeds the evaporation from the reservoir. This coefficient (which is entered into the model in ft per day per acre) is multiplied by the surface area of the reservoir to compute total evaporative loss volume for the reservoir. Table 4-6 shows the SR CHEOPS Model evaporation loss coefficients for each reservoir by month. The evaporation loss coefficients reflect the monthly 2008 values published by ARCADIS in the Savannah River Basin May 13, 2013, time series release (ARCADIS 2010, 2013). The September 16, 2010 ARCADIS time series release contains the same 2008 evaporation values as provided in the May 2013 release.

Richard B. J. Strom **Bad Creek** Jocassee Keowee Hartwell Russell Thurmond **Evaporation Evaporation Evaporation Evaporation** Month **Evaporation Evaporation** Loss Loss Loss Loss Loss Loss (ft/day/acre) (ft/day/acre) (ft/day/acre) (ft/day/acre) (ft/day/acre) (ft/day/acre) -4.2E-03 -2.8E-03 -1.5E-03 -1.5E-03 -3.2E-03 Jan -1.1E-03 Feb -2.3E-03 -7.6E-04 1.0E-04 4.3E-05 -5.7E-04 -1.9E-03 Mar -6.8E-03 -4.2E-03 6.9E-05 1.6E-05 -6.2E-05 -8.3E-05 2.5E-03 4.0E-03 4.1E-03 4.1E-03 3.6E-03 Apr 4.6E-03 May 6.1E-03 7.4E-03 6.6E-03 7.6E-03 9.6E-03 8.9E-03 1.1E-02 1.2E-02 1.3E-02 1.2E-02 1.3E-02 Jun 1.3E-02 6.3E-03 9.1E-03 7.8E-03 Jul 8.0E-03 8.6E-03 6.5E-03 Aug -1.2E-03 1.2E-03 1.0E-03 1.9E-03 4.2E-03 3.9E-03 5.4E-03 6.4E-03 7.1E-03 7.9E-03 6.7E-03 6.4E-03 Sep 7.4E-04 Oct 7.4E-04 1.8E-03 2.6E-03 2.1E-03 8.5E-04 Nov -1.6E-03 -6.5E-04 1.3E-04 1.3E-04 -1.1E-03 -6.4E-03 Dec -8.8E-03 -6.6E-03 -5.8E-03 -4.9E-03 -3.0E-03 -3.4E-03

Table 4-6. Evaporative Loss Coefficients

4.6.4.4 Tailwater Data

The Tailwater Curve relates the powerhouse tailwater elevation to the development's outflow. In cases where the powerhouse releases directly into a downstream reservoir, the downstream reservoir's elevation is used to compute tailwater elevation. The tailwater elevation is subtracted from the reservoir elevation to calculate the gross head used in determining turbine and pumpturbine hydraulic performance.

Bad Creek releases directly into Lake Jocassee, so the elevation of Jocassee is the controlling factor for Bad Creek's tailwater elevation. Likewise, the Jocassee powerhouse releases directly into Lake Keowee, so the elevation of Keowee is the controlling factor for Jocassee's tailwater elevation computation.

The Keowee powerhouse discharges into Hartwell Lake. However, due to backwater effects in the upstream lake channel, there is a difference between Hartwell Lake elevation (at Hartwell Dam) and the water surface elevation below the Keowee powerhouse when the turbines are in operation. Table 4-7 shows the Keowee Development's powerhouse tailwater curve in stage units of ft msl for various powerhouse outflows in cfs.

Table 4-7. Keowee Powerhouse Tailwater Rating Curve

Stage (ft msl)	Flow (cfs)	Stage (ft msl)	Flow (cfs)
657	0	680	39,867
660	5,042	684.8	59,879
665.1	11,345	689.9	85,879
670	16,545	695	113,612
674.9	26,000		

Similar to Bad Creek and Jocassee Hydro, the Hartwell powerhouse releases directly into Richard B. Russell Lake without backwater effects. Therefore, the Richard B. Russell Lake elevation is the control for Hartwell Hydro Station's tailwater elevation. The CHEOPS Model uses the greater of 475 ft msl or Richard B. Russell Lake water surface elevation. Reservoir elevation 475 ft msl is the minimum tailwater elevation provided by the USACE for modeling purposes.

Richard B. Russell powerhouse releases into J. Strom Thurmond Lake. The J. Strom Thurmond Lake elevation is the control for Richard B. Russell's tailwater elevation. The J. Strom Thurmond tailwater rating curve is shown in Table 4-8.

Table 4-8. J. Strom Thurmond Powerhouse Tailwater Rating Curve

Stage (ft msl)	Flow (cfs)	Stage (ft msl)	Flow (cfs)
187	0	220	280,000
190	15,000	230	440,000
200	65,000	240	640,000
210	155,000	250	870,000

4.6.4.5 Spillway Capacity

The Spillway Curve contains the data relating reservoir elevation and spillway discharge capacity. These data allow the model to determine the maximum amount of water that can be spilled at the current reservoir elevation and is the sum of all spillway conveyances with gates open to maximum setting. The CHEOPS Model allows for a simple spillway relationship of elevation and flow; therefore, all spillways, including gates, are modeled as a relationship of elevation and flow.

Spillway capacity data for the Bad Creek Project is shown in Table 4-9, derived from the Bad Creek Pumped Storage Project Supporting Technical Information Document (Duke Energy 2008). The Bad Creek emergency spillway is also known as the East Dike.

Table 4-9. Bad Creek Spillway Values

Elevation (ft msl)	Capacity (cfs)	Elevation (ft msl)	Capacity (cfs)
2,313.5	0	2,315	2,313
2,313.8	17	2,315.5	4,477
2,314.3	477	2,316	7,153
2,314.6	1,051		

Table 4-10 shows the maximum spillway capacity of the two-gated spillways as delineated in the Jocassee Development Supporting Technical Information Document (HDR 2010).

Table 4-10. Jocassee Total Gated Spillway Capacity Values

Elevation (ft msl)	Capacity (cfs)	Elevation (ft msl)	Capacity (cfs)
1,077	0	1102	34,531
1,082	2,762	1107	46,054
1,087	8,117	1112	58,671
1,092	15,374	1117	67,321
1,097	24,248	1122	74,138

Four-gated spillway capacity values for Keowee are shown in Table 4-11 as delineated in the Keowee Supporting Technical Information Document (HDR 2012a).

Table 4-11. Keowee Total Gated Spillway Capacity Values

Elevation (ft msl)	Capacity (cfs)	Elevation (ft msl)	Capacity (cfs)
765	0	790	63,268
770	5,505	795	82,550
775	15,851	800	102,810
780	29,399	805	123,645
785	45,393	810	144,639

The spillway capacities of the USACE projects are shown in Table 4-12 through Table 4-14. These values include original data provided by the USACE, as represented in the Savannah River ResSim Model.

Table 4-12. Hartwell Total Gated Spillway Capacity Values

Elevation (ft msl)	Capacity (cfs)	Elevation (ft msl)	Capacity (cfs)	Elevation (ft msl)	Capacity (cfs)
630	0	657	258,924	666	416,148
635	16,800	658	274,896	667	434,184
640	52,800	659	291,288	668	452,508
645	102,000	660	308,100	669	471,120
650	160,800	661	325,320	670	489,996
653	199,248	662	342,972	671	509,160
654	213,540	663	361,032	672	528,600
655	228,252	664	379,500	673	548,316
656	243,384	665	398,400	674	568,308

Table 4-13. Richard B. Russell Total Gated Spillway Capacity Curves

Elevation (ft msl)	Capacity (cfs)	Elevation (ft msl)	Capacity (cfs)	Elevation (ft msl)	Capacity (cfs)
436	0	473	0	482	630,000
440	0	474	0	483	650,000
450	0	475	0	484	670,000
455	0	476	0	485	690,000
460	0	477	0	486	710,000
465	0	478	0	487	725,000
470	0	479	0	488	740,000
471	0	480	593,000	489	755,000
472	0	481	620,000	490	771,000

^{*}Spill elevation set to 475.3 ft msl and spillway capacity set to zero below 480 ft msl to support logic to prevent pumping above 475 ft msl.

Table 4-14. J. Strom Thurmond Total Gated Spillway Capacity Values

Elevation (ft msl)	Capacity (cfs)	Elevation (ft msl)	Capacity (cfs)
300	0	325	405,000
305	27,000	330	545,000
310	95,000	335	688,000
315	182,000	340	855,000
320	282,000	345	1,025,000

4.6.4.6 Plant Operation Type

The Plant Operation Type is how the CHEOPS model classifies and operates the plants. Four different components are used to describe the operation of the plants.

• **Min Powerhouse Flow** – All plants in this model have zero (0) value entered, as the turbine input curves accurately define the lowest operating flow of the units.

- Plant Operation Type This condition specifies what type of scheduling logic is to be used for the plant. Options include Strictly Peaking, Non-generating, Run-of-River, and others. The plant operation types for the nodes in this model are shown below. Pumped storage plants follow pumping and discharge schedules. Strictly Peaking plants use logic to generate as much power as possible during the peak period, followed by secondary-peak and then off-peak periods. Hybrid-pumped storage plants have a pumping schedule, but schedule plant discharge using peaking plant logic.
 - o Bad Creek Pumped Storage
 - o Jocassee Hybrid-Pumped Storage
 - o Keowee Strictly Peaking
 - o Hartwell Strictly Peaking
 - o Richard B. Russell Hybrid-Pumped Storage
 - o J. Strom Thurmond Strictly Peaking
- **Delinked Owner** This condition sets the level of water conveyance support a plant receives and provides to other plants operated by the same licensee/operator. All plants in the model have this value unchecked, meaning the plants provide supporting operation to other plants operated by the same owner.
- Delinked System This condition sets the level of support a plant receives and provides to other plants operated by other licensees/operators in the modeled system.
 All plants in this model have this condition checked, meaning the default CHEOPS logic for support between plants is not in effect for plants operated by different operators. In this model, other methods and rules of setting the support between plants and owners are used.

4.6.5 Operational Data

4.6.5.1 Spill and Minimum Elevations

The spill or flood control elevation relates to a variety of physical situations (spillway crest, partial gate coverage, maximum normal pool, etc.), but it represents the elevation at which the model will begin to simulate spill to avoid increasing water elevation. Under a Strictly Peaking plant, when the model calculates an end-of-period elevation above the spill elevation, the model will calculate spill as well as the turbine/diversion discharge. The model's logic, under a Strictly

Peaking plant, also attempts to reduce or eliminate occurrences when the reservoir elevation exceeds the spill elevation.

The minimum elevation is the minimum allowable reservoir elevation. This elevation could be set by regulations or by a physical limit (lowest available outlet invert). Bypass flows, withdrawals, wicket gate leakage, and evaporation can draw the reservoir below this level. The model will operate to eliminate occurrences when the reservoir elevation dips below this elevation.

Table 4-15 lists the spill and minimum elevations for each development in the model.

Spill Elevation Minimum Elevation Development (ft msl) (ft msl) **Bad Creek** 2,310 2,150 1,110 1,080 Jocassee 790 Keowee 800 Hartwell 665 625 Richard B. Russell* 475.3 470 J. Strom Thurmond 335 312

Table 4-15. Reservoir Spill and Minimum Elevations

4.6.5.2 Target Elevations

The Target Elevation is the user-defined elevation that the model attempts to meet (targets) as the end-of-day reservoir elevation. The model straight-line interpolates between user input points to identify a target elevation for each day. The model will deviate from the target to accommodate forecasted inflows, to meet the plant's own outflow requirements or constraints, and to support downstream minimum flow requirements from the J. Strom Thurmond development.

Table 4-16 lists the guide curve elevations for the Duke Energy reservoirs (curves needed for modeling), and Table 4-17 lists the guide curves for the USACE reservoirs. Target requirements for the USACE developments were provided by the USACE with the Savannah River ResSim Model (HDR 2014b).

^{*} Richard B. Russell spill elevation set to 475.3 ft msl and spillway capacity set to zero below 480 ft msl to support logic to prevent pumping above 475 ft msl.

Table 4-16. Guide Curve Target Elevation of Duke Energy Reservoirs

Day of Year	Bad Creek Target Elevation (ft msl)	Jocassee Target Elevation (ft msl)	Keowee Target Elevation (ft msl)
Jan 1	2,280	1,107	797
May 1	2,280	1,107	798
Oct 15	2,280	1,107	798
Dec 31	2,280	1,107	797

Table 4-17. Guide Curve Target Elevations of USACE Reservoirs

Doy of Voor	Hartwell Target	Richard B. Russell Target	J. Strom Thurmond Target
Day of Year	Elevation (ft msl)	Elevation (ft msl)	Elevation (ft msl)
Jan 1	656	475	326
Apr 1	660	475	330
Oct 15	660	475	330
Dec 15	656	475	326

4.6.5.3 Water Withdrawals

Historical water use (withdrawals and returns in cfs) were estimated as part of the Savannah River Basin September 16, 2010, UIF time series release (ARCADIS 2010, 2013). The median 2003-2008 monthly water use in cfs was modeled in the historical baseline scenario to represent historical municipal and industrial water use from each reservoir. Table 4-18 shows the historical baseline scenario modeled withdrawals and returns in cfs. The example calculation below describes the withdrawal calculation for a reservoir for a month:

$$WR_{RI,Month} = Median(WR_{Day,Year})$$

where:

 $WR_{R1,Month}$ is the net withdrawal (in cfs) for the reservoir for the month $WR_{Day,Year}$ is the withdrawal (in cfs) for the reservoir for each day of the month for each of the months of interest in the 2003 through 2008 period.

During KT relicensing, Duke Energy contracted with HDR to complete a Water Supply Study of the Savannah River Basin. This study is detailed in the *Final Keowee-Toxaway Water Supply Study Report* (HDR 2014c). The Water Supply Study provided the following data which have been adopted for the Project scenarios, including the scenarios outlined in this report:

- Water withdrawals and returns within the Savannah River Basin (Basin) that are greater than or equal to 100,000 gallons per day (HDR 2014b).
- Future projections for water withdrawals and returns within the Basin to the year 2066.

The withdrawals and returns simulated in the Water Supply Study are included in Appendix A of this report.

Table 4-18. 2003-2008 Median Monthly Water Use - Historical Baseline Scenario

		Wate	r Withdrawal (a	vg cfs/day)		
Day of Year	Bad Creek	Jocassee	Keowee	Hartwell	Richard B. Russell	J. Strom Thurmond
01-Jan	0.00	0.00	76.66	29.14	0.00	2.61
01-Feb	0.00	0.00	76.67	29.53	0.00	1.70
01-Mar	0.00	0.00	76.88	30.15	0.00	0.32
01-Apr	0.00	0.00	74.67	33.75	0.00	3.14
01-May	0.00	0.00	71.82	42.23	0.00	7.00
01-Jun	0.00	0.00	84.00	50.51	0.00	7.70
01-Jul	0.00	0.00	84.70	45.39	0.00	7.25
01-Aug	0.00	0.00	83.24	45.92	0.00	8.25
01-Sep	0.00	0.00	88.23	44.03	0.00	7.01
01-Oct	0.00	0.00	79.59	42.82	0.00	6.05
01-Nov	0.00	0.00	68.19	34.16	0.00	5.07
01-Dec	0.00	0.00	74.69	29.75	0.00	3.70
		Wa	ater Return (avg	cfs/day)		
Day of Year	Richard B. Russell	J. Strom Thurmond				
01-Jan	0.00	0.00	0.00	0.00	4.75	0.00
01-Feb	0.00	0.00	0.00	0.00	5.50	0.00
01-Mar	0.00	0.00	0.00	0.00	6.37	0.00
01-Apr	0.00	0.00	0.00	0.00	3.92	0.00
01-May	0.00	0.00	0.00	0.00	1.80	0.00
01-Jun	0.00	0.00	0.00	0.00	1.26	0.00
01-Jul	0.00	0.00	0.00	0.00	1.65	0.00
01-Aug	0.00	0.00	0.00	0.00	1.10	0.00
01-Sep	0.00	0.00	0.00	0.00	0.96	0.00
01-Oct	0.00	0.00	0.00	0.00	1.88	0.00
01-Nov	0.00	0.00	0.00	0.00	2.92	0.00
01-Dec	0.00	0.00	0.00	0.00	4.60	0.00

4.6.5.4 Minimum Flows

The Hartwell, Richard B. Russell, and J. Strom Thurmond developments have fish spawning rules in the SR CHEOPS Model. The rule requires outflow to equal inflow if the reservoir is at or below target elevation during the month of April. Additionally, J. Strom Thurmond Lake has a required average daily discharge of at least 3,800 cfs year-round.

4.6.5.5 Maximum Flows

The model allows a Maximum Flow constraint to be applied either at a powerhouse or at a downstream node. This will limit operations to restrict flow to a maximum of the defined limit. The J. Strom Thurmond development has a maximum flow restriction at the downstream node in Augusta, Georgia, depending on the reservoir elevation of J. Strom Thurmond Lake. If the lake elevation is below 330 ft msl, the maximum allowable flow at Augusta is 20,000 cfs; if the reservoir elevation is greater than or equal to 330 ft msl, the maximum allowable flow is 30,000 cfs. These flow restrictions are based on goals for normal operation at the development. Under extreme flooding, these flows can be exceeded.

The Richard B. Russell development has a maximum flow constraint of 60,000 cfs, and the Hartwell development has a maximum flow constraint of 28,500 cfs.

4.6.5.6 Pump Operations

Bad Creek uses pumped storage logic and Jocassee and Richard B. Russell use hybrid-pumped storage logic. These settings require pump operations schedules. Bad Creek pump operations specify pumping and discharge schedules (specified in the tables by number of units available to operate), while Jocassee and Richard B. Russell specify pumping only. In Table 4-19 through Table 4-21, pump operations schedules are described by negative numbers. The magnitude of each negative number indicates the number of units available for pumping during a given hour. Table 4-19 includes positive numbers, which indicate discharge during a given hour. Durations for the Bad Creek and Jocassee schedules reflect anticipated changes in operation as additional renewable generation is incorporated into Duke Energy's generation portfolio.

The model will deviate from the user-specified pumping or generating schedule when certain conditions are encountered, such as when the upper reservoir is approaching the spill elevation, the lower reservoir is approaching the minimum elevation, and when a powerhouse is undergoing maintenance. Additionally, the model will attempt to avoid operations that may empty the upper reservoir, cause spill at the downstream reservoir, or end the day significantly different from the target elevation. The model does this by evaluating the starting elevation, desired ending elevation, and user-specified pumping and generating unit-hours for the day. Using pumping and generating volume capacities at the start of the day, the model will adjust

(reduce only), the number of unit-hours to balance the generation volume and pumping volume, taking into account the desired daily change in storage. For example, if a user inputs four unit hours of generation and four unit hours of pumping, the model will reduce the generation unit-hours to three so the total volume released from the upper reservoir can be made up with the four unit hours in the pump schedule.

For hybrid-pumped storage logic, the model will pump with the specified number of units during the hours specified unless the upper reservoir approaches spill elevation, the lower reservoir approaches minimum elevation, or units are in maintenance. The generation release scheduling of a hybrid-pumped storage plant occurs just as if the plant is a typical peaking plant, where outflow is determined by change in storage and inflow, which includes upstream plant discharge, upstream plant bypass flow return, upstream plant spill, incremental accretion, water withdrawal returns, and pumping operations. A powerhouse will not be scheduled to release for generation if an hour has been specified for pumping operations and pumping was actually scheduled.

Table 4-19. Bad Creek Pump Operations

Mandle	noth Day Set Hour										of	unit	s av	aila	ble	per	hou	ır of	the d	lay)*	•				
Month	Day Set	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Ion	Weekday	0	0	0	0	0	0	2	4	-2	-4	-4	-4	-4	-4	-4	-4	-2	-2	4	4	4	4	0	0
Jan	Weekend	0	0	0	0	0	1	1	1	-2	-4	-4	-4	-4	-4	-4	-4	-2	0	3	4	4	4	0	0
Feb	Weekday	0	0	0	0	0	0	2	4	-2	-4	-4	-4	-4	-4	-4	-4	-2	-2	4	4	4	4	0	0
гев	Weekend	0	0	0	0	0	1	1	1	-2	-4	-4	-4	-4	-4	-4	-4	-2	0	3	4	4	4	0	0
Mar	Weekday	0	0	0	0	0	0	2	4	-2	-4	-4	-4	-4	-4	-4	-4	-2	-2	4	4	4	4	0	0
Mar	Weekend	0	0	0	0	0	0	1	1	-2	-4	-4	-4	-4	-4	-4	-4	-2	0	4	4	4	4	0	0
A no.	Weekday	0	0	0	0	0	0	2	4	-2	-4	-4	-4	-4	-4	-4	-4	-2	-2	4	4	4	4	0	0
Apr	Weekend	0	0	0	0	0	1	1	1	-2	-4	-4	-4	-4	-4	-4	-4	-2	0	3	4	4	4	0	0
Mov	Weekday	0	0	0	0	0	0	2	4	-2	-4	-4	-4	-4	-4	-4	-4	-2	-2	4	4	4	4	0	0
May	Weekend	0	1	1	1	1	1	1	1	-2	-4	-4	-4	-4	-4	-4	-4	-2	0	0	3	4	4	0	0
Jun Weekday	0	2	4	0	0	0	0	-1	-2	-4	-4	-4	-4	-4	-4	-4	-2	-1	4	4	4	4	0	0	
Jun	Weekend	0	1	1	1	1	1	1	1	-2	-4	-4	-4	-4	-4	-4	-4	-2	0	0	3	4	4	0	0
Jul	Weekday	0	2	4	0	0	0	0	-1	-2	-4	-4	-4	-4	-4	-4	-4	-2	-1	4	4	4	4	0	0
Jui	Weekend	0	1	1	1	0	0	0	0	-2	-4	-4	-4	-4	-4	-4	-4	-2	0	2	2	4	4	3	0
Aug	Weekday	0	2	4	0	0	0	0	-1	-2	-4	-4	-4	-4	-4	-4	-4	-2	-1	4	4	4	4	0	0
Aug	Weekend	0	1	1	1	0	0	0	0	-2	-4	-4	-4	-4	-4	-4	-4	-2	0	2	2	4	4	3	0
Sep	Weekday	0	0	0	0	0	0	2	4	-2	-4	-4	-4	-4	-4	-4	-4	-2	-2	4	4	4	4	0	0
Бер	Weekend	0	1	1	1	0	0	0	0	-2	-4	-4	-4	-4	-4	-4	-4	-2	0	0	4	4	4	3	0
Oct	Weekday	0	0	0	0	0	0	2	4	-2	-4	-4	-4	-4	-4	-4	-4	-2	-2	4	4	4	4	0	0
Oct	Weekend	0	1	1	1	0	0	0	0	-2	-4	-4	-4	-4	-4	-4	-4	-2	0	0	4	4	4	3	0
Nov	Weekday	0	0	0	0	0	0	2	4	-2	-4	-4	-4	-4	-4	-4	-4	-2	-2	4	4	4	4	0	0
NOV	Weekend	0	0	0	0	0	0	1	1	-2	-4	-4	-4	-4	-4	-4	-4	-2	2	2	4	4	4	0	0
Dag	Weekday	0	0	0	0	0	0	2	4	-2	-4	-4	-4	-4	-4	-4	-4	-2	-2	4	4	4	4	0	0
Dec	Weekend	0	0	0	0	0	0	1	1	-2	-4	-4	-4	-4	-4	-4	-4	-2	2	2	4	4	2	2	0

^{*}Pumping unit operations are described with negative values.

Table 4-20. Jocassee Pump Operations

M 41-	D C-4					F	Iou	r (n	um	ber	of ı	ınit	s av	aila	able	pei	r ho	ur o	f the	day	*)*				
Month	Day Set	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Jan	Weekday	0	0	0	0	0	0	0	0	-4	-4	-4	-4	-4	-4	-4	-4	-2	-2	0	0	0	0	0	0
Jan	Weekend	0	0	0	0	0	0	0	0	-4	-4	-4	-4	-4	-4	-4	-4	-2	0	0	0	0	0	0	0
Feb	Weekday	0	0	0	0	0	0	0	0	-4	-4	-4	-4	-4	-4	-4	-4	-2	-2	0	0	0	0	0	0
reb	Weekend	0	0	0	0	0	0	0	0	-4	-4	-4	-4	-4	-4	-4	-4	-2	0	0	0	0	0	0	0
Mar	Weekday	0	0	0	0	0	0	0	0	-4	-4	-4	-4	-4	-4	-4	-4	-2	-2	0	0	0	0	0	0
Mar	Weekend	0	0	0	0	0	0	0	0	-4	-4	-4	-4	-4	-4	-4	-4	-2	0	0	0	0	0	0	0
A	Weekday	0	0	0	0	0	0	0	0	-4	-4	-4	-4	-4	-4	-4	-4	-2	-2	0	0	0	0	0	0
Apr	Weekend	0	0	0	0	0	0	0	0	-4	-4	-4	-4	-4	-4	-4	-4	-2	0	0	0	0	0	0	0
Mass	Weekday	0	0	0	0	0	0	0	0	-4	-4	-4	-4	-4	-4	-4	-4	-2	-2	0	0	0	0	0	0
May	Weekend	0	0	0	0	0	0	0	0	-4	-4	-4	-4	-4	-4	-4	-4	-2	0	0	0	0	0	0	0
Jun Weekday	0	0	0	0	0	0	0	-1	-4	-4	-4	-4	-4	-4	-4	-4	-2	-1	0	0	0	0	0	0	
Jun	Weekend	0	0	0	0	0	0	0	0	-4	-4	-4	-4	-4	-4	-4	-4	-2	0	0	0	0	0	0	0
Jul	Weekday	0	0	0	0	0	0	0	-1	-4	-4	-4	-4	-4	-4	-4	-4	-2	-1	0	0	0	0	0	0
Jui	Weekend	0	0	0	0	0	0	0	0	-4	-4	-4	-4	-4	-4	-4	-4	-2	0	0	0	0	0	0	0
Ana	Weekday	0	0	0	0	0	0	0	-1	-4	-4	-4	-4	-4	-4	-4	-4	-2	-1	0	0	0	0	0	0
Aug	Weekend	0	0	0	0	0	0	0	0	-4	-4	-4	-4	-4	-4	-4	-4	-2	0	0	0	0	0	0	0
Com	Weekday	0	0	0	0	0	0	0	0	-4	-4	-4	-4	-4	-4	-4	-4	-2	-2	0	0	0	0	0	0
Sep	Weekend	0	0	0	0	0	0	0	0	-4	-4	-4	-4	-4	-4	-4	-4	-2	0	0	0	0	0	0	0
0-4	Weekday	0	0	0	0	0	0	0	0	-4	-4	-4	-4	-4	-4	-4	-4	-2	-2	0	0	0	0	0	0
Oct	Weekend	0	0	0	0	0	0	0	0	-4	-4	-4	-4	-4	-4	-4	-4	-2	0	0	0	0	0	0	0
NT.	Weekday	0	0	0	0	0	0	0	0	-4	-4	-4	-4	-4	-4	-4	-4	-2	-2	0	0	0	0	0	0
Nov	Weekend	0	0	0	0	0	0	0	0	-4	-4	-4	-4	-4	-4	-4	-4	-2	0	0	0	0	0	0	0
D	Weekday	0	0	0	0	0	0	0	0	-4	-4	-4	-4	-4	-4	-4	-4	-2	-2	0	0	0	0	0	0
Dec	Weekend	0	0	0	0	0	0	0	0	-4	-4	-4	-4	-4	-4	-4	-4	-2	0	0	0	0	0	0	0

^{*}Pumping unit operations are described with negative values.

Table 4-21. Richard B. Rusell Pump Operations

Month	Day Sat			H	our	(n	u	ml	e	r o	f u	nit	s a	vai	lat	ole p	er	ho	ur	of 1	he	day	y)*		
Month	Day Set	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Annual	Weekdays	-3	-3	-3	-3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Saturdays	-3	-3	-3	-3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Sundays	-3	-3	-3	-3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

^{*}Pumping unit operations are described with negative values.

4.6.6 Generation Data

Unit performance information was modeled based on the information available at the time of model development.

4.6.6.1 Headloss Coefficients

The CHEOPS model allows two common headloss coefficients for each plant and an individual coefficient for each unit. Headloss for each unit is calculated by multiplying the unit's common

coefficient by the total flow for that common coefficient squared added to the individual coefficient multiplied by the individual unit flow squared. The formula is:

$$H_i = \left(\sum_{j=1}^n F_i\right)^2 h_C + F_i^2 h_i$$

Where:

H_i is the unit headloss in ft

h_c is the common coefficient for the ith unit

h_i is the individual coefficient for the ith unit

F_i is the flow for the ith unit

j runs from 1 to n

n is the number of units that have the same common coefficient as the unit i

Table 4-22 presents the estimated headlosses for each plant as a function of flow (Q):

Common Common **Development** Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 2 1.25E-07 **Bad Creek** Jocassee 1.41E-08 1.41E-08 6.99E-08^a 6.99E-08^a 6.99E-08^b 6.99E-08^b Keowee 1.22E-08 2.33E-08^a 2.33E-08^a Hartwell 3.55E-08 3.55E-08 3.55E-08 3.55E-08 Richard B. 2.40E-08 2.40E-08 2.40E-08 2.40E-08 2.40E-08 2.40E-08 2.40E-08 2.40E-08 Russell J. Strom 1.56E-07 1.56E-07 1.56E-07 1.56E-07 1.56E-07 1.56E-07 1.56E-07 Thurmond

Table 4-22. Headloss Coefficients

- a) Unit headloss plus Common 1
- b) Unit headloss plus Common 2

4.6.6.2 Turbine Efficiency Curves

Turbine performance is entered by plant and as flow versus efficiency at five separate net heads. The Bad Creek Powerhouse contains four reversible motor-pump/turbine-generator units with a design head of 1,115 ft msl. The modeled performance of the turbines in generation mode is presented in Table 4-23. The Jocassee powerhouse also contains four reversible motor-pump/turbine-generator units; modeled performance is presented in Table 4-24.

The Keowee powerhouse contains two similarly sized conventional turbine-generator units. The modeled performance of these turbines is presented in Table 4-25. The Hartwell powerhouse contains five conventional turbine-generator units, four of which were rehabilitated over the 11-year span of 1997 through 2007. The Richard B. Russell powerhouse contains four similarly sized conventional turbine-generator units and four reversible turbine-generator/motor-pump units. The J. Strom Thurmond powerhouse contains seven similarly sized conventional turbine-generator units. The modeled performance of the USACE turbines is presented in Table 4-26 through Table 4-29.

Table 4-23. Bad Creek Development Units 1 through 4 Turbine Efficiencies Over a Range of Net Heads

	Units 1 through 4													
Net He	ad of 1,000 ft	Net He	ad of 1,050 ft	Net He	ad of 1,115 ft	Net He	ad of 1,181 ft	Net He	ad of 1,230 ft					
Flow (cfs)	Efficiency	Flow (cfs)	Efficiency	Flow (cfs)	Efficiency	Flow (cfs)	Efficiency	Flow (cfs)	Efficiency					
3,070	88.60%	3,105	89.65%	3,352	91.10%	3,458	92.10%	3,352	92.10%					
3,176	89.00%	3,176	89.90%	3,529	91.65%	3,529	92.35%	3,529	92.70%					
3,352	89.60%	3,352	90.55%	3,705	92.20%	3,705	92.85%	3,705	93.10%					
3,529	90.25%	3,529	91.10%	3,882	92.50%	3,882	93.15%	3,882	93.30%					
3,705	90.95%	3,705	91.60%	4,058	92.60%	4,058	93.15%	4,058	93.25%					
3,882	91.45%	3,882	91.95%	4,164	92.50%	4,235	92.90%	4,235	93.05%					
3,987	91.48%	4,058	92.10%	4,235	92.35%	4,411	92.55%	4,411	92.75%					
4,058	91.40%	4,235	91.75%	4,411	92.00%	4,587	92.20%	4,587	92.45%					
4,235	91.00%	4,411	91.25%	4,587	91.55%	4,764	91.80%	4,764	92.10%					
4,376	90.50%	4,517	90.85%	4,729	91.15%	4,940	91.40%	4,940	91.75%					

Table 4-24. Jocassee Development Units 1 through 4 Turbine Efficiencies Over a Range of Net Heads

	Units 1 through 4														
Net H	ead of 278 ft	Net H	ead of 289 ft	Net H	ead of 301 ft	Net H	ead of 312 ft	Net H	ead of 323 ft						
Flow (cfs)	Efficiency	Flow (cfs)	Efficiency	Flow (cfs)	Efficiency	Flow (cfs)	Efficiency	Flow (cfs)	Efficiency						
7,140	91.17%	6,877	91.06%	6,612	90.93%	6,395	90.70%	6,213	90.18%						
7,150	91.19%	6,900	91.13%	6,900	91.50%	6,700	91.47%	6,325	90.64%						
7,400	91.50%	7,150	91.64%	7,200	92.25%	6,950	92.00%	6,450	91.15%						
7,600	91.50%	7,400	92.00%	7,450	92.56%	7,250	92.65%	6,700	91.83%						
7,800	91.40%	7,600	92.10%	7,700	92.45%	7,500	92.95%	6,950	92.43%						
8,000	91.10%	7,850	91.80%	8,000	92.00%	7,800	92.70%	7,200	92.80%						
8,250	90.56%	8,100	91.41%	8,250	91.60%	8,050	92.40%	7,450	93.16%						
8,450	90.10%	8,350	91.00%	8,500	91.25%	8,350	92.00%	7,700	93.15%						
8,650	89.45%	8,550	90.62%	8,800	90.80%	8,600	91.67%	7,950	92.82%						
8,850	88.70%	8,800	90.00%	9,050	90.10%	8,638	91.60%	8,200	92.55%						

Table 4-25. Keowee Development Units 1 and 2 Turbine Efficiencies Over a Range of Net Heads

	Units 1 and 2														
Net He	ead of 90 ft	Net He	ad of 105 ft	Net Ho	ead of 117 ft	Net Ho	ead of 125 ft	Net He	ead of 140 ft						
Flow (cfs)	Efficiency	Flow (cfs)	Efficiency	Flow (cfs)	Efficiency	Flow (cfs)	Efficiency	Flow (cfs)	Efficiency						
5,400	54.00%	5,000	51.00%	4,900	48.00%	4,700	44.50%	4,300	43.00%						
6,400	66.50%	5,500	62.00%	5,300	60.00%	5,100	55.50%	4,600	50.50%						
6,900	72.00%	6,000	68.50%	5,700	66.50%	5,600	65.50%	4,900	56.00%						
7,400	77.00%	6,500	74.00%	6,200	73.00%	6,100	73.00%	5,200	62.00%						
7,900	81.00%	7,000	78.00%	6,700	77.50%	6,600	77.00%	5,600	68.50%						
8,400	84.50%	7,500	81.00%	7,200	81.00%	7,100	81.00%	6,000	73.00%						
8,900	88.50%	8,000	84.00%	7,700	84.00%	7,600	84.00%	6,400	76.50%						
9,100	90.00%	8,500	88.00%	8,200	87.00%	8,100	87.00%	6,800	79.50%						
9,300	91.50%	8,800	90.50%	8,700	90.50%	8,400	89.00%	7,200	82.00%						
9,500	92.00%	9,000	92.00%	8,900	91.50%	8,600	90.50%	7,600	84.50%						
9,700	91.00%	9,200	93.00%	9,000	92.00%	8,700	91.00%	7,800	86.00%						
9,900	90.00%	9,400	93.50%	9,200	93.00%	8,800	91.50%	8,000	87.00%						
10,100	88.00%	9,700	92.50%	9,500	93.50%	8,900	92.00%	8,200	88.00%						
10,300	86.00%	10,000	91.00%	9,700	93.00%	9,100	93.00%	8,400	89.50%						

Table 4-26. Hartwell Development Units 1 through 4 Turbine Efficiencies Over a Range of Net Heads

	Units 1 through 4														
Net H	ead of 170 ft	Net Ho	ead of 175 ft	Net H	ead of 180 ft	Net H	ead of 185 ft	Net Ho	ead of 190 ft						
Flow (cfs)	Efficiency	Flow (cfs)	Efficiency	Flow (cfs)	Efficiency	Flow (cfs)	Efficiency	Flow (cfs)	Efficiency						
2,724	81.74%	2,678	80.77%	2,635	79.81%	2,596	78.82%	2,560	77.83%						
2,985	83.90%	2,931	83.00%	2,881	82.09%	2,837	81.11%	2,796	80.14%						
3,245	85.71%	3,185	84.83%	3,128	83.98%	3,078	83.04%	3,032	82.08%						
3,504	87.28%	3,438	86.42%	3,375	85.59%	3,319	84.68%	3,269	83.71%						
3,756	88.81%	3,684	87.95%	3,619	87.05%	3,560	86.10%	3,505	85.15%						
4,071	90.45%	3,987	89.71%	3,911	88.92%	3,848	87.93%	3,794	86.84%						
4,335	91.34%	4,233	90.87%	4,145	90.22%	4,073	89.33%	4,012	88.30%						
4,601	92.09%	4,491	91.65%	4,387	91.22%	4,299	90.57%	4,230	89.62%						
4,870	92.70%	4,748	92.37%	4,637	91.95%	4,540	91.38%	4,451	90.75%						
5,148	93.08%	5,015	92.82%	4,887	92.60%	4,782	92.08%	4,688	91.45%						
5,463	92.77%	5,289	93.08%	5,153	92.89%	5,036	92.47%	4,924	92.09%						
5,823	91.76%	5,605	92.60%	5,430	92.93%	5,291	92.80%	5,168	92.51%						
6,227	90.20%	5,969	91.41%	5,739	92.43%	5,569	92.68%	5,426	92.62%						
6,878	86.58%	6,482	89.25%	6,204	90.66%	5,952	91.94%	5,774	92.28%						

Table 4-27. Hartwell Development Unit 5 Turbine Efficiencies Over a Range of Net Heads

	Unit 5														
Net He	ad of 170 ft	Net He	ad of 175 ft	Net He	ead of 180 ft	Net Ho	ead of 185 ft	Net H	ead of 190 ft						
Flow (cfs)	Efficiency	Flow (cfs)	Efficiency	Flow (cfs)	Efficiency	Flow (cfs)	Efficiency	Flow (cfs)	Efficiency						
2,663	79.74%	2,618	78.77%	2,576	77.81%	2,538	76.82%	2,502	75.83%						
2,918	81.90%	2,865	81.00%	2,816	80.09%	2,773	79.11%	2,733	78.14%						
3,172	83.71%	3,113	82.83%	3,058	81.98%	3,009	81.04%	2,964	80.08%						
3,425	85.28%	3,361	84.42%	3,299	83.59%	3,244	82.68%	3,195	81.71%						
3,671	86.81%	3,601	85.95%	3,538	85.05%	3,480	84.10%	3,426	83.15%						
3,979	88.45%	3,897	87.71%	3,823	86.92%	3,761	85.93%	3,709	84.84%						
4,237	89.34%	4,138	88.87%	4,052	88.22%	3,981	87.33%	3,922	86.30%						
4,497	90.09%	4,390	89.65%	4,288	89.22%	4,202	88.57%	4,135	87.62%						
4,760	90.70%	4,641	90.37%	4,533	89.95%	4,438	89.38%	4,351	88.75%						
5,032	91.08%	4,902	90.82%	4,777	90.60%	4,674	90.08%	4,583	89.45%						
5,340	90.77%	5,170	91.08%	5,037	90.89%	4,923	90.47%	4,813	90.09%						
5,692	89.76%	5,479	90.60%	5,308	90.93%	5,172	90.80%	5,052	90.51%						
6,087	88.20%	5,835	89.41%	5,610	90.43%	5,444	90.68%	5,304	90.62%						
6,723	84.58%	6,336	87.25%	6,064	88.66%	5,818	89.94%	5,644	90.28%						

Table 4-28. Richard B. Russell Development Units 1 through 4 Turbine Efficiencies Over a Range of Net Heads

Units 1 through 4									
Net Head of 139 ft		Net Head of 144 ft		Net Head of 151 ft		Net Head of 157 ft		Net Head of 162 ft	
Flow (cfs)	Efficiency	Flow (cfs)	Efficiency	Flow (cfs)	Efficiency	Flow (cfs)	Efficiency	Flow (cfs)	Efficiency
5,100	79.80%	5,190	81.00%	5,300	82.75%	5,300	83.50%	5,300	83.80%
5,400	81.50%	5,400	82.30%	5,600	84.50%	5,445	84.30%	5,550	85.20%
5,625	82.80%	5,725	84.25%	5,850	85.75%	5,700	85.50%	5,800	86.60%
5,900	84.50%	6,000	85.90%	6,100	87.20%	6,000	87.00%	6,100	88.00%
6,125	85.60%	6,225	87.00%	6,350	88.50%	6,200	88.20%	6,250	88.80%
6,400	87.25%	6,450	88.25%	6,600	89.70%	6,480	89.50%	6,400	89.60%
6,590	88.25%	6,690	89.25%	6,850	90.90%	6,700	90.50%	6,590	90.45%
6,800	89.20%	6,900	90.00%	7,050	91.40%	6,990	91.50%	6,750	91.00%
7,000	90.10%	7,100	90.60%	7,250	91.40%	7,200	91.55%	6,900	91.40%
7,150	90.20%	7,250	90.70%	7,400	90.75%	7,350	91.40%	7,095	92.00%
7,325	89.60%	7,450	90.25%	7,575	90.00%	7,500	91.10%	7,255	91.95%
7,575	88.50%	7,680	88.75%	7,840	88.75%	7,690	90.45%	7,450	91.50%
7,800	87.50%	7,900	87.50%	8,040	87.60%	7,875	89.50%	7,500	91.35%

Table 4-29. J. Strom Thurmond Development Units 1 through 7 Turbine Efficiencies Over a Range of Net Heads

	Units 1 through 7									
Net H	ead of 114 ft	Net Ho	ead of 123 ft	Net H	Net Head of 132 ft		Net Head of 141 ft		Net Head of 148.5 ft	
Flow (cfs)	Efficiency	Flow (cfs)	Efficiency	Flow (cfs)	Efficiency	Flow (cfs)	Efficiency	Flow (cfs)	Efficiency	
3,110	84.32%	3,140	83.54%	3,230	84.01%	3,450	85.79%	3,570	86.53%	
3,210	84.93%	3,180	84.00%	3,310	84.68%	3,570	86.43%	3,680	87.19%	
3,340	86.29%	3,310	85.07%	3,430	85.64%	3,600	87.27%	3,790	87.82%	
3,490	87.05%	3,440	86.05%	3,550	86.53%	3,790	88.06%	3,900	88.41%	
3,640	87.74%	3,570	86.96%	3,670	87.37%	3,900	88.81%	4,010	88.97%	
3,790	88.37%	3,710	87.56%	3,790	88.15%	4,020	89.29%	4,120	89.51%	
3,940	88.96%	3,840	88.36%	3,910	88.88%	4,130	89.97%	4,230	90.01%	
4,090	89.50%	3,980	88.87%	4,040	89.35%	4,250	90.39%	4,340	90.49%	
4,230	90.22%	4,110	89.57%	4,160	90.01%	4,370	90.80%	4,450	90.95%	
4,370	90.90%	4,240	90.23%	4,280	90.63%	4,490	91.18%	4,560	91.38%	
4,520	91.33%	4,380	90.65%	4,410	91.02%	4,610	91.55%	4,680	91.60%	
4,670	91.66%	4,520	91.03%	4,550	91.18%	4,740	91.70%	4,810	91.62%	
4,850	91.24%	4,670	91.21%	4,690	91.33%	4,830	91.73%	4,940	91.63%	
5,310	89.48%	4,840	90.99%	4,840	91.29%	4,930	91.58%	5,030	91.58%	
5,520	87.96%	5,150	90.19%	5,230	90.49%	5,230	91.15%	5,070	91.64%	

4.6.6.3 Generator Efficiency Curve

The generator data, like the turbine data, is entered by plant and then associated with a unit. The generator performance data is a relationship of generator output versus generator efficiency. The generator condition includes a maximum generator output. This value is the maximum generator output the model will allow, assuming there is turbine capacity to meet this limit. The model will limit turbine output based on the generator maximum desired output. The generator efficiency curves for each of the units in the system are shown in Table 4-30 through Table 4-36.

Table 4-30. Bad Creek Development Units 1 through 4 Generator Efficiency Curve

Units 1 through 4								
Efficiency	Output (MW)	Efficiency	Output (MW)					
97.06%	78.25	98.95%	360					
97.80%	110	98.98%	400					
98.37%	156.5	99.00%	420					
98.76%	234.75	99.00%	440					
98.91%	313	99.00%	460					

Table 4-31. Jocassee Development Units 1 through 4 Generator Efficiency Curve

Units 1 through 4								
Efficiency	Output (MW)	Efficiency	Output (MW)					
95.20%	45	98.25%	150					
96.15%	60	98.40%	180					
97.50%	90	98.45%	195.5					
98.00%	120	98.50%	215					

Table 4-32. Keowee Development Units 1 and 2 Generator Efficiency Curve

	Units 1 and 2									
Efficiency	Output (MW)	Efficiency	Output (MW)	Efficiency	Output (MW)					
89.00%	10	97.36%	42.5	98.31%	72.5					
92.00%	15	97.60%	47.5	98.39%	77.5					
94.00%	20	97.79%	52.5	98.44%	82.5					
95.30%	25	97.95%	57.5	98.46%	87.5					
96.20%	30	98.09%	62.5	98.48%	90.0					
96.80%	35	98.20%	67.5	98.50%	100.6					
97.20%	40									

Table 4-33. Hartwell Development Units 1 through 4 Generator Efficiency Curve

	Units 1 through 4									
Efficiency	Output (MW)	Efficiency	Output (MW)	Efficiency	Output (MW)					
89.00%	10	97.41%	39	98.24%	64					
92.00%	15	97.64%	43	98.30%	68					
94.00%	19	97.83%	47	98.35%	72					
95.25%	23	98.00%	52	98.40%	76					
96.10%	27	98.11%	56	98.45%	80					
96.75%	31	98.18%	60	98.50%	85					
97.11%	35									

Table 4-34. Hartwell Development Unit 5 Generator Efficiency Curve

	Unit 5									
Efficiency	Output (MW)	Efficiency	Output (MW)	Efficiency	Output (MW)					
90.04%	10	96.27%	35	97.53%	60					
92.76%	15	96.57%	39	97.64%	64					
93.99%	19	96.82%	43	97.75%	68					
94.83%	23	97.03%	47	97.84%	72					
95.44%	27	97.25%	52	97.93%	76					
95.90%	31	97.40%	56	98.04%	82					

Table 4-35. Richard B. Russell Development Units 1 through 4 Generator Efficiency Curve

	Units 1 through 4								
Efficiency	Output (MW)	Efficiency	Output (MW)	Efficiency	Output (MW)				
89.00%	10	97.36%	42.5	98.31%	72.5				
92.00%	15	97.60%	47.5	98.39%	77.5				
94.00%	20	97.79%	52.5	98.44%	82.5				
95.30%	25	97.95%	57.5	98.46%	87.5				
96.20%	30	98.09%	62.5	98.48%	90				
96.80%	35	98.20%	67.5	98.50%	100.625				
97.20%	40		•						

Table 4-36. J. Strom Thurmond Development Units 1 through 7 Generator Efficiency
Curve

Units 1 through 7								
Efficiency	Output (MW)	Efficiency	Output (MW)	Efficiency	Output (MW)			
94.61%	10	97.39%	30	98.33%	50			
95.56%	15	97.74%	35	98.45%	55			
96.32%	20	98.00%	40	98.56%	60			
96.93%	25	98.19%	45					

4.6.6.4 Wicket Gate Leakage

The Wicket Gate Leakage flow is active only during times of non-generation. Thus, during periods of non-generation, this leakage flow is used to make up all or a portion of the minimum flow requirement. Wicket gate leakage is only modeled at the Jocassee and Keowee Stations, where it is 11 cfs per Jocassee unit and 25 cfs per Keowee unit for a total of 44 cfs and 50 cfs when no units are operating, respectively.

4.6.6.5 Powerhouse Weekend Operations

The Powerhouse Weekend Operations Condition permits the simulation of reduced powerhouse operations during Saturdays and/or Sundays. B ypass flow requirements are still met since bypass flows are not powerhouse dependent. Minimum instantaneous and minimum daily average flow requirements are met by bringing the powerhouse online for the required flow only. This condition removes the change-in-storage component from consideration in computing a desired daily discharge. To simulate actual usage, Saturday and Sunday powerhouse operations are minimized at the Keowee, Hartwell, and Richard B. Russell developments. During high inflow periods with little usable storage available, the model will bring the powerhouse online to generate with outflows, rather than permit spilling.

-22

4.6.6.6 Maintenance

The Maintenance schedule provides the functionality to take a unit out of service for all or part of each year for a scenario run. There are currently no outages modeled.

4.6.6.7 **Pump Efficiency**

The Pump Efficiency Condition provides the functionality to enter pump efficiency information for pumped storage plants. This dataset is required for plants with plant operation type specified as pumped storage and hybrid-pumped storage. The pump efficiency information modeled for the Bad Creek, Jocassee, and Richard B. Russell developments is presented in Table 4-37 through Table 4-39.

Table 4-37. Bad Creek Pump Efficiency

Total Head (ft)	Efficiency	Power (MW)	Flow (cfs)
1,066	92.80%	405.0	4,164
1,145	93.45%	377.1	3,635
1,173	93.51%	367.3	3,458
1,201	93.43%	357.2	3,282
1,253	93.00%	338.1	2,964

Table 4-38. Jocassee Pump Efficiency

Total Head (ft)	Efficiency	Power (MW)	Flow (cfs)
286	92.45%	207.5	7,921
296	92.80%	205.3	7,601
307	93.10%	204.7	7,331
318	93.40%	201.8	7,001
328	93.50%	196.8	6,626

Table 4-39. Richard B. Russell Pump Efficiency

Total Head (ft)	Efficiency	Power (MW)	Flow (cfs)
140	91.20%	93.6	7,201
145	91.68%	93.7	6,996
150	92.10%	93.7	6,791
155	92.50%	93.4	6,581
160	92.80%	92.9	6,361

4.7 Bad Creek II Scenario

Bad Creek II scenario inputs are identical to the Baseline ("Base Case") scenario except for the following changes:

- Four additional units with the turbine efficiencies in Table 4-40, the generator efficiencies in Table 4-41, the pump efficiencies in Table 4-41, and the headlosses in Table 4-42, are available to meet energy requirements; and,
- The pump operations schedule was revised to reflect the availability of 8 units at Bad Creek due to the additional four units at Bad Creek II (Table 4-43).

Table 4-40. Bad Creek II Units 5 through 8 Turbine Efficiencies over a Range of Net Heads

	Units 5 through 8									
Net He	Net Head of 1,000 ft Net Head of 1,050 ft		Net Head of 1,150 ft		Net He	Net Head of 1,200 ft		ad of 1,230 ft		
Flow (cfs)	Efficiency	Flow (cfs)	Efficiency	Flow (cfs)	Efficiency	Flow (cfs)	Efficiency	Flow (cfs)	Efficiency	
1,100	65.10%	1,100	68.40%	1,100	71.70%	1,100	73.10%	1,100	74.50%	
1,300	71.00%	1,400	77.00%	1,400	79.00%	1,400	80.90%	1,400	82.10%	
1,650	79.00%	1,650	81.80%	1,650	83.60%	1,650	85.00%	1,650	86.00%	
2,000	85.00%	2,000	86.50%	2,000	87.80%	2,250	91.00%	2,000	89.50%	
2,600	91.55%	2,635	92.30%	2,650	92.90%	2,750	93.80%	2,250	91.50%	
3,000	94.00%	3,000	94.20%	3,000	94.50%	3,000	94.60%	2,750	94.00%	
3,200	94.90%	3,200	94.70%	3,200	95.00%	3,200	94.90%	3,200	95.30%	
3,450	95.30%	3,600	95.30%	3,700	95.30%	3,850	95.30%	3,875	95.30%	
4,110	94.75%	4,201	94.73%	4,300	94.75%	4,450	94.75%	4,525	94.75%	
4,990	92.90%	4,990	93.20%	4,990	93.50%	4,960	93.70%	4,810	94.30%	

Table 4-41. Bad Creek II Units 5 through 8 Generator Efficiency Curve

	Units 5 th	rough 8	
Efficiency	Output (MW)	Efficiency	Output (MW)
94.00%	78.3	98.10%	348.5
95.00%	110	98.25%	400
96.20%	161.5	98.28%	430
97.00%	200	98.31%	464
97.40%	233	98.33%	500
97.80%	290		

Table 4-42. Bad Creek II Pump Efficiency

Total Head (ft)	Efficiency	Power (MW)	Flow (cfs)
1,058	93.60%	468.1	4,890
1,136	94.15%	467.4	4,575
1,185	94.35%	469.5	4,415
1,229	94.55%	468.8	4,265
1,244	94.60%	468.4	4,208

Table 4-43. Headloss Coefficients

Development	Common 1	Common 2	Unit 5	Unit 6	Unit 7	Unit 8
Bad Creek II	1.61E-07	1.61E-07	4.09E- 07 ^a	4.09E- 07 ^b	4.09E- 07 ^b	4.09E- 07 ^b

- a) Unit headloss plus Common 1
- b) Unit headloss plus Common 2

Table 4-44. Bad Creek and Bad Creek II Pump Operations

N	D C-4							Ho	ur (1	num	ber (of un	its a	vail	able	per	hou	r of	the o	day)	*				
Month	Day Set	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Ta	Weekday	0	0	0	0	0	0	2	2	-2	-2	-8	-8	-8	-4	-2	-2	-2	-2	4	8	8	4	0	0
Jan	Weekend	0	0	0	0	0	2	2	2	-2	-2	-8	-8	-8	-4	-2	-2	-2	0	4	4	8	4	0	0
Feb	Weekday	0	0	0	0	0	0	2	2	-2	-2	-8	-8	-8	-4	-2	-2	-2	-2	4	8	8	4	0	0
гев	Weekend	0	0	0	0	0	2	2	2	-2	-2	-8	-8	-8	-4	-2	-2	-2	0	4	4	8	4	0	0
Mar	Weekday	0	0	0	0	0	0	2	2	-2	-2	-8	-8	-8	-4	-2	-2	-2	-2	4	8	8	4	0	0
IVIAI	Weekend	0	0	0	0	0	0	2	2	-2	-2	-8	-8	-8	-4	-2	-2	-2	0	6	4	8	6	0	0
Ann	Weekday	0	0	0	0	0	0	2	2	-2	-2	-8	-8	-8	-4	-2	-2	-2	-2	4	8	8	4	0	0
Apr	Weekend	0	0	0	0	0	2	2	2	-2	-2	-8	-8	-8	-4	-2	-2	-2	0	4	4	8	4	0	0
May	Weekday	0	0	0	0	0	0	2	2	-2	-2	-8	-8	-8	-4	-2	-2	-2	-2	4	4	8	8	0	0
May	Weekend	0	1	1	1	1	1	1	1	-2	-2	-8	-8	-8	-4	-2	-2	-2	0	4	3	8	4	0	0
Jun	Weekday	0	2	4	0	0	0	0	-1	-2	-2	-8	-8	-8	-4	-2	-2	-2	-1	4	4	8	6	0	0
Juli	Weekend	0	1	1	1	1	1	1	1	-2	-2	-8	-8	-8	-4	-2	-2	-2	0	4	3	8	4	0	0
July	Weekday	0	2	4	0	0	0	0	-1	-2	-2	-8	-8	-8	-4	-2	-2	-2	-1	4	4	8	6	0	0
July	Weekend	0	1	1	1	0	0	0	0	-2	-2	-8	-8	-8	-4	-2	-2	-2	0	2	6	8	4	3	0
Ana	Weekday	0	2	4	0	0	0	0	-1	-2	-2	-8	-8	-8	-4	-2	-2	-2	-1	4	4	8	6	0	0
Aug	Weekend	0	1	1	1	0	0	0	0	-2	-2	-8	-8	-8	-4	-2	-2	-2	0	2	6	8	4	3	0
Sep	Weekday	0	0	0	0	0	0	2	2	-2	-2	-8	-8	-8	-4	-2	-2	-2	-2	4	8	8	4	0	0
Sep	Weekend	0	1	1	1	0	0	0	0	-2	-2	-8	-8	-8	-4	-2	-2	-2	0	2	4	6	8	3	0
Oct	Weekday	0	0	0	0	0	0	2	2	-2	-2	-8	-8	-8	-4	-2	-2	-2	-2	6	8	6	4	0	0
Oct	Weekend	0	1	1	1	0	0	0	0	-2	-2	-8	-8	-8	-4	-2	-2	-2	0	2	4	6	8	3	0
Nov	Weekday	0	0	0	0	0	0	2	2	-2	-2	-8	-8	-8	-4	-2	-2	-2	-2	6	8	6	4	0	0
NOV	Weekend	0	0	0	0	0	0	1	1	-2	-2	-8	-8	-8	-4	-2	-2	-2	2	2	6	8	6	0	0
Dag	Weekday	0	0	0	0	0	0	2	2	-2	-2	-8	-8	-8	-4	-2	-2	-2	-2	8	8	4	4	0	0
Dec	Weekend	0	0	0	0	0	0	1	1	-2	-2	-8	-8	-8	-4	-2	-2	-2	2	2	6	8	4	2	0

^{*}Pumping unit operations are described with negative values.

4.8 Climate Sensitivities

Two water quantity sensitivity assessments were completed for the Baseline and Bad Creek II scenarios. These sensitivity assessments were simulated to evaluate possible impacts of future temperature increases and basin inflow reduction and were developed from climate change sensitivity scenarios identified during KT relicensing (HDR 2012b).

Climate change sensitivities CC-01 and CC-02 (as explained below) represent future possible climate change conditions. These two sensitivities are a simplification of possible future decreases in available water in the basin but were agreed upon by the OSC as a method to provide stakeholders with additional information to evaluate proposed operation scenarios during KT relicensing. The POR (January 1939 through December 31, 2011) plus the two climate change sensitivities represent the three hydrologic conditions discussed in this report.

4.8.1 Low Impact of Climate Change Sensitivity (CC-01 or ccLow)

The ccLow scenarios were simulated with a 3.0°Farenheit (°F) temperature increase, which was modeled as a 10 percent increase in natural surface evaporation and was developed based on the recommended CC-01 climate change scenario. The net impact was to simulate a reduction in available water in the basin due to increased surface evaporation applied uniformly over the entire 12 months of each year simulated. The application of the surface evaporation increase to the modeled net monthly evaporation coefficient included consideration of a positive or negative coefficient due to some months historically having more precipitation than evaporation. In the case of a negative monthly net evaporation coefficient, the adjustment was applied as to always result in less water being available in that reservoir.

4.8.2 High Impact of Climate Change Sensitivity (CC-02 or ccHigh)

The ccHigh scenarios were simulated with the addition of a 6.0°F temperature rise and a 10 percent decrease in incremental inflows to each reservoir. The 6.0°F increase in temperature was modeled as a 20 percent increase in natural surface evaporation (see explanation of application of increased evaporation in Section 4.8.1). The high impact climate change sensitivity was developed based on the recommended CC-02 climate change scenario (HDR 2014b)

4.9 Performance Measures

Performance Measures (PM) provide a means for relicensing stakeholders to readily distinguish between the outcomes of different scenarios. The PMs were initially developed by the OSC during KT relicensing. The PMs were generally retained for use during Bad Creek relicensing with minor modifications.

5 Modeled Results

5.1 Scenario Results

Elevation duration plots showing the detailed elevations for each scenario, for each reservoir, and for each of the three hydrologic conditions (Normal, ccLow, and ccHigh) are provided in Figure 5-1 through Figure 5-3. Discharge duration plots from Lake Keowee (discharge from the KT Project) are provided for each scenario and hydrologic condition in Figure 5-4. Performance Measure Sheets for each of the hydrologic conditions are provided in Appendix B. All simulated results presented in this report are based on the 15-minute model output, unless stated otherwise.

5.1.1 **Baseline (Current License)**

The Baseline scenario simulates reservoir operations by Duke Energy based on KT license requirements, including the LIP and 2014 Operating Agreement, and current Bad Creek License requirements. As demonstrated by the model results in Table 5-1 and the reservoir elevation duration curves in Figure 5-1through Figure 5-3, minimum and maximum reservoir elevations for Bad Creek Reservoir, Lake Jocassee, and Lake Keowee meet the FERC license normal minimum and maximum reservoir elevations for both the Project as well as the KT Project under the three hydrology conditions (i.e., Normal, ccLow and ccHigh). Simulated reservoir levels for the Bad Creek Reservoir, Lake Jocassee, and Lake Keowee were generally comparable under Normal and ccLow hydrology, but additional Bad Creek Reservoir storage was accessed for a short duration with the ccHigh hydrology. Simulated reservoir elevations under all three hydrology conditions maintain reservoir elevations at Lake Keowee higher than the minimum operating levels for the existing municipal water intakes and Oconee Nuclear Station. Bad Creek and the KT Project were simulated to be in some stage of the LIP approximately 67 to 70 percent

FDS

of the POR depending on the hydrology. Reservoir elevation duration curves are shown in Figure 5-1 through Figure 5-3.

Table 5-1. Minimum and Maximum Simulated Reservoir Elevations and Reservoir Operating Band for the Baseline Scenario (ft msl)

Hydrology	Bad Creek						
Hydrology	Minimum Median Maximum B			Band (ft)			
Normal	2,246.1	2,259.5	2,280.0	33.9			
ccLow	2,246.1	2,259.5	2,280.0	33.9			
ccHigh	2,160.0	2,259.5	2,280.0	120.0			
		Joca	assee				
	Minimum	Median	Maximum	Band (ft)			
Normal	1,084.1	1,107.0	1,110.0	25.9			
ccLow	1,083.8	1,107.0	1,110.0	26.2			
ccHigh	1,083.0	1,106.9	1,109.5	26.5			
		Kee	owee				
	Minimum	Median	Maximum	Band (ft)			
Normal	791.6	799.2	800.0	8.4			
ccLow	791.6	799.2	800.0	8.4			
ccHigh	792.0	799.1	800.0	8.0			

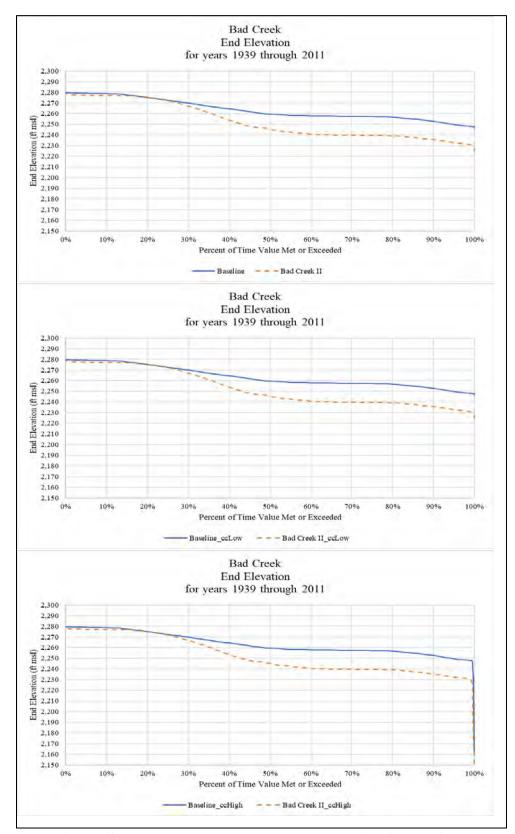


Figure 5-1. Bad Creek Simulated Reservoir Elevation Duration Curves for 1939 – 2011

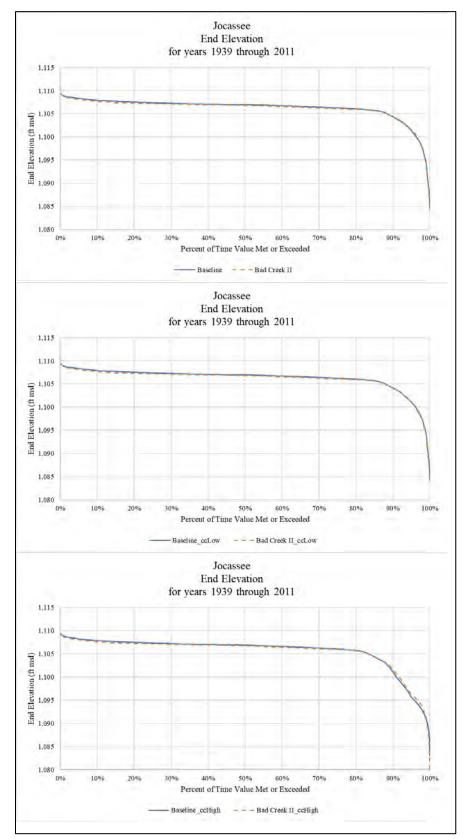


Figure 5-2. Jocassee Simulated Reservoir Elevation Duration Curves for 1939 – 2011

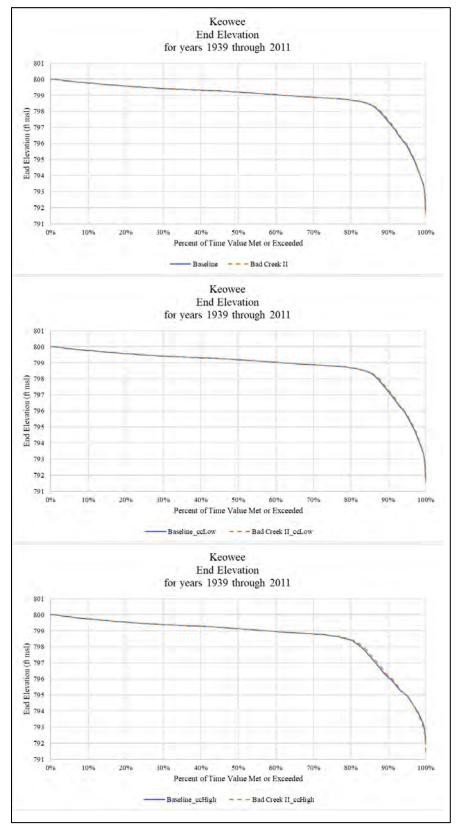


Figure 5-3. Keowee Simulated Reservoir Elevation Duration Curves for 1939 – 2011

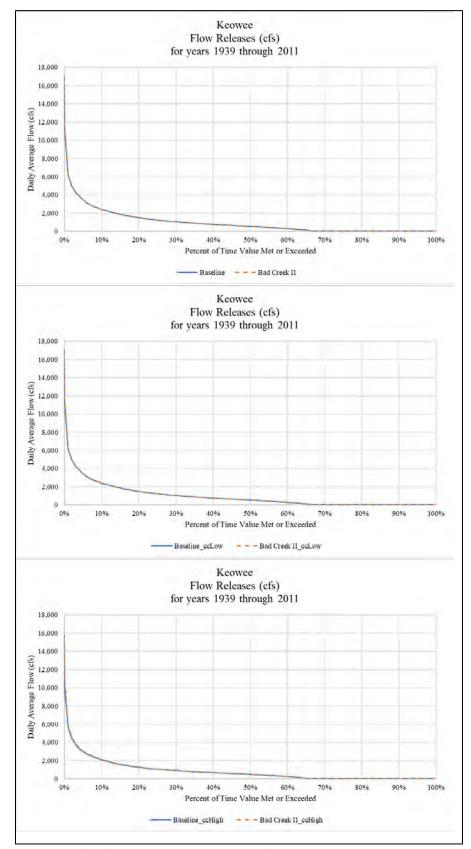


Figure 5-4. Keowee Daily Average Flow Releases for 1939 – 2011

FDS

5.1.2 Bad Creek II

The Bad Creek II scenario is identical to the Baseline scenario except for the differences described in Section 4.7. As with the Baseline Scenario, the model results in Table 5-2 and Figure 5-1 through Figure 5-3 demonstrate minimum and maximum reservoir elevations for Bad Creek Reservoir, Lake Jocassee, and Lake Keowee meet the FERC license normal minimum and maximum reservoir elevations for both the Project as well as the KT Project under the three hydrology conditions (i.e., Normal, ccLow and ccHigh).

As with the Baseline scenario, simulated reservoir levels for the Bad Creek Reservoir, Lake Jocassee, and Lake Keowee were generally comparable under Normal and ccLow hydrology, but additional Bad Creek Reservoir storage was accessed with the ccHigh hydrology. Simulated reservoir elevations under all three hydrology conditions maintain reservoir elevations at Lake Keowee higher than the minimum operating levels for the existing municipal water intakes and Oconee Nuclear Station. The Project and the KT Project were simulated to be in some stage of the LIP 81 to 87 percent of the POR, depending on hydrology.

Table 5-2. Minimum and Maximum Simulated Reservoir Elevations for the Bad Creek II Scenario (ft msl)

Uvdnology		Ba	d Creek	
Hydrology	Minimum	Median	Maximum	Band (ft)
Normal	2,224.7	2,245.6	2,280.0	55.3
ccLow	2,224.7	2,245.6	2,280.0	55.3
ccHigh	2,151.6	2,245.3	2,280.0	128.4
		Jo	ocassee	
	Minimum	Median	Maximum	Band (ft)
Normal	1,084.5	1,106.8	1,110.0	25.5
ccLow	1,084.2	1,106.8	1,110.0	25.8
ccHigh	1,080.0	1,106.7	1,109.9	29.9
		K	Keowee	
	Minimum	Median	Maximum	Band (ft)
Normal	791.6	799.2	800.0	8.4
ccLow	791.7	799.2	800.0	8.3
ccHigh	791.4	799.1	800.0	8.6

6 Effects of Bad Creek II

Model results for the Baseline and Bad Creek II scenarios were compared to identify potential differences in the effects of Bad Creek II as contrasted with existing license conditions. This comparison is focused primarily on reservoir elevation effects.

As demonstrated by the modeling results, the effects of Bad Creek II are constrained by Duke Energy's continued compliance with the existing KT Project FERC license including the KT LIP and the 2014 Operating Agreement. These requirements would not be modified with the relicensing of the Project or the construction and operation of Bad Creek II, so little to no effects to the downstream USACE hydroelectric projects were identified in the model results.

The relative size differences between the Bad Creek Reservoir, Lake Jocassee, and Lake Keowee directly affect how generation and pumping volumes affect reservoir levels within the three reservoirs. As a general guide and ignoring all other inflows, withdrawals, downstream flow releases, and evaporation, a change of 1.0 ft of reservoir storage at the Bad Creek Reservoir results in 0.05 ft (0.6 inches) of change in Lake Jocassee's water level. If the same volume of water was then moved upstream or downstream at Jocassee, Lake Keowee's level would change by 0.02 ft (0.25 inches).

The following sections summarize key comparisons of modeling results for the Baseline and Bad Creek II scenarios. See Appendix B for the Performance Measures sheets for additional information regarding the modeled outcomes for the Project and KT Project.

6.1 Project and KT Project Reservoir Levels

Model results in Table 6-1 through Table 6-3 demonstrate an additional 8.4 ft to 21.4 ft, depending on hydrology, of storage at the Bad Creek Reservoir would be accessed under the Bad Creek II scenario as compared to the Baseline scenario. Depending on hydrology, effects on minimum reservoir levels at Lake Jocassee and Lake Keowee are less pronounced. As demonstrated by the reservoir elevation curves for Lake Jocassee and Lake Keowee (see Figure 5-2 and Figure 5-3), reservoir elevations under both scenarios are comparable. This is further demonstrated by the Performance Measures sheets in Appendix B. There are very few

differences in reservoir level-related measures when comparing the Baseline and Bad Creek II scenarios under all three hydrology conditions.

Both the Project and the KT Project normal minimum and normal maximum reservoir level limits in the existing Project license and the KT Project license would remain unchanged. As discussed above, reservoir elevations at Lake Keowee under the three hydrology conditions remain above the minimum reservoir operating levels for municipal water intakes and Oconee Nuclear Station, so no new effects to existing water intakes are anticipated.

Table 6-1. Normal Hydrology Minimum Simulated Reservoir Elevations Compared to the Baseline Scenario (ft msl)

Scenario	Bad Creek	Jocassee	Keowee
Baseline (Existing License)	2,246.1	1,084.1	791.6
Bad Creek II	2,224.7	1,084.5	791.6
Difference from Baseline	-21.4	0.4	0.0

Table 6-2. ccLow Sensitivity Minimum Simulated Reservoir Elevations Compared to the Baseline Scenario (ft msl)

Scenario	Bad Creek	Jocassee	Keowee
Baseline (Existing License)	2,246.1	1,083.8	791.6
Bad Creek II	2,224.7	1,084.2	791.7
Difference from Baseline	-21.4	0.4	0.1

Table 6-3. ccHigh Sensitivity Minimum Simulated Reservoir Elevations Compared to the Baseline Scenario (ft msl)

Scenario	Bad Creek	Jocassee	Keowee
Baseline (Existing License)	2,160.0	1,083.0	792.0
Bad Creek II	2,151.6	1,080.0	791.4
Difference from Baseline	-8.4	-3.0	-0.6

6.1.1 Lake Level Fluctuations and Shoreline Erosion

6.1.1.1 Fluctuation Rates

Model results in Table 6-4 demonstrate the maximum reservoir fluctuation over a 24-hour window during the POR for both the Baseline and Bad Creek II scenarios. Figure 6-1 through Figure 6-3 show the variation in reservoir fluctuation over the POR for Bad Creek, Jocassee, and Keowee. Typically, about 60 percent of the time, the Bad Creek II scenario results in an approximately 15-foot increase in 24-hour fluctuation at Bad Creek as compared with the

Baseline scenario. In contrast, at Jocassee, about 97 percent of the time, the Bad Creek II scenario results in an approximately 0.4- to 0.2-ft decrease in 24-hour fluctuation as compared to the Baseline scenario. The decreased range in 24-hour fluctuations in Lake Jocassee is due to increased generation and pumping volumes associated with Bad Creek II. Both Bad Creek and Bad Creek II operations are synched with Jocassee Pumped Storage Station operations in the model such that both Bad Creek and Bad Creek II typically generate and pump when Jocassee generates and pumps. However, a larger volume of water moves between Bad Creek Reservoir and Lake Jocassee in the Bad Creek II scenario, offsetting more of the lake level fluctuation effects at Lake Jocassee caused by Jocassee Pumped Storage Station operations. The model indicates little to no difference in 24-hour fluctuations at Lake Keowee between the Bad Creek II scenario and the Baseline scenario.

The reduction in Jocassee reservoir elevation fluctuations for the Bad Creek II scenario is demonstrated by the Performance Measures related to spawning success. Under all three hydrology conditions, reservoir elevations are within a tighter fluctuation band compared to the Baseline scenario. At Lake Keowee, there are no significant differences in the spawning fluctuation bands. See Appendix B for the Performance Measures sheets.

Table 6-4. Normal Hydrology Maximum Simulated Reservoir Fluctuation Over 24-hours Compared to the Baseline Scenario (ft)

Scenario	Bad Creek	Jocassee	Keowee
Baseline (Existing License)	33.1	4.3	2.3
Bad Creek II	52.6	4.5	2.3
Difference from Baseline	19.2	0.2	0.0

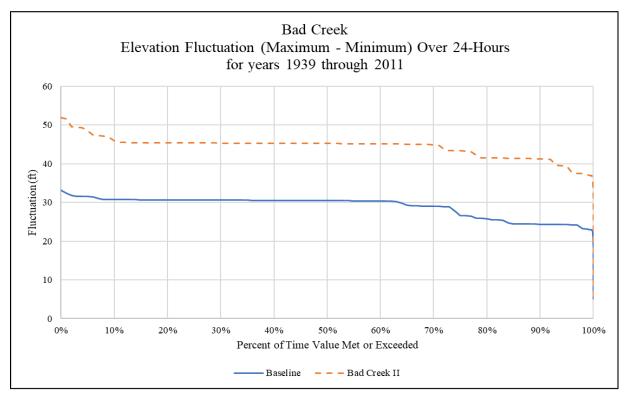


Figure 6-1. Normal Hydrology Bad Creek 24-hour Reservoir Fluctuation for 1939 – 2011

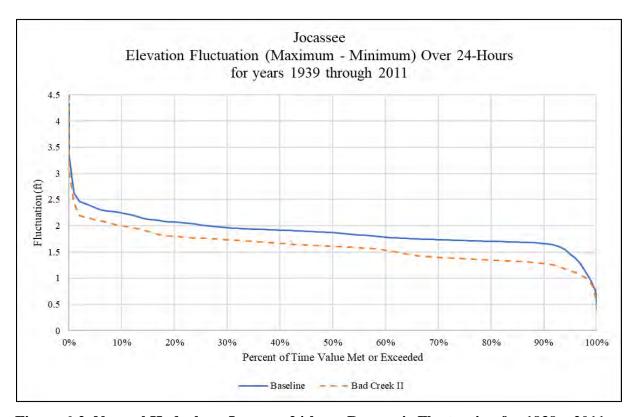


Figure 6-2. Normal Hydrology Jocassee 24-hour Reservoir Fluctuation for 1939 – 2011

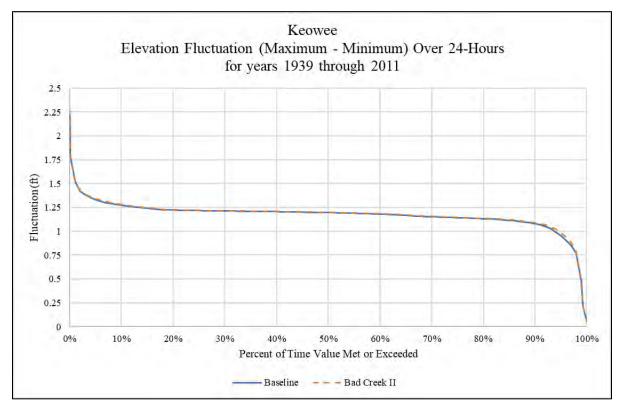


Figure 6-3. Normal Hydrology Keowee 24-hour Reservoir Fluctuation for 1939 – 2011

6.1.1.2 Whitewater River Cove Shoreline Erosion

As part of the Bad Creek II Feasibility Study authorized by Duke Energy, HDR developed a three-dimensional Computational Fluid Dynamic model for lower reservoir modeling to complement the Upper and Lower Reservoir Operational Impact Studies. This effort was carried out in support of evaluating a second inlet/outlet structure and the potential associated erosion impacts to the Whitewater River cove of Lake Jocassee. The final report "Lower Reservoir CFD Flow Modeling Report" was filed with the Bad Creek RSP as Appendix I in December 2022 (HDR 2022).

The results of the modeling indicate additional generation flows resulting from Bad Creek II would not increase erosion potential along the east bank (i.e., opposite bank) of the Whitewater River cove in Lake Jocassee across from the inlet/outlet structure assuming the geology is consistent along the eastern bank (i.e., bedrock). The modeled velocities were approximately equivalent to the physical model study velocities, which are representative of existing conditions. Flows from the existing configuration and operations have not resulted in erosion along the east

bank and velocities are within the general range compared to the proposed configuration; detailed results are included in HDR (2022).

6.1.1.3 Lake Jocassee Shoreline Erosion

To assess general characteristics of shoreline erosion along Lake Jocassee (and Lake Keowee), Duke Energy conducted a Shoreline Erosion Study (Baird 2013) during KT Project relicensing. The purpose of the erosion study was to determine the main drivers of shoreline erosion and to quantify erosion along the shorelines. The Baird (2013) study results showed sources of erosion include physical weathering (e.g., freeze-thaw), wave action from wind and recreational boating, concentrated runoff, non-project development along the shoreline (i.e., land development), and operation of the reservoir (cyclic raising and lowering lake levels). Results indicated the majority of shoreline erosion was caused by wave action associated with wind and boat wakes, and while water level fluctuations due to operations affected the elevations at which wave-induced erosion occurs, water level fluctuations themselves do not appear to contribute appreciably to the overall rate of shoreline erosion. Results indicated approximately 25 to 45 percent of the erosion noted was attributed to boat wakes in Lake Jocassee and the remainder was attributable to wind waves (Baird 2013). In general, wind and wave-caused erosion is expected to continue in areas with erodible soils where bedrock has not been exposed but may occur at higher or lower rates if pool elevations are modified (Baird 2013). Because the operating band for Lake Jocassee and Lake Keowee will not change with Bad Creek II operations, and CHEOPS modeling demonstrates the Lake Jocassee elevations will be generally consistent between the Baseline and Bad Creek II scenarios, the addition of Bad Creek II is not anticipated to affect erosion rates along the shorelines of Lake Jocassee.

Additionally, shoreline studies at Lake Jocassee including scarp height (thickness of soil visible above the water line), recession of banks, and percentage of shoreline protection around the reservoir, have been carried out (Orbis 2012). Overall, the study results showed approximately 75 percent of the Lake Jocassee shoreline is either (a) bedrock or (b) shows no signs of erosion (past or present) (Orbis 2012).

Duke Energy is responsible for managing activities within the reservoir boundaries of Lakes Jocassee and Keowee in a manner promoting safe public use and maintaining environmental safeguards. Duke Energy maintains a Shoreline Management Plan for Lakes Jocassee and

Keowee classifying the respective shorelines and denotes where environmentally important habitat exists, where existing facilities and uses occur, and where future/existing shoreline activities may be considered.

6.1.2 **Aquatic Resources**

Potential effects to aquatic resources in Lake Jocassee related to changes in water level fluctuation and exchange of water between the upper and lower reservoirs are considered in the Aquatic Resources Study Report (Task 2 – Effects of Bad Creek II Complex and Expanded Weir on Aquatic Habitat).

6.1.3 LIP Stages

The percent of days in some stage of the LIP increased under all three hydrology conditions (Normal, ccLow and ccHigh) when comparing Bad Creek II with the Baseline scenario. The various LIP stages are triggered by the ratio of storage in the Duke Energy reservoirs compared to the storage in the USACE reservoirs. The addition of Bad Creek II results in increased (simulated) flow releases from Keowee, which in turn creates reservoir storage imbalances between the Duke Energy and USACE reservoirs. This effect is slightly more pronounced under the ccHigh hydrologic conditions. While these incremental changes in reservoir storage balance are small between the Duke Energy and USACE reservoirs (i.e., typically less than 1.5 percent), they are oftentimes enough to trigger the next LIP stage. As a result, the Bad Creek II scenario results in a shift of days from "normal" (i.e., non-drought stage) to LIP Stage 0 (the first drought stage), as shown on Figure 6-4. Likewise, there are a few occurrences where there is a similar shift in days from one LIP Stage to the next9. In reality, these shifts may not occur, or the frequency of occurrence may be less, due to real-time operations which would likely limit excess flow releases from Keowee during drought conditions. As a result, the number of days in any LIP stage may be less than what is depicted on Figure 6-4.

⁹ See Performance Measures 64 through 69 in Appendix B which demonstrate the shifting of days between the earliest LIP stages.

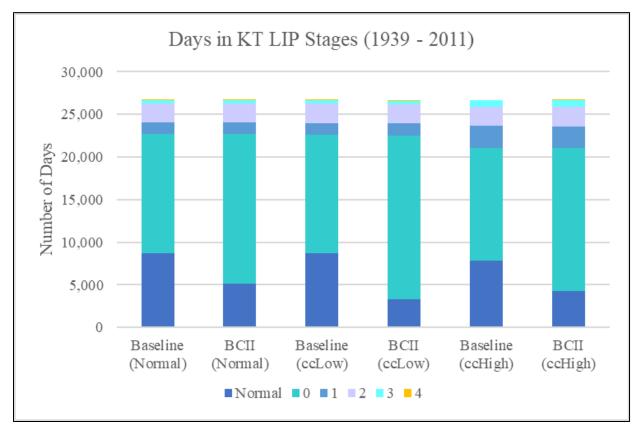


Figure 6-4. Days in KT LIP Stages for 1939 - 2011

6.2 Effects on USACE Reservoirs

The Water Resources Study Plan identified the geographic extent of the CHEOPS task as Lake Jocassee and Lake Keowee. However, FERC identified the geographic scope of the cumulative effects analysis for water resources as the Savannah River to its mouth. To support this evaluation, CHEOPS results for the three downstream USACE reservoirs were reviewed to identify differences in the timing and magnitude of flow releases from Keowee into Lake Hartwell, the most upstream USACE reservoir.

As discussed above, both the Baseline and Bad Creek II scenarios include continued compliance with the existing KT FERC license including implementation of the KT LIP and the 2014 Operating Agreement. These requirements limit the potential effects of Project operations and Bad Creek II proposed operations on the USACE reservoirs. As shown in Table 6-5, average annual downstream flow releases from the Keowee Development under both scenarios are identical under Normal and ccLow hydrology; using the ccHigh hydrology, differences are less than one percent. Consequently, the average annual releases from the J. Strom Thurmond

Development are identical for both scenarios using Normal and ccLow hydrology and differ by only 0.1 percent under ccHigh hydrology.

Table 6-5. Average Annual Flow Releases from the Keowee and J. Strom Thurmond Developments for the Baseline and Bad Creek II Scenarios 1939 – 2011 (cfs)

	Keowee	Average Ann	ual Release	J. Strom Thurmond Average Annual					
Uvdnology		(cfs)		Release (cfs)					
Hydrology	Baseline	Bad Creek	Change	Baseline	Bad Creek	Change			
	Daseillie	II	(%)	Daseillie	II	(%)			
Normal	944	944	0	7,719	7,719	0			
ccLow	939	939	0	7,680	7,680	0			
ccHigh	829	837	0.9	6,825	6,833	0.1			

The timing of downstream releases is also tightly aligned as demonstrated by an evaluation of the total cumulative volume of water released downstream of the Keowee Development and J. Strom Thurmond for the POR (Figure 6-5). Given these findings, few if any effects on the USACE reservoirs are anticipated.

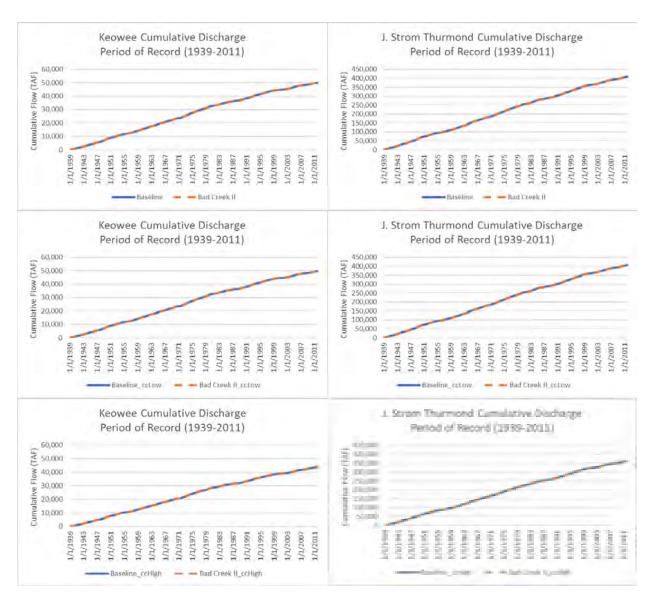


Figure 6-5. Keowee and J. Strom Thurmond Cumulative Release for 1939 – 2011 under Normal, ccLow, and ccHigh hydrology (total volume, thousand acre-ft [TAF])

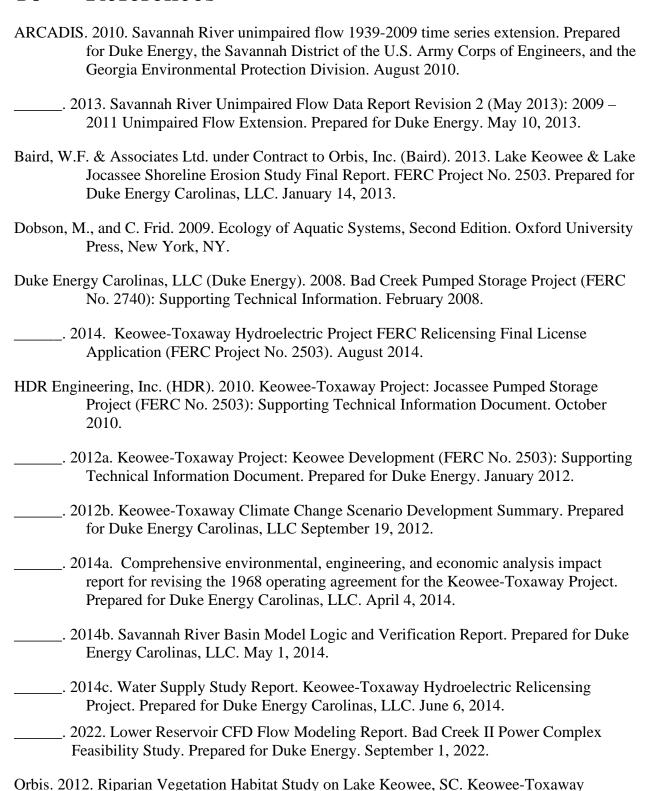
7 Conclusions

Reviewing the results of the Baseline and Bad Creek II scenarios leads to the following observations:

- Additional reservoir storage at the Bad Creek Reservoir would be accessed with Bad
 Creek II operations as compared to operations under the Baseline scenario.
- Lake Jocassee reservoir level fluctuations over a 24-hour period would generally be smaller than would occur under the Baseline scenario. The 24-hour fluctuations would be

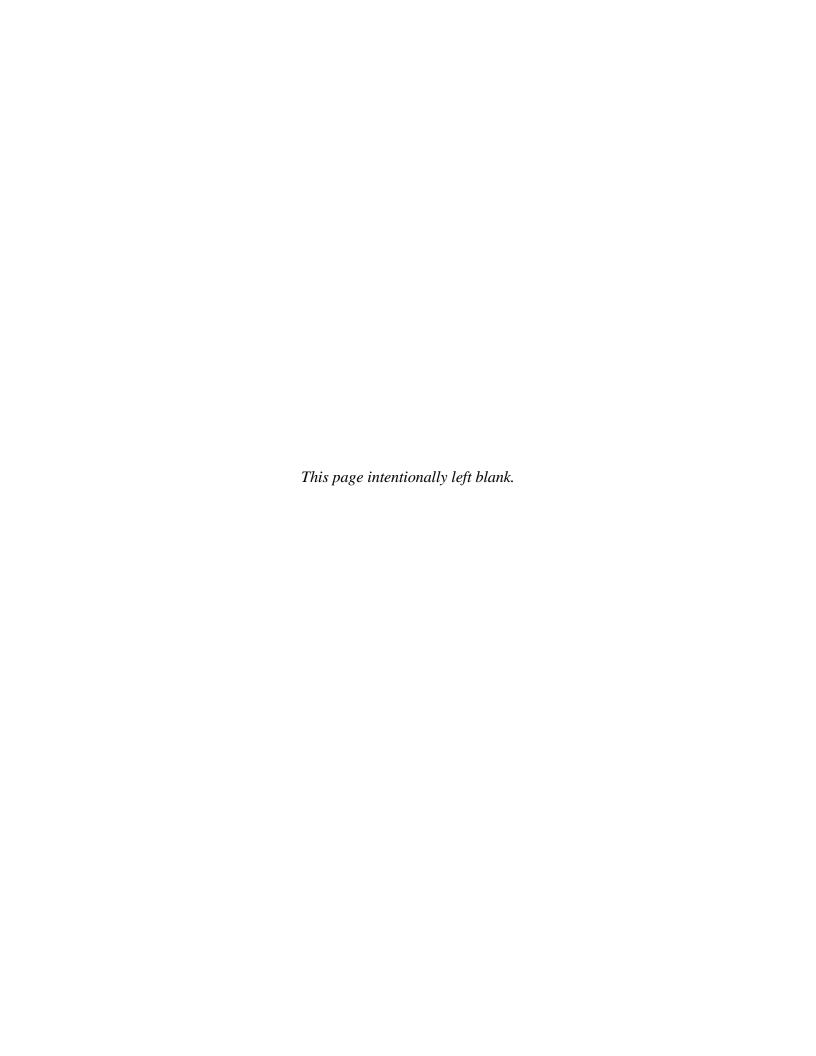
two feet or less approximately 90% of the time under the Bad Creek II scenario, but only 75% of the time under the Baseline Scenario.

- The effects of the proposed Bad Creek II on lake level fluctuations at Lake Keowee and would be comparable to the effects of Bad Creek. There is no significant long-term difference between reservoir elevations including reservoir level range or reservoir level fluctuation frequencies.
- Proposed Bad Creek II operations have no modeled effect on municipal water intakes on Lake Keowee or Oconee Nuclear Station.
- KT LIP Stage 0 would be triggered more frequently with Bad Creek II, but the differences in KT LIP stage frequencies generally diminish in the more advanced stages of the KT LIP.
- Proposed Bad Creek II operations have little to no modeled effects on the downstream USACE reservoirs or flow releases into the Savannah River.

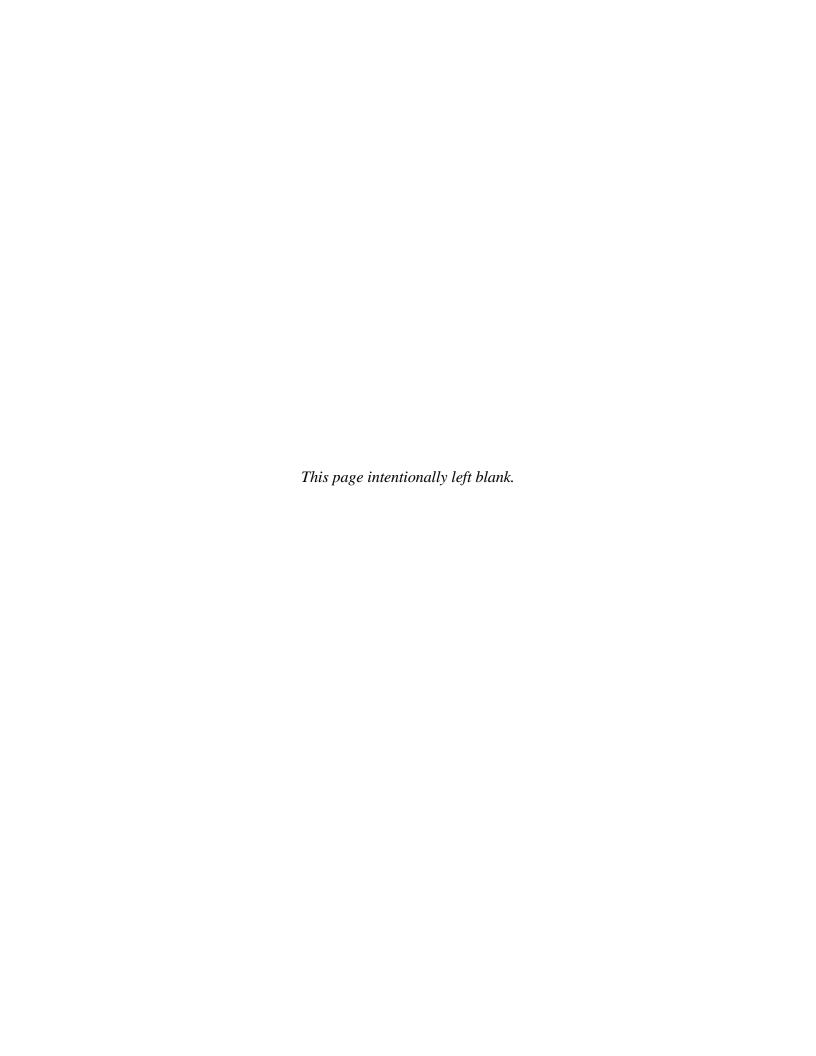

8 Need for Protection, Mitigation, and **Enhancement Measures to Protect Water** Quality

Based on the results of CHEOPS modeling, and in consideration of results of other data collection efforts in support of KT relicensing (Duke Energy 2014), there is no need for additional PM&E measures to address reservoir elevation changes or downstream flow releases to the USACE reservoirs.

9 Variances from FERC-approved Study Plan


There were no variances from the FERC-approved RSP for this task of the Water Resources Study except for the addition of additional evaluation of the potential lake levels at the USACE reservoirs and flow releases downstream of the Project.

10 References


Relicensing project – FERC No. 2503. Prepared for Duke Energy, Carolinas, LLC.

U.S. Army Corps of Engineers. 1989. Savannah River Basin Drought Contingency Plan. Savannah District USACE. March 1989.
——. 2010. Water Management Page for the Savannah River Projects. [Online] URL: http://water.sas.usace.army.mil/home/indexDU.htm (Accessed August 11, 2010).
———. 2014. New Operating Agreement between U.S. Army Corps of Engineers, Southeastern Power Administrations, and Duke Energy Carolinas, LLC Final Environmental Assessment for Hydropower License. October 2014.

Appendix A Withdrawal and Return

Estimates

					Bad	Creek V	Vithdrav	vals (cfs)				
Hydrology	Projection												
Year	Year	January	February	March	April	May	June	July	August	September	October	November	December
1939	2010	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
1940 1941	2011 2012	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07
1941	2012	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19
1943	2014	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
1944	2015	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30
1945	2016	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36
1946	2017	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37
1947 1948	2018 2019	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37
1948	2019	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38
1950	2021	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
1951	2022	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
1952	2023	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40
1953	2024	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40
1954	2025	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41
1955	2026 2027	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41
1956 1957	2027	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42
1958	2029	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43
1959	2030	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.44
1960	2031	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
1961	2032	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46
1962	2033	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46
1963	2034	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47
1964 1965	2035 2036	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48
1966	2037	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.50	0.50	0.49	0.50	0.50
1967	2038	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
1968	2039	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.51
1969	2040	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52
1970	2041	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53
1971	2042	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53	0.53
1972 1973	2043 2044	0.54 0.55	0.54 0.55	0.54	0.54	0.54	0.54	0.54	0.54	0.54 0.55	0.54 0.55	0.54 0.55	0.54 0.55
1974	2045	0.56	0.56	0.56	0.56	0.56	0.56	0.56	0.56	0.56	0.56	0.56	0.56
1975	2046	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57
1976	2047	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57
1977	2048	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58
1978	2049	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59
1979 1980	2050	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60
1980	2051 2052	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60
1982	2053	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62
1983	2054	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63
1984	2055	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63	0.63
1985	2056	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64
1986	2057	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65	0.65
1987 1988	2058 2059	0.66 0.67	0.66 0.67	0.66	0.66	0.66	0.66	0.66	0.66	0.66 0.67	0.66 0.67	0.66	0.66 0.67
1988	2059	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67
1990	2061	0.70	0.09	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70
1991	2062	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71
1992	2063	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72
1993	2064	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73
1994	2065	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74
1995 1996	2066 2066	0.75 0.75	0.75 0.75	0.75 0.75	0.75	0.75	0.75	0.75	0.75 0.75	0.75 0.75	0.75 0.75	0.75 0.75	0.75 0.75
1996	2066	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
1998	2066	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
1999	2066	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
2000	2066	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
2001	2066	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
2002	2066	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
2003	2066 2066	0.75 0.75	0.75 0.75	0.75	0.75	0.75	0.75	0.75	0.75 0.75	0.75 0.75	0.75 0.75	0.75 0.75	0.75 0.75
2004	2066	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
2006	2066	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
2007	2066	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
2008	2066	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
2009	2066	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
2010	2066	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
2011	2066	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75

					Ba	d Creel	k Return	s (cfs)					
Hydrology	Projection												
Year	Year	January	February	March	April	May	June	July	August	September	October	November	December
1939 1940	2010 2011	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1940	2012	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1942	2013	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1943	2014	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1944	2015	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1945	2016	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1946 1947	2017 2018	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1948	2019	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1949	2020	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1950	2021	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1951	2022	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1952 1953	2023 2024	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1954	2025	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1955	2026	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1956	2027	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1957	2028	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1958 1959	2029 2030	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1960	2031	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1961	2032	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1962	2033	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1963	2034	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1964 1965	2035 2036	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1966	2030	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1967	2038	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1968	2039	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1969	2040	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1970 1971	2041 2042	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1971	2042	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1973	2044	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1974	2045	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1975	2046	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1976 1977	2047 2048	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1978	2049	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1979	2050	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1980	2051	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1981	2052	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1982 1983	2053 2054	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1984	2055	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1985	2056	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1986	2057	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1987	2058	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1988 1989	2059 2060	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1990	2061	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1991	2062	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1992	2063	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1993 1994	2064	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1994	2065 2066	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1996	2066	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1997	2066	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1998	2066	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1999	2066	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2000	2066 2066	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2002	2066	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2003	2066	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2004	2066	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2005	2066	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2006	2066 2066	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2007	2066	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2009	2066	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2010	2066	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2011	2066	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

					Joca	assee W	ithdrawa	als (cfs)					
Hydrology	Projection												
Year	Year	January	February	March	April	May	June	July	August	September	October	November	December
1939	2010	7.22	7.22	7.22	7.22	7.22	7.22	7.22	7.22	7.22	7.22	7.22	7.22
1940 1941	2011 2012	7.28 7.34	7.28 7.34	7.28 7.34	7.28 7.34	7.28	7.28	7.28	7.28 7.34	7.28 7.34	7.28 7.34	7.28 7.34	7.28 7.34
1941	2012	7.40	7.40	7.40	7.40	7.40	7.40	7.40	7.40	7.40	7.40	7.40	7.40
1943	2014	7.46	7.46	7.46	7.46	7.46	7.46	7.46	7.46	7.46	7.46	7.46	7.46
1944	2015	7.52	7.52	7.52	7.52	7.52	7.52	7.52	7.52	7.52	7.52	7.52	7.52
1945	2016	7.58	7.58	7.58	7.58	7.58	7.58	7.58	7.58	7.58	7.58	7.58	7.58
1946	2017	7.58	7.58	7.58	7.58	7.58	7.58	7.58	7.58	7.58	7.58	7.58	7.58
1947 1948	2018 2019	7.59 7.59											
1949	2019	7.60	7.60	7.60	7.60	7.60	7.60	7.60	7.60	7.60	7.60	7.60	7.60
1950	2021	7.60	7.60	7.60	7.60	7.60	7.60	7.60	7.60	7.60	7.60	7.60	7.60
1951	2022	7.60	7.60	7.60	7.60	7.60	7.60	7.60	7.60	7.60	7.60	7.60	7.60
1952	2023	7.61	7.61	7.61	7.61	7.61	7.61	7.61	7.61	7.61	7.61	7.61	7.61
1953	2024	7.61	7.61	7.61	7.61	7.61	7.61	7.61	7.61	7.61	7.61	7.61	7.61
1954	2025	7.62	7.62	7.62	7.62	7.62	7.62	7.62	7.62	7.62	7.62	7.62	7.62
1955 1956	2026 2027	7.62	7.62 7.63	7.62 7.63	7.62	7.62	7.62	7.62	7.62	7.62 7.63	7.62 7.63	7.62 7.63	7.62 7.63
1957	2027	7.64	7.64	7.64	7.64	7.64	7.64	7.64	7.64	7.64	7.64	7.64	7.64
1958	2029	7.65	7.65	7.65	7.65	7.65	7.65	7.65	7.65	7.65	7.65	7.65	7.65
1959	2030	7.65	7.65	7.65	7.65	7.65	7.65	7.65	7.65	7.65	7.65	7.65	7.65
1960	2031	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66	7.66
1961	2032	7.67	7.67	7.67	7.67	7.67	7.67	7.67	7.67	7.67	7.67	7.67	7.67
1962	2033	7.68	7.68	7.68	7.68	7.68	7.68	7.68	7.68	7.68	7.68	7.68	7.68
1963 1964	2034 2035	7.69 7.69	7.69 7.69	7.69 7.69	7.69 7.69	7.69	7.69	7.69	7.69 7.69	7.69 7.69	7.69 7.69	7.69 7.69	7.69 7.69
1964	2036	7.69	7.69	7.69	7.70	7.70	7.70	7.70	7.69	7.70	7.69	7.69	7.69
1966	2037	7.71	7.71	7.71	7.71	7.71	7.71	7.71	7.71	7.71	7.71	7.71	7.71
1967	2038	7.72	7.72	7.72	7.72	7.72	7.72	7.72	7.72	7.72	7.72	7.72	7.72
1968	2039	7.72	7.72	7.72	7.72	7.72	7.72	7.72	7.72	7.72	7.72	7.72	7.72
1969	2040	7.73	7.73	7.73	7.73	7.73	7.73	7.73	7.73	7.73	7.73	7.73	7.73
1970	2041	7.74	7.74	7.74	7.74	7.74	7.74	7.74	7.74	7.74	7.74	7.74	7.74
1971	2042	7.75	7.75	7.75	7.75	7.75	7.75	7.75	7.75	7.75	7.75	7.75	7.75
1972 1973	2043 2044	7.75 7.76											
1974	2045	7.77	7.77	7.77	7.77	7.77	7.77	7.77	7.77	7.77	7.77	7.77	7.77
1975	2046	7.78	7.78	7.78	7.78	7.78	7.78	7.78	7.78	7.78	7.78	7.78	7.78
1976	2047	7.79	7.79	7.79	7.79	7.79	7.79	7.79	7.79	7.79	7.79	7.79	7.79
1977	2048	7.79	7.79	7.79	7.79	7.79	7.79	7.79	7.79	7.79	7.79	7.79	7.79
1978	2049	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80
1979 1980	2050 2051	7.81	7.81	7.81	7.81	7.81	7.81	7.81	7.81	7.81	7.81 7.82	7.81 7.82	7.81
1980	2051	7.82 7.82	7.82	7.82	7.82 7.82								
1982	2053	7.83	7.83	7.83	7.83	7.83	7.83	7.83	7.83	7.83	7.83	7.83	7.83
1983	2054	7.84	7.84	7.84	7.84	7.84	7.84	7.84	7.84	7.84	7.84	7.84	7.84
1984	2055	7.85	7.85	7.85	7.85	7.85	7.85	7.85	7.85	7.85	7.85	7.85	7.85
1985	2056	7.86	7.86	7.86	7.86	7.86	7.86	7.86	7.86	7.86	7.86	7.86	7.86
1986	2057	7.87	7.87	7.87	7.87	7.87	7.87	7.87	7.87	7.87	7.87	7.87	7.87
1987 1988	2058 2059	7.88 7.89	7.88 7.89	7.88 7.89	7.88	7.88	7.88 7.89	7.88	7.88 7.89	7.88 7.89	7.88 7.89	7.88 7.89	7.88 7.89
1988	2060	7.89	7.89	7.89	7.89	7.89	7.89	7.89	7.89	7.90	7.89	7.89	7.89
1990	2061	7.91	7.91	7.91	7.91	7.91	7.91	7.91	7.91	7.91	7.91	7.91	7.91
1991	2062	7.92	7.92	7.92	7.92	7.92	7.92	7.92	7.92	7.92	7.92	7.92	7.92
1992	2063	7.93	7.93	7.93	7.93	7.93	7.93	7.93	7.93	7.93	7.93	7.93	7.93
1993	2064	7.94	7.94	7.94	7.94	7.94	7.94	7.94	7.94	7.94	7.94	7.94	7.94
1994	2065	7.95	7.95	7.95	7.95	7.95	7.95	7.95	7.95	7.95	7.95	7.95	7.95
1995 1996	2066 2066	7.96 7.96											
1996	2066	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96
1998	2066	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96
1999	2066	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96
2000	2066	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96
2001	2066	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96
2002	2066	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96
2003	2066 2066	7.96 7.96											
2004	2066	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96
2006	2066	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96
2007	2066	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96
2008	2066	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96
2009	2066	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96
2010	2066	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96
2011	2066	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96	7.96

					J	ocassee	Returns	(cfs)					
Hydrology	Projection							(,,,,,					
Year	Year	January	February	March	April	May	June	July	August	September	October	November	December
1939	2010	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1940 1941	2011 2012	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1941	2012	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1943	2013	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1944	2015	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1945	2016	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1946	2017	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1947	2018	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1948 1949	2019 2020	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1949	2020	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1951	2022	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1952	2023	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1953	2024	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1954	2025	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1955	2026	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1956	2027	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1957	2028 2029	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1958 1959	2029	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1960	2031	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1961	2032	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1962	2033	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1963	2034	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1964	2035	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1965	2036	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1966 1967	2037 2038	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1967	2038	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1969	2040	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1970	2041	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1971	2042	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1972	2043	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1973	2044	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1974	2045	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1975	2046	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1976 1977	2047 2048	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1978	2049	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1979	2050	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1980	2051	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1981	2052	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1982	2053	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1983	2054	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1984 1985	2055 2056	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1985	2057	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1987	2058	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1988	2059	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1989	2060	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1990	2061	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1991	2062	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1992	2063	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1993 1994	2064 2065	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1995	2066	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1996	2066	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1997	2066	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1998	2066	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1999	2066	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2000	2066	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2001	2066 2066	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2002	2066	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2004	2066	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2005	2066	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2006	2066	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2007	2066	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2008	2066	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2009	2066	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2010	2066	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2011	2066	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

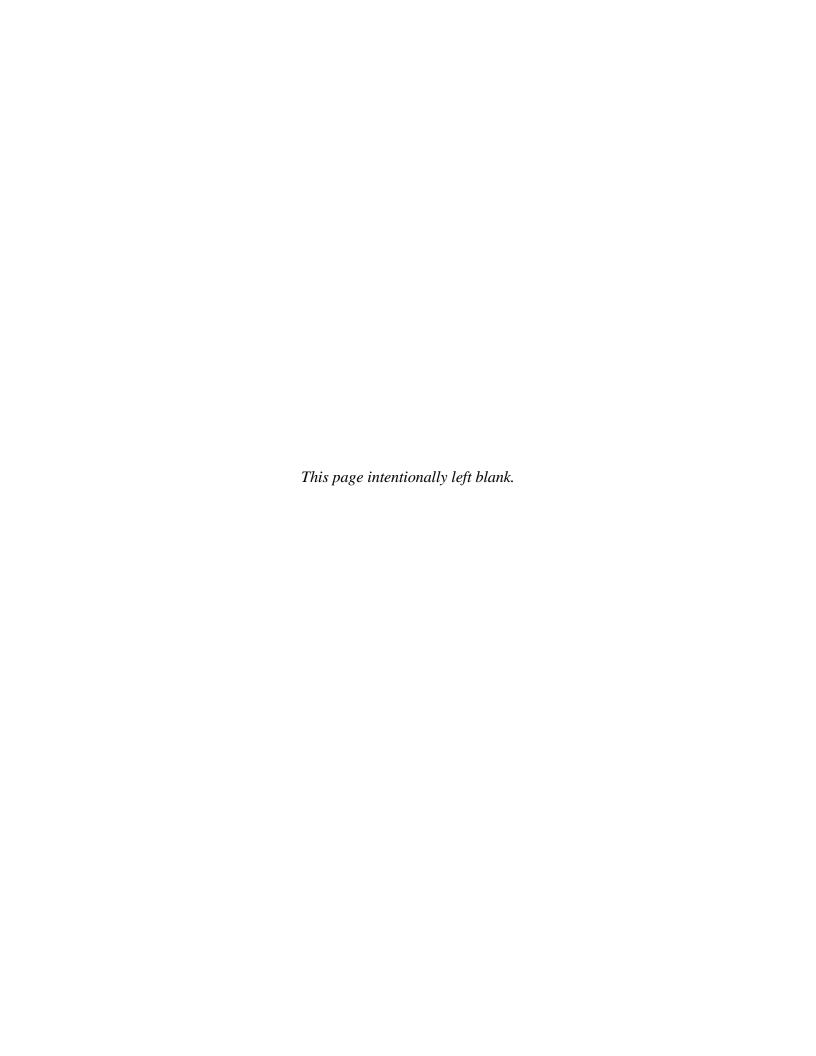
						IK	Cowee W	ithdrawal	s (cfs)					
1990 2010 94,67 93,15 91,34 88,00 101,51 121,52 102,44 113,52 109,88 96,73 89,68 94,04 94,04 30,15 97,04 97,05 96,17 103,18	Hydrology	Projection				ı	COWCC W	ululawaii	s (CIS)					
1941 2011 97,33 98,57 97,73 8072 104.41 21.231 195.24 116.90 112.45 101.44 92.13 96,55 1942 2013 100.06 100.41 98,50 85.90 110.01 127.72 128.53 122.53 118.77 106.70 97.16 101.85 1942 2013 100.06 100.41 98,50 85.90 110.01 127.72 128.53 122.53 118.77 106.70 97.16 101.85 1943 2015 100.96 107.65 107.65 118.71 11.75 115.61 11.55 11.55 12.55 122.53 118.77 106.70 97.16 101.85 1944 2015 100.96 107.65 107.65 118.71 11.75 115.61 11.75 115.61 11.75		Year	January	February	March	April	May	June	July	August	September	October	November	December
1941 2012 99.06 97.99 96.12 20.35 107.21 124.07 122.97 119.05 119.04 109.19 99.07 1942 2011 1010.06 106.05 100.15 100.25 100.														
1943 2014 10153 102.65 103.68 105.09 103.01 12772 125.81 122.22 118.77 106.78 207.91 101.08 104.09 104.02 103.81 113.01														
1943 2914 19153 1902.88 1902.88 1915 1915.88 1915 1915.89 1915.98 1915.99														
1944 2015 108-99 106.25 01.28 11.25 11.56 13.80 13.81 128.66 124.50 112.47 101.96 106.61 1946 2019 101.96 107.61 106.61 107.61 106.61 107.61 106.61 107.61 106.61 107.61 107.61 106.61 107.6														
1948 2017 111/25 100/48 07/65 1838 114/24 1348 131/25 127/25 114/25 131/25 111/25 100/25 111/25 100/25 111/25 100/25 111/25 100/25 111/25 100/25 111/25 100/25 111/25 100/25 111/25 100/25 111/25 100/25 111/25 100/25 111/25 100/25 111/25 100/25 111/25 100/25 111/25 100/25 111/25 100/25 111/25 1														
1948 2019	1945	2016	109.46	107.67	105.66	113.89		137.44	134.98			114.86	104.42	109.12
1948 2019 115.03 115.08 11.06 12.028 12.71 145.74 142.93 139.44 134.66 121.67 110.74 115.44 119.99 2020 116.85 114.85 124.55 124.55 124.02 139.59 126.21 114.05 112.65 124.55 124.55 124.02 124.50 124.50 124.51 124.51 124.51 124.55														
1949 2000														
1950 2022 2026 185.01 146.5 126.55 130.57 151.27 148.23 144.59 130.59 120.21 114.95 117.06 121.15 1952 2023 122.46 122.00 118.50 118.55 128.84 135.41 158.00 158.58 147.16 122.00 128.54 123.16 122.00 128.54 123.16 122.00 128.54 123.16 122.00 128.54 123.16 122.00 128.54 123.16 122.00 128.54 123.16 122.00 128.54 123.16 122.00 128.54 123.00 128.54 123.00 128.54 123.00 128.54 123.00 128.54 123.00 128.54 123.00 128.54 123.00 128.54 123.00 128.54 123.00 128.54 123.00 128.54 123.00 128.54 123.00 123.54 123.00 128.54 123.00 123.54 123														
1951 2022 123.60 118.50 116.45 126.68 139.00 154.05 150.88 147.16 142.05 122.48 117.06 122.15 1953 2023 122.46 2023.01 133.57 128.18 135.00 154.05 156.18 152.31 146.99 133.02 123.78 123.77 1953 2025 2026 123.43 122.11 130.05 130.04 137.86 139.65 156.18 152.31 146.99 133.02 122.38 127.17 1955 2026 122.63 122.22 122.56 122.23 142.22 162.05 162.31 146.99 133.02 122.38 127.17 1955 2026 132.03 132.23 122.24 122.24 122.24 162.22 162.24 162.2														
1953 2024 124.32 122.11 12005 130.94 137.86 159.56 156.18 152.31 146.99 133.02 121.77 121.91 121.91 131.91 131.91 131.92 121.77 121.91 131.91 131.91 131.92 121.77 121.91 131.91														
1954 2026 126.17 123.91 121.85 133.07 140.29 162.33 158.82 154.88 149.46 135.29 123.38 1271.7 1955 2026 123.83 125.72 122.64 133.00 140.22 160.00 161.47 157.46 151.92 137.55 123.49 129.18 1956 2027 131.45 129.08 120.95 138.77 140.44 160.42 165.72 161.60 155.92 141.16 122.76 132.99 1957 2028 124.88 132.45 130.25 142.34 150.16 173.75 161.60 155.92 141.16 122.76 132.99 1958 2029 138.30 135.52 135.55 144.91 153.80 178.07 174.22 160.89 160.93 160.93 133.31 133.11 130.11 1959 2020 141.73 139.19 136.86 1404.81 155.06 161.33 167.77 172.22 160.89 160.93 160.93 135.96 138.39 142.85 1960 2031 145.16 142.35 140.10 155.05 161.33 160.73 182.72 178.19 179.33 155.90 141.86 146.25 1961 2033 152.30 149.39 140.77 160.50 161.33 160.73 182.72 178.19 179.33 155.39 144.16 142.85 1963 2034 155.43 152.66 150.07 161.77 172.50 199.71 199.47 190.62 183.33 166.41 151.68 155.19 1964 2035 158.86 156.02 150.77 161.77 172.50 199.71 199.47 190.62 183.33 166.41 151.68 155.23 1965 2036 162.28 159.99 156.68 170.99 179.94 203.80 203.99 199.94 173.62 161.83 163.37 1966 2031 167.85 167.85 167.85 177.85 187.95 199.41 173.62 163.83 163.31 1967 2038 165.96 162.97 160.20 175.19 184.55 151.97 200.22 201.84 187.75 163.35 163.35 1967 2038 165.96 162.97 160.20 175.19 184.55 151.97 200.22 201.84 187.75 160.37 173.31 170.13 161.24 171.88 173.07 171.97 171.99 171	1952		122.46	120.30	118.25	128.81	135.43	156.80	153.53	149.74	144.52	130.75		123.16
1955 2026 128.03 127.72 123.64 133.20 142.72 165.09 164.74 157.46 151.92 137.56 122.89 122.89 1957 2028 134.88 132.24 130.25 142.24 150.16 173.75 169.72 165.73 159.92 144.77 132.04 130.01 139.52 141.75 132.04 130.01 139.52 141.75 132.04 130.01 139.52 142.34 150.16 173.75 169.97 165.75 159.92 144.77 132.04 130.01 139.97 136.86 140.48 157.61 182.40 174.22 168.98 169.93 144.83 133.31 139.43 139.59 142.85 139.00 141.73 139.19 136.86 140.48 157.61 182.40 178.47 174.04 167.93 151.98 138.59 142.85 140.00 140.00 141.73 139.19 136.86 140.48 157.61 182.40 178.47 174.04 167.93 151.98 138.59 142.85 140.20 140.20 144.56 142.55 140.16 155.63 165.05 191.66 165.05 191.66 160.00 179.00 141.73 140.20														
1956 2028 134.85 129.08 136.71 140.44 160.42 165.72 161.60 155.92 141.10 122.76 132.59 1957 2028 134.86 132.45 130.55 142.81 151.61 173.75 189.92 141.10 122.76 132.59 138.50 135.55 145.91 153.80 174.77 174.22 160.80 163.33 148.38 133.53 130.43 130.91														
1957 2029 134,88 132,45 30,25 142,34 150,16 173,75 169.97 165,75 159.92 144,77 132,04 136,01 1959 2030 141,73 139,19 136,86 149,48 157,61 182,40 178,47 174,04 167,03 151,98 183,59 142,85 139,19 159,00 141,73 139,19 136,86 149,48 157,61 182,40 178,47 174,04 167,03 151,98 138,59 142,85 146,61 142,55 141,55 141,55 141,55 141,55 141,55 141,61 151,66 146,25 141,61 151,61 142,55 141,61 151,61 142,55 141,61 151,61 142,55 141,61 151,61 142,55 141,61 142,61 1														
1998 2029 188, 30 138, 82 335, 55 145, 91 153, 88 178, 07 174, 22 169, 89 161, 93 148, 88 138, 31 119, 41 1960 2030 141, 73 139, 19 136, 86 149, 48 157, 61 182, 40 178, 47 171, 93 155, 59 142, 85 149, 16 153, 05 161, 33 186, 73 182, 72 178, 19 171, 93 155, 59 141, 86 146, 26 1961 2032 148, 58 145, 29 146, 77 160, 20 168, 78 195, 38 191, 22 186, 48 179, 93 162, 30 148, 41 149, 86 1962 2033 152, 01 140, 29 146, 77 160, 20 168, 78 195, 38 191, 22 186, 48 179, 93 162, 30 148, 41 155, 10 1964 2034 153, 43 152, 66 150, 07 161, 77 72, 50 199, 71 194, 77 194, 77 170, 02 184, 94 170, 02 154, 96 199, 91 1965 2056 162, 28 159, 39 166, 88 709, 179, 179, 49 199, 30 170, 20 154, 96 159, 91 1966 2057 164, 12 161, 18 188, 47 173, 16 182, 47 171, 72, 50 199, 71 194, 77 194, 77 170, 02 154, 96 199, 91 1966 2037 164, 12 161, 18 188, 47 173, 16 124, 141, 179, 206, 61 201, 49 170, 20 164, 38 164, 38 189, 39 189, 38 189, 39 189, 38 189, 39 189, 38 189, 39 189,														
1960 2032 148,516 142,555 140,16 153,05 161,33 186,73 182,72 178,19 171,93 155,59 141,86 146,05 196,02 2033 152,01 149,29 146,77 160,20 188,78 181,33 175,99 162,80 148,41 149,80 146,77 160,20 188,78 181,33 175,99 162,80 148,41 153,10 196,30 2034 155,43 152,66 150,07 163,77 172,50 199,71 194,77 194,77 177,94 170,02 183,93 162,80 153,10 196,41 2035 158,86 156,02 153,37 167,34 176,22 204,04 199,72 194,77 177,04 170,02 184,96 159,93 196,42 2036 162,28 159,39 156,68 170,91 199,94 2036, 00,97 199,97 164,12 173,02 188,23 163,35 196,60 2037 164,12 161,18 158,47 173,05 182,40 211,17 206,63 201,49 194,41 175,90 160,55 163,57 166,57														
1961														
1962 2033 152.01 149.29 146.77 602.0 168.78 199.38 191.22 186.48 179.93 162.80 148.41 153.10 196.4 2035 158.86 156.02 153.37 67.34 176.22 204.04 199.72 194.77 187.94 170.02 154.96 159.93 196.68 2035 162.28 159.93 156.88 109.91 179.94 2036.8 162.28 159.93 156.88 109.91 179.94 2038.8 169.96 162.78 161.18 158.47 173.05 182.00 211.17 206.63 201.49 1914.41 175.00 160.35 165.37 160.64 2037 161.12 161.18 158.47 173.05 182.00 211.17 206.63 201.49 1914.41 175.00 160.35 165.37 160.26 173.38 179.20 202.8 203.90 167.81 164.76 162.05 173.33 187.30 216.77 211.94 206.64 199.36 180.47 164.58 169.39 167.81 164.76 162.05 173.33 187.30 216.77 211.94 206.64 199.36 180.47 164.58 169.39 167.00 169.25 163.34 179.47 189.75 219.57 214.59 202.22 201.31 185.03 166.82 173.42 179.00 179.41 179.00 169.35 165.37 179.00 169.35 169.35 179.35 179.35 179.20 179.35 179.														
1963 2014														
1964 2015														
1965														
1967 2038 165.96 162.97 160.26 175.19 184.85 213.97 209.28 204.07 196.89 178.19 162.47 167.38 1998 2040 169.65 166.55 165.84 179.47 189.75 219.77 214.59 209.22 201.84 182.75 166.70 171.41 1970 2041 171.49 168.34 165.63 181.61 192.22 222.37 217.52 211.79 204.31 185.03 168.82 173.42 1971 204.22 173.33 170.13 167.42 183.76 194.65 225.17 219.00 214.77 206.79 187.31 170.04 175.43 1972 204.31 175.17 171.92 169.21 185.09 1971.00 227.97 222.56 216.47 209.26 189.99 173.05 177.54 1972 204.31 175.17 171.02 169.21 185.09 1971.00 227.97 222.56 216.04 209.26 189.99 173.05 177.54 1973 204.41 177.01 173.71 171.02 169.21 185.09 1971.00 227.97 222.50 216.44 209.26 189.99 173.05 177.54 1973 204.61 180.69 177.29 191.88 202.00 233.57 227.87 227.10 214.21 194.15 177.29 181.47 1975 204.61 188.69 177.29 174.88 192.22 204.45 286.37 203.52 224.67 224.60 194.15 177.29 181.47 197.60 204.77 182.49 179.03 176.33 194.41 206.85 239.11 233.11 227.19 219.10 198.66 181.47 185.45 1977 2048 184.29 180.78 178.83 198.59 211.65 244.57 238.00 232.21 222.23 230.52 222.23	1965	2036	162.28		156.68	170.91	179.94	208.36	203.97	198.92	191.94	173.62	158.23	163.35
1998 2039 167.81 164.76 162.05 177.33 187.30 216.77 211.94 2006.24 193.64 180.47 164.58 169.39 1999 2040 109.65 166.55 163.84 179.47 180.75 219.57 214.95 200.92 221.84 182.75 166.70 171.41 1970 2041 171.49 168.34 165.63 181.61 192.20 222.37 217.25 211.79 204.31 185.03 168.82 173.42 1971 2042 173.33 171.01 167.42 185.90 197.10 227.90 214.37 204.31 185.03 168.82 173.42 1972 204.31 175.17 171.92 169.21 185.90 197.10 227.97 222.66 216.94 200.26 189.59 173.05 177.45														
1999 2040 190.65 166.55 163.84 179.47 189.75 219.57 214.59 209.22 201.84 182.75 166.70 171.41														
1970 2041 171.49 168.34 165.63 181.61 192.20 222.37 217.25 211.79 204.31 185.03 168.82 173.42 1971 2042 173.33 177.13 1674.2 183.76 194.65 225.17 219.90 214.37 206.79 187.31 170.94 175.43 1972 2043 175.17 171.92 169.21 185.90 197.10 227.97 222.55 216.04 209.26 189.59 173.05 177.45 1973 2044 177.01 173.71 171.00 188.04 195.55 220.77 225.51 219.25 211.74 191.87 175.17 179.45 197.4 197.5 2046 180.69 177.29 194.58 192.32 204.45 236.37 230.52 224.67 216.69 196.43 179.40 183.49 1976 2047 182.49 179.03 176.33 194.41 20655 239.11 233.11 227.19 211.04 191.66 181.47 185.45 1977 2048 184.29 180.78 178.08 195.50 209.24 241.84 235.70 229.70 221.52 200.88 183.54 187.42 1978 2040 186.09 182.53 179.83 195.59 211.63 244.57 238.30 232.21 223.33 233.11 185.66 181.47 185.65 189.81 1979 2050 187.88 184.28 181.58 206.08 214.02 247.30 240.89 244.73 226.35 205.34 187.67 191.35 1981 2052 191.48 187.77 185.07 204.69 243.43 237.07 245.60 247.33 249.81 249.77 237.60 249.79														
1971 2042 173.33 170.13 167.42 183.76 194.65 225.17 219.90 214.37 206.79 187.31 170.94 175.43 1973 2044 177.01 173.71 171.00 188.04 199.55 220.77 225.21 219.52 211.74 191.87 175.17 179.46 179.47 179.47 179.46 1974 2045 178.85 175.50 172.79 191.80 190.55 220.07 225.21 219.52 211.74 191.87 175.17 179.46 1974 2045 178.85 175.50 172.79 194.85 192.32 204.45 226.37 225.21 219.52 211.74 191.87 175.17 179.46 1975 2046 180.69 177.29 174.85 192.32 204.45 226.37 226.55 224.67 221.10 214.21 194.15 177.29 181.47 197.67 197.67 2048 184.29 180.78 176.33 194.41 206.85 239.11 233.11 227.19 219.10 198.66 181.47 185.45 1977 2048 184.29 180.78 179.83 198.59 211.63 244.57 238.30 232.21 223.93 203.11 185.60 189.86 181.47 185.45 1978 2049 186.09 182.53 179.83 198.89 211.63 244.57 238.30 232.21 223.93 203.11 185.60 189.88 184.28 181.85 206.86 214.20 247.30 248.98 243.73 224.57 226.55 205.34 187.67 191.35 1980 2051 189.68 186.02 183.32 202.77 216.41 250.03 243.48 237.24 228.77 207.56 189.73 193.31 1981 2052 191.48 181.77 185.07 204.86 218.80 225.77 246.07 239.76 231.18 209.79 191.80 195.28 1982 205.3 195.08 195.08 191.27 188.57 209.04 235.95 258.23 255.50 248.66 242.27 233.60 212.01 193.87 197.24 1984 205.5 196.88 193.02 190.32 211.13 225.98 260.66 253.84 247.30 238.43 216.47 198.00 201.17 1985 2056 198.67 194.76 192.07 218.22 228.57 255.50 248.66 242.27 233.60 212.01 193.87 197.24 198.60 205.60 198.67 194.67 192.07 218.22 228.57 225.89 248.61 247.30 238.43 248.44 218.69 200.66 203.44 203.57 200.27 200.27 200.27 200.27 200.27 200.27 200.27 200.27 200.27 200.27 200.27 200.27 200.														
1973 2044 177.01 173.71 171.00 188.04 199.55 220.77 225.12 219.52 211.74 191.87 175.17 179.46 1974 2045 178.85 177.50 172.79 190.18 20200 233.57 227.87 222.10 214.21 194.15 177.29 181.47 197.50 172.79 190.18 20200 233.57 223.67 236.67 216.69 196.43 179.40 183.49 1975 2046 180.69 177.29 174.58 192.32 204.45 226.37 230.52 224.67 216.69 196.43 179.40 183.49 1976 2047 182.49 179.03 176.33 194.41 206.85 239.11 233.11 227.19 221.10 198.66 181.47 185.45 1977 2048 184.29 180.78 178.08 196.50 209.24 241.84 235.70 229.70 221.52 203.88 183.54 187.42 1978 2049 186.00 182.53 179.83 198.59 211.63 244.57 238.30 232.21 223.39 203.11 185.60 189.38 189.70 2050 187.88 184.28 181.88 206.68 214.02 247.30 240.89 2247.32 223.39 203.11 185.60 189.38 1980 2051 189.68 186.02 183.32 207.77 216.41 250.03 243.48 237.24 228.77 207.56 189.73 193.31 1981 2052 191.48 187.77 185.07 204.86 218.80 252.77 246.07 239.76 231.18 209.79 191.80 195.28 1982 2053 193.28 189.52 186.82 206.95 221.20 225.59 246.66 242.27 233.60 212.01 193.87 197.24 1983 2054 195.08 191.27 188.57 200.04 23.59 23.69 23.84 247.30 23.84 247.01 23.86 247.79 248.60 23.84 247.80 23.86 247.79 248.60 23.84 247.80 23.86 247.70 248.60 23.84 247.80 23.86 247.70 248.60 23.84 248.60 247.70 248.60 23.84 248.60 247.70 23.86 248.60 247.70 248.60 248.														
1974														
1975 2046 180.69 177.29 174.58 192.32 204.45 236.37 230.52 224.67 216.69 196.43 179.40 183.49 1976 2047 182.49 179.03 176.33 194.41 206.85 239.11 233.11 227.19 219.10 198.66 181.47 185.45 1977 2048 184.29 180.78 178.08 195.05 209.24 241.84 225.70 221.52 200.88 183.54 187.42 1978 2049 186.09 182.53 179.83 198.59 211.63 244.57 234.80 232.21 223.93 203.11 185.60 189.38 1979 2050 187.88 184.28 181.58 200.68 241.02 247.30 240.89 234.73 226.35 205.34 187.67 191.35 1980 2051 189.68 186.02 183.32 202.77 216.41 250.03 243.48 237.24 228.77 207.56 189.73 193.31 1981 2052 191.48 187.77 185.77 206.85 211.60 245.72 246.07 239.76 231.18 209.79 191.80 195.28 1982 2053 193.28 189.52 186.82 206.95 221.20 225.50 248.66 242.27 233.60 212.01 193.87 197.24 1983 2054 195.08 191.27 188.57 209.04 223.59 258.23 21.52 244.78 236.01 214.24 199.93 199.21 1984 2055 196.88 193.02 190.32 211.13 225.98 260.96 253.84 247.30 238.43 216.47 198.00 201.17 1985 2056 198.67 194.76 192.07 213.22 228.37 263.70 256.43 249.81 224.84 224.86 200.06 203.14 1986 2057 200.72 196.75 194.05 215.55 231.09 266.80 293.84 234.84 237.24 223.76 204.77 207.61 1988 2059 204.81 200.73 198.03 202.36 232.20 232.20 232.20 232.20 232.20 202.20 202.21 202.41 203.37 198.50 206.60 206.86 202.72 200.02 222.73 239.25 276.13 268.22 258.33 249.81 228.82 209.47 212.08 1990 2061 206.90 204.70 202.01 225.11 241.97 279.24 271.17 264.11 234.58 233.35 214.87 220.44 223.76 224.91 206.20 220.65 220.														
1976 2047 182.49 179.03 176.33 194.41 206.85 239.11 233.11 227.19 219.10 198.66 181.47 185.45 1977 2048 184.29 180.78 178.08 196.50 209.24 244.84 235.70 229.70 221.52 200.88 183.54 187.42 1978 2049 186.09 182.53 179.83 198.59 211.63 244.57 238.30 232.21 229.93 203.11 185.60 189.38 1979 2050 187.88 184.28 181.58 200.68 214.02 247.30 240.80 234.73 226.35 205.34 187.67 191.35 1980 2051 189.68 186.02 183.32 202.77 216.41 250.03 243.48 237.24 228.77 207.56 189.73 193.11 1981 2052 191.48 187.77 185.07 204.86 218.80 252.77 246.07 239.76 2311.8 200.79 191.80 195.28 1982 2053 193.28 189.52 186.82 206.95 221.20 225.50 248.66 234.27 233.00 212.01 193.87 197.24 1983 2054 195.08 191.27 188.57 200.48 223.59 258.23 251.52 244.78 236.01 214.24 195.93 199.21 1984 2055 196.88 191.27 188.57 200.48 223.59 258.23 251.52 244.78 236.01 214.24 195.93 199.21 1985 2056 198.67 194.76 192.07 213.22 228.37 263.70 256.43 249.81 240.84 218.60 200.06 203.14 1966 2057 200.72 196.75 194.05 215.59 231.09 266.80 255.83 249.81 240.84 218.60 200.06 203.14 1988 2059 204.81 200.73 198.03 220.35 236.53 273.02 256.52 258.39 249.09 226.29 207.12 209.84 1988 2059 204.81 200.73 198.03 220.35 236.53 273.02 256.52 258.39 249.09 226.29 207.12 209.84 1990 2061 208.90 204.70 202.01 225.11 241.97 279.4 271.17 264.11 254.58 223.35 213.55 213.95 276.13 266.97 257.55 255.83 244.02 223.57 225.49 1993 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 1994 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2000 2066 219.13 214.65														
1977														
1978														
1980														
1981 2052														
1982 2053 193.28 189.52 186.82 206.95 221.20 255.50 248.66 242.27 233.60 212.01 193.87 197.24 1983 2054 195.08 191.27 188.57 209.04 223.59 258.23 251.25 244.78 236.01 214.24 195.93 199.21 1984 2055 196.88 193.02 211.13 225.98 260.96 253.44 247.30 238.43 216.47 198.00 201.17 1985 2056 198.67 194.76 192.07 213.22 228.37 263.70 256.43 249.81 240.84 218.69 200.06 203.14 1986 2057 200.72 196.75 194.05 215.59 231.09 266.80 259.38 252.67 243.59 221.22 202.41 205.37 1987 2058 202.76 198.74 196.04 217.97 233.81 269.91 265.33 255.53 246.34 223.76 204.77 207.61 1988 2059 204.81 200.073 198.03 220.35 236.53 273.02 265.28 258.39 249.09 226.29 207.12 209.84 1989 2060 206.86 202.72 200.02 222.73 239.25 276.13 268.22 261.25 251.84 228.82 209.47 212.88 214.31 299.00 206.10 208.90 204.70 202.01 225.11 241.97 279.24 271.17 264.11 254.58 231.35 211.82 214.31 1991 2062 210.95 206.69 204.00 227.48 244.70 283.35 274.12 266.97 257.33 233.89 214.17 216.55 1992 2063 212.99 208.68 205.99 229.86 247.42 285.46 277.07 269.83 260.08 236.42 216.52 218.79 1993 2064 215.04 216.67 207.99 232.24 250.14 288.56 280.01 272.69 260.83 236.42 216.52 218.79 1994 2065 217.08 212.66 209.97 234.62 252.86 291.07 289.81 257.55 265.58 241.49 221.22 223.57 225.49 1996 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 1999 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2000 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2000 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 2														
1983 2054 195.08 191.27 188.57 209.04 223.59 258.23 251.25 244.78 236.01 214.24 195.93 199.21 1984 2055 196.88 193.02 190.32 211.13 225.98 260.96 223.84 247.30 223.84.3 216.47 198.00 201.17 1985 2056 198.67 194.76 192.07 213.22 228.37 263.70 256.43 249.81 240.84 218.69 200.06 203.14 1986 2057 200.72 196.75 194.05 215.59 231.09 266.80 259.38 252.67 243.59 221.22 202.41 205.37 1987 2058 202.76 198.74 196.04 217.97 233.81 269.91 262.33 255.53 246.34 223.76 204.77 207.61 1988 2059 204.81 200.73 198.03 220.35 236.53 273.02 265.28 258.39 249.09 226.29 207.12 209.84 1989 2060 206.86 202.72 200.02 222.73 239.25 276.13 268.22 261.25 251.84 228.82 209.47 212.08 1990 2061 208.90 204.70 202.01 225.11 241.77 279.24 217.17 264.11 254.58 231.35 211.82 214.31 1991 2062 210.95 206.69 204.00 227.48 244.70 282.35 274.12 266.97 257.33 233.89 214.17 216.55 1993 2064 215.04 210.67 207.98 232.24 250.14 288.56 2870.07 257.33 238.95 218.87 221.02 199.4 2065 217.08 212.66 209.97 234.62 252.86 291.67 282.96 275.55 265.58 241.49 221.22 223.57 223.57 225.49 1995 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 1997 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 200 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 200 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 200 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 200 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41														
1984 2055 196.88 193.02 190.32 211.13 225.98 260.96 253.84 247.30 238.43 216.47 198.00 201.17 1985 2056 198.67 194.76 192.07 213.22 228.37 263.70 256.43 249.81 240.84 218.69 200.06 203.14 1986 2057 200.72 196.75 194.05 215.59 231.09 266.80 259.38 252.67 243.59 221.22 202.41 205.37 1987 2058 202.76 198.74 196.04 217.97 233.81 269.91 262.33 255.53 246.34 223.76 204.77 207.61 1988 2059 204.81 200.73 198.03 220.35 236.53 273.02 265.28 258.39 249.90 226.29 207.12 209.84 1989 2060 206.86 202.72 200.02 222.73 239.25 276.13 246.82 261.25 251.84 228.82 209.47 212.08 1990 2061 208.90 204.70 202.01 225.11 241.97 279.24 271.17 264.11 254.58 231.35 211.82 214.31 1991 2062 210.95 206.69 204.00 227.48 244.70 282.35 274.12 266.97 257.33 233.89 214.17 216.55 1992 2063 212.99 208.68 205.99 229.86 247.42 285.46 277.07 269.83 260.08 236.42 216.52 218.79 1993 2064 215.04 210.67 207.98 232.24 250.14 288.56 280.01 272.69 262.83 238.95 218.87 221.02 1994 2065 217.08 212.66 209.97 234.62 255.88 294.78 285.91 278.41 268.32 244.02 223.57 225.49 1995 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 1999 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2000 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2001 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2004 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2006 2066 219.13 214.65 211.96 236.99 255.58 2														
1986 2057 200.72 196.75 194.05 215.59 231.09 266.80 259.38 252.67 243.59 221.22 202.41 205.37 1987 2058 202.76 198.74 196.04 217.97 233.81 269.91 262.33 255.53 246.34 223.76 204.77 207.61 1988 2059 204.81 200.73 198.03 220.35 236.53 273.65 236.53 273.65 244.04 223.67 207.12 209.84 1989 2060 206.86 202.72 200.02 222.73 239.25 276.13 268.22 261.25 251.84 228.82 209.47 212.08 1990 2061 208.90 204.70 202.01 225.11 241.97 279.24 271.17 264.11 254.58 231.35 211.82 214.31 1991 2062 210.95 206.69 204.00 227.48 244.70 282.5 274.12 266.97 257.33 233.89 214.17 216.55 1992 2063 212.99 208.68 205.99 229.86 247.42 285.46 277.07 269.83 260.08 236.42 216.52 218.79 1993 2064 215.04 210.67 207.98 232.24 250.14 288.56 280.01 272.69 262.83 238.95 218.87 221.02 1994 2065 217.08 212.66 209.97 234.62 252.86 2916.78 282.96 275.55 265.58 244.02 223.57 225.49 1995 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 1996 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 1998 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 1999 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2000 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2001 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2001 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2004 2066 219.13 214.65 211.96 236.99 255.58 2														
1987 2058 202.76 198.74 196.04 217.97 233.81 269.91 262.33 255.53 246.34 223.76 204.77 207.61 1988 2059 204.81 200.73 198.03 220.35 236.53 273.02 265.28 258.39 249.09 226.29 207.12 209.84 1989 2060 206.86 202.72 200.02 222.73 239.25 276.13 268.22 261.25 251.84 228.82 209.47 212.08 1990 2061 208.90 204.70 202.01 225.11 241.97 279.24 271.17 264.11 254.58 231.35 211.82 214.31 1991 2062 210.95 206.69 204.00 227.48 244.70 282.35 274.12 266.97 257.33 233.89 214.17 216.55 1992 2063 212.99 208.68 205.99 229.86 247.42 285.46 277.07 269.83 260.08 236.42 216.52 218.79 1993 2064 215.04 210.67 207.98 232.24 250.14 288.85 280.01 272.69 262.83 238.95 218.87 221.02 1994 2065 217.08 212.66 209.97 234.62 252.86 291.67 285.96 275.55 265.58 241.49 221.22 223.26 1995 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 1997 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 1998 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 1999 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2000 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2001 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2001 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2001 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2004 2066 219.13 214.65 211.96 236.99 255.58 2	1985	2056	198.67	194.76	192.07	213.22	228.37	263.70	256.43	249.81	240.84	218.69	200.06	203.14
1988 2059 204.81 200.73 198.03 220.35 236.53 273.02 265.28 258.39 249.09 226.29 207.12 209.84 1989 2060 206.86 202.72 200.02 222.73 239.25 276.13 268.22 261.25 251.84 228.82 209.47 212.08 1990 2061 208.90 204.70 202.01 225.11 241.97 279.24 271.17 264.11 254.58 231.35 211.82 214.31 1991 2062 210.95 206.69 204.00 227.48 244.70 226.97 257.33 233.89 214.17 216.55 1992 2063 212.99 208.68 205.99 229.86 247.42 285.46 277.07 269.83 260.08 236.42 216.52 218.79 1993 2064 215.04 210.67 207.98 232.24 250.14 288.56 220.01 272.69 262.83 238.95 218.72 221.02 </td <td></td>														
1989 2060 206.86 202.72 200.02 222.73 239.25 276.13 268.22 261.25 251.84 228.82 209.47 212.08														
1990														
1991 2062 210.95 206.69 204.00 227.48 244.70 282.35 274.12 266.97 257.33 233.89 214.17 216.55 1992 2063 212.99 208.68 205.99 229.86 247.42 285.46 277.07 269.83 260.08 236.42 216.52 218.79 1993 2064 215.04 210.67 207.98 232.24 250.14 288.56 280.01 272.69 262.83 238.95 218.87 221.02 1994 2065 217.08 212.66 209.97 234.62 252.86 291.67 282.96 275.55 265.58 241.49 221.22 223.26 1995 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 1996 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 1998 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 1998 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 1999 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 1999 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2000 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2001 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2002 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2003 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2004 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2005 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2006 2066 219.13 214.65 211.96 236.99 255.58 2														
1993 2064 215.04 216.07 207.98 232.24 250.14 288.56 280.01 272.69 262.83 238.95 218.87 221.02 1994 2065 217.08 212.66 209.97 234.62 252.86 291.67 282.96 275.55 265.58 241.49 221.22 223.26 1995 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 1996 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 1997 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 1998 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 </td <td></td>														
1994 2065 217.08 212.66 209.97 234.62 252.86 291.67 282.96 275.55 265.58 241.49 221.22 223.26 1995 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 1996 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 1997 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 1998 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 1999 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 </td <td></td>														
1995 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 1996 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 1997 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 1998 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 1999 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2000 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 </td <td></td>														
1996 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 1997 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 1998 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 1999 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2000 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2001 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 </td <td></td>														
1997 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 1998 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 1999 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2000 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2001 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2002 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 </td <td></td>														
1998 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 1999 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2000 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2001 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2002 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2003 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 </td <td></td>														
2000 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2001 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2002 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2003 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2004 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2005 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 </td <td>1998</td> <td>2066</td> <td>219.13</td> <td>214.65</td> <td>211.96</td> <td>236.99</td> <td>255.58</td> <td>294.78</td> <td>285.91</td> <td>278.41</td> <td>268.32</td> <td>244.02</td> <td>223.57</td> <td>225.49</td>	1998	2066	219.13	214.65	211.96	236.99	255.58	294.78	285.91	278.41	268.32	244.02	223.57	225.49
2001 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2002 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2003 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2004 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2005 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2006 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 </td <td></td>														
2002 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2003 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2004 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2005 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2006 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2006 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 </td <td></td>														
2003 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2004 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2005 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2006 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2007 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2008 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 </td <td></td>														
2004 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2005 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2006 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2007 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2008 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2008 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 </td <td></td>														
2005 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2006 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2007 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2008 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2009 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2009 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 </td <td></td>														
2007 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2008 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2009 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2010 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2010 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2010 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 </td <td></td>														
2008 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2009 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2010 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2010 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49														
2009 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2010 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49 2010 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49														
2010 2066 219.13 214.65 211.96 236.99 255.58 294.78 285.91 278.41 268.32 244.02 223.57 225.49														

]	Keowee	Returns	(cfs)					
Hydrology	Projection												
Year	Year	January	February	March	April	May	June	July	August	September	October	November	December
1939	2010	2.71	2.21	1.82	2.28	2.24	2.70	2.44	2.51	2.61	2.22	2.03	2.43
1940 1941	2011 2012	2.82	2.30 2.38	1.89	2.37	2.33	2.81	2.54	2.61	2.71 2.81	2.31	2.11	2.52 2.62
1942	2013	3.03	2.47	2.03	2.54	2.50	3.02	2.73	2.81	2.91	2.48	2.26	2.71
1943	2014	3.14	2.55	2.09	2.63	2.59	3.12	2.82	2.91	3.02	2.57	2.34	2.81
1944	2015	3.24	2.64	2.16	2.72	2.67	3.23	2.92	3.01	3.12	2.66	2.42	2.90
1945	2016	3.35	2.73	2.23	2.80	2.76	3.33	3.01	3.11	3.22	2.74	2.50	3.00
1946	2017	3.45	2.81	2.29	2.89	2.84	3.43	3.10	3.20	3.32	2.82	2.57	3.09
1947 1948	2018 2019	3.55 3.65	2.89 2.97	2.36	2.97 3.05	2.92 3.00	3.53	3.19	3.30	3.42 3.52	2.91 2.99	2.64 2.72	3.18 3.27
1948	2019	3.75	3.05	2.42	3.14	3.09	3.73	3.26	3.49	3.62	3.07	2.72	3.36
1950	2021	3.85	3.13	2.55	3.22	3.17	3.83	3.46	3.58	3.71	3.15	2.87	3.45
1951	2022	3.95	3.21	2.62	3.30	3.25	3.93	3.55	3.67	3.81	3.24	2.94	3.54
1952	2023	4.05	3.30	2.68	3.38	3.33	4.03	3.64	3.77	3.91	3.32	3.01	3.63
1953	2024	4.16	3.38	2.75	3.47	3.41	4.13	3.73	3.86	4.01	3.40	3.09	3.72
1954	2025	4.26	3.46	2.81	3.55	3.49	4.23	3.82	3.96	4.11	3.48	3.16	3.82
1955 1956	2026 2027	4.36 4.46	3.54 3.62	2.87	3.63	3.58	4.33	3.91 4.00	4.05 4.15	4.20 4.30	3.57	3.23 3.31	3.91 4.00
1957	2028	4.56	3.70	3.00	3.80	3.74	4.53	4.09	4.24	4.40	3.73	3.38	4.09
1958	2029	4.66	3.78	3.07	3.88	3.82	4.63	4.18	4.34	4.50	3.81	3.46	4.18
1959	2030	4.76	3.86	3.13	3.96	3.90	4.73	4.27	4.43	4.60	3.90	3.53	4.27
1960	2031	4.86	3.95	3.20	4.05	3.99	4.83	4.36	4.53	4.70	3.98	3.60	4.36
1961	2032	4.96	4.03	3.26	4.13	4.07	4.93	4.45	4.62	4.79	4.06	3.68	4.45
1962	2033	5.06	4.11	3.33	4.21	4.15	5.03	4.54	4.71	4.89	4.14	3.75	4.54
1963 1964	2034 2035	5.16 5.26	4.19 4.27	3.39 3.46	4.30	4.23	5.13	4.63	4.81 4.90	4.99 5.09	4.23 4.31	3.83 3.90	4.63 4.72
1965	2036	5.36	4.27	3.52	4.46	4.39	5.33	4.72	5.00	5.19	4.39	3.97	4.72
1966	2037	5.46	4.43	3.58	4.55	4.48	5.43	4.90	5.09	5.28	4.47	4.05	4.90
1967	2038	5.56	4.52	3.65	4.63	4.56	5.53	4.99	5.19	5.38	4.56	4.12	4.99
1968	2039	5.67	4.60	3.71	4.71	4.64	5.63	5.08	5.28	5.48	4.64	4.20	5.09
1969	2040	5.77	4.68	3.78	4.79	4.72	5.73	5.17	5.38	5.58	4.72	4.27	5.18
1970 1971	2041	5.87	4.76	3.84	4.88	4.80	5.83	5.26	5.47	5.68	4.80	4.34	5.27
1971	2042 2043	5.97 6.07	4.84 4.92	3.91	4.96 5.04	4.88	5.93 6.03	5.35	5.56 5.66	5.78 5.88	4.88 4.97	4.42 4.49	5.36 5.45
1973	2043	6.17	5.01	4.03	5.13	5.05	6.13	5.53	5.75	5.97	5.05	4.56	5.54
1974	2045	6.27	5.09	4.10	5.21	5.13	6.23	5.62	5.85	6.07	5.13	4.64	5.63
1975	2046	6.38	5.17	4.16	5.29	5.21	6.33	5.71	5.94	6.17	5.21	4.71	5.72
1976	2047	6.48	5.25	4.23	5.37	5.29	6.43	5.80	6.04	6.27	5.30	4.78	5.81
1977	2048	6.58	5.33	4.29	5.46	5.37	6.53	5.89	6.13	6.36	5.38	4.86	5.90
1978 1979	2049 2050	6.68	5.41 5.49	4.35 4.42	5.54 5.62	5.45	6.63	5.98	6.22	6.46 6.56	5.46 5.54	4.93 5.00	5.99 6.08
1980	2050	6.87	5.57	4.42	5.70	5.61	6.82	6.15	6.41	6.65	5.62	5.07	6.17
1981	2052	6.97	5.65	4.54	5.78	5.69	6.92	6.24	6.50	6.75	5.70	5.15	6.26
1982	2053	7.07	5.73	4.61	5.86	5.77	7.02	6.33	6.59	6.85	5.78	5.22	6.35
1983	2054	7.17	5.81	4.67	5.94	5.85	7.12	6.42	6.69	6.94	5.86	5.29	6.44
1984	2055	7.27	5.89	4.73	6.03	5.93	7.22	6.51	6.78	7.04	5.94	5.36	6.53
1985 1986	2056 2057	7.37 7.49	5.97 6.06	4.79 4.87	6.11	6.01	7.32	6.60	6.87	7.14 7.25	6.02	5.44 5.52	6.62
1986	2057	7.49	6.06	4.87	6.20	6.10	7.43	6.70	7.08	7.25	6.12	5.60	6.72 6.82
1988	2059	7.71	6.24	5.01	6.38	6.28	7.65	6.90	7.19	7.47	6.30	5.68	6.92
1989	2060	7.82	6.33	5.08	6.48	6.38	7.76	7.00	7.29	7.57	6.39	5.76	7.03
1990	2061	7.94	6.43	5.15	6.57	6.47	7.87	7.10	7.40	7.68	6.48	5.85	7.13
1991	2062	8.05	6.52	5.22	6.66	6.56	7.98	7.20	7.50	7.79	6.57	5.93	7.23
1992	2063	8.16	6.61	5.29	6.75	6.65	8.09	7.29	7.61	7.90	6.66	6.01	7.33
1993 1994	2064 2065	8.27 8.39	6.70 6.79	5.37 5.44	6.85	6.74	8.20 8.32	7.39	7.71 7.81	8.01 8.12	6.76 6.85	6.09	7.43 7.53
1994	2065	8.50	6.79	5.51	7.03	6.92	8.43	7.49	7.81	8.23	6.83	6.17	7.63
1996	2066	8.50	6.88	5.51	7.03	6.92	8.43	7.59	7.92	8.23	6.94	6.26	7.63
1997	2066	8.50	6.88	5.51	7.03	6.92	8.43	7.59	7.92	8.23	6.94	6.26	7.63
1998	2066	8.50	6.88	5.51	7.03	6.92	8.43	7.59	7.92	8.23	6.94	6.26	7.63
1999	2066	8.50	6.88	5.51	7.03	6.92	8.43	7.59	7.92	8.23	6.94	6.26	7.63
2000	2066	8.50	6.88	5.51	7.03	6.92	8.43	7.59	7.92	8.23	6.94	6.26	7.63
2001	2066 2066	8.50 8.50	6.88	5.51	7.03	6.92	8.43 8.43	7.59	7.92 7.92	8.23 8.23	6.94 6.94	6.26	7.63 7.63
2002	2066	8.50	6.88	5.51	7.03	6.92	8.43	7.59	7.92	8.23	6.94	6.26	7.63
2003	2066	8.50	6.88	5.51	7.03	6.92	8.43	7.59	7.92	8.23	6.94	6.26	7.63
2005	2066	8.50	6.88	5.51	7.03	6.92	8.43	7.59	7.92	8.23	6.94	6.26	7.63
2006	2066	8.50	6.88	5.51	7.03	6.92	8.43	7.59	7.92	8.23	6.94	6.26	7.63
2007	2066	8.50	6.88	5.51	7.03	6.92	8.43	7.59	7.92	8.23	6.94	6.26	7.63
2008	2066	8.50	6.88	5.51	7.03	6.92	8.43	7.59	7.92	8.23	6.94	6.26	7.63
2009	2066	8.50	6.88	5.51	7.03	6.92	8.43	7.59	7.92	8.23	6.94	6.26	7.63
2010	2066 2066	8.50 8.50	6.88	5.51	7.03	6.92	8.43 8.43	7.59 7.59	7.92 7.92	8.23 8.23	6.94 6.94	6.26	7.63 7.63
2011	2000	0.50	0.00	3.31	7.03	0.92	0.43	1.59	1.92	0.23	0.94	0.20	7.03

					Ha	rtwell W	ithdrawa	ls (cfs)					
Hydrology	Projection												
Year	Year	January	February	March	April	May	June	July	August	September	October	November	December
1939 1940	2010 2011	52.40 55.18	55.65 58.90	55.48 58.74	58.80 62.35	63.36 67.24	67.38 71.59	67.47 71.71	67.72 71.96	65.47 69.51	61.21 64.87	60.35 64.15	55.05 58.24
1941	2012	57.96	62.15	62.01	65.90	71.13	75.81	75.95	76.19	73.56	68.53	67.94	61.42
1942	2013	60.74	65.40	65.27	69.45	75.01	80.03	80.18	80.42	77.61	72.19	71.73	64.60
1943 1944	2014	63.51	68.65	68.54	73.00	78.89	84.24	84.42	84.66	81.66	75.84	75.52	67.79
1944	2015 2016	66.29 69.07	71.90 75.15	71.80 75.07	76.55 80.10	82.77 86.66	88.46 92.68	88.66 92.90	88.89 93.12	85.71 89.76	79.50 83.16	79.31 83.10	70.97 74.15
1946	2017	70.05	76.28	76.20	81.33	88.00	94.13	94.36	94.58	91.15	84.43	84.41	75.27
1947	2018	71.03	77.41	77.33	82.57	89.34	95.59	95.81	96.03	92.54	85.70	85.71	76.39
1948	2019	72.01	78.54	78.46	83.80	90.68	97.05	97.27	97.49	93.93	86.96	87.02	77.51
1949 1950	2020 2021	72.98 73.96	79.68 80.81	79.59 80.72	85.03 86.26	92.03 93.37	98.51 99.97	98.73 100.19	98.94 100.40	95.32 96.71	88.23 89.50	88.33 89.63	78.62 79.74
1951	2022	74.94	81.94	81.85	87.49	94.71	101.43	101.65	101.85	98.10	90.77	90.94	80.86
1952	2023	75.92	83.07	82.99	88.72	96.05	102.88	103.11	103.31	99.50	92.04	92.25	81.98
1953 1954	2024 2025	76.90 77.88	84.20 85.34	84.12 85.25	89.96 91.19	97.40 98.74	104.34	104.57 106.03	104.76 106.22	100.89 102.28	93.31 94.58	93.55 94.86	83.10 84.21
1954	2025	78.86	86.47	86.38	92.42	100.08	103.80	106.03	106.22	102.28	94.38	96.17	85.33
1956	2027	80.98	88.67	88.58	94.68	102.41	109.65	109.89	110.08	106.03	98.13	98.45	87.52
1957	2028	83.10	90.87	90.79	96.93	104.73	112.05	112.29	112.48	108.40	100.42	100.74	89.70
1958 1959	2029	85.22	93.08	92.99	99.19	107.06	114.44	114.69 117.09	114.89 117.29	110.76	102.71	103.03	91.88
1959	2030	87.35 89.47	95.28 97.48	95.19 97.40	101.45 103.71	109.39 111.72	116.84 119.24	117.09	117.29	113.12 115.49	105.00 107.28	105.32 107.61	94.07 96.25
1961	2032	91.59	99.68	99.60	105.71	114.04	121.63	121.89	122.10	117.85	109.57	109.90	98.44
1962	2033	93.71	101.88	101.80	108.22	116.37	124.03	124.29	124.50	120.22	111.86	112.18	100.62
1963 1964	2034 2035	95.84 97.96	104.09 106.29	104.01 106.21	110.48 112.73	118.70 121.02	126.42	126.69 129.10	126.91 129.31	122.58 124.94	114.15 116.43	114.47	102.80 104.99
1964	2035	100.08	106.29	106.21	112.73	121.02	128.82 131.21	131.50	131.71	124.94	118.72	116.76 119.05	104.99
1966	2037	100.86	109.35	109.28	115.92	124.36	132.30	132.60	132.81	128.36	119.68	120.01	108.02
1967	2038	101.64	110.22	110.14	116.85	125.38	133.40	133.69	133.91	129.41	120.65	120.97	108.86
1968 1969	2039	102.42	111.08	111.00	117.78	126.39	134.49	134.79	135.01	130.46	121.61	121.94	109.71
1969	2040 2041	103.20 103.98	111.95 112.81	111.86 112.73	118.71 119.64	127.40 128.42	135.58 136.68	135.89 136.99	136.11 137.21	131.52 132.57	122.57 123.54	122.90 123.86	110.56 111.40
1971	2042	104.76	113.68	113.59	120.57	129.43	137.77	138.09	138.31	133.62	124.50	124.83	112.25
1972	2043	105.54	114.54	114.45	121.50	130.44	138.86	139.19	139.41	134.68	125.46	125.79	113.10
1973	2044	106.32	115.41	115.31	122.43	131.46	139.96	140.29	140.51	135.73	126.43	126.75	113.94
1974 1975	2045 2046	107.10 107.88	116.27 117.14	116.18 117.04	123.36 124.28	132.47 133.48	141.05 142.15	141.39 142.48	141.61 142.71	136.78 137.83	127.39 128.36	127.71 128.68	114.79 115.64
1976	2047	108.69	118.02	117.92	125.23	134.51	143.26	143.60	143.83	138.90	129.34	129.65	116.50
1977	2048	109.50	118.90	118.80	126.18	135.55	144.37	144.72	144.95	139.98	130.32	130.62	117.37
1978 1979	2049 2050	110.30 111.11	119.79 120.67	119.69 120.57	127.13 128.07	136.58 137.61	145.48 146.59	145.84 146.95	146.07 147.19	141.05 142.12	131.30 132.29	131.60 132.57	118.24 119.10
1979	2050	111.11	120.67	120.37	129.02	137.61	140.39	148.07	147.19	143.19	132.29	132.57	119.10
1981	2052	112.73	122.44	122.33	129.97	139.67	148.82	149.19	149.42	144.26	134.25	134.51	120.83
1982	2053	113.53	123.33	123.21	130.92	140.71	149.93	150.30	150.54	145.33	135.23	135.49	121.70
1983 1984	2054 2055	114.34 115.15	124.21 125.09	124.09 124.98	131.86 132.81	141.74	151.04 152.15	151.42 152.54	151.66 152.78	146.40 147.47	136.22 137.20	136.46 137.43	122.57 123.43
1984	2056	115.15	125.09	124.98	132.81	142.77	153.26	153.65	153.90	148.54	137.20	137.43	123.43
1986	2057	116.84	126.95	126.83	134.80	144.94	154.49	154.88	155.13	149.72	139.26	139.47	125.25
1987	2058	117.73	127.93	127.80	135.84	146.07	155.71	156.11	156.36	150.90	140.34	140.54	126.20
1988 1989	2059 2060	118.62 119.51	128.90 129.87	128.77 129.74	136.88 137.92	147.20 148.34	156.93 158.15	157.33	157.59 158.82	152.07 153.25	141.42 142.50	141.61 142.68	127.16 128.11
1989	2060	120.40	130.84	130.71	137.92	148.34	158.15	158.56 159.79	158.82	153.25	142.50	142.68	128.11
1991	2062	121.29	131.82	131.68	140.01	150.61	160.59	161.02	161.28	155.60	144.67	144.81	130.01
1992	2063	122.18	132.79	132.65	141.05	151.74	161.81	162.24	162.50	156.78	145.75	145.88	130.97
1993 1994	2064 2065	123.07 123.96	133.76 134.74	133.62 134.59	142.09 143.13	152.87 154.01	163.04 164.26	163.47 164.70	163.73 164.96	157.96 159.13	146.83 147.91	146.95 148.02	131.92 132.87
1994	2065	123.96	135.71	134.39	143.13	155.14	165.48	165.92	166.19	160.31	148.99	148.02	132.87
1996	2066	124.85	135.71	135.56	144.17	155.14	165.48	165.92	166.19	160.31	148.99	149.08	133.82
1997	2066	124.85	135.71	135.56	144.17	155.14	165.48	165.92	166.19	160.31	148.99	149.08	133.82
1998 1999	2066 2066	124.85 124.85	135.71 135.71	135.56 135.56	144.17 144.17	155.14 155.14	165.48 165.48	165.92 165.92	166.19 166.19	160.31 160.31	148.99 148.99	149.08 149.08	133.82 133.82
2000	2066	124.85	135.71	135.56	144.17	155.14	165.48	165.92	166.19	160.31	148.99	149.08	133.82
2001	2066	124.85	135.71	135.56	144.17	155.14	165.48	165.92	166.19	160.31	148.99	149.08	133.82
2002	2066	124.85	135.71	135.56	144.17	155.14	165.48	165.92	166.19	160.31	148.99	149.08	133.82
2003 2004	2066 2066	124.85 124.85	135.71 135.71	135.56 135.56	144.17 144.17	155.14 155.14	165.48 165.48	165.92 165.92	166.19 166.19	160.31 160.31	148.99 148.99	149.08 149.08	133.82 133.82
2004	2066	124.85	135.71	135.56	144.17	155.14	165.48	165.92	166.19	160.31	148.99	149.08	133.82
2006	2066	124.85	135.71	135.56	144.17	155.14	165.48	165.92	166.19	160.31	148.99	149.08	133.82
2007	2066	124.85	135.71	135.56	144.17	155.14	165.48	165.92	166.19	160.31	148.99	149.08	133.82
2008 2009	2066 2066	124.85 124.85	135.71 135.71	135.56 135.56	144.17 144.17	155.14 155.14	165.48 165.48	165.92 165.92	166.19 166.19	160.31 160.31	148.99 148.99	149.08 149.08	133.82 133.82
2010	2066	124.85	135.71	135.56	144.17	155.14	165.48	165.92	166.19	160.31	148.99	149.08	133.82
2011	2066	124.85	135.71	135.56	144.17	155.14	165.48	165.92	166.19	160.31	148.99	149.08	133.82

					ī	Iartwell	Returns	(cfs)					
Hydrology	Projection							(CIS)					
Year	Year	January	February	March	April	May	June	July	August	September	October	November	December
1939	2010	23.61	23.87	23.07	22.94	23.81	22.56	21.85	22.66	23.65	23.28	24.21	25.57
1940 1941	2011 2012	23.84	24.11 24.35	23.31	23.16	24.01	22.75 22.94	22.04	22.85	23.87 24.09	23.48	24.41 24.61	25.79 26.01
1942	2012	24.30	24.59	23.78	23.60	24.39	23.12	22.42	23.24	24.30	23.88	24.82	26.23
1943	2014	24.53	24.83	24.02	23.82	24.59	23.31	22.61	23.44	24.52	24.08	25.02	26.45
1944	2015	24.76	25.07	24.26	24.04	24.78	23.50	22.80	23.64	24.73	24.28	25.22	26.66
1945	2016	25.00	25.31	24.49	24.26	24.98	23.69	22.98	23.83	24.95	24.49	25.42	26.88
1946 1947	2017 2018	25.18	25.50 25.69	24.68 24.87	24.43	25.14	23.84	23.15	24.00 24.17	25.13 25.31	24.65 24.82	25.59	27.06
1947	2019	25.36 25.55	25.88	25.06	24.01	25.30 25.46	24.00	23.31	24.17	25.49	24.82	25.76 25.93	27.25 27.43
1949	2020	25.73	26.07	25.25	24.96	25.63	24.32	23.64	24.50	25.67	25.16	26.10	27.61
1950	2021	25.91	26.26	25.44	25.14	25.79	24.48	23.80	24.67	25.85	25.33	26.27	27.79
1951	2022	26.10	26.44	25.63	25.31	25.95	24.63	23.96	24.83	26.04	25.50	26.44	27.97
1952 1953	2023 2024	26.28 26.46	26.63 26.82	25.82 26.01	25.49	26.11	24.79 24.95	24.13	25.00 25.17	26.22 26.40	25.67 25.84	26.61 26.78	28.15 28.33
1953	2024	26.46	27.01	26.20	25.66 25.84	26.44	25.11	24.29	25.17	26.58	26.01	26.78	28.52
1955	2026	26.83	27.20	26.39	26.02	26.60	25.26	24.62	25.50	26.76	26.17	27.12	28.70
1956	2027	27.01	27.38	26.57	26.19	26.76	25.43	24.78	25.67	26.94	26.34	27.29	28.87
1957	2028	27.19	27.57	26.76	26.37	26.93	25.59	24.94	25.84	27.13	26.51	27.46	29.05
1958	2029	27.37	27.76	26.95	26.55	27.09	25.75	25.10	26.01	27.31	26.68	27.63	29.22
1959 1960	2030 2031	27.55 27.73	27.95 28.13	27.14 27.32	26.73 26.91	27.26 27.42	25.92 26.08	25.27 25.43	26.17 26.34	27.49 27.67	26.85 27.02	27.80 27.97	29.40 29.58
1961	2032	27.73	28.32	27.51	27.08	27.58	26.24	25.59	26.51	27.85	27.02	28.14	29.75
1962	2033	28.09	28.51	27.70	27.26	27.75	26.41	25.75	26.68	28.03	27.36	28.31	29.93
1963	2034	28.27	28.70	27.89	27.44	27.91	26.57	25.91	26.84	28.22	27.53	28.48	30.10
1964	2035	28.44	28.88	28.08	27.62	28.07	26.73	26.08	27.01	28.40	27.70	28.65	30.28
1965	2036	28.62	29.07	28.26	27.79	28.24	26.89	26.24	27.18	28.58	27.87	28.82	30.46
1966 1967	2037 2038	28.76 28.89	29.21 29.36	28.40 28.55	27.93 28.07	28.36	27.04 27.18	26.36 26.48	27.31 27.44	28.72 28.85	28.00 28.13	28.95 29.08	30.58 30.70
1968	2039	29.02	29.50	28.69	28.22	28.62	27.32	26.61	27.57	28.99	28.26	29.21	30.83
1969	2040	29.15	29.64	28.83	28.36	28.75	27.46	26.73	27.70	29.13	28.39	29.34	30.95
1970	2041	29.28	29.79	28.97	28.50	28.88	27.61	26.85	27.83	29.27	28.52	29.47	31.07
1971	2042	29.41	29.93	29.11	28.64	29.01	27.75	26.97	27.96	29.41	28.65	29.60	31.20
1972 1973	2043 2044	29.54 29.67	30.07 30.21	29.26 29.40	28.78 28.92	29.14 29.26	27.89	27.09	28.09 28.21	29.54 29.68	28.78 28.92	29.73 29.86	31.32 31.45
1974	2045	29.80	30.36	29.54	29.06	29.39	28.18	27.34	28.34	29.82	29.05	29.99	31.57
1975	2046	29.93	30.50	29.68	29.20	29.52	28.32	27.46	28.47	29.96	29.18	30.12	31.69
1976	2047	30.19	30.77	29.95	29.45	29.76	28.56	27.69	28.72	30.22	29.42	30.36	31.94
1977	2048	30.45	31.04	30.22	29.71	30.00	28.79	27.93	28.96	30.48	29.66	30.61	32.19
1978 1979	2049 2050	30.71 30.96	31.31 31.58	30.49 30.76	29.97 30.23	30.23	29.03 29.27	28.16	29.20 29.44	30.74 31.00	29.91 30.15	30.85 31.10	32.44 32.69
1980	2051	31.22	31.85	31.03	30.48	30.47	29.50	28.63	29.44	31.26	30.13	31.34	32.94
1981	2052	31.48	32.12	31.29	30.74	30.94	29.74	28.86	29.92	31.52	30.64	31.59	33.20
1982	2053	31.74	32.38	31.56	31.00	31.18	29.98	29.09	30.17	31.78	30.88	31.83	33.45
1983	2054	32.00	32.65	31.83	31.25	31.42	30.21	29.33	30.41	32.04	31.13	32.08	33.70
1984 1985	2055 2056	32.25 32.51	32.92 33.19	32.10 32.37	31.51	31.65	30.45	29.56	30.65 30.89	32.30 32.56	31.37 31.62	32.32 32.57	33.95 34.20
1985	2057	32.31	33.52	32.69	32.07	32.17	30.09	30.07	31.18	32.87	31.62	32.86	34.20
1987	2058	33.13	33.84	33.01	32.38	32.46	31.26	30.35	31.47	33.18	32.19	33.15	34.79
1988	2059	33.44	34.16	33.34	32.69	32.74	31.55	30.63	31.76	33.49	32.48	33.45	35.09
1989	2060	33.75	34.48	33.66	33.00	33.03	31.83	30.91	32.05	33.80	32.77	33.74	35.39
1990 1991	2061 2062	34.06 34.36	34.81 35.13	33.98 34.30	33.30 33.61	33.31	32.12 32.40	31.19	32.34 32.63	34.11 34.41	33.06 33.35	34.03 34.33	35.69 35.99
1991	2062	34.36	35.13	34.30	33.92	33.88	32.40	31.47	32.63	34.41	33.64	34.33	36.29
1993	2064	34.98	35.77	34.94	34.23	34.17	32.97	32.03	33.20	35.03	33.93	34.91	36.59
1994	2065	35.29	36.09	35.27	34.54	34.45	33.26	32.31	33.49	35.34	34.22	35.20	36.89
1995	2066	35.60	36.42	35.59	34.84	34.74	33.55	32.59	33.78	35.65	34.51	35.50	37.18
1996 1997	2066	35.60	36.42	35.59	34.84	34.74	33.55 33.55	32.59	33.78	35.65	34.51	35.50	37.18
1997	2066 2066	35.60 35.60	36.42 36.42	35.59 35.59	34.84 34.84	34.74 34.74	33.55	32.59 32.59	33.78 33.78	35.65 35.65	34.51 34.51	35.50 35.50	37.18 37.18
1999	2066	35.60	36.42	35.59	34.84	34.74	33.55	32.59	33.78	35.65	34.51	35.50	37.18
2000	2066	35.60	36.42	35.59	34.84	34.74	33.55	32.59	33.78	35.65	34.51	35.50	37.18
2001	2066	35.60	36.42	35.59	34.84	34.74	33.55	32.59	33.78	35.65	34.51	35.50	37.18
2002	2066 2066	35.60 35.60	36.42 36.42	35.59 35.59	34.84 34.84	34.74 34.74	33.55 33.55	32.59 32.59	33.78 33.78	35.65 35.65	34.51 34.51	35.50 35.50	37.18 37.18
2003	2066	35.60	36.42	35.59	34.84	34.74	33.55	32.59	33.78	35.65	34.51	35.50	37.18
2005	2066	35.60	36.42	35.59	34.84	34.74	33.55	32.59	33.78	35.65	34.51	35.50	37.18
2006	2066	35.60	36.42	35.59	34.84	34.74	33.55	32.59	33.78	35.65	34.51	35.50	37.18
2007	2066	35.60	36.42	35.59	34.84	34.74	33.55	32.59	33.78	35.65	34.51	35.50	37.18
2008	2066 2066	35.60 35.60	36.42 36.42	35.59	34.84	34.74	33.55 33.55	32.59 32.59	33.78	35.65	34.51	35.50	37.18 37.18
2009	2066	35.60	36.42	35.59 35.59	34.84	34.74	33.55	32.59	33.78 33.78	35.65 35.65	34.51 34.51	35.50 35.50	37.18
2011	2066	35.60	36.42	35.59	34.84	34.74	33.55	32.59	33.78	35.65	34.51	35.50	37.18

					Richard	B. Russ	ell With	drawals	(cfs)				
Hydrology	Projection								(-22)				
Year	Year	January	February	March	April	May	June	July	August	September	October	November	December
1939	2010	8.59	8.43	9.03	9.72	10.38	11.73	11.57	12.23	11.56	10.32	9.48	8.81
1940 1941	2011 2012	8.67 8.75	8.51 8.59	9.11 9.19	9.80 9.88	10.46	11.82	11.65	12.31 12.39	11.64 11.72	10.40 10.48	9.56 9.63	8.89 8.97
1941	2012	8.83	8.67	9.19	9.96	10.62	11.98	11.74	12.48	11.72	10.46	9.71	9.05
1943	2014	8.91	8.75	9.35	10.04	10.70	12.06	11.90	12.56	11.88	10.64	9.79	9.12
1944	2015	8.99	8.82	9.43	10.12	10.78	12.14	11.98	12.64	11.96	10.72	9.87	9.20
1945	2016	9.07	8.90	9.51	10.20	10.86	12.23	12.06	12.72	12.04	10.80	9.95	9.28
1946	2017	10.62	10.46	11.06	11.75	12.42	13.79	13.62	14.29	13.60	12.36	11.50	10.83
1947 1948	2018 2019	12.17 13.73	12.01 13.56	12.61 14.17	13.31 14.87	13.98 15.54	15.35 16.92	15.18 16.75	15.85 17.42	15.17 16.73	13.92 15.47	13.06 14.61	12.38 13.93
1949	2020	15.73	15.12	15.72	16.42	17.10	18.48	18.31	18.98	18.29	17.03	16.17	15.49
1950	2021	16.84	16.67	17.28	17.98	18.66	20.04	19.87	20.55	19.85	18.59	17.72	17.04
1951	2022	18.39	18.22	18.83	19.54	20.22	21.61	21.43	22.11	21.41	20.15	19.27	18.59
1952	2023	19.94	19.78	20.39	21.09	21.78	23.17	22.99	23.68	22.97	21.71	20.83	20.14
1953	2024	21.50	21.33	21.94	22.65	23.34	24.73	24.55	25.24	24.54	23.27	22.38	21.69
1954 1955	2025 2026	23.05 24.61	22.89 24.44	23.50 25.05	24.21 25.76	24.90 26.45	26.30 27.86	26.12 27.68	26.81 28.37	26.10 27.66	24.83 26.38	23.94 25.49	23.24 24.79
1956	2027	24.65	24.48	25.10	25.81	26.50	27.91	27.72	28.42	27.71	26.43	25.53	24.83
1957	2028	24.69	24.52	25.14	25.85	26.55	27.96	27.77	28.47	27.75	26.47	25.58	24.87
1958	2029	24.73	24.57	25.18	25.89	26.59	28.01	27.82	28.52	27.80	26.52	25.62	24.91
1959	2030	24.78	24.61	25.23	25.94	26.64	28.06	27.87	28.57	27.85	26.56	25.66	24.95
1960	2031	24.82	24.65	25.27	25.98	26.68	28.11	27.91	28.62	27.90	26.61	25.70	24.99
1961 1962	2032 2033	24.86 24.90	24.69 24.73	25.31 25.36	26.03 26.07	26.73 26.78	28.15 28.20	27.96 28.01	28.67 28.72	27.94 27.99	26.65 26.70	25.74 25.78	25.03 25.07
1963	2034	24.94	24.73	25.40	26.11	26.82	28.25	28.06	28.77	28.04	26.74	25.83	25.11
1964	2035	24.99	24.82	25.44	26.16	26.87	28.30	28.10	28.82	28.08	26.79	25.87	25.15
1965	2036	25.03	24.86	25.49	26.20	26.91	28.35	28.15	28.87	28.13	26.83	25.91	25.19
1966	2037	25.07	24.90	25.53	26.25	26.96	28.40	28.20	28.92	28.18	26.88	25.95	25.24
1967	2038	25.12	24.95	25.57	26.29	27.01	28.45	28.25	28.97	28.23	26.93	26.00	25.28
1968 1969	2039 2040	25.16 25.20	24.99 25.03	25.62 25.66	26.34 26.38	27.06 27.10	28.50 28.55	28.30 28.35	29.02 29.07	28.28 28.33	26.97 27.02	26.04 26.08	25.32 25.36
1970	2040	25.25	25.03	25.71	26.43	27.15	28.60	28.39	29.12	28.38	27.02	26.13	25.40
1971	2042	25.29	25.12	25.75	26.47	27.20	28.65	28.44	29.18	28.42	27.11	26.17	25.44
1972	2043	25.33	25.17	25.80	26.52	27.25	28.70	28.49	29.23	28.47	27.16	26.21	25.48
1973	2044	25.38	25.21	25.84	26.56	27.29	28.75	28.54	29.28	28.52	27.21	26.26	25.53
1974	2045	25.42	25.25	25.89	26.61	27.34	28.80	28.59	29.33	28.57	27.25	26.30	25.57
1975 1976	2046 2047	25.47 27.01	25.30 26.84	25.93 27.48	26.65 28.20	27.39 28.94	28.85	28.64	29.38 30.94	28.62 30.17	27.30 28.85	26.34 27.89	25.61 27.15
1977	2047	28.56	28.39	29.03	29.75	30.49	31.97	31.75	32.50	31.73	30.40	29.44	28.70
1978	2049	30.11	29.94	30.58	31.30	32.05	33.52	33.30	34.05	33.28	31.96	30.99	30.25
1979	2050	31.66	31.49	32.13	32.86	33.60	35.08	34.86	35.61	34.84	33.51	32.54	31.79
1980	2051	33.21	33.04	33.68	34.41	35.15	36.64	36.41	37.17	36.39	35.06	34.09	33.34
1981 1982	2052 2053	34.76	34.59 36.14	35.23	35.96	36.71 38.26	38.19	37.97	38.72 40.28	37.95	36.61 38.16	35.63	34.89
1982	2053	36.31 37.86	37.69	36.78 38.33	37.51 39.06	39.81	41.31	39.52 41.08	41.84	39.50 41.06	39.72	37.18 38.73	36.43 37.98
1984	2055	39.41	39.24	39.88	40.61	41.37	42.86	42.63	43.40	42.61	41.27	40.28	39.52
1985	2056	40.96	40.78	41.43	42.16	42.92	44.42	44.19	44.95	44.17	42.82	41.83	41.07
1986	2057	41.01	40.84	41.48	42.21	42.97	44.48	44.24	45.01	44.22	42.87	41.88	41.12
1987	2058	41.06	40.89	41.53	42.27	43.03	44.54	44.30	45.07	44.28	42.93	41.93	41.17
1988 1989	2059	41.11	40.94 40.99	41.59	42.32	43.09	44.60	44.36	45.13	44.34	42.98 43.04	41.98	41.21
1989	2060 2061	41.16 41.21	40.99	41.64 41.69	42.37 42.42	43.14	44.66 44.71	44.41 44.47	45.19 45.25	44.39 44.45	43.04	42.03 42.08	41.26 41.31
1991	2062	41.26	41.09	41.74	42.48	43.25	44.77	44.53	45.23	44.51	43.14	42.13	41.36
1992	2063	41.31	41.14	41.80	42.53	43.31	44.83	44.59	45.37	44.56	43.20	42.18	41.41
1993	2064	41.37	41.19	41.85	42.58	43.36	44.89	44.64	45.43	44.62	43.25	42.23	41.46
1994	2065	41.42	41.25	41.90	42.64	43.42	44.95	44.70	45.49	44.68	43.31	42.28	41.50
1995 1996	2066 2066	41.47 41.47	41.30 41.30	41.95 41.95	42.69 42.69	43.47	45.01 45.01	44.76 44.76	45.55 45.55	44.73 44.73	43.36 43.36	42.33 42.33	41.55 41.55
1996	2066	41.47	41.30	41.95	42.69	43.47	45.01	44.76	45.55	44.73	43.36	42.33	41.55
1998	2066	41.47	41.30	41.95	42.69	43.47	45.01	44.76	45.55	44.73	43.36	42.33	41.55
1999	2066	41.47	41.30	41.95	42.69	43.47	45.01	44.76	45.55	44.73	43.36	42.33	41.55
2000	2066	41.47	41.30	41.95	42.69	43.47	45.01	44.76	45.55	44.73	43.36	42.33	41.55
2001	2066	41.47	41.30	41.95	42.69	43.47	45.01	44.76	45.55	44.73	43.36	42.33	41.55
2002	2066 2066	41.47 41.47	41.30 41.30	41.95 41.95	42.69 42.69	43.47	45.01 45.01	44.76 44.76	45.55 45.55	44.73 44.73	43.36 43.36	42.33 42.33	41.55 41.55
2003	2066	41.47	41.30	41.95	42.69	43.47	45.01	44.76	45.55	44.73	43.36	42.33	41.55
2005	2066	41.47	41.30	41.95	42.69	43.47	45.01	44.76	45.55	44.73	43.36	42.33	41.55
2006	2066	41.47	41.30	41.95	42.69	43.47	45.01	44.76	45.55	44.73	43.36	42.33	41.55
2007	2066	41.47	41.30	41.95	42.69	43.47	45.01	44.76	45.55	44.73	43.36	42.33	41.55
2008	2066	41.47	41.30	41.95	42.69	43.47	45.01	44.76	45.55	44.73	43.36	42.33	41.55
2009	2066 2066	41.47 41.47	41.30	41.95 41.95	42.69 42.69	43.47	45.01 45.01	44.76 44.76	45.55	44.73	43.36 43.36	42.33	41.55 41.55
2010	2066	41.47	41.30 41.30	41.95	42.69	43.47	45.01	44.76	45.55 45.55	44.73 44.73	43.36	42.33 42.33	41.55
2011	2000	71.4/	+1.50	T1.7J	74.09	TJ.+1	TJ.UI	74.70	75.55	+4.73	+5.50	+4.33	+1.55


					Richa	rd B. Ri	ıssell Re	turns (cf	s)				
Hydrology	Projection						i kara i a ka						
Year	Year	January	February	March	April	May	June	July	August	September	October	November	December
1939 1940	2010 2011	16.23 16.45	16.17 16.40	18.81	16.91 17.14	15.13 15.34	14.69	14.95 15.15	15.09 15.28	14.99 15.19	14.40 14.59	14.07 14.26	16.24 16.47
1941	2012	16.67	16.62	19.35	17.37	15.54	15.10	15.36	15.48	15.39	14.78	14.46	16.69
1942	2013	16.89	16.84	19.62	17.60	15.74	15.31	15.57	15.67	15.59	14.97	14.65	16.92
1943	2014	17.12	17.06	19.89	17.83	15.95	15.52	15.78	15.87	15.79	15.16	14.84	17.15
1944 1945	2015 2016	17.34 17.56	17.29 17.51	20.16	18.06 18.29	16.15	15.72 15.93	15.98 16.19	16.06 16.25	16.00 16.20	15.34 15.53	15.04 15.23	17.38 17.61
1946	2017	17.82	17.76	20.74	18.55	16.59	16.17	16.43	16.47	16.43	15.75	15.45	17.87
1947	2018	18.07	18.02	21.06	18.82	16.82	16.41	16.67	16.70	16.65	15.97	15.68	18.13
1948	2019	18.33	18.28	21.37	19.09	17.05	16.64	16.91	16.92	16.88	16.19	15.90	18.40
1949 1950	2020 2021	18.59 18.85	18.54 18.79	21.68	19.35 19.62	17.29 17.52	16.88 17.12	17.14 17.38	17.14 17.37	17.11 17.34	16.41 16.63	16.12 16.35	18.66 18.93
1951	2021	19.11	19.05	22.30	19.88	17.75	17.12	17.62	17.59	17.57	16.85	16.57	19.19
1952	2023	19.36	19.31	22.61	20.15	17.98	17.60	17.86	17.81	17.80	17.07	16.79	19.45
1953	2024	19.62	19.57	22.92	20.41	18.22	17.83	18.10	18.03	18.03	17.28	17.02	19.72
1954	2025	19.88	19.82	23.23	20.68	18.45	18.07	18.33	18.26	18.26	17.50	17.24	19.98
1955 1956	2026 2027	20.14	20.08	23.54	20.95	18.68	18.31 18.53	18.57 18.79	18.48 18.69	18.49 18.70	17.72 17.93	17.46 17.67	20.25
1957	2028	20.62	20.56	24.12	21.44	19.12	18.75	19.01	18.90	18.92	18.13	17.88	20.74
1958	2029	20.87	20.80	24.41	21.69	19.33	18.98	19.24	19.11	19.13	18.34	18.09	20.99
1959	2030	21.11	21.05	24.70	21.93	19.55	19.20	19.46	19.32	19.35	18.54	18.30	21.24
1960	2031	21.35	21.29	24.98	22.18	19.76	19.42	19.68	19.52	19.56	18.74	18.51	21.48
1961 1962	2032 2033	21.59 21.84	21.53 21.77	25.27 25.56	22.43	19.98	19.64 19.86	19.90 20.12	19.73 19.94	19.78 19.99	18.95 19.15	18.72 18.93	21.73 21.98
1963	2034	22.08	22.01	25.85	22.92	20.41	20.09	20.34	20.15	20.21	19.36	19.14	22.23
1964	2035	22.32	22.25	26.14	23.17	20.63	20.31	20.56	20.36	20.42	19.56	19.35	22.47
1965	2036	22.56	22.50	26.43	23.42	20.85	20.53	20.79	20.57	20.64	19.77	19.56	22.72
1966 1967	2037 2038	22.84 23.13	22.77 23.05	26.76 27.09	23.70	21.09	20.78	21.04	20.81	20.88	20.00	19.80 20.04	23.01 23.29
1968	2038	23.13	23.33	27.42	24.26	21.59	21.04	21.29	21.03	21.13	20.24	20.04	23.29
1969	2040	23.69	23.61	27.75	24.55	21.83	21.55	21.80	21.53	21.62	20.71	20.53	23.86
1970	2041	23.97	23.89	28.08	24.83	22.08	21.80	22.05	21.77	21.87	20.94	20.77	24.14
1971	2042	24.25	24.17	28.41	25.11	22.33	22.06	22.30	22.01	22.11	21.18	21.01	24.43
1972 1973	2043 2044	24.53 24.81	24.44 24.72	28.74	25.39 25.68	22.58 22.82	22.31	22.56	22.25 22.49	22.36 22.61	21.41	21.25 21.49	24.71 25.00
1974	2045	25.09	25.00	29.40	25.96	23.07	22.82	23.06	22.73	22.85	21.88	21.74	25.28
1975	2046	25.37	25.28	29.72	26.24	23.32	23.07	23.32	22.97	23.10	22.12	21.98	25.56
1976	2047	25.63	25.54	30.02	26.49	23.54	23.30	23.54	23.19	23.33	22.33	22.20	25.83
1977 1978	2048 2049	25.89	25.79	30.32	26.75	23.76	23.53	23.77	23.41	23.55 23.78	22.55	22.42	26.09 26.35
1978	2049	26.15 26.41	26.05 26.31	30.62 30.91	27.00 27.26	23.99	23.76	24.00 24.23	23.63 23.85	24.00	22.76 22.98	22.65 22.87	26.33
1980	2051	26.67	26.56	31.21	27.51	24.43	24.23	24.46	24.07	24.23	23.19	23.09	26.87
1981	2052	26.93	26.82	31.51	27.77	24.65	24.46	24.68	24.29	24.45	23.40	23.31	27.13
1982	2053	27.19	27.08	31.80	28.02	24.87	24.69	24.91	24.51	24.68	23.62	23.54	27.39
1983 1984	2054 2055	27.45 27.71	27.33 27.59	32.10 32.40	28.28	25.10 25.32	24.92 25.15	25.14 25.37	24.73 24.95	24.90 25.13	23.83	23.76 23.98	27.65 27.91
1985	2056	27.71	27.84	32.40	28.79	25.54	25.13	25.60	25.17	25.35	24.03	24.20	28.17
1986	2057	28.27	28.14	33.03	29.08	25.80	25.65	25.86	25.43	25.61	24.51	24.46	28.48
1987	2058	28.58	28.44	33.38	29.37	26.05	25.92	26.12	25.69	25.87	24.76	24.73	28.78
1988	2059	28.88	28.74	33.72	29.67	26.31	26.19	26.38	25.95	26.14	25.01	24.99	29.09
1989 1990	2060 2061	29.19 29.49	29.04 29.34	34.06 34.40	29.96 30.26	26.57 26.82	26.45 26.72	26.65 26.91	26.20 26.46	26.40 26.66	25.26 25.51	25.25 25.51	29.39 29.69
1991	2062	29.80	29.64	34.74	30.55	27.08	26.99	27.17	26.72	26.92	25.76	25.77	30.00
1992	2063	30.11	29.94	35.09	30.84	27.34	27.26	27.44	26.97	27.18	26.00	26.03	30.30
1993	2064	30.41	30.24	35.43	31.14	27.59	27.53	27.70	27.23	27.45	26.25	26.29	30.61
1994	2065	30.72	30.54	35.77	31.43	27.85	27.79	27.96	27.49	27.71	26.50	26.55	30.91
1995 1996	2066 2066	31.02 31.02	30.84 30.84	36.11 36.11	31.72 31.72	28.10 28.10	28.06 28.06	28.22 28.22	27.75 27.75	27.97 27.97	26.75 26.75	26.81 26.81	31.22 31.22
1990	2066	31.02	30.84	36.11	31.72	28.10	28.06	28.22	27.75	27.97	26.75	26.81	31.22
1998	2066	31.02	30.84	36.11	31.72	28.10	28.06	28.22	27.75	27.97	26.75	26.81	31.22
1999	2066	31.02	30.84	36.11	31.72	28.10	28.06	28.22	27.75	27.97	26.75	26.81	31.22
2000 2001	2066	31.02 31.02	30.84 30.84	36.11 36.11	31.72	28.10	28.06	28.22	27.75	27.97	26.75	26.81	31.22
2001	2066 2066	31.02	30.84	36.11	31.72 31.72	28.10 28.10	28.06 28.06	28.22	27.75 27.75	27.97 27.97	26.75 26.75	26.81 26.81	31.22 31.22
2003	2066	31.02	30.84	36.11	31.72	28.10	28.06	28.22	27.75	27.97	26.75	26.81	31.22
2004	2066	31.02	30.84	36.11	31.72	28.10	28.06	28.22	27.75	27.97	26.75	26.81	31.22
2005	2066	31.02	30.84	36.11	31.72	28.10	28.06	28.22	27.75	27.97	26.75	26.81	31.22
2006 2007	2066 2066	31.02 31.02	30.84 30.84	36.11 36.11	31.72 31.72	28.10 28.10	28.06	28.22	27.75 27.75	27.97 27.97	26.75 26.75	26.81 26.81	31.22 31.22
2007	2066	31.02	30.84	36.11	31.72	28.10	28.06	28.22	27.75	27.97	26.75	26.81	31.22
2009	2066	31.02	30.84	36.11	31.72	28.10	28.06	28.22	27.75	27.97	26.75	26.81	31.22
2010	2066	31.02	30.84	36.11	31.72	28.10	28.06	28.22	27.75	27.97	26.75	26.81	31.22
2011	2066	31.02	30.84	36.11	31.72	28.10	28.06	28.22	27.75	27.97	26.75	26.81	31.22

					J. Stron	n Thurm	ond With	drawals ((cfs)				
Hydrology	Projection												
Year	Year	January	February	March	April	May	June	July	August	September	October	November	December
1939 1940	2010	31.25	31.40	31.88	33.11	35.66	37.83	38.64	37.99	36.19	34.07	32.94	31.97
1940	2011 2012	31.52 31.80	31.68 31.96	32.19 32.49	33.44	36.05 36.43	38.26	39.09 39.55	38.43 38.86	36.58 36.98	34.41 34.76	33.26 33.57	32.27 32.56
1942	2012	32.07	32.25	32.80	34.09	36.82	39.13	40.00	39.30	37.37	35.11	33.89	32.86
1943	2014	32.35	32.53	33.10	34.42	37.21	39.56	40.45	39.74	37.77	35.45	34.21	33.15
1944	2015	32.62	32.82	33.40	34.75	37.60	39.99	40.91	40.18	38.17	35.80	34.53	33.44
1945	2016	32.90	33.10	33.71	35.08	37.99	40.42	41.36	40.61	38.56	36.14	34.84	33.74
1946	2017	34.64	34.86	35.49	36.89	39.87	42.35	43.32	42.55	40.45	37.97	36.64	35.51
1947 1948	2018 2019	36.39 38.14	36.61 38.37	37.27 39.05	38.70 40.51	41.75	44.28	45.28 47.23	44.49 46.43	42.34 44.23	39.80 41.63	38.44 40.24	37.28 39.05
1948	2020	39.88	40.13	40.83	42.31	45.51	48.14	49.19	48.37	46.12	43.47	42.04	40.82
1950	2021	41.63	41.89	42.61	44.12	47.39	50.07	51.15	50.31	48.01	45.30	43.83	42.59
1951	2022	43.38	43.65	44.39	45.93	49.27	52.00	53.11	52.25	49.90	47.13	45.63	44.36
1952	2023	45.12	45.40	46.18	47.74	51.15	53.93	55.07	54.19	51.78	48.96	47.43	46.13
1953	2024	46.87	47.16	47.96	49.55	53.03	55.87	57.02	56.13	53.67	50.79	49.23	47.91
1954	2025	48.62	48.92	49.74	51.36	54.91	57.80	58.98	58.07	55.56	52.62	51.03	49.68
1955 1956	2026 2027	50.36 50.66	50.68 50.99	51.52 51.86	53.17 53.55	56.79 57.25	59.73 60.25	60.94	60.01	57.45 57.93	54.45 54.85	52.82 53.19	51.45 51.77
1957	2028	50.96	51.30	52.21	53.92	57.72	60.78	62.06	61.08	58.40	55.25	53.55	52.10
1958	2029	51.25	51.61	52.55	54.30	58.18	61.30	62.61	61.61	58.87	55.65	53.91	52.43
1959	2030	51.55	51.93	52.89	54.67	58.64	61.83	63.17	62.15	59.35	56.06	54.27	52.76
1960	2031	51.85	52.24	53.23	55.05	59.11	62.35	63.73	62.69	59.82	56.46	54.63	53.08
1961	2032	52.15	52.55	53.57	55.43	59.57	62.87	64.29	63.22	60.29	56.86	54.99	53.41
1962 1963	2033 2034	52.44 52.74	52.86 53.17	53.92 54.26	55.80 56.18	60.04	63.40	64.85 65.41	63.76 64.29	60.77 61.24	57.26 57.66	55.35 55.71	53.74 54.07
1963	2034	53.04	53.17	54.60	56.55	60.96	64.45	65.96	64.83	61.72	58.06	56.07	54.07
1965	2036	53.34	53.80	54.94	56.93	61.43	64.97	66.52	65.36	62.19	58.47	56.43	54.72
1966	2037	53.70	54.17	55.36	57.39	61.99	65.61	67.21	66.02	62.77	58.95	56.87	55.12
1967	2038	54.05	54.55	55.77	57.84	62.56	66.25	67.89	66.67	63.34	59.44	57.31	55.51
1968	2039	54.41	54.93	56.19	58.30	63.12	66.90	68.57	67.33	63.92	59.93	57.75	55.91
1969	2040	54.77	55.31	56.60	58.75	63.69	67.54	69.26	67.98	64.50	60.42	58.18	56.30
1970 1971	2041 2042	55.13	55.68	57.02	59.21 59.67	64.25 64.81	68.18 68.82	69.94 70.62	68.64 69.29	65.08 65.65	60.90	58.62 59.06	56.70
1971	2042	55.49 55.85	56.06 56.44	57.43 57.85	60.12	65.38	69.46	70.62	69.29	66.23	61.39 61.88	59.06	57.10 57.49
1973	2043	56.21	56.81	58.26	60.58	65.94	70.10	71.99	70.60	66.81	62.37	59.93	57.89
1974	2045	56.56	57.19	58.68	61.04	66.51	70.74	72.67	71.26	67.39	62.85	60.37	58.29
1975	2046	56.92	57.57	59.10	61.49	67.07	71.38	73.36	71.91	67.96	63.34	60.81	58.68
1976	2047	58.85	59.52	61.10	63.54	69.26	73.66	75.69	74.21	70.16	65.43	62.84	60.66
1977	2048	60.79	61.48	63.10	65.60	71.45	75.94	78.02	76.51	72.37	67.52	64.87	62.64
1978 1979	2049 2050	62.72 64.65	63.43 65.39	65.10 67.11	67.65 69.70	73.63 75.82	78.22 80.50	80.35 82.68	78.80 81.10	74.57 76.77	69.61 71.71	66.90 68.93	64.62 66.59
1980	2051	66.58	67.34	69.11	71.75	78.01	82.78	85.02	83.40	78.97	73.80	70.96	68.57
1981	2052	68.51	69.30	71.11	73.81	80.19	85.06	87.35	85.70	81.17	75.89	72.99	70.55
1982	2053	70.44	71.25	73.12	75.86	82.38	87.34	89.68	87.99	83.37	77.98	75.02	72.53
1983	2054	72.38	73.21	75.12	77.91	84.57	89.62	92.01	90.29	85.58	80.07	77.05	74.51
1984	2055	74.31	75.16	77.12	79.96	86.75	91.90	94.35	92.59	87.78	82.16	79.07	76.49
1985	2056	76.24	77.12	79.13	82.02	88.94	94.18	96.68	94.88	89.98	84.25	81.10	78.46
1986 1987	2057 2058	76.76 77.28	77.67 78.22	79.74 80.35	82.69 83.36	89.78 90.62	95.13 96.08	97.70 98.71	95.86 96.83	90.84 91.69	84.97 85.69	81.75 82.39	79.04 79.62
1987	2059	77.81	78.22	80.96	84.04	91.46	97.04	98.71	90.83	92.55	86.41	83.03	80.20
1989	2060	78.33	79.33	81.58	84.71	92.29	97.99	100.75	98.78	93.41	87.13	83.68	80.78
1990	2061	78.85	79.88	82.19	85.38	93.13	98.94	101.77	99.76	94.26	87.85	84.32	81.36
1991	2062	79.37	80.43	82.80	86.06	93.97	99.89	102.78	100.73	95.12	88.57	84.96	81.94
1992	2063	79.90	80.98	83.41	86.73	94.81	100.85	103.80	101.71	95.98	89.29	85.61	82.52
1993	2064	80.42	81.53	84.03	87.40	95.65	101.80	104.82	102.68	96.83	90.01	86.25	83.10
1994 1995	2065 2066	80.94 81.46	82.09 82.64	84.64 85.25	88.07 88.75	96.49 97.33	102.75	105.84	103.65 104.63	97.69 98.55	90.73 91.45	86.89 87.54	83.68 84.26
1995	2066	81.46	82.64	85.25	88.75	97.33	103.70	106.86	104.63	98.55	91.45	87.54	84.26
1997	2066	81.46	82.64	85.25	88.75	97.33	103.70	106.86	104.63	98.55	91.45	87.54	84.26
1998	2066	81.46	82.64	85.25	88.75	97.33	103.70	106.86	104.63	98.55	91.45	87.54	84.26
1999	2066	81.46	82.64	85.25	88.75	97.33	103.70	106.86	104.63	98.55	91.45	87.54	84.26
2000	2066	81.46	82.64	85.25	88.75	97.33	103.70	106.86	104.63	98.55	91.45	87.54	84.26
2001	2066	81.46	82.64	85.25	88.75	97.33	103.70	106.86	104.63	98.55	91.45	87.54	84.26
2002	2066 2066	81.46 81.46	82.64 82.64	85.25 85.25	88.75 88.75	97.33 97.33	103.70 103.70	106.86 106.86	104.63 104.63	98.55 98.55	91.45 91.45	87.54 87.54	84.26 84.26
2003	2066	81.46	82.64 82.64	85.25 85.25	88.75	97.33	103.70	106.86	104.63	98.55 98.55	91.45	87.54 87.54	84.26
2005	2066	81.46	82.64	85.25	88.75	97.33	103.70	106.86	104.63	98.55	91.45	87.54	84.26
2006	2066	81.46	82.64	85.25	88.75	97.33	103.70	106.86	104.63	98.55	91.45	87.54	84.26
2007	2066	81.46	82.64	85.25	88.75	97.33	103.70	106.86	104.63	98.55	91.45	87.54	84.26
2008	2066	81.46	82.64	85.25	88.75	97.33	103.70	106.86	104.63	98.55	91.45	87.54	84.26
2009	2066	81.46	82.64	85.25	88.75	97.33	103.70	106.86	104.63	98.55	91.45	87.54	84.26
2010	2066	81.46	82.64 82.64	85.25 85.25	88.75 88.75	97.33 97.33	103.70	106.86 106.86	104.63	98.55	91.45 91.45	87.54 87.54	84.26
2011	2066	81.46	82.04	83.23	88.73	91.33	103.70	100.86	104.63	98.55	91.45	87.54	84.26

					J. Stro	m Thur	mond Re	turns (c	efs)				
Hydrology	Projection												
Year	Year	January	February	March	April	May	June	July	August	September	October	November	December
1939	2010	7.37	7.46	9.68	7.98	6.29	7.99	7.28	6.67	6.66	6.94	6.09	6.74
1940 1941	2011 2012	7.40 7.44	7.50 7.54	9.72 9.76	8.02 8.06	6.32	8.02 8.06	7.32	6.71	6.70 6.74	6.98 7.02	6.13	6.77 6.81
1941	2012	7.47	7.59	9.80	8.10	6.39	8.10	7.40	6.79	6.78	7.02	6.21	6.85
1943	2014	7.51	7.63	9.84	8.14	6.42	8.14	7.44	6.82	6.82	7.10	6.25	6.88
1944	2015	7.54	7.67	9.89	8.18	6.46	8.17	7.48	6.86	6.86	7.13	6.29	6.92
1945	2016	7.58	7.71	9.93	8.22	6.49	8.21	7.52	6.90	6.90	7.17	6.33	6.96
1946	2017	7.63	7.77	9.99	8.27	6.54	8.26	7.57	6.95	6.96	7.23	6.39	7.01
1947 1948	2018 2019	7.68	7.83 7.88	10.04	8.32 8.38	6.59	8.31 8.36	7.62	7.00 7.06	7.01 7.06	7.28 7.33	6.44 6.50	7.06 7.11
1949	2020	7.78	7.86	10.16	8.43	6.68	8.41	7.72	7.11	7.11	7.38	6.55	7.16
1950	2021	7.83	8.00	10.22	8.48	6.72	8.46	7.78	7.16	7.16	7.44	6.60	7.21
1951	2022	7.88	8.05	10.27	8.53	6.77	8.52	7.83	7.21	7.21	7.49	6.66	7.26
1952	2023	7.93	8.11	10.33	8.59	6.82	8.57	7.88	7.26	7.26	7.54	6.71	7.31
1953	2024	7.98	8.17	10.39	8.64	6.86	8.62	7.93	7.31	7.31	7.59	6.77	7.36
1954 1955	2025 2026	8.03 8.08	8.22 8.28	10.45	8.69	6.91	8.67 8.72	7.98 8.03	7.37 7.42	7.36 7.41	7.64 7.70	6.82 6.88	7.41 7.46
1956	2026	8.15	8.36	10.58	8.74 8.82	7.02	8.79	8.11	7.42	7.41	7.77	6.95	7.46
1957	2028	8.22	8.43	10.66	8.89	7.09	8.86	8.18	7.56	7.55	7.84	7.02	7.60
1958	2029	8.29	8.51	10.74	8.96	7.15	8.93	8.25	7.63	7.62	7.91	7.10	7.67
1959	2030	8.36	8.59	10.82	9.04	7.22	9.00	8.32	7.70	7.70	7.98	7.17	7.74
1960	2031	8.43	8.67	10.91	9.11	7.29	9.07	8.39	7.77	7.77	8.05	7.25	7.81
1961	2032	8.50	8.75	10.99	9.18	7.35	9.14	8.46	7.84	7.84	8.13	7.32	7.88
1962 1963	2033 2034	8.57 8.64	8.83 8.90	11.07 11.15	9.26 9.33	7.42	9.21 9.28	8.53 8.60	7.91 7.98	7.91 7.98	8.20 8.27	7.40 7.47	7.95 8.02
1963	2034	8.71	8.98	11.13	9.33	7.48	9.28	8.67	8.05	8.05	8.34	7.47	8.02
1965	2036	8.78	9.06	11.31	9.48	7.61	9.42	8.75	8.13	8.12	8.41	7.62	8.17
1966	2037	8.84	9.13	11.37	9.54	7.67	9.48	8.81	8.19	8.18	8.48	7.68	8.23
1967	2038	8.89	9.19	11.44	9.60	7.73	9.54	8.87	8.25	8.24	8.54	7.75	8.28
1968	2039	8.95	9.26	11.51	9.66	7.78	9.61	8.93	8.31	8.30	8.60	7.82	8.34
1969	2040	9.01	9.32	11.58	9.73	7.84	9.67	8.99	8.37	8.36	8.67	7.88	8.40
1970 1971	2041	9.07	9.39	11.65	9.79	7.89	9.73	9.05	8.44	8.43	8.73	7.95	8.46
1971	2042 2043	9.12 9.18	9.46 9.52	11.71 11.78	9.85 9.91	8.00	9.79 9.85	9.11	8.50 8.56	8.49 8.55	8.79 8.85	8.01 8.08	8.52 8.58
1973	2043	9.24	9.59	11.75	9.98	8.06	9.91	9.24	8.62	8.61	8.92	8.15	8.64
1974	2045	9.30	9.65	11.92	10.04	8.11	9.97	9.30	8.69	8.67	8.98	8.21	8.70
1975	2046	9.35	9.72	11.98	10.10	8.17	10.03	9.36	8.75	8.74	9.04	8.28	8.76
1976	2047	9.43	9.80	12.07	10.18	8.24	10.10	9.43	8.82	8.81	9.12	8.36	8.83
1977	2048	9.50	9.88	12.15	10.25	8.31	10.18	9.51	8.90	8.89	9.20	8.44	8.91
1978 1979	2049 2050	9.57 9.64	9.96 10.04	12.23 12.31	10.33	8.37 8.44	10.25	9.58 9.66	8.97 9.05	8.96 9.04	9.27 9.35	8.52 8.60	8.98 9.05
1980	2050	9.04	10.04	12.31	10.48	8.51	10.32	9.73	9.03	9.04	9.33	8.68	9.03
1981	2052	9.78	10.20	12.48	10.56	8.58	10.47	9.81	9.20	9.19	9.50	8.76	9.20
1982	2053	9.85	10.29	12.56	10.63	8.65	10.54	9.88	9.28	9.26	9.58	8.83	9.27
1983	2054	9.92	10.37	12.65	10.71	8.71	10.62	9.96	9.35	9.34	9.66	8.91	9.34
1984	2055	9.99	10.45	12.73	10.78	8.78	10.69	10.03	9.43	9.41	9.73	8.99	9.42
1985 1986	2056 2057	10.06 10.16	10.53 10.63	12.81 12.92	10.86	8.85 8.94	10.77	10.11	9.50 9.60	9.49 9.59	9.81 9.91	9.07 9.18	9.49 9.59
1986	2057	10.16	10.63	13.03	11.06	9.03	10.86	10.20	9.60	9.59	10.01	9.18	9.59
1988	2059	10.23	10.74	13.14	11.16	9.03	11.06	10.30	9.70	9.78	10.01	9.28	9.78
1989	2060	10.44	10.95	13.25	11.26	9.21	11.15	10.50	9.89	9.88	10.21	9.49	9.87
1990	2061	10.53	11.06	13.36	11.36	9.29	11.25	10.59	9.99	9.97	10.31	9.59	9.97
1991	2062	10.63	11.16	13.47	11.46	9.38	11.35	10.69	10.09	10.07	10.41	9.70	10.07
1992	2063	10.72	11.27	13.58	11.56	9.47	11.44	10.79	10.19	10.17	10.51	9.80	10.16
1993 1994	2064 2065	10.81 10.91	11.37 11.48	13.68 13.79	11.66 11.76	9.56 9.65	11.54 11.64	10.89	10.29 10.38	10.27 10.36	10.60 10.70	9.90 10.01	10.26 10.36
1994	2065	11.00	11.48	13.79	11.76	9.63	11.73	11.08	10.38	10.36	10.70	10.01	10.36
1996	2066	11.00	11.59	13.90	11.86	9.74	11.73	11.08	10.48	10.46	10.80	10.11	10.45
1997	2066	11.00	11.59	13.90	11.86	9.74	11.73	11.08	10.48	10.46	10.80	10.11	10.45
1998	2066	11.00	11.59	13.90	11.86	9.74	11.73	11.08	10.48	10.46	10.80	10.11	10.45
1999	2066	11.00	11.59	13.90	11.86	9.74	11.73	11.08	10.48	10.46	10.80	10.11	10.45
2000	2066	11.00	11.59	13.90	11.86	9.74	11.73	11.08	10.48	10.46	10.80	10.11	10.45
2001	2066 2066	11.00 11.00	11.59 11.59	13.90 13.90	11.86 11.86	9.74 9.74	11.73	11.08	10.48 10.48	10.46 10.46	10.80 10.80	10.11	10.45 10.45
2002	2066	11.00	11.59	13.90	11.86	9.74	11.73	11.08	10.48	10.46	10.80	10.11	10.45
2003	2066	11.00	11.59	13.90	11.86	9.74	11.73	11.08	10.48	10.46	10.80	10.11	10.45
2005	2066	11.00	11.59	13.90	11.86	9.74	11.73	11.08	10.48	10.46	10.80	10.11	10.45
2006	2066	11.00	11.59	13.90	11.86	9.74	11.73	11.08	10.48	10.46	10.80	10.11	10.45
2007	2066	11.00	11.59	13.90	11.86	9.74	11.73	11.08	10.48	10.46	10.80	10.11	10.45
2008	2066	11.00	11.59	13.90	11.86	9.74	11.73	11.08	10.48	10.46	10.80	10.11	10.45
2009	2066	11.00	11.59	13.90	11.86	9.74	11.73	11.08	10.48	10.46	10.80	10.11	10.45
2010	2066 2066	11.00 11.00	11.59 11.59	13.90	11.86 11.86	9.74 9.74	11.73	11.08	10.48	10.46 10.46	10.80 10.80	10.11	10.45 10.45
2011	2000	11.00	11.39	13.90	11.80	7.14	11./3	11.08	10.48	10.40	10.60	10.11	10.43

Appendix B

Performance Measures Sheets

Measure	Performance Measures	Criterion (Note 1)	Start Date	End Date	MISC	Baseline	Bad Creek II
Number	Lake Jocassee	,			(Note 2)	(1939-2011)	(1939-2011)
	Elevation - Storage Availability						
1	Maximize adherence to reliably meet all Project-related water demands Elevation - Recreation	Number of years reservoir level at or above 1,108 ft AMSL on May 1	1-May	1-May	5	0	0
2	Lievalion - Neorealion	Number of years where cove access (reservoir level below 1,090 ft AMSL) is restricted for more than 25 days (Note 3)	1-Jan	31-Dec	2	2	2
3	Minimize restricted recreation	Greatest number of days with restricted cove access (reservoir level below 1,090 ft AMSL) during higher use months in any calendar year (Note 3)	1-Mar	31-Oct	5	43	43
4		Greatest number of days with restricted cove access (reservoir level below 1,090 ft AMSL) in any calendar year (Note 3)	1-Jan	31-Dec	5	104	104
5	Minimize restricted boat launching	Number of years where reservoir level is below boat ramp critical level (1,080 ft AMSL) during higher use months for more than 25 days (Note 4)	1-Mar	31-Oct	2	0	0
6		Greatest number of days where reservoir level is below boat ramp critical level (1,080 ft AMSL) during higher use months in any calendar year (Note 4)	1-Mar	31-Oct	5	0	0
7	Minimize effects on recreational boating Elevation - Natural Resources	Number of days where reservoir level changes more than 1.0 ft in one hour	1-Jan	31-Dec	10	0	0
8	Elevation - Natural Resources	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 10 consecutive days at least once (Note 5)	1-Apr	31-May	5%	71%	100%
9		Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 15 consecutive days at least once (Note 5)	1-Apr	31-May	5%	34%	99%
10	Maximize spawning success for black bass and blueback herring (2.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 20 consecutive days at least once (Note 5)	1-Apr	31-May	5%	19%	89%
11	(2.5-it iluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 30 consecutive days at least once (Note 5)	1-Apr	31-May	5%	0%	59%
12		Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 45 consecutive days at least once (Note 5)	1-Apr	31-May	5%	0%	0%
13		Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 10 consecutive days at least once (Note 5)	1-Apr	31-May	5%	100%	100%
14		Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 15 consecutive days at least once (Note 5)	1-Apr	31-May	5%	100%	100%
15	Maximize spawning success for black bass and blueback	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band	1-Apr	31-May	5%	100%	99%
16	herring (3.5-ft fluctuation band)	for 20 consecutive days at least once (Note 5) Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 30 consecutive days at least once (Note 5)	1-Apr	31-May	5%	95%	97%
17		Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 45 consecutive days at least once (Note 5)	1-Apr	31-May	5%	56%	82%
18	Maximize spawning success for sunfish and	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 10 consecutive days at least once (Note 5)	15-May	15-Jul	5%	45%	100%
19	threadfin shad (2.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 15 consecutive days at least once (Note 5)	15-May	15-Jul	5%	14%	92%
20	(200 11 10 10 10 10 10 10 10 10 10 10 10 1	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 20 consecutive days at least once (Note 5) Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band	15-May	15-Jul	5%	0%	3%
21	Maximize spawning success for sunfish and	for 10 consecutive days at least once (Note 5)	15-May	15-Jul	5%	100%	100%
22	threadfin shad (3.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 15 consecutive days at least once (Note 5) Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band	15-May	15-Jul	5%	100%	100%
23		for 20 consecutive days at least once (Note 5)	15-May	15-Jul	5%	79%	99%
24	Minimize entrainment due to Bad Creek operations	Percent of days average reservoir level at or below 1,096 ft AMSL (Note 6) Percent of days average reservoir level below 1,096 ft AMSL (Note 6)	1-Jan 1-Dec	31-Dec 	5%	2%	2%
26	Advisor like and balance during a constraint	Percent of days average reservoir level above 1,107 ft AMSL (Note 7)	1-Apr	30-Sep	5%	46%	42%
27	Maximize littoral habitat during growing season	Percent of days average reservoir level above 1,105 ft AMSL (Note 7)	1-Apr	30-Sep	5%	91%	91%
28	Maximize littoral habitat during spawning	Percent of days average reservoir level above 1,107 ft AMSL (Note 7)	1-Apr	31-May	5%	20%	16%
29	season	Percent of days average reservoir level above 1,105 ft AMSL (Note 7)	1-Apr	31-May	5%	92%	92%
30	Pumped Storage Minimize days below lake levels that impact	Number of days reservoir level below 1,099 ft AMSL (Note 8)	1-Jan	31-Dec	227	846	804
31	Bad Creek operations Minimize days below lake levels that impact	Number of days reservoir level below 1,090 ft AMSL (Note 8)	1-Jan	31-Dec	14	147	139
32	Jocassee operations Minimize days below lake levels that impact	Number of days reservoir level below 1,081 ft AMSL (Note 9)	1-Jan	31-Dec	12	0	0
32	Bad Creek efficiency Lake Keowee	Number of days reservoir level below 1,001 it Aivise (Note 5)	1 3011	31 Dec	12	0	<u> </u>
	Elevation - Storage Availability						
33	Maximize adherence to reliably meet all Project-related water demands Elevation - Aesthetics	Number of years reservoir level at or above 798 ft AMSL on May 1	1-May	1-May	5	69	69
34 35	Maximize lake levels	Percent of time reservoir level at or above 797 ft AMSL Percent of time reservoir level at or above 795 ft AMSL	1-Jan 1-Jan	31-Dec 31-Dec	20% 10%	91% 97%	92% 97%
36	Minimize significant drawdown of lake level	Number of days reservoir level below 796 ft AMSL	1-Jan	31-Dec	5	1,670	1,608
37	Elevation - Recreation	Number of years where cove access (reservoir level below 792 ft AMSL) is restricted for more than 25 days (Note 10)	1-Jan	31-Dec	2	1	1
38	Minimize restricted recreation	Greatest number of days with restricted cove access (reservoir level below 792 ft AMSL) during higher use months in any calendar year (Note 10)	1-Mar	31-Oct	5	1	1
39		Greatest number of days with restricted cove access (reservoir level below 792 ft AMSL) in any calendar year (Note 10)	1-Jan	31-Dec	5	41	41
40		Number of years where reservoir level is below boat ramp critical level (790 ft AMSL) during higher use months for more than 25 days (Note 11)	1-Mar	31-Oct	2	0	0
41	Minimize restricted lake boat launching	Greatest number of days where reservoir level is below boat ramp critical level (790 ft AMSL) during higher use months in any calendar year (Note 11)	1-Mar	31-Oct	5	0	0
42		Percent of time reservoir level is at or above level where 85% of docks are usable (796.25 ft AMSL) during higher use months from 7:00 am to 7:00 pm	1-Mar	31-Oct	5%	94%	94%
43	Maximize boat dock usage	(Note 12) Percent of time reservoir level is at or above level where 70% of docks are usable (793.5 ft AMSL) during higher use months from 7:00 am to 7:00 pm	1-Mar	31-Oct	5%	99%	99%
		(Note 12)	2	32 000		33/0	

Measure Number	Performance Measures	Criterion (Note 1)	Start Date	End Date	MISC (Note 2)	Baseline	Bad Creek II
	Elevation - Natural Resources						
44	Minimize number of days water level is below toe of riprap	Number of days reservoir level below 794 ft AMSL (Note 13)	1-Jan	31-Dec	250	565	551
45	Maximira anaumina augasa far	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 10 consecutive days at least once (Note 14)	15-Mar	31-May	5%	100%	100%
46	Maximize spawning success for black bass and blueback herring	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 15 consecutive days at least once (Note 14)	15-Mar	31-May	5%	100%	100%
47	(2.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 20 consecutive days at least once (Note 14)	15-Mar	31-May	5%	100%	100%
48		Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 10 consecutive days at least once (Note 14)	15-Mar	31-May	5%	100%	100%
49	Maximize spawning success for black bass and blueback herring	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 15 consecutive days at least once (Note 14)	15-Mar	31-May	5%	100%	100%
50	(3.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 20 consecutive days at least once (Note 14)	15-Mar	31-May	5%	100%	100%
51	A. day in the second of the se	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 10 consecutive days at least once (Note 14)	15-May	15-Jul	5%	100%	100%
52	Maximize spawning success for sunfish and threadfin shad	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 15 consecutive days at least once (Note 14)	15-May	15-Jul	5%	100%	100%
53	(2.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 20 consecutive days at least once (Note 14)	15-May	15-Jul	5%	97%	97%
54		Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 10 consecutive days at least once (Note 14)	15-May	15-Jul	5%	100%	100%
55	Maximize spawning success for sunfish and threadfin shad	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 15 consecutive days at least once (Note 14)	15-May	15-Jul	5%	100%	100%
56	(3.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 20 consecutive days at least once (Note 14)	15-May	15-Jul	5%	97%	97%
57	Maximize littoral habitat during growing	Percent of days average reservoir level above 798 ft AMSL (Note 15)	1-Apr	30-Sep	5%	89%	89%
58	season	Percent of days average reservoir level above 797 ft AMSL (Note 15)	1-Apr	30-Sep	5%	93%	93%
59	Maximize littoral habitat during spawning	Percent of days average reservoir level above 798 ft AMSL (Note 15)	1-Apr	31-May	5%	94%	95%
60	season	Percent of days average reservoir level above 797 ft AMSL (Note 15)	1-Apr	31-May	5%	97%	97%
	Elevation - Water Supply						
61		Number of days reservoir level below critical level (775 ft AMSL) for shallowest public water supply intake operation (Note 16)	1-Jan	31-Dec	1	0	0
62	Minimize days of restricted operation at lake- located intakes	shallowest thermal power station operation (Note 17)	1-Jan	31-Dec	1	0	0
63		Number of days reservoir level below critical level (787.9 ft AMSL) for Keowee dam to supply backup power to ONS (Note 18)	1-Jan	31-Dec	1	0	0
	Duke Energy Hydropower & Water Quantity Management						
64		Number of days in LIP Stage Normal (Note 19)	1-Jan	31-Dec		8,728	5,102
65		Number of days in LIP Stage 0	1-Jan	31-Dec		13,972	17,584
66	Keowee-Toxaway Low Inflow Protocol (LIP)	Number of days in LIP Stage 1	1-Jan	31-Dec		1,351	1,351
67	Stage	Number of days in LIP Stage 2	1-Jan	31-Dec		2,185	2,199
68		Number of days in LIP Stage 3	1-Jan	31-Dec		378	378
69		Number of days in LIP Stage 4	1-Jan	31-Dec		49	49

Background	Performance Measure has improved vs. the Baseline Scenario
Background	Performance Measure has declined vs. the Baseline Scenario
White Background	There is no significant difference between the scenario and the Baseline Scenario by definition of MISC

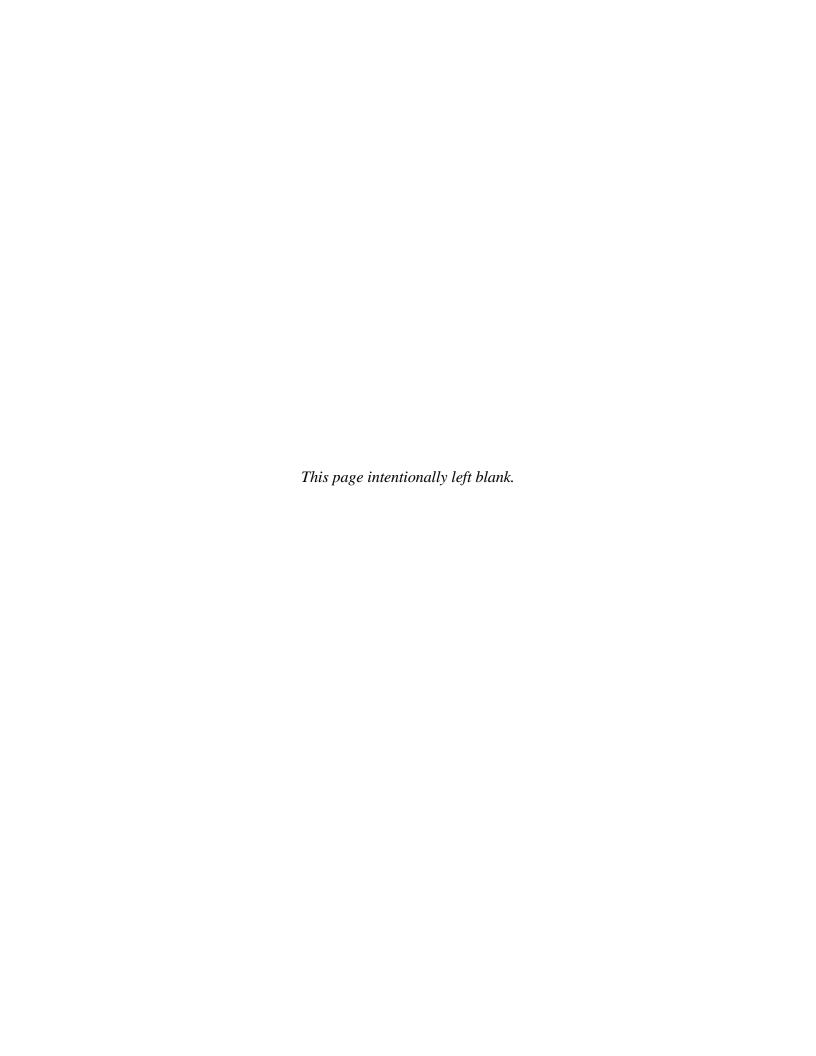
Notes	
	For criterion that measure on an hourly or daily basis, unless stated otherwise:
1	a. If an hourly criteria occurs during the average of four contiguous 15-minute periods, then it counts as 1 hour.
1	b. If a daily criterion occurs for 5 contiguous 1-hour periods, then it counts as 1 day.
	Also, daytime flows are assumed to be flows provided between 7:00 am and 7:00 pm. To the extent possible, each criterion is defined in terms of percents and averages/yr so that the same criterion is useful
	MISC = Minimum Increment of Significant Change. The MISC has the same units (i.e., days, days/yr, percent, etc.) as does the criterion on that same row of the spreadsheet. If the output of two scenarios for a
2	a. As a general rule, MISC numbers are set at 10% of the possible total for that criterion considering the Start/Stop dates.
2	b. MISC numbers for criteria that have the most adverse outcomes if reached are typically set at less than 10% of the possible total for that criterion.
	c. Adjustments to the MISC numbers (up or down) have also been made depending on the desires of the stakeholders that primarily have the interests that are being measured by a particular criterion.
3	Jocassee restricted recreation elevation 1,090 ft AMSL provided by Chris Starker (Upstate Forever) and confirmed by Devils Fork State Park Staff.
4	Jocassee elevation 1,077 ft AMSL is the lowest boat ramp elevation with an additional 3 ft added for boat access. Boat ramp elevations provided by Duke Energy.
5	This criterion evaluates a day as 24 contiguous hours, not as specified in Note 1.
6	Jocassee entrainment elevation (1,096 ft AMSL) provided by Bill Marshall of SCDNR.
7	Jocassee fish habitat elevations provided by Bill Marshall of SCDNR.
8	Jocassee elevation 1,099 ft AMSL is the elevation at which an MOU between Duke Energy and SCDNR requires Duke Energy to implement operational changes at Bad Creek. Jocassee elevation 1,090 ft AMSL is
9	Jocassee elevation 1,081 ft AMSL provided by Duke Energy based on impact to pumping equipment.
10	Keowee restricted recreation elevation of 792 ft AMSL provided by James McRacken (HDR) and Scott Fletcher (Duke Energy).
11	Keowee elevation 790 ft AMSL is based on the lowest boat ramp elevation of 787 ft AMSL plus 3 ft for boat access (provided by Duke Energy).
12	Percent of time is measured as the percent of 15-minute time steps at or above threshold elevation during period starting 07:00 am and period ending 7:00 pm.
13	Toe of Keowee reservoir riprap elevation 794 ft AMSL provided by Duke Energy.
14	This criterion evaluates a day as 24 contiguous hours, not as specified in Note 1.
15	Keowee fish habitat elevations provided by Bill Marshall of SCDNR.
16	Keowee elevation 775 ft AMSL was the minimum level permitted in the previous KT FERC License, and the Keowee water supply intakes present during KT relicensing were confirmed to operate at this
	For this measure a -0.5 ft buffer was added to filter out model excursions below the Keowee reservoir elevation limit of 790.0 ft AMSL. No counts will be displayed for reservoir levels between 789.5 ft AMSL
17	and 790.0 ft AMSL for this measure.
18	Keowee elevation 787.9 ft AMSL is the critical elevation for Keowee to provide backup power to ONS elevation provided by Duke Energy.
19	There are 26,663 days in the POR.

Measure	Performance Measures	Criterion (Note 1)	Start Date	End Date	MISC	Baseline ccLow	Bad Creek II_ccLow
Number	Lake Jocassee	Charles (Note 1)	Gtart Bato	2.10 2010	(Note 2)	(1939-2011)	(1939-2011)
	Elevation - Storage Availability Maximize adherence to reliably meet all					,	, , , , , ,
1	Project-related water demands Elevation - Recreation	Number of years reservoir level at or above 1,108 ft AMSL on May 1	1-May	1-May	5	0	0
2		Number of years where cove access (reservoir level below 1,090 ft AMSL) is restricted for more than 25 days (Note 3)	1-Jan	31-Dec	2	2	1
3	Minimize restricted recreation	Greatest number of days with restricted cove access (reservoir level below 1,090 ft AMSL) during higher use months in any calendar year (Note 3)	1-Mar	31-Oct	5	53	47
4		Greatest number of days with restricted cove access (reservoir level below 1,090 ft AMSL) in any calendar year (Note 3) Number of years where reservoir level is below boat ramp critical level	1-Jan	31-Dec	5	114	108
5	Minimize restricted boat launching	(1,080 ft AMSL) during higher use months for more than 25 days (Note 4) Greatest number of days where reservoir level is below boat ramp critical	1-Mar	31-Oct	2	0	0
6		level (1,080 ft AMSL) during higher use months in any calendar year (Note 4)	1-Mar	31-Oct	5	0	0
7	Minimize effects on recreational boating Elevation - Natural Resources	Number of days where reservoir level changes more than 1.0 ft in one hour	1-Jan	31-Dec	10	0	0
8	Ziovator riadirarricceurece	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 10 consecutive days at least once (Note 5)	1-Apr	31-May	5%	67%	100%
9	Maximina anaugina ayaasa fay	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 15 consecutive days at least once (Note 5)	1-Apr	31-May	5%	33%	97%
10	Maximize spawning success for black bass and blueback herring (2.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 20 consecutive days at least once (Note 5)	1-Apr	31-May	5%	21%	86%
11	(===	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 30 consecutive days at least once (Note 5)	1-Apr	31-May	5%	0%	59%
12		Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 45 consecutive days at least once (Note 5)	1-Apr	31-May	5%	0%	0%
13		Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 10 consecutive days at least once (Note 5) Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band	1-Apr	31-May	5%	100%	100%
14	Maximize spawning success for black bass	for 15 consecutive days at least once (Note 5) Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band	1-Apr	31-May	5%	100%	100%
15	and blueback herring (3.5-ft fluctuation band)	for 20 consecutive days at least once (Note 5) Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band	1-Apr	31-May	5%	99%	100%
16		for 30 consecutive days at least once (Note 5) Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band	1-Apr 1-Apr	31-May 31-May	5%	93%	93%
18		for 45 consecutive days at least once (Note 5) Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band	15-May	15-Jul	5%	41%	100%
19	Maximize spawning success for sunfish and threadfin shad	for 10 consecutive days at least once (Note 5) Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 15 consecutive days at least once (Note 5)	15-May	15-Jul	5%	14%	86%
20	(2.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 20 consecutive days at least once (Note 5)	15-May	15-Jul	5%	0%	1%
21	Maximize spawning success for sunfish and	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 10 consecutive days at least once (Note 5)	15-May	15-Jul	5%	100%	100%
22	threadfin shad (3.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 15 consecutive days at least once (Note 5)	15-May	15-Jul	5%	100%	100%
23	(**************************************	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 20 consecutive days at least once (Note 5)	15-May	15-Jul	5%	78%	96%
24	Minimize entrainment due to Bad Creek operations	Percent of days average reservoir level at or below 1,096 ft AMSL (Note 6)	1-Jan	31-Dec	5%	1%	1%
25		Percent of days average reservoir level below 1,096 ft AMSL (Note 6) Percent of days average reservoir level above 1,107 ft AMSL (Note 7)	1-Dec 1-Apr	31-Mar 	5%	2% ————————————————————————————————————	42%
27	Maximize littoral habitat during growing season	Percent of days average reservoir level above 1,107 it AWSL (Note 7)	1-Apr	30-Sep	5%	91%	91%
28	Maximize littoral habitat during spawning	Percent of days average reservoir level above 1,107 ft AMSL (Note 7)	1-Apr	31-May	5%	20%	16%
29	season	Percent of days average reservoir level above 1,105 ft AMSL (Note 7)	1-Apr	31-May	5%	91%	91%
	Pumped Storage Minimize days below lake levels that impact						
30	Bad Creek operations Minimize days below lake levels that impact	Number of days reservoir level below 1,099 ft AMSL (Note 8) Number of days reservoir level below 1,090 ft AMSL (Note 8)	1-Jan 1-Jan	31-Dec 31-Dec	227	907	128
32	Jocassee operations Minimize days below lake levels that impact	Number of days reservoir level below 1,081 ft AMSL (Note 9)	1-Jan	31-Dec	12	0	0
	Bad Creek efficiency Lake Keowee						
33	Elevation - Storage Availability Maximize adherence to reliably meet all Project-related water demands	Number of years reservoir level at or above 798 ft AMSL on May 1	1-May	1-May	5	69	69
34	Elevation - Aesthetics Maximize lake levels	Percent of time reservoir level at or above 797 ft AMSL	1-Jan	31-Dec	20%	91%	91%
35 36	Minimize significant drawdown of lake level	Percent of time reservoir level at or above 795 ft AMSL Number of days reservoir level below 796 ft AMSL	1-Jan 1-Jan	31-Dec 31-Dec	10% 5	97%	97% 1,731
	Elevation - Recreation	Number of years where cove access (reservoir level below 792 ft AMSL) is					
37		restricted for more than 25 days (Note 10) Greatest number of days with restricted cove access (reservoir level below	1-Jan	31-Dec	2	1	1
38	Minimize restricted recreation	792 ft AMSL) during higher use months in any calendar year (Note 10) Greatest number of days with restricted cove access (reservoir level below	1-Mar	31-Oct	5	1	1
39		792 ft AMSL) in any calendar year (Note 10)	1-Jan	31-Dec	5	41	35
40	Minimize restricted lake boat launching	Number of years where reservoir level is below boat ramp critical level (790 ft AMSL) during higher use months for more than 25 days (Note 11)	1-Mar	31-Oct	2	0	0
41		Greatest number of days where reservoir level is below boat ramp critical level (790 ft AMSL) during higher use months in any calendar year (Note 11)	1-Mar	31-Oct	5	0	0
42	Mayimiza hoot dock usess	Percent of time reservoir level is at or above level where 85% of docks are usable (796.25 ft AMSL) during higher use months from 7:00 am to 7:00 pm (Note 12)	1-Mar	31-Oct	5%	93%	94%
	Maximize boat dock usage	Percent of time reservoir level is at or above level where 70% of docks are	1-Mar	31-Oct	5%	99%	99%

Measure Number	Performance Measures	Criterion (Note 1)	Start Date	End Date	MISC (Note 2)	Baseline_ccLow	Bad Creek II_ccLow
	Elevation - Natural Resources						
44	Minimize number of days water level is below toe of riprap	Number of days reservoir level below 794 ft AMSL (Note 13)	1-Jan	31-Dec	250	619	580
45	Maximin anaumin augus far	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 10 consecutive days at least once (Note 14)	15-Mar	31-May	5%	100%	100%
46	Maximize spawning success for black bass and blueback herring (2.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 15 consecutive days at least once (Note 14)	15-Mar	31-May	5%	100%	100%
47	(2.5-it inuctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 20 consecutive days at least once (Note 14)	15-Mar	31-May	5%	100%	100%
48	A. de de la constant	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 10 consecutive days at least once (Note 14)	15-Mar	31-May	5%	100%	100%
49	Maximize spawning success for black bass and blueback herring	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 15 consecutive days at least once (Note 14)	15-Mar	31-May	5%	100%	100%
50	(3.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 20 consecutive days at least once (Note 14)	15-Mar	31-May	5%	100%	100%
51	Maximize spawning success for	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 10 consecutive days at least once (Note 14)	15-May	15-Jul	5%	100%	100%
52	sunfish and threadfin shad	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 15 consecutive days at least once (Note 14)	15-May	15-Jul	5%	100%	100%
53	(2.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 20 consecutive days at least once (Note 14)	15-May	15-Jul	5%	99%	99%
54	Maximize spawning success for	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 10 consecutive days at least once (Note 14)	15-May	15-Jul	5%	100%	100%
55	sunfish and threadfin shad	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 15 consecutive days at least once (Note 14)	15-May	15-Jul	5%	100%	100%
56	(3.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 20 consecutive days at least once (Note 14)	15-May	15-Jul	5%	99%	99%
57	Maximize littoral habitat during growing	Percent of days average reservoir level above 798 ft AMSL (Note 15)	1-Apr	30-Sep	5%	89%	89%
58	season	Percent of days average reservoir level above 797 ft AMSL (Note 15)	1-Apr	30-Sep	5%	92%	93%
59	Maximize littoral habitat during spawning	Percent of days average reservoir level above 798 ft AMSL (Note 15)	1-Apr	31-May	5%	94%	94%
60	season	Percent of days average reservoir level above 797 ft AMSL (Note 15)	1-Apr	31-May	5%	97%	97%
	Elevation - Water Supply						
61		Number of days reservoir level below critical level (775 ft AMSL) for shallowest public water supply intake operation (Note 16)	1-Jan	31-Dec	1	0	0
62	Minimize days of restricted operation at lake- located intakes	Number of days reservoir level below critical level (789.5 ft AMSL) for shallowest thermal power station operation (Note 17)	1-Jan	31-Dec	1	0	0
63		Number of days reservoir level below critical level (787.9 ft AMSL) for Keowee dam to supply backup power to ONS (Note 18)	1-Jan	31-Dec	1	0	0
	Duke Energy Hydropower & Water Quantity Management						
64		Number of days in LIP Stage Normal (Note 19)	1-Jan	31-Dec		8,707	3,366
65	_	Number of days in LIP Stage 0	1-Jan	31-Dec		13,860	19,187
66	Keowee-Toxaway Low Inflow Protocol (LIP)	Number of days in LIP Stage 1	1-Jan	31-Dec		1,421	1,435
67	Stage	Number of days in LIP Stage 2	1-Jan	31-Dec		2,241	2,227
68		Number of days in LIP Stage 3	1-Jan	31-Dec		385	399
69		Number of days in LIP Stage 4	1-Jan	31-Dec		49	49

Background	Performance Measure has improved vs. the Baseline Scenario
Background	Performance Measure has declined vs. the Baseline Scenario
White Background	There is no significant difference between the scenario and the Baseline Scenario by definition of MISC

Notes	
	For criterion that measure on an hourly or daily basis, unless stated otherwise:
1	a. If an hourly criteria occurs during the average of four contiguous 15-minute periods, then it counts as 1 hour.
1	b. If a daily criterion occurs for 5 contiguous 1-hour periods, then it counts as 1 day.
	Also, daytime flows are assumed to be flows provided between 7:00 am and 7:00 pm. To the extent possible, each criterion is defined in terms of percents and averages/yr so that the same criterion is useful regardless of the
	MISC = Minimum Increment of Significant Change. The MISC has the same units (i.e., days, days/yr, percent, etc.) as does the criterion on that same row of the spreadsheet. If the output of two scenarios for a particular
2	a. As a general rule, MISC numbers are set at 10% of the possible total for that criterion considering the Start/Stop dates.
	b. MISC numbers for criteria that have the most adverse outcomes if reached are typically set at less than 10% of the possible total for that criterion.
	c. Adjustments to the MISC numbers (up or down) have also been made depending on the desires of the stakeholders that primarily have the interests that are being measured by a particular criterion.
3	Jocassee restricted recreation elevation 1,090 ft AMSL provided by Chris Starker (Upstate Forever) and confirmed by Devils Fork State Park Staff.
4	Jocassee elevation 1,077 ft AMSL is the lowest boat ramp elevation with an additional 3 ft added for boat access. Boat ramp elevations provided by Duke Energy.
5	This criterion evaluates a day as 24 contiguous hours, not as specified in Note 1.
6	Jocassee entrainment elevation (1,096 ft AMSL) provided by Bill Marshall of SCDNR.
7	Jocassee fish habitat elevations provided by Bill Marshall of SCDNR.
8	Jocassee elevation 1,099 ft AMSL is the elevation at which an MOU between Duke Energy and SCDNR requires Duke Energy to implement operational changes at Bad Creek. Jocassee elevation 1,090 ft AMSL is the elevation at which an MOU between Duke Energy and SCDNR requires Duke Energy to implement operational changes at Bad Creek. Jocassee elevation 1,090 ft AMSL is the elevation at which an MOU between Duke Energy and SCDNR requires Duke Energy to implement operational changes at Bad Creek. Jocassee elevation 1,090 ft AMSL is the elevation at which an MOU between Duke Energy and SCDNR requires Duke Energy to implement operational changes at Bad Creek. Jocassee elevation 1,090 ft AMSL is the elevation at which an MOU between Duke Energy and SCDNR requires Duke Energy to implement operational changes at Bad Creek. Jocassee elevation 1,090 ft AMSL is the elevation at which are supported by the support of the suppor
9	Jocassee elevation 1,081 ft AMSL provided by Duke Energy based on impact to pumping equipment.
10	Keowee restricted recreation elevation of 792 ft AMSL provided by James McRacken (HDR) and Scott Fletcher (Duke Energy).
11	Keowee elevation 790 ft AMSL is based on the lowest boat ramp elevation of 787 ft AMSL plus 3 ft for boat access (provided by Duke Energy).
12	Percent of time is measured as the percent of 15-minute time steps at or above threshold elevation during period starting 07:00 am and period ending 7:00 pm.
13	Toe of Keowee reservoir riprap elevation 794 ft AMSL provided by Duke Energy.
14	This criterion evaluates a day as 24 contiguous hours, not as specified in Note 1.
15	Keowee fish habitat elevations provided by Bill Marshall of SCDNR.
16	Keowee elevation 775 ft AMSL was the minimum level permitted in the previous KT FERC License, and the Keowee water supply intakes present during KT relicensing were confirmed to operate at this reservoir level.
	For this measure a -0.5 ft buffer was added to filter out model excursions below the Keowee reservoir elevation limit of 790.0 ft AMSL. No counts will be displayed for reservoir levels between 789.5 ft AMSL and 790.0 ft AMSL
17	for this measure.
18	Keowee elevation 787.9 ft AMSL is the critical elevation for Keowee to provide backup power to ONS elevation provided by Duke Energy.
19	There are 26,663 days in the POR.

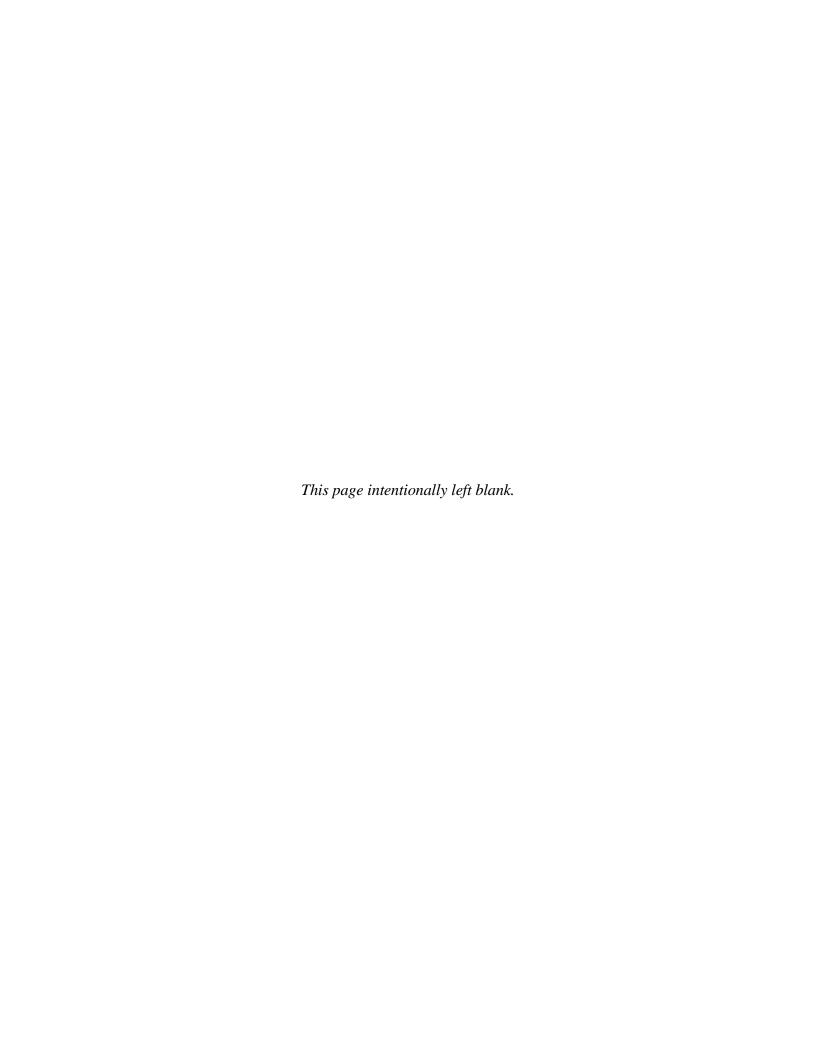

Measure	Porformance Massacras	Cuitavian (Alata 4)	Start Data	End Data	MISC	Racoline collist	Rad Crook II acliich
Number	Performance Measures	Criterion (Note 1)	Start Date	End Date	(Note 2)	Baseline_ccHigh	Bad Creek II_ccHigh
	Lake Jocassee Elevation - Storage Availability					(1939-2011)	(1939-2011)
1	Maximize adherence to reliably meet all Project-related water demands	Number of years reservoir level at or above 1,108 ft AMSL on May 1	1-May	1-May	5	0	0
2	Elevation - Recreation	Number of years where cove access (reservoir level below 1,090 ft AMSL) is	1-Jan	31-Dec	2	3	2
		restricted for more than 25 days (Note 3)	1-7811	31-Dec	2	3	2
3	Minimize restricted recreation	Greatest number of days with restricted cove access (reservoir level below 1,090 ft AMSL) during higher use months in any calendar year (Note 3)	1-Mar	31-Oct	5	86	85
4		Greatest number of days with restricted cove access (reservoir level below 1,090 ft AMSL) in any calendar year (Note 3)	1-Jan	31-Dec	5	128	131
5		Number of years where reservoir level is below boat ramp critical level	1-Mar	31-Oct	2	0	0
	Minimize restricted boat launching	(1,080 ft AMSL) during higher use months for more than 25 days (Note 4) Greatest number of days where reservoir level is below boat ramp critical					
6		level (1,080 ft AMSL) during higher use months in any calendar year (Note 4)	1-Mar	31-Oct	5	0	0
7	Minimize effects on recreational boating	Number of days where reservoir level changes more than 1.0 ft in one hour	1-Jan	31-Dec	10	0	0
8	Elevation - Natural Resources	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band	1-Apr	31-May	5%	73%	100%
9		for 10 consecutive days at least once (Note 5) Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band	·	31-May	5%	40%	95%
	Maximize spawning success for	for 15 consecutive days at least once (Note 5) Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band	· ·	,			
10	black bass and blueback herring (2.5-ft fluctuation band)	for 20 consecutive days at least once (Note 5) Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band	1-Apr	31-May	5%	23%	86%
11		for 30 consecutive days at least once (Note 5) Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band	1-Apr	31-May	5%	1%	63%
12		for 45 consecutive days at least once (Note 5) Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band	1-Apr	31-May	5%	0%	0%
13		for 10 consecutive days at least once (Note 5) Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band	1-Apr	31-May	5%	100%	100%
14	Maximize spawning success for black bass	for 15 consecutive days at least once (Note 5)	1-Apr	31-May	5%	100%	100%
15	and blueback herring (3.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 20 consecutive days at least once (Note 5)	1-Apr	31-May	5%	99%	100%
16		Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 30 consecutive days at least once (Note 5)	1-Apr	31-May	5%	92%	92%
17		Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 45 consecutive days at least once (Note 5)	1-Apr	31-May	5%	56%	79%
18	Maximize spawning success for sunfish and	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 10 consecutive days at least once (Note 5)	15-May	15-Jul	5%	55%	100%
19	threadfin shad (2.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 15 consecutive days at least once (Note 5)	15-May	15-Jul	5%	19%	85%
20	(2.3-it nuctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 20 consecutive days at least once (Note 5)	15-May	15-Jul	5%	3%	3%
21		Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 10 consecutive days at least once (Note 5)	15-May	15-Jul	5%	100%	100%
22	Maximize spawning success for sunfish and threadfin shad	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 15 consecutive days at least once (Note 5)	15-May	15-Jul	5%	100%	100%
23	(3.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 20 consecutive days at least once (Note 5)	15-May	15-Jul	5%	82%	96%
24	Minimize entrainment due to Bad Creek	Percent of days average reservoir level at or below 1,096 ft AMSL (Note 6)	1-Jan	31-Dec	5%	5%	5%
25	operations	Percent of days average reservoir level below 1,096 ft AMSL (Note 6)	1-Dec	31-Mar	5%	6%	6%
26	Maximize littoral habitat during growing	Percent of days average reservoir level above 1,107 ft AMSL (Note 7)	1-Apr	30-Sep	5%	43%	38%
27	season	Percent of days average reservoir level above 1,105 ft AMSL (Note 7)	1-Apr	30-Sep	5%	87%	87%
28	Maximize littoral habitat during spawning	Percent of days average reservoir level above 1,107 ft AMSL (Note 7)	1-Apr	31-May	5%	19%	14%
29	season	Percent of days average reservoir level above 1,105 ft AMSL (Note 7)	1-Apr	31-May	5%	90%	90%
	Pumped Storage						
30	Minimize days below lake levels that impact Bad Creek operations	Number of days reservoir level below 1,099 ft AMSL (Note 8)	1-Jan	31-Dec	227	2,272	2,086
31	Minimize days below lake levels that impact Jocassee operations	Number of days reservoir level below 1,090 ft AMSL (Note 8)	1-Jan	31-Dec	14	224	246
32	Minimize days below lake levels that impact Bad Creek efficiency	Number of days reservoir level below 1,081 ft AMSL (Note 9)	1-Jan	31-Dec	12	0	10
	Lake Keowee Elevation - Storage Availability						
33	Maximize adherence to reliably meet all Project-related water demands	Number of years reservoir level at or above 798 ft AMSL on May 1	1-May	1-May	5	67	67
34	Elevation - Aesthetics	Percent of time reservoir level at or above 797 ft AMSL	1-Jan	31-Dec	20%	87%	87%
35	Maximize lake levels	Percent of time reservoir level at or above 795 ft AMSL	1-Jan	31-Dec	10%	95%	95%
36	Minimize significant drawdown of lake level Elevation - Recreation	Number of days reservoir level below 796 ft AMSL	1-Jan	31-Dec	5	2,886	2,761
37		Number of years where cove access (reservoir level below 792 ft AMSL) is restricted for more than 25 days (Note 10)	1-Jan	31-Dec	2	0	0
38	Minimize restricted recreation	Greatest number of days with restricted cove access (reservoir level below	1-Mar	31-Oct	5	0	14
		792 ft AMSL) during higher use months in any calendar year (Note 10) Greatest number of days with restricted cove access (reservoir level below	±⊣viai				
39		792 ft AMSL) in any calendar year (Note 10)	1-Jan	31-Dec	5	0	23
40		Number of years where reservoir level is below boat ramp critical level (790 ft AMSL) during higher use months for more than 25 days (Note 11)	1-Mar	31-Oct	2	0	0
	Minimize restricted lake boat launching	Greatest number of days where reservoir level is below boat ramp critical		24.5		_	_
41		level (790 ft AMSL) during higher use months in any calendar year (Note 11)	1-Mar	31-Oct	5	0	0
42		Percent of time reservoir level is at or above level where 85% of docks are usable (796.25 ft AMSL) during higher use months from 7:00 am to 7:00 pm	1-Mar	31-Oct	5%	90%	90%
	Maximize boat dock usage	(Note 12) Percent of time reservoir level is at or above level where 70% of docks are					
43		usable (793.5 ft AMSL) during higher use months from 7:00 am to 7:00 pm	1-Mar	31-Oct	5%	99%	99%

Measure Number	Performance Measures	Criterion (Note 1)	Start Date	End Date	MISC (Note 2)	Baseline_ccHigh	Bad Creek II_ccHigh
	Elevation - Natural Resources						
44	Minimize number of days water level is below toe of riprap	Number of days reservoir level below 794 ft AMSL (Note 13)	1-Jan	31-Dec	250	869	858
45	Maximize spawning success for	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 10 consecutive days at least once (Note 14)	15-Mar	31-May	5%	100%	100%
46	black bass and blueback herring (2.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 15 consecutive days at least once (Note 14)	15-Mar	31-May	5%	100%	100%
47	(2.5 Te nuccuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 20 consecutive days at least once (Note 14)	15-Mar	31-May	5%	100%	100%
48	Maximize spawning success for	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 10 consecutive days at least once (Note 14)	15-Mar	31-May	5%	100%	100%
49	black bass and blueback herring (3.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 15 consecutive days at least once (Note 14)	15-Mar	31-May	5%	100%	100%
50	(3.3-it iluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 20 consecutive days at least once (Note 14)	15-Mar	31-May	5%	100%	100%
51	Maximize spawning success for	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 10 consecutive days at least once (Note 14)	15-May	15-Jul	5%	100%	100%
52	sunfish and threadfin shad (2.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 15 consecutive days at least once (Note 14)	15-May	15-Jul	5%	100%	100%
53	(2.5-it iluctuation ballu)	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 20 consecutive days at least once (Note 14)	15-May	15-Jul	5%	99%	99%
54	Maying a analysis a success for	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 10 consecutive days at least once (Note 14)	15-May	15-Jul	5%	100%	100%
55	Maximize spawning success for sunfish and threadfin shad (3.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 15 consecutive days at least once (Note 14)	15-May	15-Jul	5%	100%	100%
56		Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 20 consecutive days at least once (Note 14)	15-May	15-Jul	5%	99%	99%
57	Maximize littoral habitat during growing	Percent of days average reservoir level above 798 ft AMSL (Note 15)	1-Apr	30-Sep	5%	84%	84%
58	season	Percent of days average reservoir level above 797 ft AMSL (Note 15)	1-Apr	30-Sep	5%	88%	88%
59	Maximize littoral habitat during spawning	Percent of days average reservoir level above 798 ft AMSL (Note 15)	1-Apr	31-May	5%	90%	91%
60	season	Percent of days average reservoir level above 797 ft AMSL (Note 15)	1-Apr	31-May	5%	92%	93%
	Elevation - Water Supply						
61		Number of days reservoir level below critical level (775 ft AMSL) for shallowest public water supply intake operation (Note 16)	1-Jan	31-Dec	1	0	0
62	Minimize days of restricted operation at lake- located intakes	Number of days reservoir level below critical level (789.5 ft AMSL) for shallowest thermal power station operation (Note 17)	1-Jan	31-Dec	1	0	0
63		Number of days reservoir level below critical level (787.9 ft AMSL) for Keowee dam to supply backup power to ONS (Note 18)	1-Jan	31-Dec	1	0	0
	Duke Energy Hydropower & Water Quantity Management						
64		Number of days in LIP Stage Normal (Note 19)	1-Jan	31-Dec		7,860	4,276
65		Number of days in LIP Stage 0	1-Jan	31-Dec		13,160	16,793
66	Keowee-Toxaway Low Inflow Protocol (LIP)	Number of days in LIP Stage 1	1-Jan	31-Dec		2,625	2,527
67	Stage	Number of days in LIP Stage 2	1-Jan	31-Dec		2,213	2,304
68	<u>J</u>	Number of days in LIP Stage 3	1-Jan	31-Dec		805	728
69		Number of days in LIP Stage 4	1-Jan	31-Dec		0	35

Background	Performance Measure has improved vs. the Baseline Scenario
Background	Performance Measure has declined vs. the Baseline Scenario
White Background	There is no significant difference between the scenario and the Baseline Scenario by definition of MISC

Notes	
Notes	For criterion that measure on an hourly or daily basis, unless stated otherwise:
1	
	a. If an hourly criteria occurs during the average of four contiguous 15-minute periods, then it counts as 1 hour.
	b. If a daily criterion occurs for 5 contiguous 1-hour periods, then it counts as 1 day.
	Also, daytime flows are assumed to be flows provided between 7:00 am and 7:00 pm. To the extent possible, each criterion is defined in terms of percents and averages/yr so that the same criterion is useful regardless of the length
	MISC = Minimum Increment of Significant Change. The MISC has the same units (i.e., days, days/yr, percent, etc.) as does the criterion on that same row of the spreadsheet. If the output of two scenarios for a particular criterion
2	a. As a general rule, MISC numbers are set at 10% of the possible total for that criterion considering the Start/Stop dates.
	b. MISC numbers for criteria that have the most adverse outcomes if reached are typically set at less than 10% of the possible total for that criterion.
	c. Adjustments to the MISC numbers (up or down) have also been made depending on the desires of the stakeholders that primarily have the interests that are being measured by a particular criterion.
3	Jocassee restricted recreation elevation 1,090 ft AMSL provided by Chris Starker (Upstate Forever) and confirmed by Devils Fork State Park Staff.
4	Jocassee elevation 1,077 ft AMSL is the lowest boat ramp elevation with an additional 3 ft added for boat access. Boat ramp elevations provided by Duke Energy.
5	This criterion evaluates a day as 24 contiguous hours, not as specified in Note 1.
6	Jocassee entrainment elevation (1,096 ft AMSL) provided by Bill Marshall of SCDNR.
7	Jocassee fish habitat elevations provided by Bill Marshall of SCDNR.
8	Jocassee elevation 1,099 ft AMSL is the elevation at which an MOU between Duke Energy and SCDNR requires Duke Energy to implement operational changes at Bad Creek. Jocassee elevation 1,090 ft AMSL is the elevation at
9	Jocassee elevation 1,081 ft AMSL provided by Duke Energy based on impact to pumping equipment.
10	Keowee restricted recreation elevation of 792 ft AMSL provided by James McRacken (HDR) and Scott Fletcher (Duke Energy).
11	Keowee elevation 790 ft AMSL is based on the lowest boat ramp elevation of 787 ft AMSL plus 3 ft for boat access (provided by Duke Energy).
12	Percent of time is measured as the percent of 15-minute time steps at or above threshold elevation during period starting 07:00 am and period ending 7:00 pm.
13	Toe of Keowee reservoir riprap elevation 794 ft AMSL provided by Duke Energy.
14	This criterion evaluates a day as 24 contiguous hours, not as specified in Note 1.
15	Keowee fish habitat elevations provided by Bill Marshall of SCDNR.
16	Keowee elevation 775 ft AMSL was the minimum level permitted in the previous KT FERC License, and the Keowee water supply intakes present during KT relicensing were confirmed to operate at this reservoir level.
	For this measure a -0.5 ft buffer was added to filter out model excursions below the Keowee reservoir elevation limit of 790.0 ft AMSL. No counts will be displayed for reservoir levels between 789.5 ft AMSL and 790.0 ft AMSL for
17	this measure.
18	Keowee elevation 787.9 ft AMSL is the critical elevation for Keowee to provide backup power to ONS elevation provided by Duke Energy.
19	There are 26,663 days in the POR.

Attachment 5 Water Quality Monitoring Plan



BAD CREEK II POWER COMPLEX WATER QUALITY MONITORING PLAN

Bad Creek Pumped Storage Project FERC Project No. 2740

Oconee County, South Carolina

February, 2025

WATER QUALITY MONITORING PLAN BAD CREEK PUMPED STORAGE PROJECT FERC PROJECT NO. 2740

TABLE OF CONTENTS

Section	Title	Page No.
	t Introduction	
2 Plan D	escription and Format	2
	ives	
4 Projec	t Background	4
	riginal License Requirements	
	istoric Water Quality Monitoring	
	ecent Monitoring and Stream Surveys	
4.3.1	Lake Jocassee Water Quality Monitoring	
4.3.2	Stream Surveys	
	CDES State Water Quality Standards	
	Quality Monitoring Plan Development	
	nke Jocassee	
5.1.1	Potential Impacts and Monitoring Rationale	
5.1.2	Existing Data and Background Information	
5.1.3	Proposed Methods	
5.1.4	Proposed Reporting Criteria	
5.1.5	Summary	
-	pland Areas Surface Waters	
5.2.1	Potential Impacts and Monitoring Rationale	
5.2.2	Existing Data and Background Information	
5.2.3	Proposed Methods	
5.2.4	Reporting	
	older and Agency Coordination	
7 Refere	nces	40
	LIST OF TABLES	
	South Carolina Numeric State Water Quality Standards for Parar	
	ters	
	Dissolved Oxygen in Surface Waters of Lake Jocassee	
	Water Temperature in Surface Waters of Lake Jocassee	
	pH in Surface Waters of Lake Jocassee	
Table 5-4.	Turbidity in Surface Waters of Whitewater River Cove	19

TABLE OF CONTENTS

CONTINUED

Section	Title	Page No.
	LIST OF FIGURES	
Figure 5-1. Duke Energy	Water Quality Monitoring Stations Lake Jocass	see15
Figure 5-2. Surface Turbi	idity in the Whitewater River Arm during Pre-C	onstruction,
Construction, and Post-Construction	onstruction Periods	20
Figure 5-3. Proposed Cor	mpliance Point (Station 563.0) and Proposed Tea	mporary Boat Barrier 26
Figure 5-4. Rendering of	Proposed Boat Barrier downstream of the Lowe	er Reservoir I/O for
Water Quality Compliance	ce Monitoring	27
Figure 5-5. Proposed Stre	eam Habitat Quality Monitoring Locations and I	Preliminary Spoil Areas
		37

ACRONYMS AND ABBREVIATIONS

Bad Creek or Project Bad Creek Pumped Storage Project

Bad Creek II or Complex Bad Creek II Power Complex

Bad Creek Reservoir upper reservoir

BMP best management practice

CWA Clean Water Act
DO dissolved oxygen

Duke Energy or Licensee Duke Energy Carolinas, LLC ESC Erosion and Sediment Control

ft feet/foot

ft msl feet above mean sea level

FERC or Commission Federal Energy Regulatory Commission

HDR Engineering, Inc.
KT Project Keowee-Toxaway Project
LOD limits of disturbance
mg/L milligrams per liter

mi² square miles

MOU Memorandum of Understanding

NCSAM North Carolina Stream Assessment Method

NPDES National Pollutant Discharge Elimination Program

NTU Nephelometric Turbidity Units

PM&E protection, mitigation and enhancement

I/O structure inlet/outlet structure

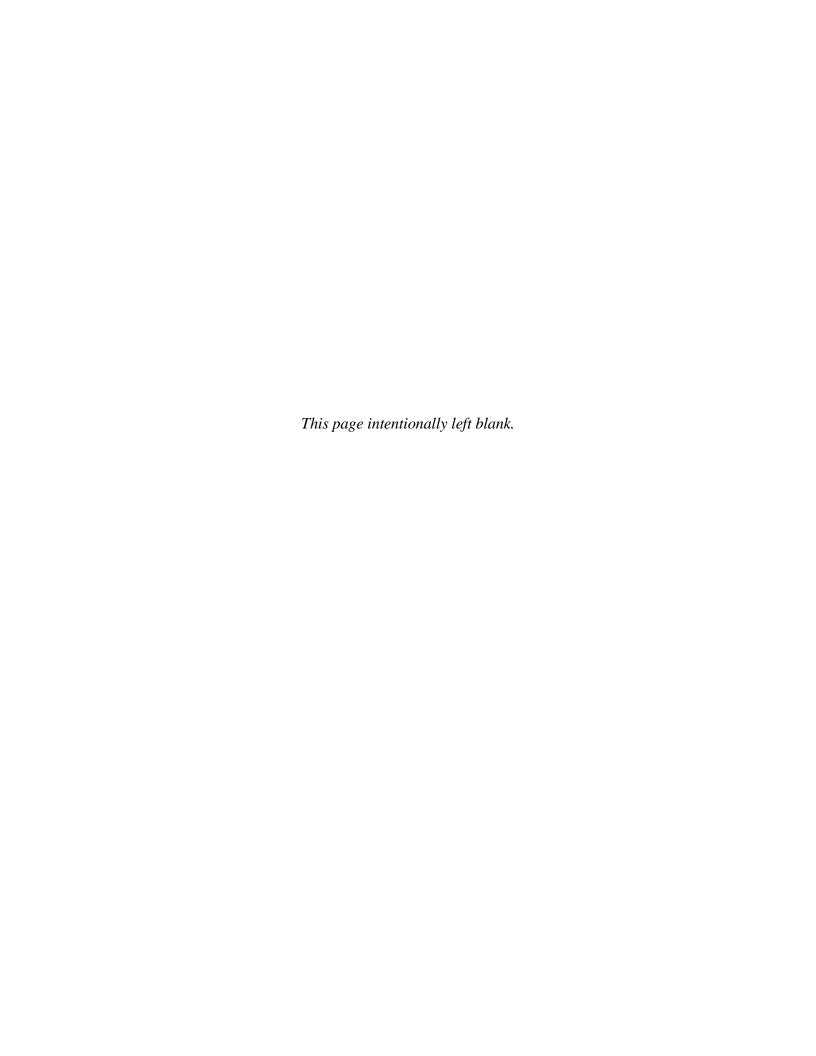
SCDHEC South Carolina Department of Health and Environmental Control

SCDNR South Carolina Department of Natural Resources
SCDES South Carolina Department of Environmental Services

SQT South Carolina Stream Quantification Tool

SOP Standard Operating Procedures

C-SWPPP Comprehensive Stormwater Pollution Prevention Plan


O-SWPPP Onsite Stormwater Pollution Protection Plan

USACE U.S. Army Corps of Engineers

USEPA U.S. Environmental Protection Agency

USGS
U.S. Geological Survey
ug/L
micrograms per liter
WOTUS
Waters of the U.S.

WQMP or Plan Bad Creek II Complex Water Quality Monitoring Plan

1 Project Introduction

Duke Energy Carolinas, LLC (Duke Energy or Licensee) is the owner and operator of the 1,400-megawatt Bad Creek Pumped Storage Project (Project) (FERC Project No. 2740) located in Oconee County, South Carolina, approximately eight miles north of Salem. The Project utilizes the Bad Creek Reservoir as the upper reservoir and Lake Jocassee, which is licensed as part of the Keowee-Toxaway Hydroelectric Project (KT Project; FERC Project No. 2503), as the lower reservoir.

The existing (original) license for the Project was issued by the Federal Energy Regulatory Commission (FERC or Commission) for a 50-year term, with an effective date of August 1, 1977, and expires July 31, 2027. The license has been subsequently and substantively amended, with the most recent amendment on August 6, 2018 for authorization to upgrade and rehabilitate the four pump-turbines in the powerhouse and increase the Authorized Installed and Maximum Hydraulic capacities for the Project. ¹

Given the need for additional significant energy storage and renewable energy generation across Duke Energy's service territories over the Project's new 40 to 50-year license term, Duke Energy is evaluating opportunities to add pumping and generating capacity at the Project. Additional energy storage and generation capacity would be developed by constructing a new power complex (including a new underground powerhouse) adjacent to the existing Bad Creek powerhouse. Therefore, construction of the 1,400-megawatt Bad Creek II Power Complex (Bad Creek II or Bad Creek II Complex) is an alternative relicensing proposal presently being evaluated by Duke Energy.

¹ Duke Energy Carolinas LLC, 164 FERC ¶ 62,066 (2018)

2 Plan Description and Format

The development of the Bad Creek II Complex and construction activities associated with the new facility components could result in temporary and permanent impacts to water resources at the Project. As part of the relicensing studies, Duke Energy proposed to develop a Water Quality Monitoring Plan (WQMP or Plan) in consultation with agencies focused on water quality impacts associated with the Bad Creek II Complex as part of the new license. Development of this plan was described in the Revised Study Plan filed with the Commission in accordance with 18 CFR §5.15 and was listed as one of the protection, mitigation, and enhancement (PM&E) measures for potential impacts in the Pre-Application Document (Duke Energy 2022):

 Development of a Water Quality Monitoring Plan in consultation with agencies, including monitoring locations, methods, and reporting criteria for major parameters such as DO, temperature, pH, specific conductance, and turbidity for Project construction (pre-, during, and post-construction) and operation.

The WQMP considers water quality and monitoring methods in the Whitewater River cove of Lake Jocassee as well as stream conditions in upland areas that will potentially be affected by Bad Creek II construction activities. Site-specific monitoring prior to Bad Creek II construction (i.e., pre-construction phase), during construction (i.e., construction phase), and following construction (i.e., post-construction) to document operational conditions is proposed.

This Plan describes two different monitoring strategies to assess Project waters depending on location (i.e., Lake Jocassee vs. upland areas). As further discussed in Section 5, select water quality parameters in the Whitewater River cove of Lake Jocassee will be measured via a multiparameter sonde, while upland surface waters will be monitored downstream of impacted areas via stream habitat quality surveys. These stream assessments will consider stream conditions, aquatic resources, and habitat function and will be supported by routine monitoring of storm events and best management practices (BMPs), which will be developed and implemented though the Erosion and Sediment Control (ESC) permitting process (i.e., National Pollutant Discharge Elimination System [NPDES] for Construction Stormwater). Efforts carried out during Plan development will also aid information gathering in support of Clean Water Act (CWA) 404/401 permitting related to potential impacts to surface waters downstream from

upland spoil locations as well as potential impacts to Lake Jocassee from construction activities and proposed submerged weir expansion.

This Plan presents relevant background information, objectives, monitoring rationale, and methods for monitoring. A separate Standard Operating Procedures (SOP) document will be developed following issuance of a joint U.S. Army Corps [USACE] CWA 404/401 permit for construction of Bad Creek II. The SOP will include detailed aspects of field monitoring including sampling locations and maps, sampling methods, instrumentation specifications, and field data collection forms. The SOP will provide procedures for consistent and scientifically valid quantitative and qualitative monitoring in support of water and aquatic resources for Bad Creek II Complex construction.

3 Objectives

Development of the WQMP was proposed as Task 5 of the Water Resources Study (*Future Water Quality Monitoring Plan Development*) and was developed in consultation with agencies and stakeholders. It is intended to provide sufficient information to support an analysis of the potential Project-related effects on water resources with nexus to the Project and proposed Bad Creek II Complex. The WQMP focuses on the proposed Bad Creek II Complex with the main goal of identifying applicable water quality parameters and/or surface water conditions to monitor associated with construction as well as appropriate monitoring methods for compliance with the South Carolina Department of Environmental Services (SCDES)² regulations and protection of existing uses.

² SCDES was established on July 1, 2024, when the South Carolina Department of Health and Environmental Control (SCDHEC) became two separate agencies.

4 Project Background

The Project is located in the Blue Ridge physiographic province in the headwaters of the Savannah River basin. The Savannah River basin has an area of approximately 10,577 square miles (mi²) and drains portions of the Blue Ridge, Piedmont, and Coastal Plain regions.

The Project uses the Bad Creek Reservoir as its upper reservoir, which has a drainage area of approximately 1.5 mi². Construction of the Project began in December 1985 and major work was completed by December 1990; initial filling of the Bad Creek Reservoir began in January 1991. Prior to impoundment, Bad Creek and West Bad Creek were tributaries of Howard Creek (a tributary to Lake Jocassee) located near the toe of the Main Dam and West Dam, respectively. Howard Creek flows from its headwaters (northwest of the Project) and through the southern border of the Project Boundary with a drainage area of approximately 4.3 mi² at its downstream confluence with Limber Pole Creek. Seepage through the two earthen dams now flows into Howard Creek near the toe of each dam. Average seepage flows from the Main Dam and the West Dam are approximately 5.0 cubic feet (ft) per second combined. Water from Bad Creek Reservoir is exchanged directly with Lake Jocassee. Due to the small drainage area of Bad Creek Reservoir, inflows are minimal and have limited to no effect on water quality or Project operations.

Lake Jocassee, which operates as the lower reservoir for the Project, was formed by impounding the Keowee River at river mile 343.6, just downstream of the confluence of the Whitewater and Toxaway rivers. Lake Jocassee has a drainage area of 145 mi², a surface area of approximately 7,980 acres, and approximately 92 miles of shoreline at full pond (1,110 ft above mean sea level [msl]). Water from Lake Jocassee flows directly into Lake Keowee, which was formed by impounding the Keowee River and the Little River.

During Project construction, excavated rockfill was hauled to the western shore of Whitewater River cove (also called Whitewater River arm), transported out into the lake on barges, and placed in the water to construct an underwater weir approximately 1,800 ft downstream of the Project inlet/outlet (I/O) structure (weir midpoint lat/long coordinates 35.0015, -82.991509). The existing submerged weir is approximately 567 ft wide and 455 ft long with a crest elevation of approximately 1,060 ft msl. It was constructed to help minimize the effects of Project operations

FD3

on the natural stratification of Lake Jocassee downstream of the weir and dissipate the energy of the discharging water from the Project's I/O structure. Duke Energy is proposing to expand the existing submerged weir in the downstream direction (weir crest will have same elevation) with newly excavated rockfill from the proposed Bad Creek II Complex. Results of recent modeling efforts in the Whitewater River cove indicate stratification is maintained downstream of the proposed expanded weir similar to current conditions.³

4.1 Original License Requirements

As a condition of the Original License for the Project, Duke Energy entered into a Memorandum of Understanding (MOU) with the South Carolina Department of Natural Resources (SCDNR) for the long-term management and maintenance of high-quality fishery resources in Lake Keowee, Lake Jocassee, and their tributary streams (Duke Power and SCDNR 1996). The MOU called for successive 10-Year Work Plans⁴ (i.e., 1996 – 2005; 2006 – 2015; and 2017 – 2027). Each Work Plan identifies specific management activities, funding initiatives, and communications protocols which both Duke Energy and SCDNR believe are important to the effective management of the KT area's fishery resources.

Major PM&E measures for original Project construction as well as ongoing Project operation were primarily focused on fisheries, water quality, and recreation, and are established by the following:

- Bad Creek Project License Exhibit S (Environmental Study Plans)⁵
- Duke Energy and SCDNR MOU and 10-Year Work Plans
- KT Project Relicensing Agreement
- Recreation Plan (Exhibit R)

³ Three-dimensional Computational Fluid Dynamics modeling methods and results are included in final report *Velocity Effects and Vertical Mixing in Lake Jocassee Due to a Second Powerhouse* filed with the Initial Study Report. Available at FERC eLibrary: https://elibrary.ferc.gov/eLibrary/filelist?accession_num=20240104-5044.

⁴ The first two Ten-Year Work Plans were titled "Keowee-Toxaway Fishery Resources Work Plan." However, several activities conducted under these work plans were identified as PM&E measures for the KT Project and were included in the KT Relicensing Agreement. As a result, those measures were not included in the 2017-2027 Work Plan and it is now titled "Bad Creek Fishery Resources Work Plan."

⁵ License Article #32 (as amended on May 2, 1978, August 15, 1979, and October 2, 1995) required Duke Energy to file a revised Exhibit S within one year of license issuance to address fish and wildlife PM&E measures.

The MOU and first 10-Year Work Plan were approved pursuant to Article 32(b)(1) of the license for the Bad Creek Project on May 1, 1997. Activities included in the 10-Year Work Plans are focused on fisheries surveys and inventories, water quality and aquatic habitat evaluations, fish stocking, recreation, and shoreline impacts. Several activities under the 10-Year Work Plans were later identified as PM&E measures appropriate for transfer to the KT Project and are now addressed under the KT Project Relicensing Agreement associated with the FERC license issued in 2016. These included an agreement on measures to reduce fish entrainment at the Jocassee Pumped Storage Station, an agreement to maintain pelagic trout habitat in Lake Jocassee, and an agreement to maintain the lower Eastatoe Creek angler access area, as well as a requirement to monitor dissolved oxygen (DO) concentrations in the tailwaters of the Jocassee and Keowee Developments each August for the term of the KT Project license to demonstrate compliance with South Carolina's water quality standards regulated by SCDES.

The current 10-Year Work Plan continues many of the management activities implemented in prior work plans. The current Work Plan is composed of five main elements and will continue until 2027:

- 1. agreement on minimizing fish entrainment via the Project;
- 2. hydroacoustic monitoring of small pelagic fish;
- 3. electrofishing of littoral fish populations;
- 4. cost sharing for trout stocking; and
- 5. cost sharing for fisheries research and enhancements.

Duke Energy's trout habitat monitoring program addresses two different license articles for the Bad Creek Project. License Article #32(b)(2) covers Lake Jocassee pelagic trout habitat and License Article #34 covers Lake Jocassee water quality (both articles required Duke Energy to conduct a water quality and trout habitat monitoring program for a 5-year period (i.e., 1995 – 1999)⁶ to capture conditions upon Project start-up.

⁶ The pelagic trout habitat monitoring program in Lake Jocassee began in 1973 to coincide with operations at the Jocassee Pumped Storage Station. Under the existing monitoring program, if trout habitat is projected to be less than 10 meters thick (based on water temperatures and DO concentrations) by September of each year, Duke Energy will measure water temperature and DO in June and August to monitor thickness, as well as consult with SCDNR regarding potential modifications to hydropower operations; however, this situation has yet to arise based on monitoring. This condition has never been triggered during the Original License term.

Although Lake Jocassee water quality meets all state water quality standards, SCDES's water quality certification (CWA Section 401; SCDHEC 1995) requires Duke Energy to monitor DO, therefore, this parameter (as well as temperature) is still routinely monitored in the Keowee Hydro Station and Jocassee Pumped Storage Station tailwaters. In 2008, Duke Energy installed water quality monitors (temperature, DO, conductivity, and water level) in the tailraces of both Jocassee and Keowee hydroelectric stations. A summary of data is included in Section 6.3 of the Pre-Application Document (Duke Energy 2022).

As indicated above, activities associated with water quality monitoring in Lake Jocassee (trout habitat, DO and temperature monitoring) will continue throughout the remainder of the KT Project license term, which extends until August 31, 2046.

4.2 Historic Water Quality Monitoring

Bad Creek Reservoir is used only for Project operations; it is not designated for any other uses and therefore has no applicable state or federal water quality standards. While there are no state or federal water quality standards applicable to the waters of the upper reservoir, Lake Jocassee is included in the highest water quality classification (i.e., excellent rating) as designated by SCDES and preservation of existing conditions is recommended, with most tributaries within the watershed fully supporting their designated uses. Lake Jocassee is one of only a few reservoirs in South Carolina that possesses the necessary aquatic habitat (water temperature and DO) to support both a warmwater and a coldwater (salmonid [trout]) fishery year-round (USACE 2014) and Duke Energy has monitored water quality conditions in Lake Jocassee since its formation (1974). Streams affected by the original construction of the Project include Bad Creek and West Bad Creek, which were dammed to create the upper reservoir, and Howard Creek, which flows immediately downstream of the Project's main dam and enters Lake Jocassee.

As part of the ongoing relicensing effort for the Project, Duke Energy carried out a comprehensive desktop analysis of historic water quality in Lake Jocassee that included DO concentration, DO saturation, water temperature, conductivity, phosphorus, and nitrogen data from 12 water quality monitoring stations. Data were compared between pre-Project and post-Project operations. Turbidity values (vertical profiles) were also assessed at the three Whitewater River cove locations (Stations 564.1, 564.0, and 560.0) to identify potential relationships

between past project construction activities and increased turbidity as well as downstream extent of turbidity impacts (from original construction) in Whitewater River cove. Turbidity data were compiled and presented in a format that shows pre-construction, construction, and post-construction conditions to help inform future potential water quality/turbidity impacts from the construction of Bad Creek II. Additionally, historic water quality data collected by Clemson University on Howard Creek was compiled. Results from these desktop analyses (i.e., Lake Jocassee and Howard Creek) were developed in collaboration with relicensing stakeholders and State resource and regulatory agencies and were provided in the *Existing Water Quality Summary Final Report*⁷, which was submitted with the Initial Study Report as Appendix A, Attachment 1 (Duke Energy 2024).

4.3 Recent Monitoring and Stream Surveys

4.3.1 Lake Jocassee Water Quality Monitoring

Under Task 2 of the Water Resources Study for Project relicensing, locations associated with the three historic water quality stations in Whitewater River cove were monitored to support an analysis of the potential Project-related effects on water resources in the Whitewater River arm (also called the Whitewater River cove) under existing and upgraded unit operations. Specifically, the effectiveness of the existing submerged weir, vertical mixing upstream and downstream of the weir, and the effects of Project discharge on stratification in the Whitewater River cove were evaluated. During study year 1 (2023), objectives were met through continuous and bi-weekly water quality monitoring of water temperature and DO at three historic monitoring stations in the Whitewater River cove of Lake Jocassee. Data collection was carried out from June 1 through September 30 when water temperatures are expected to be warmest and stratification is at its peak. Water quality monitoring efforts are being repeated in the summer of 2024 to capture conditions in the Whitewater River cove with all four existing Bad Creek unit upgrades complete.

In the absence of water quality data or monitoring in Bad Creek Reservoir (upper reservoir), water quality results from this effort provide representative water quality conditions in the upper

⁷ Bad Creek Pumped Storage Project Initial Study Report, FERC eLibrary Accession Number 20240104-5044. URL: https://elibrary.ferc.gov/eLibrary/filelist?accession_num=20240104-5044.

reservoir, as water is exchanged directly between the upper reservoir and the Whitewater River arm of Lake Jocassee.⁸ Additionally, while proposed Project operations are not expected to impose adverse effects on water quality, these baseline water quality data can be used to compare existing conditions to conditions under future construction and operation of Bad Creek II.

4.3.2 Stream Surveys

Disposal of overburden material in upland locations would result in potential impacts to surface waters and will require an individual permit from the USACE and water quality certification from SCDES under the authorities of Sections 404 and 401 of the CWA. In preparation for these expected regulatory processes (if Bad Creek II Complex is pursued), stream habitat quality surveys were completed to provide a physical assessment of existing conditions of streams that have the potential to be impacted.

Under Task 3 (*Impacts to Surface Waters and Associated Aquatic Fauna*) of the Aquatic Resources Study (Duke Energy 2024), stream assessment surveys were conducted as part of the ongoing relicensing for the Project. The goal of this task was to evaluate existing aquatic habitat in waters that have the potential for direct impact from Bad Creek II construction activities by quantifying and characterizing surface waters, including resource quality. In addition to assessing surface waters having the potential to be impacted by construction as described in the Revised Study Plan, Duke Energy evaluated surface waters that would be crossed by the then-proposed temporary access road (Fisher Knob Access Road)⁹. Stream survey approach methods were developed in consultation with the SCDNR and implemented the South Carolina Stream Quantification Tool. Additional details are included in Section 5.2.3.

⁸ Note that water quality monitoring in the Bad Creek Reservoir is not safe (due to rapid, large fluctuations in water level elevation and typically continuous Project operation) nor is it considered meaningful, given the short retention time of the Bad Creek Reservoir. Due to pumping and generating cycles, retention time is approximately three days if only a single pump-turbine unit is operating. There are no existing water quality data in the upper reservoir; it is used only for Project operations and there is no public access.

⁹ The Fisher Knob Access Road was proposed during initial Bad Creek II planning and is therefore included in the scope of this document; however, this alternative route is no longer being pursued by Duke Energy and waters associated with this route will therefore not be evaluated under this Plan.

4.4 SCDES State Water Quality Standards

Under the authority of the South Carolina Pollution Control Act, SCDES Water Classification and Standards¹⁰ establishes appropriate water uses and protection classifications, as well as general rules and specific water quality criteria to protect existing water uses, establish anti-degradation rules, protect public welfare, and maintain and enhance water quality. South Carolina's water quality standards are promulgated in S.C. Regulation 61-68, Water Classifications and Standards. This regulation sets forth the classifications of state waters and establishes water quality standards that protect and maintain the existing and classified uses of those waters. Those beneficial uses, criteria set to protect and maintain those uses, and antidegradation policy are all required components of the water quality standards as set forth in the CWA.

A summary of water quality standards for South Carolina applicable to Project waters (i.e., Blue Ridge; trout waters) is included in Table 3-1. Note that nutrient criteria (i.e., phosphorous, nitrogen, chlorophyll a) in the state of South Carolina apply only to lakes and reservoirs, not rivers and streams. Numeric nutrient criteria are based on an ecoregional approach which considers the geographic location of the lake and are applicable to lakes of 40 acres or more in surface area. In evaluating the effects of nutrients on the quality of lakes and other waters of the state, SCDES may consider, but not be limited to, such factors as the hydrology and morphometry of the waterbody, the existing and projected trophic state, characteristics of the loadings, and other control mechanisms to protect the existing and classified uses of the waters (SCDHEC 2023a).

An important goal of the CWA, South Carolina Pollution Control Act, and the State Water Quality Classifications and Standards is to maintain the quality of surface waters to provide for the survival and propagation of a balanced indigenous aquatic community of fauna and flora (SCDHEC n.d.). The degree to which aquatic life is protected is assessed by comparing important water quality characteristics and the concentrations of potentially toxic pollutants with numeric criteria. Support of aquatic life uses is determined based on the percentage of numeric criteria excursions and, where data are available, the composition and functional integrity of the

¹⁰ Regulation 61-68 Water Classification and Standards: https://scdhec.gov/sites/default/files/Library/Regulations/R.61-68.pdf

FD3

biological community (SCDHEC n.d.). Most named streams in the Project vicinity are classified as trout waters by the SCDES and Lake Jocassee is designated as Trout, Put, Grow, and Take (TPGT) (SCDEHC 2023b)¹¹. TPGT waters are freshwaters suitable for supporting growth of stocked trout populations and a balanced indigenous aquatic community of fauna and flora. These waters are also suitable for contact recreation and as a drinking water supply source after conventional treatment.

Table 3-1. South Carolina Numeric State Water Quality Standards for Parameters
Assessed in Project Waters

Parameter	South Carolina Water Quality Standard	
Temperature (applies to heated effluents only)		
Dissolved Oxygen	Daily average not less than 5.0 milligrams per liter (mg/L) Instantaneous low of 4.0 mg/L Trout Waters: Not less than 6.0 mg/L	
pН	Between 6.0 and 8.5 Trout Waters: between 6.0 and 8.0	
Turbidity	Freshwater Lakes Only: Not to exceed 25 NTU provided existing uses are maintained. Trout Waters: Not to exceed 10 NTU or 10% above natural conditions, provided existing uses are maintained.	
Phosphorus	Blue Ridge – Shall not exceed 0.02 mg/L. Piedmont – Shall not exceed 0.06 mg/L.	
Nitrogen Blue Ridge – Shall not exceed 0.35 mg/L. Piedmont – Shall not exceed 1.5 mg/L.		
Chlorophyll a	Blue Ridge – Shall not exceed 10 μg/L. Piedmont – Shall not exceed 40 μg/L.	

SCDHEC 2023a; mg/L=milligrams per liter; NTU=Nephelometric Turbidity Units; ug/L=micrograms per liter

¹¹Regulation 61-69: Classified waters: https://scdhec.gov/sites/default/files/Library/Regulations/R.61-69.pdf

5 Water Quality Monitoring Plan Development

Potential impacts to water resources are anticipated associated with the construction and operation of the proposed Bad Creek II Complex. Development of the Bad Creek II Complex WQMP is a collaborative effort between Duke Energy, the State regulatory agency (i.e., SCDES), and other relicensing stakeholders and documents methods for monitoring site conditions to maintain project compliance with SCDES ESC requirements in upland watersheds and turbidity water quality standards in the Whitewater River arm of Lake Jocassee.

This Plan is applicable for waters covered under a CWA USACE Section 404 permit/SCDES Section 401 Water Quality Certification and identifies and documents frequency and location of water quality sampling/monitoring for in-water work (Lake Jocassee) as well as locations for qualitative monitoring of upland waters that would be applicable under a SCDES NPDES Construction Stormwater Permit. Potential impacts and monitoring rationale, proposed methods, proposed water quality thresholds, and proposed BMPs are discussed in the following sections to support requirements under both the CWA and SC Pollution Control Act. As indicated in Section 2, the Plan includes temporary and permanent construction activities associated with potential impacts to the lake environment as well as the upland environment and considers separate phases associated with construction. These activities are discussed individually as monitoring methods, environmental setting (streams vs. lake), and types of impact and mitigation for each vary considerably.

Section 5.1 documents potential impacts and monitoring methods in Lake Jocassee, and Section 5.2 considers potential impacts and monitoring methods in upland area surface waters, including those potentially affected by upland spoil disposal sites, site construction activities, and road construction.

Duke Energy will continue to consult with SCDES and other Project stakeholders through the relicensing process and settlement agreement negotiations to determine PM&E measures for the protection of water quality appropriate for construction and operation of the proposed Bad Creek II Complex.

¹² Note that *quantitative* water quality monitoring in upland areas is not required or proposed under this WQMP during the construction phase for the purposes of land disturbance.

5.1 Lake Jocassee

5.1.1 Potential Impacts and Monitoring Rationale

Potential Impacts

- Similar to construction-related impacts for the existing Project, temporarily elevated turbidity levels are anticipated in the Whitewater River arm of Lake Jocassee during construction activities associated with the I/O structure and expansion of the existing submerged weir. Additionally, temporarily elevated turbidity levels in Lake Jocassee due to surface runoff have the potential to occur during high precipitation events impacting construction areas. Therefore, the primary (temporary) impact to surface water quality in Lake Jocassee is increased turbidity caused by potential sediment loading from construction activities (e.g., proposed lower reservoir I/O and cofferdam, bank excavation, expansion of the submerged weir), as well as overland runoff due to temporary land disturbance.
- No long-term degradation of water quality is expected to result from construction and operation of the Bad Creek II Complex.

Monitoring Rationale

• Construction activities could result in temporarily elevated turbidity from sediment loading, which could in turn reduce quality of aquatic habitat. While water quality impacts would be temporary (during construction phase only) and occur in a very localized area likely limited to Whitewater River cove, monitoring water quality at a consistent location in Lake Jocassee during and after construction of the Bad Creek II Complex is proposed to maintain and document compliance with SCDES water quality standards for turbidity. The turbidity water quality standard for trout waters under S.C. Reg.61-69, is not to exceed 10 NTU or 10 percent above natural conditions, provided existing uses are maintained. However, Duke Energy seeks a temporary variance from SCDES during construction of Bad Creek II to meet the turbidity compliance criteria standard for South Carolina freshwater lakes (i.e., 25 NTU). Additional details, including Duke Energy's rationale for seeking a temporary turbidity variance, are included in Section 5.1.3.

5.1.2 Existing Data and Background Information

5.1.2.1 Water Quality in Whitewater River Cove

As indicated above, Duke Energy has monitored water quality conditions in Lake Jocassee in some capacity since its formation (1974). There are 12 historical water quality stations in the lake; two stations (Stations 564.1 and 564.0) are located in Whitewater River cove and one station (Station 560.0) is located downstream of the cove, as shown on Figure 5-1. A summary of surface water quality conditions for the entire lake (from approximately 1976 through 2022) is provided below for a general description of the waterbody. A summary of turbidity results from the previous desktop study for the three stations closest to the Project (Station 564.1, 564.0, 560.0) is also included below to provide information on turbidity trends in the Whitewater River cove before, during, and after original construction.¹³

¹³ Recent modeling results indicate the extent of proposed Bad Creek II project effects is confined to the upstream portion of the Whitewater River cove, therefore, Duke Energy does not propose to monitor historic locations in the reservoir.

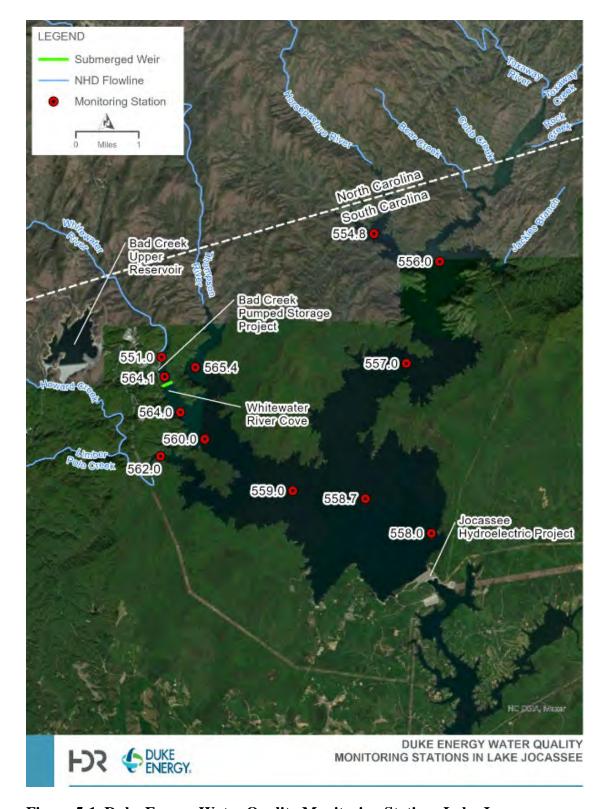


Figure 5-1. Duke Energy Water Quality Monitoring Stations Lake Jocassee

Dissolved Oxygen

In general, DO concentrations in Lake Jocassee are a function of the extent of the previous winter mixing – colder winter temperatures result in deeper mixing within the reservoir, which results in higher DO concentrations the following year.

The state standard for DO in trout waters is > 6.0 mg/L (instantaneous minimum). Before 1991 there were two instances of surface DO measuring less than 6.0 mg/L: 4.6 mg/L at monitoring Station 558.0 in 1973 and 5.4 mg/L at monitoring Station 556.0 in 1976, which correspond to the first few years after Lake Jocassee was filled in 1973. There have been no instances of surface DO values less than 6.0 mg/L since Project operations started in 1991.

Over the entire dataset (entire lake), there were 4,241 surface measurements; only five measurements (0.12 percent) were below the state standard (Table 5-1). Surface water DO concentrations in Lake Jocassee fully support the designated use classification (i.e., less than 10 percent criterion excursions).

Table 5-1. Dissolved Oxygen in Surface Waters of Lake Jocassee

Lake Jocassee Surface DO (mg/L)					
Station	Minimum	Average	Maximum		
558.7	6.8	8.7	11.2		
558.0	4.6	8.7	11.2		
559.0	6.9	8.7	11.1		
560.0*	6.1	8.7	11.8		
562.0	6.9	8.8	11.3		
565.4	7.4	8.8	11.2		
551.0	7.2	9.9	14.4		
564.0*	6.6	8.8	12.2		
564.1*	6.6	8.6	11.1		
557.0	6.7	8.9	11.6		
554.8	6.7	8.9	11.2		
556.0	5.4	9.0	11.6		

^{*} Whitewater River cove monitoring station

Bad Creek operational impacts to DO are limited to monitoring Station 564.1 between the I/O structure and submerged weir. Monthly average DO concentrations within the water column at this location are nearly uniform after 1991 (post Bad Creek operation). Vertical mixing from Bad Creek operations does not allow for stratification at this monitoring location regardless of season. DO stratification does occur at monitoring Station 564.0 (downstream of the weir), and there is

very little difference in DO profiles between pre and post Bad Creek operation indicating the submerged weir is functioning as intended.

Temperature

Water temperature dictates the types of biota that can survive in a waterbody, affects metabolic rates and photosynthesis, influences the rates of chemical reactions, and impacts the physical capacity of water to hold DO. Historical surface water temperature minimum, average, and maximum values for all stations are included in Table 5-2. Discrete water quality data assessed in Lake Jocassee consistently met South Carolina water quality standards for trout waters for temperature. There is no numeric threshold for temperature, however, for trout waters, narrative criteria indicate water temperatures should not vary from levels existing under natural conditions (unless determined some other temperature shall protect the classified uses), which is supported by study findings.

Table 5-2. Water Temperature in Surface Waters of Lake Jocassee

Lake Jocassee Surface Temperature (degrees C)					
Station	Minimum	Average	Maximum		
558.7	8.20	18.59	29.02		
558.0	7.10	18.44	28.22		
559.0	8.10	18.81	28.90		
560.0*	7.10	18.87	28.47		
562.0	8.10	19.23	29.20		
565.4	8.50	18.84	28.50		
551.0	0.20	13.48	27.24		
564.0*	7.40	19.15	28.61		
564.1*	8.50	18.99	28.40		
557.0	7.10	18.81	29.23		
554.8	7.70	19.24	29.15		
556.0	7.30	19.04	29.12		

^{*} Whitewater River cove monitoring station

Similar to DO vertical profile trends, Bad Creek operational impacts to temperature are limited to monitoring Station 564.1 upstream of the weir. Vertical mixing from Bad Creek operations does not allow for stratification at this monitoring location regardless of season. DO stratification does occur at monitoring Station 564.0 (downstream of the weir), and there is very little difference in temperature profiles between pre and post Bad Creek operation indicating the submerged weir is functioning as intended.

pH

Surface pH values for all stations are included in Table 5-3. Instantaneous pH surface readings were compared against the pH state standard for trout waters (6.0-8.0 Standard Units). Over the entire dataset, there were 4,253 samples assessed; two samples were above the state standard (i.e., less than 1 percent of the dataset) and 255 samples were below the state standard (i.e., 6 percent of the dataset). Therefore, surface water pH levels in Lake Jocassee fully support the designated use classification (i.e., within 10 percent criterion excursions).

Surface Phosphorous (Standard Units) Station Minimum Average Maximum 558.7 5.50 6.67 7.60 558.0 5.20 8.00 6.56 7.71 559.0 5.30 6.67 560.0* 5.60 6.69 7.80 7.90 562.0 5.60 6.76 565.4 5.60 6.50 8.10 551.0 5.50 6.53 7.90 564.0* 7.90 5.60 6.78 564.1* 7.90 5.60 6.73 557.0 5.50 6.73 7.80 8.10 554.8 5.60 6.84 556.0 5.63 6.80 7.90

Table 5-3. pH in Surface Waters of Lake Jocassee

Turbidity

Turbidity is a measure of the amount of suspended particles in water (determined by the amount of light scattered); because turbidity is simply the amount of light that can pass through water, turbidity values can increase due to any solid particles in the water, including organic material and microscopic organisms. While turbidity is not an inherent property of water like temperature and DO, it is recognized as an indicator of environmental health of a waterbody (USGS 2018). Turbidity levels in a waterbody are typically episodic in nature and are not spatially or temporally consistent. Under natural conditions, suspended sediment load contribution to a receiving waterbody increases during a rainstorm/runoff event where sediment is eroded from upland areas or stream banks and flows into surface waters. Another major contributor to upland soil/sediment erosion is construction activities; these activities are often short-lived but can result in large amounts of soil released from the land that is subsequently transported to adjacent waterbodies. Depending on the magnitude of the rain event, amount and grainsize of sediment,

^{*} Whitewater River cove monitoring station

proximity to the point of entry, and character of a waterbody, sediment can settle out quickly after the event or may remain suspended in the water column for some time after the event.

During original Project construction, turbidity levels in the Whitewater River cove of Lake Jocassee were impacted by construction activities. During recent relicensing study efforts, a desktop study was carried out to evaluate historical turbidity data in the Whitewater River cove at the three monitoring stations closest downstream of the Project and determine if original construction activities resulted in a noticeable increase in turbidity values and if so, estimate how far downstream impacts extended and for how long turbidity was elevated. This was done by comparing turbidity values from pre-construction (<1985), construction (1985-1991)¹⁴, and post-construction (1992-2015). Note that, unlike temperature and DO, turbidity does not show spatial trends or stratification patterns; turbidity measurements represent a snapshot in time and are typically driven by external factors.

Surface turbidity values were assessed over the entire dataset (1976-2015) for stations 560.0, 564.0, and 564.1 (Table 5-4). A boxplot of surface turbidity data over all time periods is also provided in Figure 5-2 to show the distribution of surface turbidity at these stations. Over the entire dataset, there were 550 surface samples assessed; 9 samples were above the state standard (i.e., 10 NTU), which accounts for 0.02 percent of the dataset (this also includes data collected during construction). Surface water turbidity levels in Lake Jocassee fully supported the designated use classification (i.e., less than 10 percent criterion excursions).

Table 5-4. Turbidity in Surface Waters of Whitewater River Cove

Turbidity (NTU)						
Station	Minimum	Average	Maximum			
560.0	0.00	1.90	17.00			
564.0	0.00	1.96	47.00			
564.1	0.00	1.61	19.00			

¹⁴ Duke Energy is proposing to expand the existing submerged weir with newly excavated rockfill from the proposed Bad Creek II Complex in part to help mitigate the impacts of a second I/O structure in Whitewater River cove. Assessing pre-construction turbidity data and estimating impacts to turbidity during original construction may help inform water quality conditions during proposed construction of the Bad Creek II Complex.

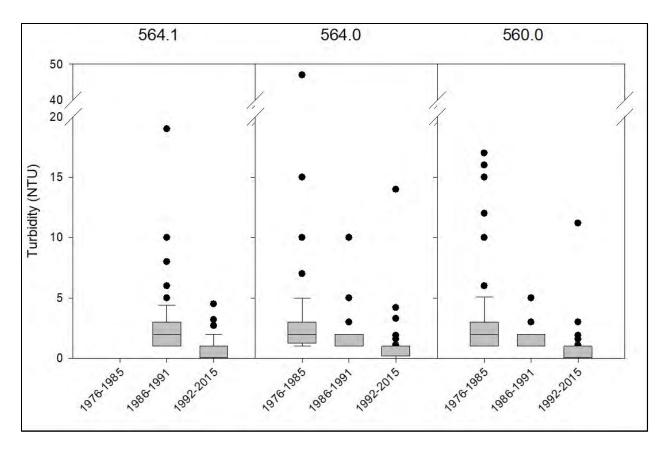


Figure 5-2. Surface Turbidity in the Whitewater River Arm during Pre-Construction, Construction, and Post-Construction Periods

5.1.2.2 Lake Jocassee Reservoir Level Fluctuation Effects on Water Quality

Additional pumping and generating capacity of the Bad Creek II Complex would reduce the time for maximum drawdown and refill of the upper reservoir; however, it would not result in additional water level rise in Lake Jocassee. Modeling carried out through relicensing efforts¹⁵ showed that scenarios under Bad Creek II resulted in a decreased reservoir fluctuation band indicating more consistent water levels than under current conditions. These changes in water level fluctuation are not expected to affect water quality in Lake Jocassee.

¹⁵ Details from the modeling effort are included in the *Water Exchange Rates and Lake Jocassee Reservoir Levels Final Report* and the *Effects of Bad Creek II complex and Expanded Weir on Aquatic Habitat Final Report* developed in coordination with relicensing stakeholders and submitted with the Updated Study Report.

5.1.3 Proposed Methods

5.1.3.1 Proposed Water Quality Parameters and Temporary Turbidity Variance

Water quality monitoring in the Whitewater River cove of Lake Jocassee will follow established Duke Energy procedures and standard methodology. Duke Energy proposes to monitor the following water quality parameters during the construction and post-construction phases:

- Turbidity
- DO
- Temperature
- pH

Data will be compared to State water quality criteria (Table 3-1). During the construction phase, all four parameters will be measured, but only turbidity data will be used to inform construction activities, since increased suspended loading is the proposed impact. The turbidity water quality standard for trout waters (e.g., TPGT) under S.C. Reg.61-69 is *not to exceed 10 NTU or 10 percent above natural conditions*, provided existing uses are maintained. However, Duke Energy seeks a temporary variance from SCDES at the proposed point of compliance (see Section 5.1.3.4 for proposed monitoring location) during construction of Bad Creek II to meet the turbidity compliance standard for South Carolina freshwater lakes (i.e., 25 NTU). According to S.C. Reg.61-69, a temporary variance is "a short-term exemption from meeting certain otherwise applicable water quality standards" and may be granted by the SCDES provided the following apply:

- a. The variance is granted to an individual discharger for a specific pollutant(s) or parameter(s) and does not otherwise modify water quality standards; and
- b. The variance identifies and justifies the criterion that shall apply during the existence of the variance; and
- c. The variance is established as close to the underlying criterion as is possible and, upon expiration of the variance, the underlying criterion shall become the effective water quality standard for the waterbody; and
- d. The variance is reviewed every three (3) years, at a minimum, and extended only where the conditions for granting the variance still apply; and
- e. The variance does not exempt the discharger from compliance with any applicable technology or other water quality-based permit effluent limitations; and
- f. The variance does not affect permit effluent limitations for other dischargers.

Duke Energy understands that prior to removing any uses or granting a variance, notice and an opportunity for a public hearing shall be provided by SCDES.

As mentioned above, a turbidity threshold of 25 NTU is considered protective of water and aquatic resources in freshwater lakes in South Carolina; however, since Lake Jocassee is considered TPGT waters, the state criteria is 10 NTU. In general, elevated suspended sediment can have behavioral, physical, and habitat effects on fish in a waterbody. Fish response to suspended sediment is dependent on many environmental factors such as (Bash and Berman 2001; Servizi and Martens 1992):

- duration and frequency of exposure
- water temperature
- fish life stage
- particle characteristic (e.g., angularity, size, toxicity, type)
- magnitude of turbidity pulse
- timing of turbidity pulse (e.g., season)
- natural background turbidity and
- availability of refugia.

Research has found that duration of suspended sediment exposure plays a more dominant role than suspended sediment concentration (Anderson et al. 1996). Non-salmonid species (e.g. bluegill) are considered tolerant of turbidity levels of up to approximately 50 NTU (Gardner 1981). Lloyd (1987) indicated that for salmonids, which are more sensitive to water quality conditions, a "moderate" level of protection (suspended solids concentration up to 100 mg/l) roughly translates to turbidity values up to 23 NTU. Avoidance is the primary fish behavioral response to locally turbid water; species more sensitive to sediment loads may be forced to move to other areas of the system to avoid negative effects on survival driven by direct effects of water quality conditions, or indirect effects such as decreased visual detection of predators and prey. Fish may seek out "turbidity refugia" when subjected to short-term pulses of sediment, and salmonids will move laterally (Servizi and Martens 1992) or downstream to avoid turbid areas (McLeay et al. 1987). In laboratory experiments, it has also been shown that salmonids will move to less turbid waters, if available, after a short-term pulse (of sediment) (Berg and Northcote 1985). Bisson and Bilby (1982) illustrated the displacement of some salmonids in water with turbidities greater than 70 NTU, while Sigler et al. (1984) and Lloyd (1987) noted avoidance of turbid water may begin as turbidity approaches 30 NTU. Regardless of the type or

magnitude of the impact, it is important that areas of refugia are available and accessible for more sensitive populations. While the Whitewater River cove could potentially be affected by pulses of increased suspended sediment during certain construction activities (e.g., cofferdam removal, weir construction); this area accounts for just 1.5 percent of the total area of Lake Jocassee, therefore a large turbidity refugia (98.5 percent of the lake) would be available to sensitive species.

During original construction activities, historical data indicate consistently low turbidity levels in surface waters downstream of the Project during construction, however, historic turbidity measurements were collected prior to project operations. Duke Energy anticipates higher turbidity levels with the construction of Bad Creek II (compared to original construction) because the existing Project will be operating, thereby moving water upstream and downstream through the Whitewater River cove during pumping and generation cycles, respectively. It is not presently known what sort of impact construction or operations will have on turbidity levels at the water surface. Therefore, because (1) sensitive populations will be able to avoid areas of higher turbidity and move into other areas of Lake Jocassee (i.e., abundant availability and accessibility to turbidity refugia exists) and (2) potentially increased turbidity levels will be temporary (i.e., fish that do move out of the Whitewater River cove to avoid higher turbidities are expected to return following the impact), a more conservative turbidity threshold of 25 NTU for compliance reporting, which would still be protective of natural resources, would allow Duke Energy to construct the new facility while maintaining compliance with state regulations, which is a critical focus of Duke Energy for any project.

5.1.3.2 Data Collection and Evaluation

SCDES guidance states that grab samples or samples collected at a depth of 0.3 meters are considered for the purpose of water quality assessment, and only surface samples should be used in standards comparisons and trend assessments (SCDHEC n.d.). The SCDES and U.S. Environmental Protection Agency (USEPA) do not define the sampling method or frequency of sampling for water quality to compare to criteria, other than indicating it should be "representative" (SCDHEC n.d.).

To ensure compliance with SCDES water quality requirements for turbidity, Duke Energy will measure surface water conditions approximately 0.3 meters below the surface. A new monitoring station (see Section 5.1.3.4) will be instrumented with a multi-parameter water quality sonde and high-visibility buoy at the downstream end of Whitewater River cove near the proposed boat barrier. The data sonde will record water quality parameters daily (i.e., turbidity, DO, temperature, and pH) and store readings on an internal memory drive; data collection may require minor modification depending on field conditions. Data will be transmitted and received electronically (by Duke Energy personnel) via telemetry or by manual download in the field if telemetry is not available.

Data will be reviewed routinely (weekly) during construction and bi-weekly to monthly post-construction. If telemetry options are not available for data transmission, data will be manually downloaded in the field weekly during active construction period and bi-weekly to monthly during the post-construction monitoring period. Duke Energy-owned equipment will be used to collect the water quality data, and either Duke Energy or a consultant to Duke Energy will be responsible for retrieving and analyzing the data.

5.1.3.3 Excursions

The purpose of the State Water Quality Classification and Standards (SCDHEC 2023a) is to maintain the quality of surface waters to provide for the survival and propagation of a balanced indigenous aquatic community of fauna and flora and the degree to which aquatic life is protected (Aquatic Life Use Support) is assessed by comparing important water quality parameters with numeric criteria (SCDHEC n.d.). Support of aquatic life uses is determined based on the percentage of numeric criteria excursions. The term excursion is used to describe a measured pollutant concentration that is outside of the acceptable range as defined by the appropriate criterion (see Table 3-1). Per SCDHES standards for turbidity in surface waters (SCDHEC n.d.), if criteria are exceeded in more than 25 percent of the samples over 30 days, the criterion is not supported and it constitutes a violation of water quality. If the criterion is exceeded in more than 10 but less than 25 percent of the samples, sites are evaluated on a case-by-case basis to determine if local conditions indicate that classified uses are impaired. If the criterion is exceeded in less than 10 percent of the samples, then the criterion is fully supported. Some waters may exhibit characteristics outside the appropriate criteria due to natural

conditions. Such natural conditions do not constitute a violation of the water quality criteria. Duke Energy proposes to adapt this sampling strategy for the Bad Creek II WQMP for monitoring in Lake Jocassee, as described below.

As indicated in Section 5.1.3.1, turbidity will be used to inform construction activities. The criteria for identifying an excursion and actions to be taken if turbidity readings exceed the compliance threshold are as follows:

- An excursion is defined as any surface reading above the State water quality standard for turbidity (compliance threshold) (e.g., 25 NTU).
- If daily readings exceed the turbidity compliance threshold more than 10 percent (but less than 25 percent) of readings over a rolling 30-day period, Duke Energy will investigate to determine if excursions are the direct result of construction activities (e.g., lower I/O and cofferdam construction, weir expansion) or rain events.¹⁶
- If elevated turbidity is determined to be the result of a rainfall event (i.e., overland flow and runoff), data characterizing the rain event (timing and amount of precipitation) will be documented using the nearest weather station along with corresponding turbidity data.
- If turbidity excursions are not clearly linked to a rainfall event (i.e., attributable to construction-related activities), Duke Energy will consult with SCDES if daily readings exceed the turbidity compliance threshold of more than 10 percent but less than 25 percent of readings over a rolling 30-day period. Similarly, Duke Energy will consult with SCDES if daily readings exceed 25 percent of readings over a 30-day period.

5.1.3.4 Proposed Monitoring Location

Duke Energy proposes to install a new water quality monitoring station located near the confluence of Whitewater River arm with the main portion of the lake (Station 563.0; see Figure 5-3). A proposed positive boat barrier will be deployed across the width of the Whitewater River cove at the confluence during the construction phase to prevent recreational boating in Whitewater River cove, therefore, the proposed point of compliance for water quality monitoring

¹⁶ Historical data shows turbidity in Whitewater River Cove naturally increases during large storm events due to run off from tributaries and overland flow. For example, on August 16, 1994, rainfall associated with Tropical Storm Beryl resulted in consistently high turbidity readings for several days.

FD3

will be near the boat barrier to safely facilitate boat access to the water quality station for maintenance and data downloading. A photo-rendering of the temporary boat barrier extending across Whitewater River cove is shown on Figure 5-4.

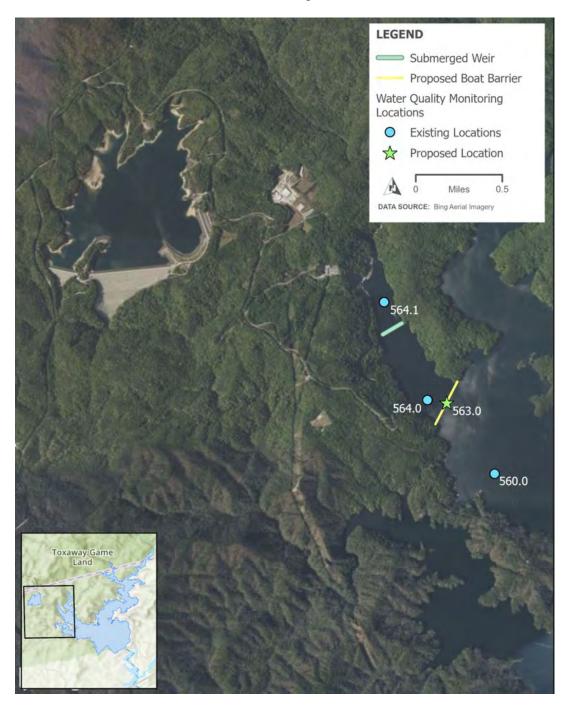


Figure 5-3. Proposed Compliance Point (Station 563.0) and Proposed Temporary Boat Barrier

The proposed location is near Station 564.0, which has many years of turbidity data associated with it from before, during, and after original Project construction, and is also near locations assessed during the 2023 and 2024 water quality relicensing study.

The proposed monitoring station is approximately 4,225 ft (0.8 mile) downstream from the proposed I/O structure and 2,370 ft (0.45 mile) downstream of the upstream end of the submerged weir. Duke Energy believes this location would be close enough to adequately monitor potential water quality impacts associated with Bad Creek II major construction activities (i.e., cofferdam construction, I/O structure and bank disturbance, submerged weir expansion) in Lake Jocassee.

Figure 5-4. Rendering of Proposed Boat Barrier downstream of the Lower Reservoir I/O for Water Quality Compliance Monitoring

5.1.3.5 Proposed Sampling Frequency

While the Revised Study Plan suggested a general pre-construction monitoring task, it was determined during Plan development that for water quality monitoring in the Whitewater River cove, SCDES surface water quality standards are more relevant for evaluating water quality criteria thresholds than comparing against existing water quality data, therefore, pre-construction monitoring was deemed unnecessary in Lake Jocassee (i.e., the objective is to remain in compliance with state water quality standards, not to ensure recovery to an existing condition). SCDES water quality criteria are designed to be protective of aquatic habitat, therefore compliance with water quality standards is anticipated to be protective of aquatic life in the lake. Construction and post-construction monitoring will also benefit the extensive historical water quality data collection in Lake Jocassee.

Pre-construction

Pre-construction monitoring will not be performed as documentation of recovery to an existing condition and is not an objective of this WQMP.¹⁷

Construction

Water quality parameters will be recorded daily for the duration of Bad Creek II construction phase via a multi-parameter sonde deployed at the proposed point of compliance (see Section 5.1.3.4). Data will be reviewed weekly.

Post-construction

Water quality parameters will be recorded daily for one year (365 days) following commencement of Bad Creek II commercial operation via a multi-parameter sonde deployed at the proposed point of compliance (see Section 5.1.3.4). Data will be reviewed bi-weekly to monthly.

¹⁷ As described above, Duke Energy has historical and current water quality data for the Whitewater River cove; a summary of existing data is included in the ISR (Duke Energy 2024).

5.1.4 Proposed Reporting Criteria

Water quality data will be reported per requirements of the SCDES 401 Water Quality Permit and appropriate agencies would be consulted. An annual report will be developed by April 15 each year for filing with SCDES with a courtesy copy to FERC.

5.1.5 Summary

Temporary, short-term effects (associated with elevated turbidity) are possible in the Whitewater River cove associated with construction activities on land, overland runoff, and the expansion of the submerged weir. BMPs will be implemented (on land) to reduce sedimentation into waters of the U.S. (WOTUS).

No long-term effects on the population, abundance, or distribution of forage fish in Lake Jocassee are anticipated as a result of the proposed Bad Creek II Complex construction or operations. Similarly, no long-term effects on the littoral fish populations or changes in suitable habitat are anticipated as a result of the proposed Bad Creek II Complex operations (see Section 5.1.2.2). As indicated in Section 4.1, certain water quality activities will continue in Lake Jocassee throughout the KT license term including the agreement to maintain pelagic trout habitat in Lake Jocassee and continuance of water quality monitoring in the tailrace.

Duke Energy's proposed monitoring strategy addresses potential challenges in meeting SCDES water quality standards during construction by reviewing turbidity data routinely (weekly) during construction immediately downstream of the Project so that any turbidity-related issues can be identified quickly and mitigative management controls applied if necessary. Because there is abundant availability and accessibility to turbidity refugia and potentially increased turbidity levels will be temporary, Duke Energy is seeking a temporary water quality turbidity variance of 25 NTU at the Whitewater River cove compliance point downstream of Bad Creek II for the duration of construction activities.

5.2 Upland Areas Surface Waters

5.2.1 Potential Impacts and Monitoring Rationale

Potential Impacts

- Construction of the Bad Creek II Complex would impact existing upland surface waters. Overburden (i.e., soil and rock) material from the construction activities are proposed to be deposited in several spoil locations throughout the site; locations are currently under evaluation. Construction activities could potentially lead to temporary impacts to water quality due to increased turbidity from sediment loading. Due to the estimated amount of spoil material, existing topography, and prevalence of headwater streams and seeps located throughout the site, it is unlikely there would be a practicable alternative identified that will result in zero impacts to steams and downstream waters.
- Estimates for proposed material removed from underground excavations indicate approximately 4.4 million cubic yards of spoil material for the Project infrastructure will need to be deposited into on-site spoil locations or along the submerged weir in Lake Jocassee. Placement of excavated rock removed from the underground excavations to the downstream slope of the existing submerged weir in Lake Jocassee, as was done for the construction of the existing Project, would significantly reduce the amount of material to be placed at upland disposal sites, thereby reducing potential impacts to upland waters.
- Traffic on access roads during construction has the potential to increase sediment runoff which can be mitigated through BMPs (e.g., vegetation, silt fence, or matting) installed near haul roads and access roads. BMP inspections and the ESC Plan will be developed and implemented through the NPDES construction permitting process and, therefore, potential impacts, mitigation, and monitoring associated with construction-related access roads are not addressed in the WQMP.

Monitoring Rationale

Increased sediment loading during rainfall runoff events could impact existing streams
and waterbodies during construction activities. While no long-term degradation of water
quality is expected to result from construction of the Bad Creek II Complex, activities

could potentially lead to temporary impacts to water quality due to increased turbidity, therefore Duke Energy proposes to install and maintain BMPs in accordance with SCDES permit requirements to mitigate risks to streams impacted by spoil placement associated with Bad Creek II construction activities.

- Upland placement of spoil materials will result in potential impacts to surface waters. Therefore, an individual permit from the USACE will be required as well as a water quality certification from SCDES under the authorities of Sections 404 and 401 of the CWA 18. Note that the upland disposal areas (e.g., spoil areas) will also be located within the overall Project Limits of Disturbance (LOD) and the construction phase activities and temporary land disturbance impacts will be covered under the SCDES NPDES Construction General permit (e.g. erosion and sediment control permit). The LOD will be planned with perimeter and internal BMPs such that the overland stormwater flow / water quantity will be managed. Water quality monitoring is not required or proposed as part of the SCDES Construction General NPDES permit.
- During construction, temporary BMPs (e.g., sediment basins, silt fences, waddles, etc.)
 proposed under the SCDES Construction General Permit will be installed, regularly inspected, and maintained to control runoff from affected areas into surface waters.
- While no long-term degradation of water quality is expected to result from construction of the Bad Creek II Complex, these activities could result in temporary impacts, therefore, Duke Energy proposes to conduct stream habitat quality assessment surveys in perennial streams associated with drainage from spoil areas. These would consist of (year-round) accessible downstream reaches where the cumulative effect of construction activities can be observed. These locations would be used to document stream conditions and function where water has flowed from the construction area, through a BMP, and into WOTUS. Pre-construction monitoring in these areas will be compared with similar post-construction monitoring to document construction-related impacts and also determine when these areas have recovered to pre-construction conditions and to help plan for site restoration / stabilization.

¹⁸ This process has been initiated in parallel with the relicensing process.

5.2.2 Existing Data and Background Information

During 2021, 2022, and 2023 efforts for the relicensing and advancement of the proposed project, on-site streams were assessed in coordination with the SCDNR and other relicensing stakeholders. In addition, WOTUS surveys were carried out in summer 2024 in support of identifying waters of the U.S. and USACE permitting.

5.2.2.1 Stream Habitat Quality and Macroinvertebrate Surveys

As stated above, the disposal of overburden material in upland locations would result in impacts to surface waters and will require authorization under an individual permit from the USACE and water quality certification from SCDES under the authorities of Sections 404 and 401 of the CWA. In preparation for these expected regulatory processes, stream habitat quality surveys were completed to provide a physical assessment of the existing conditions of streams that have the potential to be impacted.

In accordance with the FERC-approved Aquatic Resources Revised Study Plan, the stream habitat assessment portion of the USEPA Rapid Bioassessment Protocol was completed for streams within potential spoil locations. Streams and creeks crossed by the then-proposed temporary access road were also assessed. The North Carolina Stream Assessment Method (NCSAM) ¹⁹ was completed for streams within potential spoil locations and streams or creeks crossed by the temporary access road. The SC Stream Quantification Tool (SQT) was developed in a collaborative effort between federal and state representatives to provide a tool for assessing and quantifying functional lift and loss of streams in South Carolina. In May 2023, the SCDNR requested that Duke Energy apply the SQT methods to streams within potential spoil locations and streams crossed by the then-proposed temporary access road. Duke Energy consulted with the SCDNR in May and June 2023 regarding the applicability and methodology of the SQT for stream assessments. In July 2023, Duke Energy and the SCDNR conducted a site visit to two potential spoil locations representative of conditions across the site. It was agreed among the

¹⁹ While the Project is located in South Carolina, the site is close to the border of North Carolina and many of the streams in the Project vicinity have headwaters in North Carolina. Implementation of the NCSAM is appropriate for assessing Project waters as this method is based on valley shape, watershed size, and physiographic region; these characteristics are consistent between streams in the mountainous area surround the Project, regardless of the state.

SCDNR staff and Duke Energy personnel that streams within potential spoil locations are generally high functioning with limited (if any) anthropogenically caused degradation, and that field data collection to support SQT analysis for other similar streams in these areas were not likely to produce significantly different results (i.e., lower functionality scores) than an assumption of fully functional. Therefore, Duke Energy proposed to conduct field surveys on streams potentially crossed by the then-proposed temporary access road, only. Documentation of all consultation for the Aquatic Resources study is included in Attachment 4 of Appendix B of the Initial Study Report.

In addition, macroinvertebrate surveys of Limber Pole Creek and Howard Creek found abundant Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies) (also referred to as EPT) taxa and habitat conditions, also resulted in a high bioclassification score indicating a fully supporting system.²⁰

Detailed results from the stream assessments are included in the *Impacts to Surface Waters and Associated Aquatic Fauna* final report, which was developed in collaboration with relicensing stakeholders and State resource and regulatory agencies and submitted with the Initial Study Report as Appendix A, Attachment 1 (Duke Energy 2024).

5.2.2.2 WOTUS Surveys

HDR as a consultant to Duke Energy, delineated potential WOTUS according to the USEPA and USACE operative definition of Pre-2015 Regulatory Regime consistent with Sackett vs. Environmental Protection Agency to provide an opinion on the jurisdictional status of the identified features (effective on August 29, 2023). Field efforts were planned and informed based on previous field reconnaissance and natural resource assessments, as well as review of existing publicly available information, including data from U.S. Geological Survey (USGS) 1:24,000 topographic quadrangles, the USGS National Hydrography Dataset, and USFWS National Wetland Inventory, as well as Natural Resources Conservation Service soil maps. HDR conducted on-site delineations of jurisdictional WOTUS, including wetlands and waterbodies.

²⁰ During electrofishing fish sampling activities, water quality parameters included temperature, DO, specific conductivity, pH, salinity, and turbidity and were collected in July, September, and October on Limber Pole Creek and Howard Creek.

Natural resources assessments to identify surface waters and wetlands within potential spoil locations were completed in September 2021 and September 2023 along the then-proposed temporary access road. The 2023 results indicated the proposed access road would potentially cross Howard Creek and Limber Pole Creek and several of their tributaries. Overall, WOTUS surveys were carried out within the proposed Project Boundary on June 8 to 10, 2021; September 19 and 20, 2021; October 18 and 19, 2023; May 21 to 23, 2024; July 23 to 25, 2024; July 31, 2024; August 1, 2024; and August 16, 2024. The combined waters delineations revealed the potential for over 120 streams, 43 wetlands, and several open waters located within the proposed expanded FERC Project Boundary.

HDR, on behalf of Duke Energy, submitted a Preliminary/Approved Jurisdictional Determination Request to the USACE for waters of the U.S. within the Project Boundary on September 9, 2024. On December 3, 2024, HDR met with the USACE Charleston Regulatory Office for a site visit at the Project to field-verify the on-site waters and wetlands. Field results identified 51 jurisdictional streams and 8 jurisdictional wetlands, respectively, in the main Project site, along with 40 jurisdictional streams and 17 jurisdictional wetlands in the transmission line corridor. Jurisdictional waters and wetlands for the main Project site area (i.e., excluding transmission line corridor) and their locations relative to potential spoil areas are shown on Figure 5-5.

5.2.3 Proposed Methods

5.2.3.1 Data Collection and Processing Methods

BMP Monitoring and Inspections

During construction, temporary BMPs (e.g., sediment basins, silt fences, waddles, etc.) proposed under the SCDES Construction General Permit will be installed and maintained to control runoff from affected areas into surface waters. These BMPs will be sized according to elevated standards (i.e., sediment basins and rock dams shall be designed to treat the peak runoff from at least the 25-year²¹ storm and may have larger dimensions than typical devices for standard

²¹ Per Duke Energy's Construction Stormwater Planning Manual for Operations in Environmentally Sensitive Areas (Duke Energy 2019). Environmentally Sensitive Areas are surface waters and their surrounding riparian areas that require special protection during construction due to the sensitive nature of the resource.

areas), including an added layer of 18-inch compost socks on the low side of sites draining to wetlands or streams. BMPs will be located within site drainage areas and intermediate BMPs placed within areas of expected flow and retention to attenuate water quantity. An additional 50-foot undisturbed buffer beyond the regulatory-required buffers for wetland and stream will be implemented. Land disturbance will be restricted within the proposed LODs to include the proposed construction features, construction access, and materials staging / laydown, as well as the locations of BMPs to manage construction runoff from these areas. Based on required compliance monitoring under the SCDES Construction General Permit, weekly and post-storm (e.g., rainfall greater than 1 inch within a 24-hour period) inspections of the LOD will be conducted. These inspections are based on functionality of the BMPs and maintenance actions are commonly identified for future tracking and/or verification of completion. A copy of the SCDES Construction General Permit and the Onsite-Stormwater Pollution Protection Plan (OS-SWPPP) will be kept onsite in accordance with permit requirements.

If additional BMPs or adjustment of BMPs are required based on onsite observations and inspections, the OS-SWPPP will be red-lined for tracking.²² Determining the location of BMPs and proposed LODs is not an objective of this WQMP.

Stream Habitat Quality Surveys

Several stream assessment methods will be implemented to carry out stream habitat quality surveys to provide information on conditions of streams that have the potential to be impacted by construction activities and spoils placement. These methods are in alignment with methods carried out for previous studies performed for the relicensing (as described above) and include the following:

- USEPA Rapid Bioassessment Protocol (Barbour et al. 1999)
- NCSAM (N.C. Stream Functional Assessment Team 2013)

²² SCDES's Construction Permit, also referred to as the Erosion and Sediment Control / Construction Stormwater Permit, requires submittal of a Notice of Intent for permit coverage for clearing, grading, or excavating activities disturbing >1 acre. Permit application must include a Comprehensive Stormwater Pollution Prevention Plan (C-SWPPP) and an Onsite (OS)-SWPPP during the construction phase. Emissions and dust control measures must also conform to regulatory requirements (Fugitive Dust Control [61-62.6]) and can be incorporated into the Erosion and Sediment Control permit. (See SC Code Sections 48-14-10 et seq., SC Regulation 72-300 – 72-316 for additional information.)

- SQT (South Carolina Steering Committee 2022)
- Macroinvertebrate sampling (SCDHEC 2017)

5.2.3.2 Proposed Monitoring Location(s)

Upland Spoil Areas

• For perennial streams associated with drainage from spoil areas, the point of compliance will be in an accessible downstream reach where the cumulative effect of the construction can be observed. This location will be used to document stream conditions and function where water has flowed from the construction area, through a BMP, and into a WOTUS. Proposed monitoring locations are shown on Figure 5-5. (Note that some areas preclude monitoring stations due to steep terrain, e.g., downstream of Spoil Area C).

Access Roads

Streams associated with access roads will not be monitored as part of this Plan; these
roads, along with transmission line access areas, will have standard Duke Energy BMP
measures installed. BMP inspections and the ESC Plan will be developed and
implemented through the NPDES construction permitting process and, therefore,
potential impacts, mitigation, and monitoring associated with construction-related access
roads are not addressed in the WQMP.

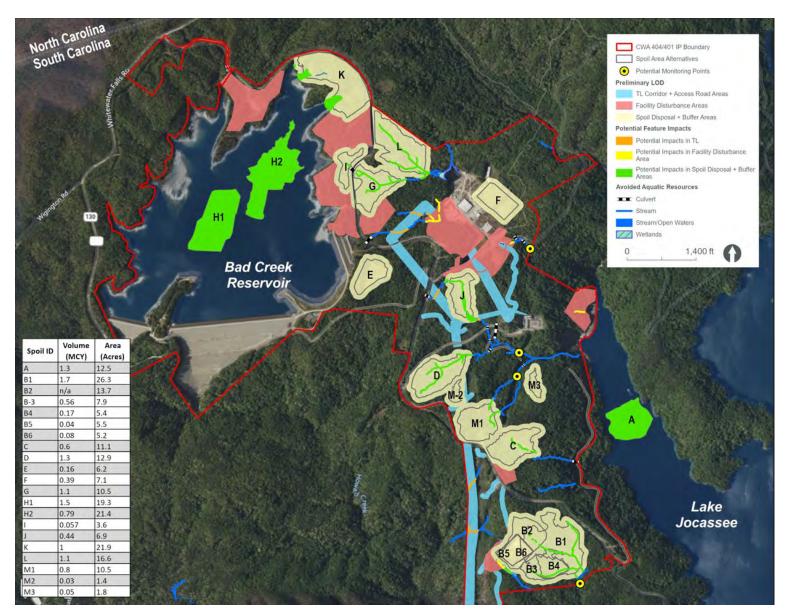


Figure 5-5. Proposed Stream Habitat Quality Monitoring Locations and Preliminary Spoil Areas

5.2.3.3 Sampling Frequency

Pre-construction

Pre-construction stream habitat quality surveys of upland surface waters that will be impacted by spoils placement and site construction activities will be conducted to document existing conditions and function. Pre-construction surveys will be carried out prior to installation of BMPs.

Construction

Construction phase stream assessment surveys will not be carried out in areas that are protected by BMPs required by SCDES environmental permits. Duke Energy will regularly inspect and maintain BMPs to help minimize downstream potential impacts to surface waters. Based on required compliance monitoring under the SCDES Construction General Permit, weekly and post-storm (e.g., rainfall greater than 1 inch within a 24-hour period) inspections of the LOD will be conducted.

Post-construction

Post-construction stream quality habitat surveys of upland surface waters impacted by spoils placement and site construction activities will be performed to document post-construction conditions and function. Duke Energy proposes surveys at 1-year, 3-years, and 5-years following commencement of Bad Creek II operations. If necessary, an additional survey will be carried out at 7 years post-construction to ensure streams provide fully functioning and supportive habitat and replicate original (existing) stream conditions.

5.2.4 Reporting

Inspections and maintenance of BMPs during construction will be carried out per NPDES construction permit requirements. Weekly and post-storm inspections inform whether maintenance and/or replacement of BMPs, such as silt fence, rock outlets, compost filter socks, or areas of stone, need to be conducted. Based on the condition of the BMP and level of work required to keep functionality, the inspector will work with Duke Energy's environmental oversight team to identify the timing of the work. In an instance of a BMP failure, typically, the

BMP is repaired or replaced, and timing is based on proximity to environmental sensitive areas as well as availability of materials.

For post-construction stream habitat quality surveys, areas that have not recovered to preconstruction conditions and function within one year of commercial operation will be evaluated for additional monitoring in consultation with SCDES. Appropriate agencies would also be notified and consulted to determine the next steps. Water quality reporting for the Whitewater River cove will be carried out in accordance with applicable permitting requirements.

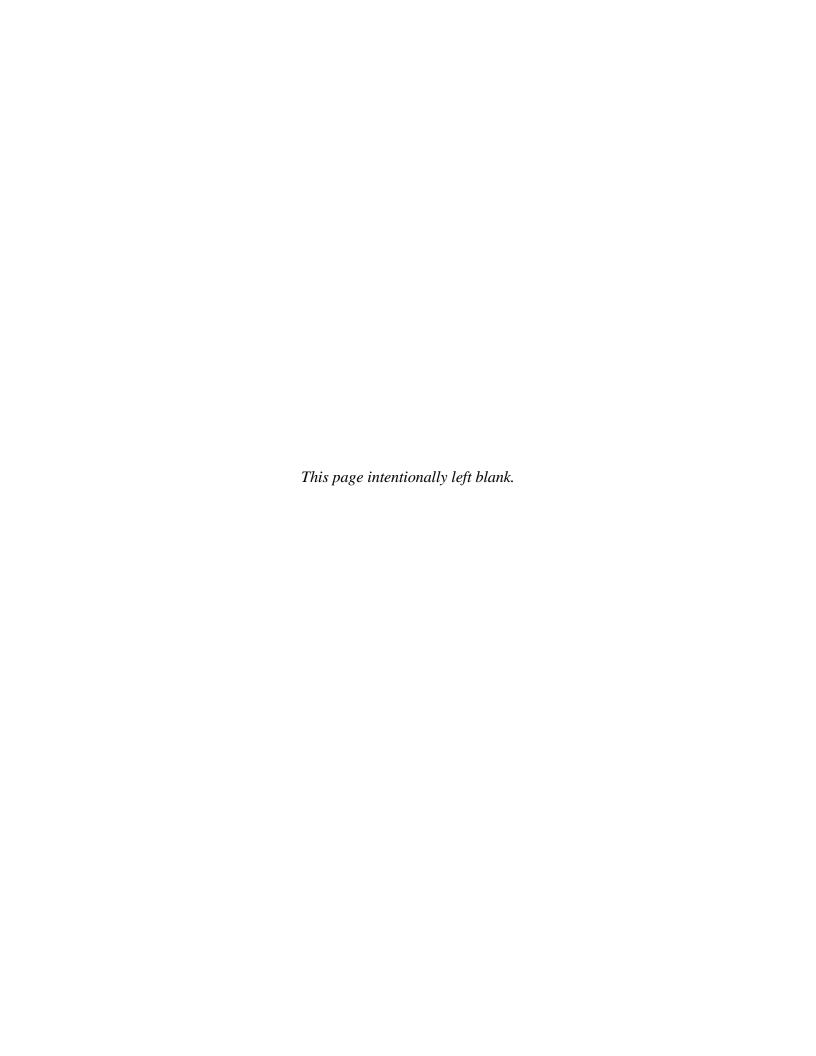
A comprehensive ESC Plan and C-SWPPP will be developed and implemented for all construction phases of the Bad Creek II Complex. BMPs will be sized and sited to manage overland stormwater flow within the LOD as part of the ESC Plan. Additionally, under the NPDES permitting process, a prevention, control, and safety management plan to prevent vehicle spilled fluids from entering the watersheds and harming water quality will be developed and implemented.

6 Stakeholder and Agency Coordination

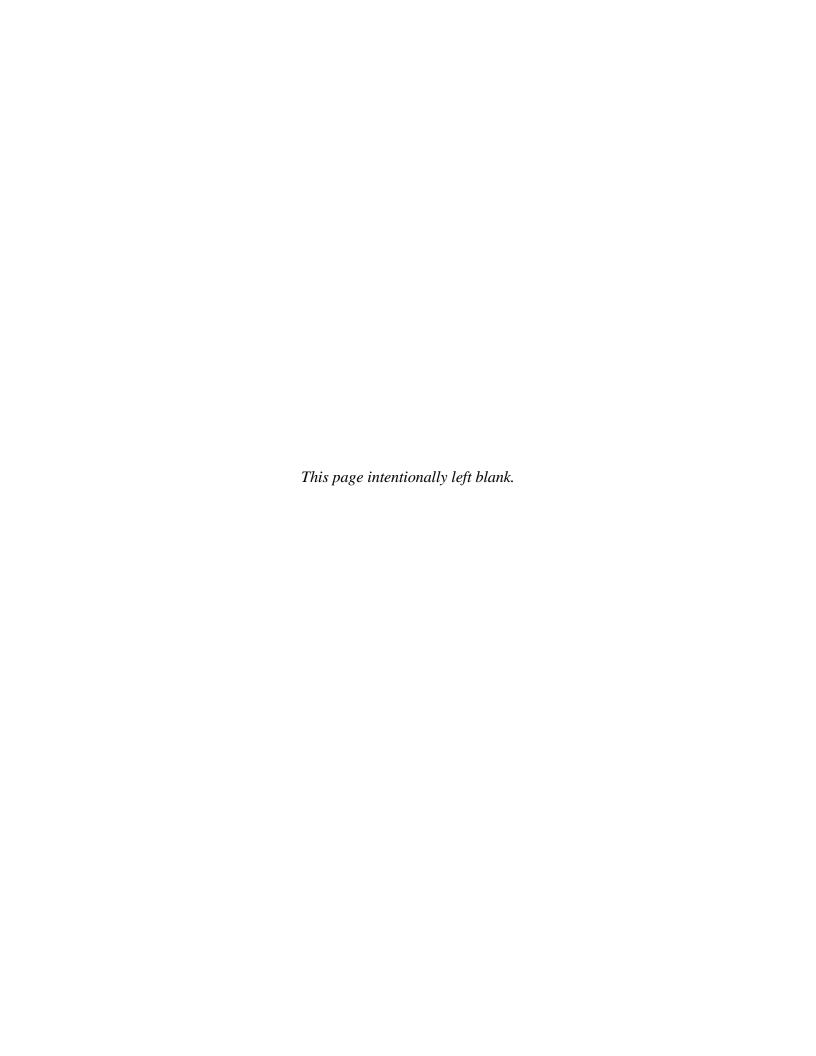
A meeting between Duke Energy, SCDES, and Duke Energy's consultant (HDR) was held on August 8, 2024, to discuss objectives and methods outlined in the WQMP as well as permitting requirements for the CWA 401 Water Quality Certification; the draft WQMP was submitted to SCDES for review on August 28, 2024, and comments were received on September 23, 2024. Agency comments were addressed in a revised draft and on October 4, 2024, Duke Energy distributed the draft WQMP to the Aquatic and Water Resources Committees for a 30-day review period. No additional comments were received. This final WQMP will be filed with the Water Resources Study Report in the Final License Application along with stakeholder consultation documentation.

7 References

- Anderson, P.G., B.R. Taylor, and G.C. Balch. 1996. Quantifying the Effects of Sediment Release on Fish and their Habitats. Canadian Manuscript Report of Fisheries and Aquatic Sciences No. 2346, Department of Fisheries and Oceans, Vancouver, B.C. and Winnipeg, Manitoba. 1996.
- Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C.
- Berg, L. and T.G. Northcote. 1985. Changes in territorial, gill-flaring, and feeding behaviour in juvenile coho salmon (*Oncohynchus kisutch*) following short-term pulses of suspended sediment. Canadian Journal of Fisheries and Aquatic Sciences 42: 1410-1417.
- Bisson, P.A. and R.E. Bilby. 1982. Avoidance of suspended sediment by juvenile coho salmon. North American Journal of Fisheries Management 4: 371-374.
- Bolton, S., Bash, J. and Berman, C. 2001. Effects of Turbidity and Suspended Solids on Salmonids. Washington State Transportation Commission and U.S. Department of Transportation. November 2001.
- Duke Energy Carolinas, LLC (Duke Energy). 2019. Construction Stormwater Planning Manual for Duke Energy North and South Carolina Operations in Environmentally Sensitive Areas. Prepared by AECOM. May 2017, Updated March 2019.
- _____. 2022. Pre-Application Document. Bad Creek Pumped Storage Station. FERC No. 2740. February 23, 2022.
- ______. 2024. Initial Study Report. Bad Creek Pumped Storage Project, FERC No. 2740. FERC eLibrary Accession Number 20240104-5044. URL: https://elibrary.ferc.gov/eLibrary/filelist?accession_num=20240104-5044.
- Gardner, M.B. 1981. Effects of turbidity on feeding rates and selectivity of bluegills. Transactions of the American Fisheries Society 110: 446-450.
- Lloyd, D.S. 1987. Turbidity as a water quality standard for salmonid habitats in Alaska. North American Journal of Fisheries Management 7: 34-45.
- McLeay, D.J., I.K. Birtwell, G.F. Hartman, and G.L. Ennis. 1987. Responses of Arctic Grayling (*Thymallus arcticus*) to Acute and Prolonged Exposure to Yukon Placer Mining Sediment. Canadian Journal of Fisheries and Aquatic Sciences 44: 658-673.
- North Carolina Stream Functional Assessment Team. 2013. N.C. Stream Assessment Method (NCSAM) Draft User Manual. March 2013. [URL]: https://www.saw.usace.army.mil/Portals/59/docs/regulatory/publicnotices/2013/NCSAM https://www.saw.usace
- Servizi, J.A. and D.W. Martens. 1992. Sublethal responses of coho salmon (Oncorhynchus kisutch) to suspended sediments. Can. J. Fish. Aquat. Sci., Vol. 49: 1389-1395.
- Sigler, J.W., T.C. Bjornn, and F.H. Everest. 1984. Effects of Chronic Turbidity on Density and Growth of Steelheads and Coho Salmon. Transactions of the American Fisheries Society113: 142-150.
- South Carolina Department of Health and Environmental Control (SCDHEC). 1995. Regulation 61-101. Water Quality Certification. Columbia, SC. [URL]:


- https://scdhec.gov/sites/default/files/Library/Regulations/R.61-101.pdf#page=3.
 Accessed July 2024.

 2017. Standard Operating and Quality Control Procedures for Macroinvertebrate Sampling. Technical Report No. 0914-17. Bureau of Water. Columbia, South Carolina.


 2023a. Regulation 61-68. Water Classifications and Standards. Columbia, SC. [URL] https://scdhec.gov/sites/default/files/Library/Regulations/R.61-68.pdf. Updated May, 2023. Accessed July 2024.

 2023b. Regulation 61-69. Classified Waters. Columbia, SC. [URL]: https://scdhec.gov/sites/default/files/Library/Regulations/R.61-69.pdf. Accessed July 2024.

 n.d.. SCDHEC Surface Water Quality and Assessment Methodology. [URL] https://scdhec.gov/sites/default/files/media/document/Surface%20Water%20Quality.pdf. Accessed July 2024.
- South Carolina Department of Natural Resources and Duke Energy (SCDNR and Duke Energy). 1996. Keowee-Toxaway Fishery Resources Ten Year Work Plan January 1996 December 2005.
- South Carolina Steering Committee. 2022. South Carolina Stream Quantification Tool: Data Collection and Analysis Manual, SC SQT v1.1. South Carolina Department of Natural Resources, Columbia, SC.
- U.S. Geological Survey (USGS). 2018. Turbidity and Water. Water Science School; June 6, 2018. [URL] https://www.usgs.gov/special-topics/water-science-school/science/turbidity-and-water#:~:text=Turbidity%20is%20the%20measure%20of,light%2C%20the%20higher%20the%20turbidity. Accessed July 2024.
- U.S. Army Corps of Engineers (USACE). 2014. New Operating Agreement between U.S. Army Corps of Engineers, Southeastern Power Administrations, and Duke Energy Carolinas, LLC Final Environmental Assessment for Hydropower License. October 2014.
- U.S. Environmental Protection Agency (USEPA). 2020. National Rivers and Streams Assessment 2013-2014: A Collaborative Survey. December 2020. EPA 841-R-19-001. Washington, DC. Accessed January 2021. [URL]: https://www.epa.gov/national-aquatic-resource-surveys/nrsa.

Attachment 6 **Consultation Documentation**

Meeting Summary

Project: Bad Creek Pumped Storage Project Relicensing

Subject: Bad Creek Water Resources Committee Meeting

Date: Tuesday, May 16, 2023

Location: Teams (Virtual)

Attendees

John Crutchfield, Duke Energy Maverick Raber, Duke Energy Alan Stuart, Duke Energy Joe Dvorak, HDR Sarah Kulpa, HDR Kerry McCarney-Castle, HDR Ty Ziegler, HDR Lynn Quattro, SCDNR Dan Rankin, SCDNR Amy Chastain, SCDNR Elizabeth Miller, SCDNR Alex Pellett, SCDNR Dale Wilde, Friends of Lake Keowee Society Erika Hollis, Upstate Forever Jeff Phillips, Greenville Water

Introduction

John Crutchfield opened the Water Resources Committee meeting and facilitated introductions. John noted the virtual meeting was being recorded for those Committee members not present or other interested individuals in viewing the presentation and to aid in meeting minutes preparation. He then handed the meeting over to Maverick Raber. M. Raber provided an overview of the Water Resources meeting agenda and provided safety moment on "Travel Smart", followed by a summary of the FERC ILP Schedule, and a refresher slide on tasks associated with the Water Resources relicensing study. The meeting's purpose was to cover Task 1 – Summary of Existing Water Quality Data and Standards.

Topic 1 – Lake Jocassee

M. Raber provided a summary of Lake Jocassee physical characteristics, historical monitoring station locations, and submerged weir, and discussed individual water quality parameters for Lake Jocassee (temperature and thermal stratification, dissolved oxygen, conductivity, phosphorous). M. Raber summarized water quality parameters (temperature and DO) in Whitewater River cove and emphasized that patterns of natural stratification are disrupted upstream of the weir due to the Project's inlet/outlet structure, but stratification is present downstream of the weir and the weir is functioning as intended. M. Raber also summarized turbidity data collected in the Whitewater River cove.

Question – Dan Rankin asked about turbidity in the Devil's Fork arm of Lake Jocassee due to the original construction of the Project dams and noted that Devil's Fork was the primary area of Lake Jocassee impacted by turbidity, not the Whitewater River cove. Ty Ziegler stated that turbidity was

increased due to construction of the original dams and there are turbidity data for Howard Creek provided in the forthcoming report.

Question – Dale Wilde asked about turbidity in the Whitewater River cove due to construction activity including the presence of haul roads. M. Raber stated that turbidity would have increased during original Project construction based on everything external (i.e., powerhouse construction, weir construction, dam construction – not just from roads). D. Rankin added on to the discussion and asked about potential impacts (of turbidity and phosphorus) due to construction of Bad Creek II and spoil placement. M. Raber indicated that future impacts would be incorporated into future tasks for the Water Resources study and that that current task (Task 1) is to summarize existing data, however, existing data will be used to inform future tasks (i.e., Task 5, Future Water Quality Monitoring Plan Development).

D. Rankin acknowledged M. Raber's point about future work covered under future tasks asked about the submerged weir and the habitat loss near the submerged weir due to increased turbidity. M. Raber stated that was something that could be discussed at the combined Aquatics and Water resources meeting, scheduled for July 27th.

Question – Dale Wilde inquired about the elevation of the submerged weir, the amount of water over the submerged weir, and if Bad Creek is at full pond, what would be the elevation of the weir.

M. Raber indicated that this exchange of water between Bad Creek and Lake Jocassee will be addressed through modeling (Tasks 3 and 4), however, D. Wilde indicated she just wanted to know the elevation over the weir under various drawdown elevations. T. Ziegler provided the water elevation of Lake Jocassee water surface over the weir at full drawdown (Lake Jocassee at el. 1080 ft, leaving 20 ft of water over the weir crest, which is at 1060 ft; at full pond Lake Jocassee is at el. 1110 ft). D. Wilde asked about how changes in water level would look along the shoreline of Lake Jocassee. Alan Stuart stated it would be a matter of inches – and this will be confirmed under Task 4 (CHEOPs) – and that the worst-case scenario would be less than six inches of elevation difference. A. Stuart indicated that there aren't many inputs into Bad Creek (since it is a very small watershed), and there are Low Inflow Protocol (LIP) rules on how Keowee-Toxaway exchanges water (including exchanges with Bad Creek). T. Ziegler reiterated that Task 4 will fully look at what the changes in elevation are under drawdown scenarios in Bad Creek and Lake Jocassee.

M. Raber added - to address D. Rankin's earlier comment - that future work for Clean Water Act Section 401 and 404 permits would help determine impacts.

A. Stuart mentioned that when compared between Bad Creek I vs. Bad Creek II, impacts from construction will be considerably less for Bad Creek II since dams, roads/infrastructure, etc. are already in place.

Joe Dvorak included hydraulic capacities for Bad Creek in the chat.

M. Raber continued on with the presentation, comparing current day water quality in Lake Jocassee with SCDHEC standards.

Topic 2 – Howard Creek

M. Raber provided an overview of Howard Creek and previous water quality monitoring by Clemson University.

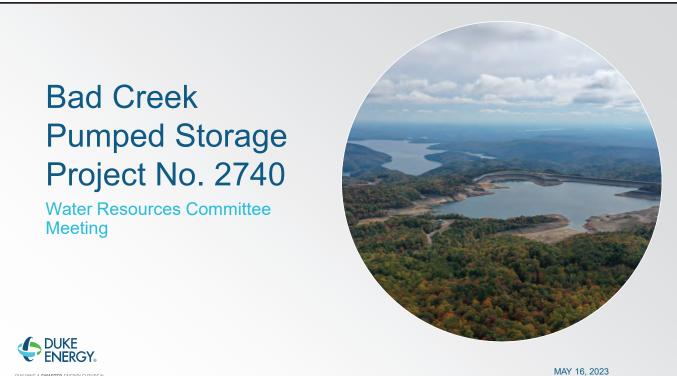
Question – D. Rankin asked about trout put, and grow classification for Lake Jocassee for DO and would Duke Energy consider asking for a site-specific standard for exemption for DO as it's more

meaningful from a management perspective and for the existing MOU. In recent years, under the MOU, 5.0 mg/L is used for the pelagic habitat threshold.

Action Item: M. Raber noted that he will reach out to SCDHEC to clarify assessment methodology and depth of DO samples for State compliance; note Duke Energy's surface measurements are at 0.3-meter depth. Information on assessment methods for State standards as they apply to Project waters will be provided in the Task 1 report, which will be distributed to the Water Resources Committee for review in late June.

John Crutchfield mentioned the combined resources meeting would take place on July 27th in Greenville to discuss Water and Aquatic resources, particularly to discuss the preliminary Water Resources CFD modeling results. The resource committee should expect to receive a "save-the-date" email soon.

M. Raber continued with the Howard Creek overview and compliance with state water quality standards, confirming that most post construction water quality parameters are consistent with pre construction data (within natural variation), and water quality supports high aquatic biodiversity and a healthy fish community, as indicated by the 18-year study carried out on Howard Creek by Duke Energy.


Additional Discussion

D. Wilde asked what was meant by stakeholder engagement process. A. Stuart, J. Crutchfield, and M. Raber indicated that stakeholder engagement was an umbrella term and involved report reviews, meetings, potential additional "ad hoc" meetings to discuss revisions, and anything else that considered stakeholder input.

Adjourn

Action Items

Duke Energy to evaluate DO as it pertains to site-specific exemptions for future monitoring of
aquatic habitat in Lake Jocassee and SCDHEC assessment methodology as it applies to
surface measurements (as opposed to depth measurements) and the percentage of a
dataset that must be considered to classify a waterbody as compliant with State water quality
standards.

1

Water Resources Meeting Agenda

- Welcome and Meeting Purpose
- Safety Moment

BUILDING A SMARTER ENERGY FUTURE®

- FERC ILP Schedule
- Water Resources Task Refresher
- Task 1 Summary of Existing Water Quality Data and Standards
 - Lake Jocassee
 - Howard Creek
- Next Steps
- Action Items
- Adjourn

Bad Creek Pumped Storage Project Water Resources Committee Meeting | 2

2

Safety Moment - Travel Smart

As summertime approaches and days get warmer and longer, many people head out on the road for family vacations, sports team travel, field work, and recreational day trips.

Travel safely through proper planning and sharing!!

- Always communicate your travel plans (with somebody not going!)
- Share your destination, the intended route, and planned arrival time.....and communicate if there's been a change in plans! Always let somebody know when you have arrived.
- Before you go, research road closures/traffic and weather conditions that might affect your trip route and arrival time.
- Have a plan in place in the case of an emergency accident, dead battery, flat tire, etc.
- Travel with plenty of drinking water and a phone charger (and external charger)

Bad Creek Pumped Storage Project Water Resources Committee Meeting | 3

3

Bad Creek Relicensing - Water Resources Study

Lead Technical Manager

John Crutchfield

Project Manager

Alan Stuart

Water Resources Study

Maverick Raber – Duke Energy Study Lead

Bad Creek Pumped Storage Project Water Resources Committee Meeting | 4

FERC ILP Schedule

Responsible Parties	Timeframe	Estimated Filing Date or Deadline
Licensee	Within 5 years to 5.5 years prior to license expiration	Feb 23, 2022
FERC	No later than 30 days following filing of NOI/PAD	Mar 25, 2022
FERC	Within 60 days following filing of NOI/PAD	Apr 24, 2022
FERC	Within 30 days following Notice of NOI/PAD and SD1	May 16-17, 2022
Licensee Stakeholders	Within 60 days following Notice of NOI/PAD and SD1	June 23, 2022
FERC	Within 45 days following deadline for filing comments on PAD/SD1	Aug 7, 2022
Licensee	Within 45 days following deadline for filing comments on PAD/SD1	Aug 7, 2022
Licensee	Within 30 days following filing of PSP	Sept 7, 2022
Stakeholders	Within 90 days following filing of PSP	Nov 5, 2022
Licensee	Within 30 days following deadline for comments on PSP	Dec 5, 2022
Stakeholders	Within 15 days following filing of RSP	Dec 20, 2022
FERC	Within 30 days following filing of RSP	Jan 4, 2023
Licensee	-	Spring-Fall 2023
Licensee	Quarterly	Spring 2023 -Fall 2024
Licensee	Pursuant to the Commission-approved study plan or no later than 1 year after Commission approval of the study plan, whichever comes first	Jan 4, 2024
	Licensee FERC FERC Licensee Stakeholders FERC Licensee Licensee Stakeholders Licensee Licensee Licensee Licensee Licensee Licensee Licensee	Licensee Within 5 years to 5.5 years prior to license expiration FERC No later than 30 days following filing of NOI/PAD FERC Within 60 days following filing of NOI/PAD FERC Within 30 days following Notice of NOI/PAD and SD1 Licensee Within 60 days following Notice of NOI/PAD and SD1 Licensee Within 45 days following deadline for filing comments on PAD/SD1 Licensee Within 45 days following deadline for filing comments on PAD/SD1 Licensee Within 30 days following filing of PSP Stakeholders Within 90 days following filing of PSP Licensee Within 30 days following filing of PSP Stakeholders Within 30 days following filing of RSP FERC Within 30 days following filing of RSP Licensee - Licensee - Licensee - Licensee Quarterly Pursuant to the Commission-approved study plan or no later than 1 year after

Bad Creek Pumped Storage Project Water Resources Committee Meeting | 5

5

Bad Creek Relicensing – Water Resources Study

Water Resources Study - Task Refresher

- Task 1 Summary of Existing Water Quality Data **And Standards**
- Task 2 Water Quality Monitoring in Whitewater River Arm
- Task 3 Velocity Effects and Vertical Mixing in Lake Jocassee Due to a Second Powerhouse
- Task 4 Water Exchange Rates and Lake Jocassee Reservoir Levels
- Task 5 Future Water Quality Monitoring Plan Development

Bad Creek Pumped Storage Project Water Resources Committee Meeting | 6

6

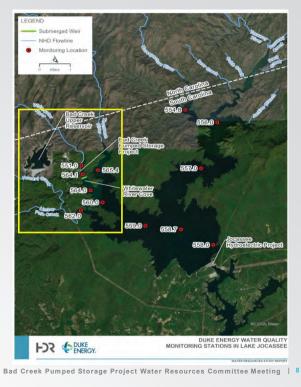
Bad Creek Relicensing - Water Resources Study

Task 1 Goals

- Provide sufficient information (through existing data) to support an analysis of potential Project-related effects on water resources.
- Address stakeholder concerns regarding water resources in the Project Boundary with clear nexus to the Project.

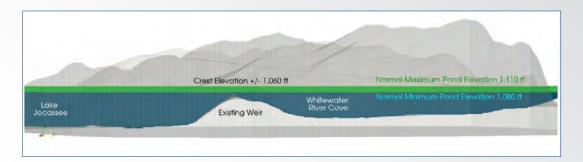
Goals will be met through the following:

- Compile & analyze previously collected water quality data from Lake Jocassee and Howard Creek.
- Provide summary of existing data under pre Project and post Project operations to determine Project effect.
- Compare data to SCDHEC state water quality standards.


Bad Creek Pumped Storage Project Water Resources Committee Meeting | 7

7

Lake Jocassee - Overview


- Forms lower reservoir for Bad Creek Project
- Forms upper reservoir for Keowee-Toxaway Project
- Drainage area of 145 square miles
- Duke Energy monitored water quality beginning in the 1970s (12 stations shown on Figure)
- Submerged weir in Whitewater River arm (discussed on next slide)

Lake Jocassee - Submerged Weir

- · During Project construction, excavated rockfill material was hauled to Whitewater River cove, loaded onto on barges, and placed in the water to construct an underwater weir approximately 1,800 feet downstream of the Project inlet/outlet structure.
- The existing submerged weir is approx. 567 ft wide and 455 ft long with a crest elevation of approximately 1,060 ft above mean sea level.
- The weir was installed to help minimize the effects of Project operations on the natural stratification of Lake Jocassee and to dissipate the energy from the Project's inlet/outlet structure.

Bad Creek Pumped Storage Project Water Resources Committee Meeting | 9

9

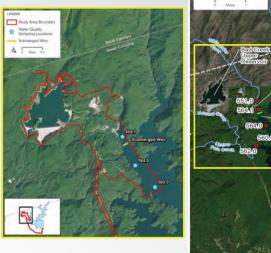
Today's Highlights

Lake Jocassee

- Lakewide water quality data summary
- · Whitewater River Cove mixing and effect of weir
- · Pre construction, construction, and post construction – turbidity
- Comparison to Standards

Howard Creek

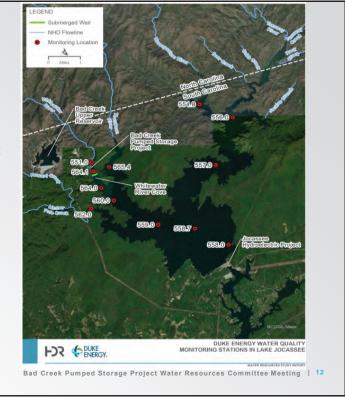
- · Streamwide water quality data summary
- Pre construction, construction, and post construction
- · Comparison to Standards



Bad Creek Pumped Storage Project Water Resources Committee Meeting | 10

Today's Highlights

- Lake Jocassee
 - Lakewide water quality data summary
 - Whitewater River Cove mixing and effect of weir
 - Whitewater River Cove turbidity pre construction, construction, and post construction
 - Comparison to Standards
- Howard Creek
 - Streamwide water quality data summary
 - Pre construction, construction, and post construction
 - Comparison to Standards



Bad Creek Pumped Storage Project Water Resources Committee Meeting | 11

11

Lake Jocassee Lakewide Water Quality Data Summary

- Water quality data have been collected since the 1970's by Duke Energy.
- Lake Jocassee water quality data summary parameters:
 - Temperature
 - Dissolved Oxygen Concentration
 - · Dissolved Oxygen Saturation
 - pH
 - · Specific Conductivity
 - Phosphorus
 - Nitrogen
 - · Chlorophyll a
 - Turbidity (Whitewater River Cove only)

Lake Jocassee - Temperature

- Winter temperatures range from 0 to 17°C (32 to 63°F), with an average of 10°C (50°F).
- Spring temperatures range from 5 to 25°C (41 to 77°F), with an average of 11°C (52°F).
- Summer temperatures range from 7 to 30°C (45 to 86°F), with an average of 15°C (59°F).
- Fall temperatures range from 7 to 28°C (45 to 82°F), with an average of 15°C (59°F).

Example: Station 558.0

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1110 to 10	95 10.7	9.8	11.1	14.7	20.1	24.1	25.9	26.2	25.1	21.5	17.5	13.9
1095 to 10	80 10.7	9.9	11.5	14.4	19.1	23.1	25.4	26.3	25.3	21.5	17.9	13.9
1080 to 10	65 10.6	9.8	11.2	14.1	17.8	21.5	24.6	26.0	25.1	21.6	17.5	13.9
1065 to 10	50 10.5	9.8	11.1	13.7	17.0	20.9	24.1	25.8	25.2	21.7	17.6	14.1
1050 to 10	35 10.6	9.7	10.6	12.9	15.6	19.5	23.1	25.3	24.9	21.5	17.4	13.8
1035 to 10	20 10.6	9.8	10.4	12.5	14.9	18.8	22.2	24.5	24.8	21.7	17.6	14.0
1020 to 10	05 10.5	9.6	10.3	11.7	13.8	17.6	21.0	23.8	23.9	21.2	17.3	13.7
1005 to 9	10.6	9.7	10.1	11.2	13.2	16.1	19.9	22.4	23.5	21.3	17.5	14.1
990 to 97	5 10.5	9.6	10.0	10.8	12.1	14.3	17.5	20.7	21.9	20.6	17.1	13.7
975 to 96	0 10.7	9.7	9.8	10.3	11.2	12.7	14.3	16.6	18.9	18.7	17.2	13.8
960 to 94	5 10.4	9.6	9.8	10.0	10.6	11.2	12.4	13.6	15.1	15.6	15.9	13.4
945 to 93	0 10.4	9.6	9.6	9.7	9.8	10.0	10.3	10.6	11.0	11.0	11.6	11.9
930 to 91	5 9.7	9.3	9.4	9.4	9.4	9.4	9.5	9.6	9.8	9.6	9.7	9.7
915 to 90	0 9.3	9.1	9.2	9.2	9.2	9.2	9.3	9.3	9.5	9.3	9.3	9.3
900 to 88	5 9.0	9.0	9.1	9.0	9.0	9.0	9.1	9.2	9.3	9.2	9.2	9.1
885 to 87	9.0	8.8	8.9	8.9	8.9	8.9	9.0	9.1	9.2	9.1	9.1	9.0
870 to 85	5 8.9	8.8	8.8	8.8	8.8	8.8	8.9	9.0	9.1	9.0	9.0	9.0
< 855	8.8	8.6	8.7	8.7	8.7	8.8	8.9	8.9	9.1	9.0	9.0	9.0

13

Lake Jocassee - Thermal Stratification

- Lake-wide thermal stratification (i.e., warmer water in the upper water column, cooler water at depth) is less prevalent in the winter months, especially February.
- Stratification begins to form in the upper third of the water column as temperatures continue to warm towards late spring.
- Stratification continues to develop through summer and extends further down into the water column.
- Stratification peaks in early fall and begins to wane as temperatures cool.

Example: Station 558.0

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1110 to 1095	10.7	9.8	11.1	14.7	20.1	24.1	25.9	26.2	25.1	21.5	17.5	13.9
1095 to 1080	10.7	9.9	11.5	14.4	19.1	23.1	25.4	26.3	25.3	21,5	17.9	13.9
1080 to 1065	10.6	9.8	11.2	14.1	17.8	21.5	24.6	26.0	25.1	21.6	17.5	13.9
1065 to 1050	10.5	9.8	11.1	13.7	17.0	20.9	24.1	25.8	25.2	21.7	17.6	14.1
1050 to 1035	10.6	9.7	10.6	12.9	15.6	19.5	23.1	25.3	24.9	21.5	17.4	13.8
1035 to 1020	10.6	9.8	10.4	12.5	14.9	18.8	22.2	24.5	24.8	21.7	17.6	14.0
1020 to 1005	10.5	9.6	10.3	11.7	13.8	17.6	21.0	23.8	23.9	21.2	17.3	13.7
1005 to 990	10.6	9.7	10.1	11.2	13.2	16.1	19.9	22.4	23.5	21.3	17.5	14.1
990 to 975	10.5	9.6	10.0	10.8	12.1	14.3	17.5	20.7	21.9	20.6	17.1	13.7
975 to 960	10.7	9.7	9.8	10.3	11.2	12.7	14.3	16.6	18.9	18.7	17.2	13.8
960 to 945	10.4	9.6	9.8	10.0	10.6	11.2	12.4	13.6	15.1	15.6	15.9	13.4
945 to 930	10.4	9.6	9.6	9.7	9.8	10.0	10.3	10.6	11.0	11.0	11.6	11.9
930 to 915	9.7	9.3	9.4	9.4	9.4	9.4	9.5	9.6	9.8	9.6	9.7	9.7
915 to 900	9.3	9.1	9.2	9.2	9.2	9.2	9.3	9.3	9.5	9.3	9.3	9.3
900 to 885	9.0	9.0	9.1	9.0	9.0	9.0	9.1	9.2	9.3	9.2	9.2	9.1
885 to 870	9.0	8.8	8.9	8.9	8.9	8.9	9.0	9.1	9.2	9.1	9.1	9.0
870 to 855	8.9	8.8	8.8	8.8	8.8	8.8	8.9	9.0	9.1	9.0	9.0	9.0
< 855	8.8	8.6	8.7	8.7	8.7	8.8	8.9	8.9	9.1	9.0	9.0	9.0

Lake Jocassee - Dissolved Oxygen (Standard >6.0mg/L)

- Winter DO concentrations (lake-wide, throughout the water column) range from 0 to 14 mg/L (average 7 mg/L). Average winter surface DO is 9.4 mg/L.
- Spring DO concentrations range from 0 to 13 mg/L (average of 8 mg/L). DO concentrations remain consistent through spring
 months but some stratification is present in the deepest sections of the lake. Average spring surface DO is 9.7 mg/L.
- Summer DO concentrations range from 0 to 13 mg/L (average of 7 mg/L). Stratification becomes more pronounced throughout the lake with the transition from spring into summer. This stratification is generally limited to the lower half of the lake in both deep and shallow areas. Average summer surface DO is 8.2 mg/L.
- Fall DO concentrations range from 0 to 11 mg/L (average of 6 mg/L). The most notable stratification pattern is seen in the fall where the bottom of the lake can reach anoxic levels. DO concentrations remain constant in the top third of the water column, however, significant stratification is observed in the lower water column. Average fall surface DO is 8.1 mg/L.

Example: Station 557.0

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1110 to 1095	9.6	9.6	10.2	9.9	9.1	8.4	8.3	8.1	8.0	7.7	8.4	8.9
1095 to 1080	9.4	9.6	10.1	9.9	9.5	9.1	8.5	8.0	7.7	7.8	8.5	8.9
1080 to 1065	9.4	9.5	10.0	9.8	9.5	9.1	8.6	7.9	7.6	7.8	8.4	8.8
1065 to 1050	9.4	9.5	9.9	9.7	9.4	9.0	8.4	7.5	7.1	7.7	8,4	8.8
1050 to 1035	9.3	9.3	9.7	9.6	9.2	8.8	7.9	6.8	6.4	7.6	8.3	8.8
1035 to 1020	9.3	9.3	9.5	9.5	9.0	8.3	7.3	6.0	5.4	7.4	8.2	8.8
1020 to 1005	9.3	9.2	9.4	9.3	8.9	8.1	7.1	6.0	5.1	6.0	7.8	8.6
1005 to 990	9.3	9.3	9.3	9.1	8.7	8.1	7.3	6.4	5.6	4.8	6.4	7.9
990 to 975	9.1	9.3	9.2	8.9	8.4	7.7	7.0	6.2	5.6	4.9	4.5	6.2
975 to 960	8.3	9.1	9.1	8.7	8.1	7.4	6.7	6.0	5.5	4.8	4.2	4.3
960 to 945	6.6	8.7	9.1	8.4	7.8	7.0	6.3	5.5	5.2	4.5	3.7	3.
945 to 930	5.4	8.8	8.7	8.0	7.4	6.5	5.9	5.0	4.7	3.9	3.3	2.4
930 to 915	4.6	8.4	8.5	7.5	7.1	6.1	5.5	4.6	4.3	3.7	3.1	2.0
915 to 900	3.7	8.2	8.2	7.4	6.8	5.9	5.4	4.6	4.2	3.5	3.0	2.
900 to 885	3.8	7.3	7.9	7.2	6.7	5.6	5.2	4.5	3.9	3.3	2.9	2.3
885 to 870	3.3	7.0	8.0	6.8	6.2	5.5	5.0	4.0	3.5	3.1	2.8	1,8
870 to 855	3.2	6.8	7.6	6.6	5.9	4.9	4.4	3.6	3.3	2.7	2.2	1.6
< 855	2.4	6.6	6.8	6.1	5.6	4.6	4.5	3.4	2.8	2.3	2.1	1.8

15

Lake Jocassee – Dissolved Oxygen Saturation

- The average lake-wide winter surface DO saturation is 87.2 percent. DO saturation remains constant in the upper top half of the lake and decreases from about 80 percent saturation to near anoxic levels at the reservoir bottom.
- The average lake-wide spring surface DO saturation is 98.6 percent. Spring has the highest average DO saturation; spring DO saturation decreases relatively uniformly with depth, with the deepest sections of the lake generally dropping from 100 percent at the surface to 50 percent saturation at the lake bottom.
- The average lake-wide summer surface DO saturation is 101.3 percent. Similar to spring values, DO saturation decreases
 uniformly with depth, but more sharply, generally decreasing from 100 percent at the surface to 35 percent at the lake bottom.
- The average lake-wide fall surface DO saturation is 91.5 percent. As expected, fall continues the trend of decreased saturation in the lower portions of the water column, becoming anoxic near the lake bottom.

Example: Station 564.0

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1110 to 1095	87.0	86.4	94.6	99.0	99.8	101.8	98.9	101.0	95.8	87.5	88.7	88.7
1095 to 1080	83.8	84.2	92.3	96.8	96.1	100.4	96.5	98.2	92.4	88.4	87.8	85.9
1080 to 1065	83.3	82.3	89.8	94.4	94.5	99.2	95.1	95.9	90.7	88.1	87.5	85.9
1065 to 1050	83.3	82.2	88.3	92.0	92.7	97.2	93.7	93.7	88.9	87.8	87.0	85.5
1050 to 1035	82.5	81.2	86.7	89.5	89.3	94.3	90.3	89.2	87.1	86,9	87.0	85.1
1035 to 1020	82.4	80.5	83.9	87.2	87.4	89.7	83.2	81.7	78.8	84.8	86.5	85.3
1020 to 1005	82.2	79.3	81.9	83.4	83.6	83.6	77.1	73.3	65.3	72.9	82.7	83.6
1005 to 990	82.4	78.6	79.5	79.5	78.9	76.6	69.0	64.4	56.9	50.9	63.0	78.
990 to 975	74.7	77.6	77.1	74.6	72.9	69.8	59.3	55.8	50.2	45.6	42.8	55.2
975 to 960	55.3	71.9	73.6	69.7	67.7	60.0	50.7	48.9	42.1	36.0	34.0	34.
960 to 945	44.7	65.2	67.8	63.8	60.8	51.1	44.3	43.8	36.1	28.4	26.7	26.
945 to 930	31.2	57.2	61.7	56.7	56.8	45.2	40.0	38.0	32.0	22.7	20.4	18.
930 to 915	25.6	49.9	55.2	45.7	51.8	39.6	32.1	31.2	25.5	18.8	17.0	15.
915 to 900	21.4	47.8	46.9	44.2	50.0	35.6	31.9	27.4	25.1	15.5	13.8	14.
900 to 885	19.7	35.7	38.9	32.8	20.4	20.0	7.3	22.1	11.2	4.1	1.0	11.
885 to 870	20.9	31.2	7.9	44.5	21.1	52.4	6.6	25.3	3.8	2.0	0.6	5.8
870 to 855	1.2	0.0					3.1	- dec				
< 855	A. 15.				Mi	nimum Rea	ding 868.	Bft				

Lake Jocassee – pH (Standard = 6.0 - 8.0)

- Lake Jocassee pH ranges between 5 and 10 with an average of 6.2. Low pH values are typical of mountain streams, which tend to be poorly buffered. Waters in Lake Jocassee tributaries also have relatively low pH levels.
- There is very little difference in pH between seasons and while there is some variation in the water column, there is very little to no stratification.

Example: Station 559.0

	1991 to 2015	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	6.2	6.1	6.5	6.7	7.0	6.8	6.8	6.9	6.7	6.3	6.5	6.4
	1095 to 1080	6.3	6.3	6.6	6.8	6.9	6.9	6.8	7.0	6.8	6.6	6.7	6.5
	1080 to 1065	6.3	6.2	6.5	6.7	6.8	6.7	6.7	6.8	6.8	6.7	6.7	6.5
	1065 to 1050	6.3	6.2	6.5	6.6	6.7	6.5	6.6	6.7	6.7	6.7	6.7	6.5
	1050 to 1035	6.3	6.2	6.4	6.4	6.5	6.5	6.4	6.5	6.5	6.6	6.7	6.5
0	1035 to 1020	6.3	6.2	6.4	6.4	6.5	6.4	6.3	6.3	6.3	6.6	6.7	6.5
	1020 to 1005	6.3	6.2	6.3	6.4	6.4	6.3	6.2	6.2	6.1	6.3	6.6	6.5
	1005 to 990	6.3	6.1	6.3	6.3	6.3	6.1	6.1	6.1	6.0	6.0	6.3	6.4
	990 to 975	6.2	6.1	6.2	6.2	6.2	6.1	6.0	6.1	6.0	5.9	6.0	6.0
	975 to 960	6.0	6.1	6.2	6.2	6,1	6.0	5.9	6.0	5.9	5.9	5.9	5.8
	960 to 945	5.8	6.0	6.1	6.1	6,1	5.9	5.8	5.9	5.8	5.8	5,9	5.8
	945 to 930	5.7	5.9	6.0	5.9	6.0	5.9	5.8	5.9	5.8	5.8	5.8	5.7
	930 to 915	5.7	5.8	6.0	5.9	5.9	5.8	5.8	5.9	5.8	5.8	5.8	5.7
	915 to 900	5.7	5.8	5.9	5.9	5.9	5.8	5.7	5.8	5.8	5.7	5.8	5.7
	900 to 885	5.7	5.7	5.9	5.8	5.9	5.7	5.7	5.8	5.7	5.7	5.8	5.7
1-	885 to 870	5.6	5.8	5.9	5.8	5.9	5.8	5.7	5.8	5.8	5.7	5.8	5.7
	870 to 855	5.7	5.9	5.9	5.8	5.9	5.7	5.7	5.8	5.8	5.7	5,8	5.7
	< 855	5.7	5.8	5.9	5.8	5.8	5.7	5.7	5.8	5.8	5.7	5.8	5.7
	< Acidic					Neutral						lasic >	
	2	3	4	5	- 6	7				11	12	13	14

Bad Creek Pumped Storage Project Water Resources Committee Meeting | 17

17

Lake Jocassee - Conductivity

- Conductivity is directly related to rainfall runoff events as tributary inflows to Lake Jocassee carry these dissolved salts and inorganic chemicals from the watershed into the reservoir.
- Since rainfall is fairly consistent through the year in the region, conductivity values in Lake Jocassee do not vary seasonally but do increase during periods of higher rainfall runoff. For example, during drier periods, conductivity in Lake Jocassee is very low ranging from 2.0 to 5.0 µS/cm.
- The overall annual average conductivity in the reservoir was approximately 18.1 µS/cm, with no seasonal trends.

Example: Station 558.0

		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1110 to 1095	17.3	17.5	17.4	17.6	18,3	18.3	19.0	19.2	19,2	18.7	18.9	16.8
	1095 to 1080	17.4	17.8	17.9	18.2	18.5	18.7	19.4	19.4	19.1	19.0	18.5	17.6
msi)	1080 to 1065	17.5	17.7	17.8	18.3	18.8	18.7	19.3	19.4	19.1	19.2	18.4	17.8
#	1065 to 1050	17.5	17.7	17.5	18.0	18.4	18.3	19.0	19.3	18.8	19.1	18.5	17.8
	1050 to 1035	17.3	17.5	17.7	18.0	18.2	18.2	18.9	19.1	18.7	19.0	18.4	17.6
9	1035 to 1020	17.4	17.7	17.7	18.0	18.2	18.0	18.5	18.8	18.6	18.9	18.4	17.7
Kange	1020 to 1005	17.4	17.7	17.6	18.0	18.0	17.6	17.9	18.1	17.9	18.6	18.2	17.6
Reading	1005 to 990	17.4	17.5	17.5	17.8	18.0	17.3	17.6	17.5	17.3	17.6	17.9	17.4
Ē	990 to 975	17.3	17.7	17.5	17.8	17.7	17.4	17.7	17.6	17.2	17.7	17.2	17.2
ě	975 to 960	17.2	17.6	17.4	17.9	17.9	17.4	17.5	17.4	17.2	17.7	17.3	17.0
	960 to 945	17.5	17.7	17.3	17.7	17.9	17.4	17.4	17.6	17.0	17.9	17.3	17.0
Measurement	945 to 930	17.7	17.5	17.5	17.7	17.9	17.5	17.6	17.4	17.1	17.6	17.4	17.1
ē	930 to 915	17.6	17.9	17.5	17.9	18.0	17.7	17.8	17.6	17.5	17.8	17.5	17.2
S	915 to 900	17.9	17.9	17.6	17.9	18.1	17.6	17.7	17.6	17.3	17.9	17.7	17.5
Ve a	900 to 885	18.1	17.9	17.5	17.9	18.0	17.6	17.7	17.5	17.4	17.8	17.9	17.4
-	885 to 870	18.1	18.1	17.9	18.0	17.9	17.5	17.7	17.8	17.6	17.9	17.7	17.9
	870 to 855	18.6	18.4	17.7	18.1	18.0	17.7	17.8	18.0	17.9	18.1	18.2	18.1
	< 855	20.0	18.9	17.9	18.3	18.2	18.0	18.5	18.8	18.9	20.4	20.3	20.1

Lake Jocassee – Phosphorus (Standard = >0.02 mg/L)

- Lake Jocassee surface phosphorus concentrations range from 0.002 to 0.65 mg/L over the entire period of record with an average of 0.01 mg/L.
- On average, phosphorus levels were higher after initial filling and have declined over time.
- The highest values are typically nearest tributary inflow.

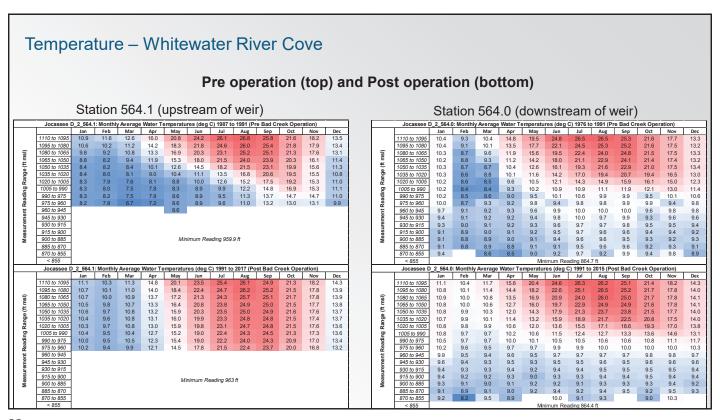
S	urface Phos	ohorous (m	ng/L)
Station	Maximum	Average	Minimum
558.7	0.100	0.007	0.002
558.0	0.650	0.011	0.002
559.0	0.056	0.008	0.002
560.0	0.081	0.009	0.002
562.0	0.037	0.009	0.002
565.4	0.082	0.012	0.002
551.0	0.100	0.015	0.005
564.0	0.057	0.009	0.002
564.1	0.165	0.011	0.002
557.0	0.087	0.010	0.002
554.8	0.057	0.010	0.002
556.0	0.061	0.009	0.002

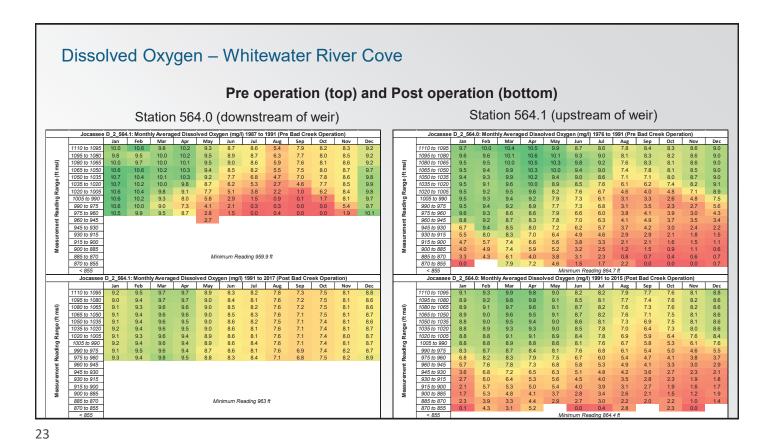
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	558.7	0.004	0.006	0.006	0.006	0.006	0.004	0.005	0.005	0.004	0.005	0.006	0.008
	558.0	0.005	0.007	0.008	0.007	0.007	0.007	0.005	0.006	0.004	0.006	0.008	0.006
	559.0	0.006	0.007	0.007	0.008	0.006	0.008	0.003	0.005	0.004	0.005	0.005	0.008
	560.0	0.007	0.008	0.008	0.009	0.006	0.006	0.004	0.006	0.004	0.004	0.004	0.009
5	562.0	0.007	0.007	0.009	0.009	0.007	0.007	0.005	0.005	0.004	0.005	0.004	0.010
Station	565.4	0.015	0.012	0.011	0.013	0.010	0.012	0.005	0.004	0.005	0.003	0.004	0.003
St	551.0	0.034	0.010			0.009			0.005			0.006	
	564.0	0.012	0.010	0.010	0.009	0.008	0.008	0.005	0.004	0.005	0.010	0.004	0.004
	564.1	0.010	0.009	0.009	0.009	0.007	0.011	0.004	0.004	0.017	0.004	0.005	0.004
	557.0	0.007	0.006	0.013	0.007	0.007	0.007	0.005	0.006	0.004	0.005	0.005	0.010
	554.8	0.009	0.007	0.010	0.010	0.008	0.008	0.005	0.004	0.004	0.007	0.006	0.015
	556.0	0.007	0.006	0.008	0.008	0.008	0.008	0.004	0.005	0.004	0.008	0.005	0.012
		Legend	0.000							-			0.020

19

Today's Highlights

- Lake Jocassee
 - Lakewide water quality data summary
 - Whitewater River Cove mixing and effect of weir
 - Whitewater River Cove turbidity pre construction, construction, and post construction
 - Comparison to Standards
- Howard Creek
 - Streamwide water quality data summary
 - Pre construction, construction, and post construction
 - Comparison to Standards


Bad Creek Pumped Storage Project Water Resources Committee Meeting | 20


Lake Jocassee - Whitewater River Cove

- The Whitewater River Cove near Station 564.1 experiences vertical mixing due to the Project inlet/outlet structure – mixing eliminates stratification at this location.
- The submerged weir, which was installed to help minimize the effects of Project operations on natural stratification patterns, confines mixing to the upper portion of the Whitewater River cove.

21

Water Quality Take Home Points

- · Water quality indicates no changes in stratification trend or in overall values b/w pre and post operations in Lake Jocassee EXCEPT for Station 564.1 (due to mixing from the Project discharge).
- The weir is functioning as intended and stratification at Station 564.0 downstream of the weir reflects stratification patterns documented in the rest of the lake.

		Tempera	ture (°C)	
Station	Pre ope	erations	Post op	erations
Station	Average	Standard	Average	Standard
		Deviation		Deviation
558.7	12.5	4.9	12.1	4.8
558.0	12.9	5.2	13.5	5.4
559.0	12.5	5.0	12.1	4.9
560.0	11.7	4.6	12.3	4.9
562.0	15.3	5.6	16.0	5.3
565.4	14.1	5.4	13.1	4.7
551.0	13.5	5.8	14.8	7.3
564.0	12.1	4.7	12.7	4.9
564.1	13.9	5.6	17.2	5.5
557.0	11.7	4.5	12.2	4.8
554.8	14.6	5.5	14.2	5.3
556.0	12.8	4.9	13.4	5.2

		Dissolved	Oxygen	
Station	Pre or	perations	Post op	erations
Station	Average	Standard Deviation	Average	Standard Deviation
558.7	6.9	2.4	6.9	1.9
558.0	6.5	2.8	7.0	1.8
559.0	6.5	2.7	6.5	2.2
560.0	6.7	2.5	6.4	2.3
562.0	7.8	2.7	7.9	2.0
565.4	7.3	2.9	7.1	2.5
551.0	9.9	1.3	9.6	1.6
564.0	6.4	3.0	6.2	2.6
564.1	7.4	3.2	8.5	0.8
557.0	6.8	2.9	6.8	2.3
554.8	7.7	3.1	7.4	2.8
556.0	7.4	2.9	7.3	2.6

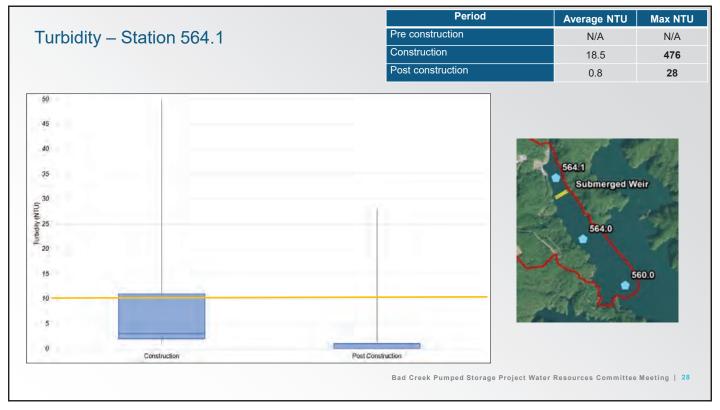
Bad Creek Pumped Storage Project Water Resources Committee Meeting | 25

25

Today's Highlights

- Lake Jocassee
 - Lakewide water quality data
 - · Whitewater River Cove -
 - Whitewater River Cove turbidity pre construction, construction, and post construction
- **Howard Creek**
 - Streamwide water quality data summary
 - Pre construction,
 - · Comparison to Standards

Bad Creek Pumped Storage Project Water Resources Committee Meeting | 26


Whitewater River Cove - Turbidity

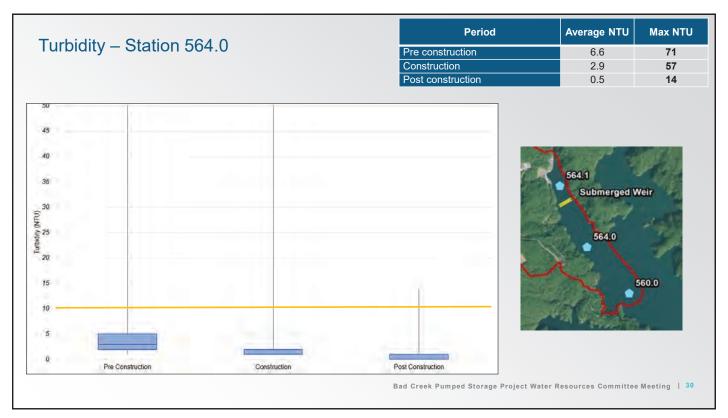
- During original Project construction, the Whitewater River cove was directly impacted by construction activities & submerged weir construction. Therefore,
- Data from the three stations in Whitewater River Cove were assessed to determine the following:
 - 1. If an increase in turbidity could be identified & linked to activities or events
 - 2. How far downstream did elevated turbidity impacts extend
 - 3. Length of time turbidity was elevated in the water column
 - · Three time periods were assessed:
 - Pre Construction (<1985)
 - Construction (1985-1991)
 - Post Construction (1992-2015)

Bad Creek Pumped Storage Project Water Resources Committee Meeting | 27

27

Turbidity - Station 564.1

Period	Max Depth (m)	Average NTU	Stdev NTU	Max NTU	Count
Pre construction	N/A	N/A	N/A	N/A	N/A
Construction	45	18.5	51.0	476	480
Post construction	44	0.8	2.0	28	890



- Pre construction: Measurements were not taken until 1988, therefore there is no pre construction dataset
- · Construction:
 - During specific times during the construction period, turbidity was elevated consistently throughout the water column on the same days
 - When elevated turbidity was noted, higher values were in the bottom half of the water column (20-40 m)
 - Average construction turbidity was 18.5 NTU, maximum was 476 NTU (January 1988)
 - Readings were elevated for several readings in a row at the beginning of the construction period, indicating prolonged construction activities
- · Post-construction:
 - Data averaged 0.8 NTU only 7 measurements were above 10 NTU and 6 of these were on the same day

 August 17, 1994 associated with <u>Tropical Storm Beryl</u>.

Bad Creek Pumped Storage Project Water Resources Committee Meeting

29

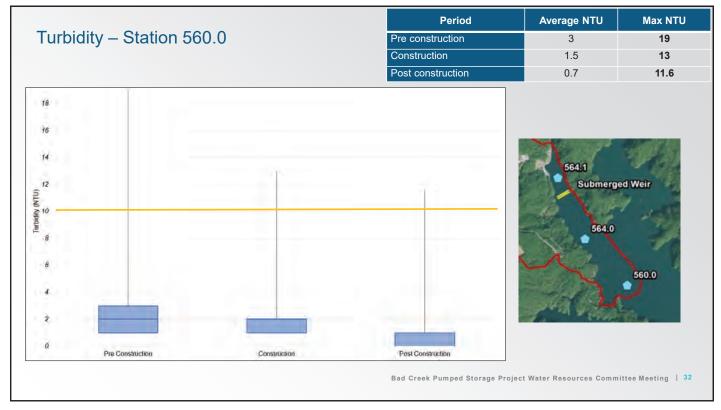
Turbidity - Station 564.0

Period	Max Depth (m)	Average NTU	Stdev NTU	Max NTU	Count
Pre construction	40	6.6	10	71	382
Construction	74	2.9	5.2	57	545
Post construction	74	0.5	1.2	14	1353

Pre construction:

- The average and maximum turbidity for pre construction is higher than construction and post construction, likely due to recent filling of the reservoir and inflows from tributaries
- Elevated values were episodic and specific to the date the measurement was taken (had returned to baseline during the next measurement) and high turbidity was associated with the same day.

Construction:


- · Turbidity values were lower than pre construction turbidity values overall.
- Elevated turbidity noted at the upstream station associated with construction activities were not noted on the same days at Station 564.0, therefore, elevated turbidity did not extend downstream to this point.

Post construction:

• Turbidities are lower than pre construction and construction – average 0.5 NTU

Bad Creek Pumped Storage Project Water Resources Committee Meeting | 31

31

Turbidity - Station 560.0

Period	Max Depth (m)	Average NTU	Stdev NTU	Max NTU	Count	
Pre construction	60	3	2.9	19	593	
Construction	82	1.5	1.0	13	462	
Post construction	78	0.7	1.0	11.6	621	

- Pre construction:
 - · During the pre construction period, the average turbidity was 3.0 NTU (stdev 2.9) and the maximum turbidity value was 19 NTU. Half of the elevated turbidity values were from a single day on September 12, 1978 (average 13.25 NTU).
- Construction:
 - The construction period average was 1.5 NTU, half of the pre construction average turbidity.
- Post construction:
 - Post construction average NTU is the lowest at 0.7 NTU

Bad Creek Pumped Storage Project Water Resources Committee Meeting | 33

33

Turbidity – Take Home Points

- 1. Under current conditions, average NTU is less than 1.0 NTU at all stations assessed.
- 2. Where data are available, turbidity values were highest during pre construction (likely due to natural fluctuations/rain events from incoming Whitewater River flows).
- 3. All elevated turbidity values occur on the same days and are elevated throughout the water column (not spread randomly over several measurements or at random depths).
- 4. During construction, the elevated turbidity at Station 564.1 upstream of the weir is not observed downstream of the weir.
- 5. Data indicate that, unless there was a prolonged construction activity, elevated turbidity values typically returned to baseline for the following measurement, indicating rapid recovery from elevated values back to normal values (i.e., within one month conservatively).

Period	Location 564.1	Location 564.0	Location 560.0	
Pre construction	N/A	6.6	3	
Construction	18.5	2.9	1.5	
Post construction	0.8	0.5	0.7	

Bad Creek Pumped Storage Project Water Resources Committee Meeting | 34

Whitewater River Cove - Turbidity

- Unlike other water quality parameters, turbidity is not an inherent property of water, however, it can be an <u>indicator</u> of waterbody health.
- Turbidity values increase with increased particles (organic or inorganic) in the water column.
- Turbidity levels in a waterbody are <u>episodic</u> and are <u>not</u> <u>spatially or temporally consistent</u>.
- Under natural conditions, suspended sediment load contribution increases during a rainstorm/runoff event where <u>sediment is eroded</u> from upland areas or stream banks and flows into surface waters. Another major contributor to upland soil/sediment erosion is construction activities.
- Increases in turbidity due to rain or land disturbance are usually short-lived and temporary.

Bad Creek Pumped Storage Project Water Resources Committee Meeting | 35

35

Today's Highlights

Lake Jocassee

- Lakewide water quality data summary
- Whitewater River Cove mixing and effect of weir
- Whitewater River Cove turbidity pre construction, construction, and post construction
- Comparison to Standards

Howard Creek

- Streamwide water quality data summary
- Pre construction, construction, and post construction
- · Comparison to Standards

Bad Creek Pumped Storage Project Water Resources Committee Meeting | 36

South Carolina DHEC Water Quality Standards

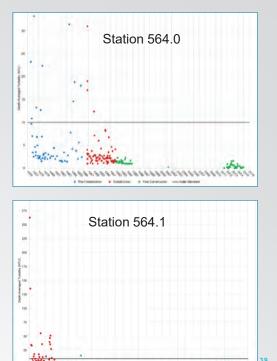
Parameter	South Carolina Water Quality Standard						
Temperature (applies to heated effluents only)	Trout Waters: Not to vary from levels existing under natural conditions, unless determined some other temperature shall protect the classified uses						
Dissolved Oxygen	Trout Waters: Not less than 6.0 mg/L						
pH	Trout Waters: between 6.0 and 8.0						
Turbidity	Trout Waters: Not to exceed 10 NTU or 10% above natural conditions, provided existing uses are maintained.						
Phosphorus	Blue Ridge: Shall not exceed 0.02 mg/L.						

- Lake Jocassee = Trout Put, Grow, and Take (TPGT)
- Howard Creek = Trout Natural Waters (TN)
 - Lake Jocassee is included in the highest water quality classification (i.e., excellent rating) as designated by SCDHEC and preservation of existing conditions is recommended, with most tributaries within the watershed fully supporting their designated use.
 - Lake Jocassee is one of only a few reservoirs in South Carolina possessing the necessary aquatic habitat (water temperatures and dissolved oxygen [DO]) to support both warmwater and coldwater (salmonid [trout]) fisheries year-round.

Bad Creek Pumped Storage Project Water Resources Committee Meeting | 37

37

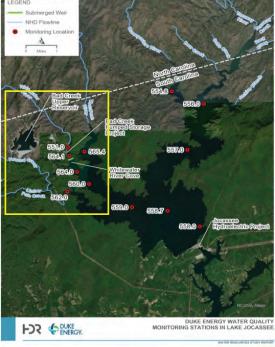
Lake Jocassee Water Quality Compliance with State Standards


- Temperature (State standard = zero variance from natural conditions) Temperatures in Lake Jocassee consistently met South Carolina water quality standards for trout waters; aside from monitoring location 564.1 immediately downstream of the Project, there are no discernable patterns that would suggest Lake Jocassee temperatures are affected by Bad Creek operations or outside the range of natural conditions.
- Dissolved Oxygen (State standard = >6.0 mg/L) Surface DO measurements (instantaneous) in Lake Jocassee consistently met South Carolina water quality standards for trout waters.
 - Before 1991 there were two instances of surface DO less than 6.0 mg/L: 4.6 mg/L at monitoring location 558.0 in 1973 and 5.4 mg/L at monitoring location 556.0 in 1976, which correspond to the first few years after the reservoir was filled in 1973. There were no instances of surface DO values less than 6.0 mg/L after 1991.
- pH (State standard = 6.0-8.0 mg/L). Lake Jocassee pH ranges between 5 and 10 with an average of 6.2, which is considered neutral and indicative of a system with low production (i.e., low potential for algal growth). Because surface waters in this region are typically poorly buffered and tend to have low pH values, many values were below 6.0 mg/L.
- Turbidity (State standard = 10 NTU maximum). Lake Jocassee average NTU is <1.0 NTU.
- Phosphorus (0.02 mg/L maximum). Instantaneous surface phosphorus readings were compared against the state standard for trout waters. Lake Jocassee surface phosphorus concentrations range from 0.002 to 0.65 mg/L over the entire period of record with an average of 0.01 mg/L. On average, phosphorus levels were higher after initial filling and have declined over time.
- Conductivity There is no state standard for specific conductivity, though concentrations less than 500 µS/cm are generally considered to be suitable for aquatic species in southern Appalachian streams (USEPA 2020). Over the full period record across all monitoring locations, the highest conductivity reading was 275 μS/cm, and the average was 18.1 μS/cm.

Bad Creek Pumped Storage Project Water Resources Committee Meeting | 38

Lake Jocassee Water Quality Compliance with State Standards

- Turbidity In freshwater lakes in South Carolina for trout waters, the threshold is not to exceed 10 NTU (or 10 percent above natural conditions, provided existing uses
- Turbidity data from recent years indicates an average of <1.0 NTU in the Whitewater River cove.



39

Today's Highlights

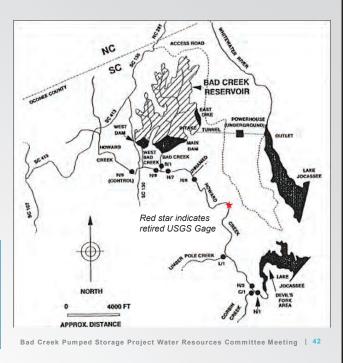
- Lake Jocassee
 - Lakewide water quality data
 - · Whitewater River Cove -
 - Whitewater River Cove turbidity pre and post construction
 - Comparison to Standards
- **Howard Creek**
 - Streamwide water quality data summary
 - Pre construction,



Bad Creek Pumped Storage Project Water Resources Committee Meeting | 40

Howard Creek - Overview

- Howard Creek is a tributary to Limber Pole Creek / Lake Jocassee
- Drainage area of 4.3 square miles at confluence with Limber Pole
- Flows in a southeasterly direction immediately downstream of the Project dams and receives seepage from dams (approx. 5.0 cubic feet per second)
- Clemson University monitored water quality before and after Project construction – their results from 1993 are summarized to represent post operational conditions in Howard Creek.


41

Howard Creek Water Quality Data Summary

- Pursuant to Article 34 of the original license for the Project (issued to Duke Power Company in 1977) water quality studies in Howard Creek were carried out to assess impacts to Howard Creek associated with construction and operation of the Project.
- Field data were collected by Clemson University from January 1980 through December 1993 covering pre construction, construction, and post construction.
- Water quality parameters and sampling locations were determined in coordination and agreement with FERC, SCDHEC, and SCDNR.

5 Sampling Locations (Abernathy et al. 1993)

- 1. H/1: Between Corbin Creek and Lake Jocassee
- 2. H/2: Between Limber Pole Creek and Corbin Creek
- H/6: Downstream from the Old Schoolhouse Road and an unnamed tributary entering from the east and upstream from Limber Pole Creek
- 4. H/7: Just downstream from Bad Creek
- 5. H/9: Just upstream of Highway 130 (control)

Howard Creek Water Quality Data Summary

- Baseflow samples were measured monthly in 1993: water temperature, DO, pH, specific conductance, total alkalinity, total suspended solids (TSS), turbidity, 5-day biochemical oxygen demand (BOD₅), fecal coliform, and total hardness.
- Measured on a quarterly basis: ammonia nitrogen, nitrate/nitrite nitrogen, orthophosphate, and total phosphorus.
- Draft report will include tables of all water quality parameters from each station representing existing operating conditions.

Example: Station H/7

Water Quality Baseflow Conditions for Howard Creek - Post Operations (1993)

OBS	Date	ATEMP	WTEMP	sc	DO	BOD₅	pН	TA	TH	TSS	TUR	FC	NO ₃ N	NO₂N	NH ₃ N	OP	TP
- 1	15 JAN	6.0	10.0	25.0	11.4	0.6	6.4	19.5	13.5	4.6	2.00	<2					
2	08 FEB	10.5	12.0	28.0	11.4	0.8	6.2	23.0	12.0	5.2	2.20	<2	0.52	< 0.01	0.046	0.002	0.013
3	01 MAR	6.5	9.5	28.3	11.8	0.5	6.4	21.0	10.0	2.8	1.70	4					
4	07 APR	13.5	12.5	27.5	9.8	0.9	6.2	22.5	10.0	6.7	2.95	<2					
5	06 MAY	18.0	14.0	24.0	9.2	0.4	6.3	18.5	8.5	9.0	3.30	8	0.38	< 0.01	0.072	0.009	0.020
6	01 JUN	18.5	15.5	31.5	9.7	0.9	6.1	22.5	9.5	5.7	3.75	8					
7	07 JUL	25.0	18.0	42.5	8.6	0.8	6.1	26.2	15.5	16.7	5.60	4					
8	05 AUG	22.5	17.5	44.5	9.0	0.9	6.0	28.4	13.0	7.1	4.0	10	0.80	< 0.01	0.062	0	0.033
9	08 SEP	21.0	18.0	40.5	8.8	0.7	5.9	32.4	14.0	7.3	3.35	<2					
10	06 OCT	17.0	15.5	44.5	8.9	0.4	6.1	30.1	17.0	3.4	2.35	4					
11	03 NOV	9.0	11.0	39.0	9.9	0.0	6.5	30.0	12.0	2.9	1.35	3	0.71	< 0.01	0.094	0.004	0.041
12	16 DEC	7.5	11.5	42.5	10.8	0.3	6.4	28.0	16.0	1.4	2.55	6					

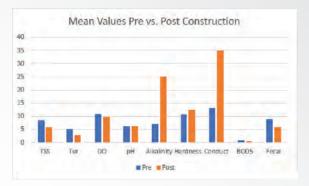
NOTE: ATEMP = Air Temperature (°C), WTEMP = Water Temperature (°C), SC = Specific Conductance (μ mho/cm), DO = Dissolved Oxygen (mg/L), BOD₅ = Biochemical Oxygen Demand (mg/L), TA = Total Alkalinity (mg CaCO₃/L), TH = Total Hardness (mg CaCO₃/L), TSS = total Suspended Solids (mg/L), TUR = Turbidity (NTU), FC = Fecal Coliforms (# / 100 mL), NO₃N = Nitrate (mg/L), NO₂N = Nitrate (mg/L), NH₃N = Ammonia (mg/L), OP = Orthophosphate (mg/L), TP = Total

43

Today's Highlights

- Lake Jocassee
 - Lakewide water quality data
 - Whitewater River Cove –
- **Howard Creek**

 - Pre construction, construction, and post construction



Bad Creek Pumped Storage Project Water Resources Committee Meeting | 44

Howard Creek Water Quality Data - Pre construction vs. Post construction

- Overall, water quality parameters that showed the most change between pre and post construction were total alkalinity, hardness, and specific conductivity at Station H/7, immediately downstream of the dam:
 - Increases in alkalinity, hardness and specific conductivity at H/7 were due primarily to seepage waters through the main and west dams coming into contact with newly placed grout material.
 - These three parameters are also directly dependent on rainfall and water flow.
 - While grout influenced these water quality parameters, fluctuating specific conductivity, water hardness, and alkalinity is a naturally occurring phenomenon/characteristic of Howard Creek.
 - It is expected that these parameters (with the exception of pH) will continue to decline and stabilize.

45

Howard Creek Water Quality Data – Pre construction vs. Post construction

Station H/1 (2015)

Station H/6 (2015)

Station H/9 (2015)

 Results from Abernathy et al. (1994) indicate total suspended solids, turbidity, temperature, DO, pH, BOD₅ and fecal coliform under operational conditions are similar to and fall well within the range of natural/seasonal variation observed under pre operational conditions.

Bad Creek Pumped Storage Project Water Resources Committee Meeting | 46

Today's Highlights

- Lake Jocassee
 - Lakewide water quality data
 - Whitewater River Cove –
 - Whitewater River Cove –
 - Comparison to Standards

Howard Creek

- Streamwide water quality data summary
- Pre construction,
- Comparison to Standards

Bad Creek Pumped Storage Project Water Resources Committee Meeting | 47

47

Howard Creek Water Quality Compliance with State Standards

- Temperature In post construction data, the warmest temperature recorded above and below the Project on Howard Creek was 20.5°C at station H/2. In pre construction data, water temperatures as high as 21°C were noted. Project operations have not affected water temperature in Howard Creek.
- Dissolved Oxygen Post construction DO measurements are greater than the SC trout water standard, therefore DO is considered to be within state standards for trout waters for Howard Creek.
- pH Mountain streams such as Howard Creek are typically poorly buffered and tend to have low pH values. Low values were recorded in Howard Creek during all phases of sampling and there is also a link between pH decreases and prolonged lack of rainfall.
- Turbidity All measurements were below the state standard of 10 NTU for trout waters.

Bad Creek Pumped Storage Project Water Resources Committee Meeting | 48

Howard Creek – Aquatic Sampling

- Biological and fish community sampling took place in Howard Creek from 1997-2015 to monitor the health of the stream after Project construction; three locations (H/1, H/6, and H/9)
- All locations maintained a consistent level of species diversity over the 18-year monitoring program.
- Results show that Howard Creek currently supports fish populations similar to those found in other southern Appalachian streams, indicating suitable water quality and habitat.

49

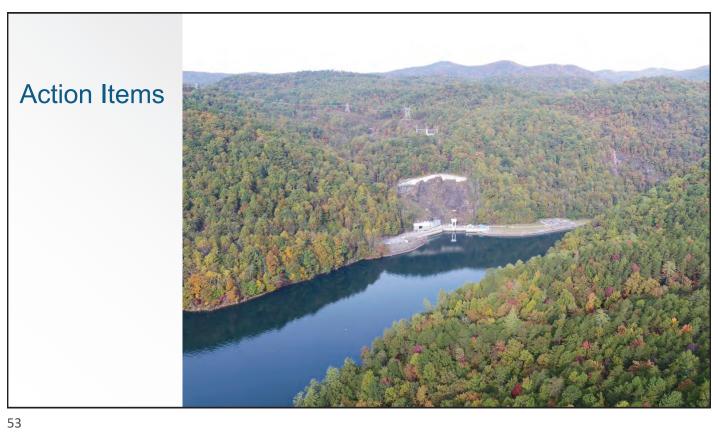
Water Resources Study - Next Steps

- Stakeholder feedback from today's meeting will be incorporated into the draft report "Summary of Existing Water Quality Data and Standards".
- Draft report will be distributed to the Water Resources Committee in June for a 60-day open comment period.
- Draft report will be finalized and included in the Initial Study Report to be filed in January 2024.

ATTACHMENT 1 - SUMMARY OF EXISTING WATER QUALITY AND STANDARDS WATER RESOURCES STUDY Bad Creek Pumped Storage Project FERC Project No. 2740 Oconee County, South Carolina April 14, 2023

Bad Creek Pumped Storage Project Water Resources Committee Meeting | 50

Water Resources Study – Next Steps


Task		Proposed Timeframe				
	Task 1 – Summary of Existing Water Quality Data and Standards	Janua <u>ry 2023 – April</u> 2023				
Task 1	Point of Stakeholder Engagement to discuss results of Existing Water Quality Summary (Virtual Meeting)	May 2023				
	Distribute Draft Report for Task 1 to Water Resources RC	June 2023				
	Task 2 – Water Quality Monitoring in Whitewater River Arm (Field Season 1)	June 2023 – September 2023				
Task 2 (Field Season 1)	Point of Stakeholder Engagement to discuss results from Field Season 1 (Virtual Meeting)	November 2023				
,	Distribute Draft Report for Task 2 (Field Season 1) to Water Resources RC	December 2023				
	Task 3 – Velocity Effects and Vertical Mixing in Lake Jocassee Due to a Second Powerhouse (CFD)	April 2023 – October 2023				
	Task 4 – Water Exchange Rates and Lake Jocassee Reservoir Levels (CHEOPS)	April 2023 – October 2023				
Tasks 3 & 4	 Point of Stakeholder Engagement mid-way through Tasks 3 and 4 to discuss preliminary modeling results and obtain feedback (In-person meeting) 	July 2023				
	Distribute Draft Report for Task 3 & Task 4 to Water Resources RC	October & September 2023				
Task 2	Task 2 – Water Quality Monitoring in Whitewater River Arm (Field Season 2)	June 2024 – September 2024				
(Field Season 2)	Point of Stakeholder Engagement to discuss results from Field Season 2 (Virtual Meeting)	October 2024				
		0.11.0001				
Distribute Draft Wa	ater Resources Study Report to Water Resources RC	October 2024				
Task 5	Task 5 – Future Water Quality Monitoring Plan (WQMP) Development	January 2024 – TBD				
I don J	Point of Stakeholder Engagement to discuss initial WQMP (In-person Meeting)	March/April 2024				

Bad Creek Pumped Storage Project Water Resources Committee Meeting | 51

51

Questions

Salazar, Maggie

From: maggie.salazar@hdrinc.com

Subject: FW: Bad Creek Relicensing Water Resources Committee - Summary of Existing Water

Quality Data and Standards Draft Report (Ready for Resource Committee Review)

Importance: High

From: Crutchfield Jr., John U < John. Crutchfield@duke-energy.com>

Sent: Friday, June 30, 2023 6:14 AM

To: Alex Pellett <PellettC@dnr.sc.gov>; Amy Breedlove <BreedloveA@dnr.sc.gov>; Dale Wilde <dwilde@keoweefolks.org>; RankinD <RankinD@dnr.sc.gov>; bereskind <bre>

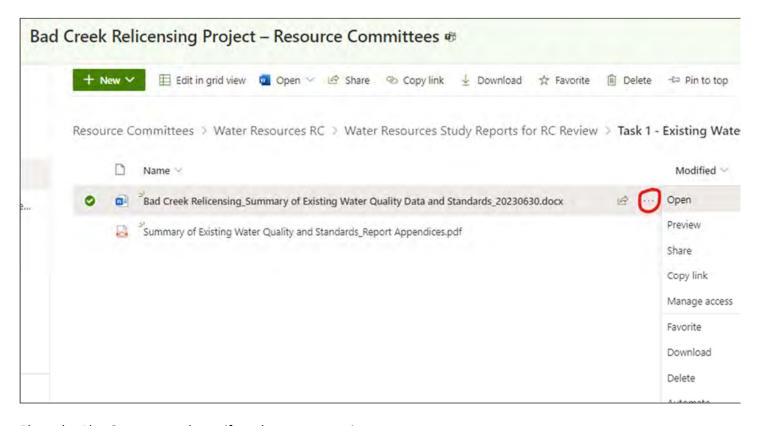
dnr.sc.gov>; bereskind@greenvillewater.com>; Elizabeth Miller <MillerE@dnr.sc.gov>; Erika Hollis <ehollis@upstateforever.org>; Gerry Yantis <gcyantis2@yahoo.com>; jphillips <jphillips@greenvillewater.com>; McCarney-Castle, Kerry <Kerry.McCarney-Castle@hdrinc.com>; quattrol <quattrol@dnr.sc.gov>; melanie_olds <melanie_olds@fws.gov>; More, Priyanka <morep@dnr.sc.gov>; amedeemd@dhec.sc.gov; Raber, Maverick James <Maverick.Raber@duke-energy.com>; SelfR <SelfR@dnr.sc.gov>; Scott Harder <harders@dnr.sc.gov>; Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; William T. Wood <woodw@dnr.sc.gov>; Ziegler, Ty <ty.ziegler@hdrinc.com>; Dvorak, Joe <Joe.Dvorak@hdrinc.com>
Cc: Kulpa, Sarah <Sarah.Kulpa@hdrinc.com>; Salazar, Maggie <maggie.salazar@hdrinc.com>; Huff, Jen <Jen.Huff@hdrinc.com>

Subject: Bad Creek Relicensing Water Resources Committee - Summary of Existing Water Quality Data and Standards Draft Report (Ready for Resource Committee Review)

Importance: High

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Dear Bad Creek Relicensing Water Resources Committee:


Duke Energy is pleased to distribute the draft report <u>Summary of Existing Water Quality Data and Standards</u> for Resource Committee review. This draft report satisfies Task 1 of the Bad Creek Relicensing Water Resources Study. The deliverable and associated appendices are available on the Bad Creek Relicensing SharePoint site at the following link:

<u>Water Resources Study Reports for RC Review</u>. Duke Energy is requesting a 60-day review period, therefore, please submit all comments by **August 29**th. A confirmation email is kindly requested upon review completion (John.Crutchfield@duke-energy.com).

Important – Please Read!

- As discussed in the kick-off meeting (July 2022), Duke Energy would like to make relicensing deliverables
 available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment; therefore,
 we request all comments be made in the SharePoint Word document. This will eliminate version control issues
 and result in a consolidated document for comment response.
- We <u>strongly recommend</u> opening the document in Word; otherwise the formatting will look distorted. The simplest way to do this is to click on the three dots to the right of the document (circled in red on the screenshot below), choose "Open", then choose "Open in app". This will open the document in Word and you'll have the functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free to reach out to <u>Maggie Salazar</u> for SharePoint access assistance or questions.
- If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page (green bar) of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was

- presented during the kick-off meeting. (Note the tutorial provides an alternative way to open the document in Word either technique works!)
- Finally, please note the report appendices are provided in the folder as a PDF. There is no way to comment on a PDF from SharePoint; therefore, we suggest either making the comment in the Word document with reference to the figure/page number or providing figure comments in a separate email.

Please let Alan Stuart or me know if you have any questions.

Thank you,

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
526 S. Church Street, EC12Q | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

From:

maggie.salazar@hdrinc.com

Subject: FW: [EXTERNAL] Re: Bad Creel

FW: [EXTERNAL] Re: Bad Creek Relicensing Water Resources Committee - Summary of Existing Water Quality Data and Standards Draft Report (Ready for Resource Committee

Review)

From: Dwilde@Keoweefolks.org <dwilde@keoweefolks.org>

Sent: Sunday, July 9, 2023 11:10 AM

To: Crutchfield Jr., John U < John. Crutchfield@duke-energy.com>

Cc: Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; John Hains <jhains@g.clemson.edu>

Subject: [EXTERNAL] Re: Bad Creek Relicensing Water Resources Committee - Summary of Existing Water Quality Data

and Standards Draft Report (Ready for Resource Committee Review)

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

John,

I downloaded the Water Resources Study Report file and re-uploaded the file with minor grammatical comments. The report was very thorough and detailed the findings of pre- and post construction to the Bad Creek pump station. The data illustrated that there was little if any pre- to post differences in the studied parameters. FOLKS's primary concern still rests in the area of Howard Creek, which is a high value recreational fishing stream and vital to trout habitat. We are confident that Duke Energy will continue to study future impacts should Bad Creek II jumpstation move forward and will mitigate as necessary to preserve the quality of that creek.

Respectfully,

Dale Wilde President, FOLKS

1209 Stamp Creek Road, Suite A Salem, SC 29676

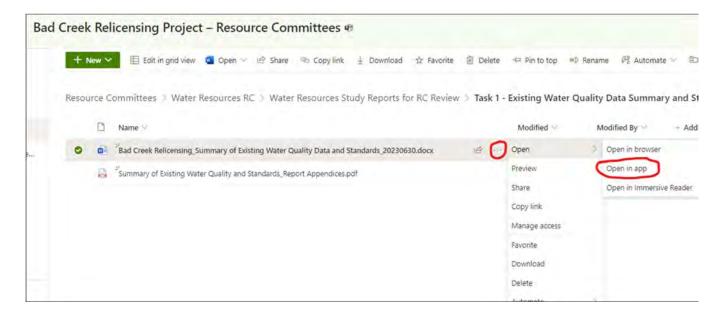
O: 864-719-0599 C: 207-604-6539 dwilde@keoweefolks.org

www.keoweefolks.org

"Friends of Lake Keowee Society is dedicated to the preservation and enhancement of Lake Keowee and its watershed through advocacy, conservation, and education."

The content of this email is confidential and intended for the recipient specified in message only. It is strictly forbidden to share any part of this message with any third party, without a written consent of the sender. If you received this message by mistake, please reply to this message and follow with its deletion, so that we can ensure such a mistake does not occur in the future.

On Jun 30, 2023, at 6:13 AM, Crutchfield Jr., John U < John. Crutchfield@duke-energy.com> wrote:


Dear Bad Creek Relicensing Water Resources Committee:

Duke Energy is pleased to distribute the draft report <u>Summary of Existing Water Quality Data and Standards</u> for Resource Committee review. This draft report satisfies Task 1 of the Bad Creek Relicensing Water Resources Study. The deliverable and associated appendices are available on the Bad Creek

Relicensing SharePoint site at the following link: Water Resources Study Reports for RC Review. Duke Energy is requesting a 60-day review period, therefore, please submit all comments by **August 29**th. A confirmation email is kindly requested upon review completion (<u>John.Crutchfield@duke-energy.com</u>).

<u>Important – Please Read!</u>

- As discussed in the kick-off meeting (July 2022), Duke Energy would like to make relicensing
 deliverables available on a shared platform (i.e., SharePoint) so all stakeholders can access,
 review, and comment; therefore, we request all comments be made in the SharePoint Word
 document. This will eliminate version control issues and result in a consolidated document for
 comment response.
- We <u>strongly recommend</u> opening the document in Word; otherwise the formatting will look distorted. The simplest way to do this is to click on the three dots to the right of the document (circled in red on the screenshot below), choose "Open", then choose "Open in app". This will open the document in Word and you'll have the functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free to reach out to <u>Maggie</u>
 Salazar for SharePoint access assistance or questions.
- If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page (green bar) of the Resource Committees tab called "Editing a Document in SharePoint".
 This is the same tutorial that was presented during the kick-off meeting. (Note the tutorial provides an alternative way to open the document in Word either technique works!)
- Finally, please note the report appendices are provided in the folder as a PDF. There is no way to comment on a PDF from SharePoint; therefore, we suggest either making the comment in the Word document with reference to the figure/page number or providing figure comments in a separate email.

Please let Alan Stuart or me know if you have any questions.

Thank you,

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
526 S. Church Street, EC12Q | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

Salazar, Maggie

From: maggie.salazar@hdrinc.com

Subject: FW: [EXTERNAL] Bad Creek Relicensing Water Resources Committee - Summary of

Existing Water Quality Data and Standards Draft Report (Ready for Resource Committee

Review)

From: Olds, Melanie J <melanie_olds@fws.gov> Sent: Wednesday, July 26, 2023 8:24 AM

To: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Subject: Re: [EXTERNAL] Bad Creek Relicensing Water Resources Committee - Summary of Existing Water Quality Data

and Standards Draft Report (Ready for Resource Committee Review)

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

John,

The Service has reviewed the Existing Water Quality Data and Standards Draft Report and had no comments.

Melanie

Melanie Olds

Fish & Wildlife Biologist

Regulatory Team Lead/FERC Coordinator

U.S. Fish and Wildlife Service

South Carolina Ecological Services Field Office

176 Croghan Spur Road, Suite 200

Charleston, SC 29407

New Phone Number: (843) 534-0403

NOTE: This email correspondence and any attachments to and from this sender is subject to the Freedom of Information Act (FOIA) and may be disclosed to third parties.

From: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Sent: Friday, June 30, 2023 6:13 AM

To: Alex Pellett < Pellett C@dnr.sc.gov >; Amy Breedlove < BreedloveA@dnr.sc.gov >; Dale Wilde < dwilde@keoweefolks.org >; Dan Rankin < RankinD@dnr.sc.gov >; David Bereskin < bereskind@greenvillewater.com >; Elizabeth Miller < Miller E@dnr.sc.gov >; Erika Hollis < ehollis@upstateforever.org >; Gerry Yantis < gcyantis2@yahoo.com >; Jeffrey Phillips < jphillips@greenvillewater.com >; Kerry McCarney-Castle < Kerry.McCarney-Castle@hdrinc.com >; quattrol@dnr.sc.gov < quattrol@dnr.sc.gov >; Olds, Melanie J < melanie_olds@fws.gov >; Priyanka More < morep@dnr.sc.gov >; Morgan Amedee < amedeemd@dhec.sc.gov >; Raber, Maverick James < Maverick.Raber@duke-energy.com >; SelfR@dnr.sc.gov < SelfR@dnr.sc.gov >; Scott V. Harder < HarderS@dnr.sc.gov >; Stuart, Alan Witten < Alan.Stuart@duke-energy.com >; William Wood < woodw@dnr.sc.gov >; Ziegler, Ty < ty.ziegler@hdrinc.com >; Dvorak, Joe < Joe.Dvorak@hdrinc.com >

Cc: Sarah Kulpa <<u>Sarah.Kulpa@hdrinc.com</u>>; Maggie Salazar <<u>maggie.salazar@hdrinc.com</u>>; Huff, Jen <<u>Jen.Huff@hdrinc.com</u>>

Subject: [EXTERNAL] Bad Creek Relicensing Water Resources Committee - Summary of Existing Water Quality Data and Standards Draft Report (Ready for Resource Committee Review)

This email has been received from outside of DOI - Use caution before clicking on links, opening attachments, or responding.

Dear Bad Creek Relicensing Water Resources Committee:

Duke Energy is pleased to distribute the draft report <u>Summary of Existing Water Quality Data and Standards</u> for Resource Committee review. This draft report satisfies Task 1 of the Bad Creek Relicensing Water Resources Study. The deliverable and associated appendices are available on the Bad Creek Relicensing SharePoint site at the following link:

Water Resources Study Reports for RC Review. Duke Energy is requesting a 60-day review period, therefore, please submit all comments by **August 29**th. A confirmation email is kindly requested upon review completion (John.Crutchfield@duke-energy.com).

<u>Important – Please Read!</u>

- As discussed in the kick-off meeting (July 2022), Duke Energy would like to make relicensing deliverables
 available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment; therefore,
 we request all comments be made in the SharePoint Word document. This will eliminate version control issues
 and result in a consolidated document for comment response.
- We <u>strongly recommend</u> opening the document in Word; otherwise the formatting will look distorted. The simplest way to do this is to click on the three dots to the right of the document (circled in red on the screenshot below), choose "Open", then choose "Open in app". This will open the document in Word and you'll have the functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free to reach out to Maggie Salazar for SharePoint access assistance or questions.
- If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page (green bar) of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. (Note the tutorial provides an alternative way to open the document in Word either technique works!)
- Finally, please note the report appendices are provided in the folder as a PDF. There is no way to comment on a PDF from SharePoint; therefore, we suggest either making the comment in the Word document with reference to the figure/page number or providing figure comments in a separate email.

Please let Alan Stuart or me know if you have any questions.

Thank you,

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
526 S. Church Street, EC12Q | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

Meeting Summary

Project: Bad Creek Pumped Storage Project Relicensing

Subject: Bad Creek Water and Aquatic Resources Joint Resource Committee Meeting

Date: Thursday, July 27, 2023

Location: Duke Energy Operations Center, Greenville, SC

Attendees (in-person)

John Crutchfield, Duke Energy Elizabeth Miller, SCDNR Alan Stuart, Duke Energy Amy Chastain, SCDNR Jeff Lineberger, Duke Energy William Wood, SCDNR Ethan Pardue, Duke Energy Dan Rankin, SCDNR Paul Keener, Duke Energy Erika Hollis. Upstate Forever

Mike Abney, Duke Energy Sarah Kulpa, HDR Maverick Raber, Duke Energy Joe Dvorak, HDR Kelly Kirven, Kleinschmidt Assoc. Jen Huff, HDR

Alison Jakupka, Kleinschmidt Assoc. Kerry McCarney-Castle, HDR

Eric Mularski, HDR

Attendees (virtual)

Lynne Dunn, Duke Energy Melanie Olds, U.S. Fish and Wildlife Service Scott Fletcher, Duke Energy John Hains, Friends of Lake Keowee Society Alex Pellett, SCDNR Kevin Nebiolo, Kleinschmidt Assoc.

Jeff Phillips, Greenville Water Ty Ziegler, HDR

Introduction

John Crutchfield welcomed participants in the room and online to the Bad Creek Relicensing Joint Water and Aquatic Resources Committee meeting, summarized the meeting agenda, provided a safety moment on heat-related issues, introduced the relicensing studies and study leads, and noted the meeting is being recorded. J. Crutchfield briefly covered the status of the relicensing efforts (ILP schedule) and showed the existing Project Boundary; he then handed the presentation over to Maverick Raber to present an update on the Water Resources Study.

Water Resources Study Update

Tasks 1 and 2

M. Raber provided an update on Water Resources Study tasks and summarized topics for discussion during the morning meeting.

- Task 1 "Summary of Existing Water Quality Data and Standards" report was submitted to the Water Resources Study Resource Committee (RC) on June 30th for a 60-day turnaround.
- Task 2 "Water Quality Monitoring in the Whitewater River Arm" is ongoing; M. Raber summarized instrumentation deployment in late May and data collection (every 2 weeks and

every 2 meters vertical profile). Continuous temperature monitoring is underway in the Whitewater River arm at stations 564.1, 564.0, and 560.0. Four elevations are being monitored for dissolved oxygen and temperature to determine flow patterns and how flow/mixing is affected by the existing submerged weir. Water quality data in the Whitewater River cove will be collected during summer 2023 and 2024 to represent conservative (higher temps) conditions under current operations (2023) and planned upgrades at the existing Bad Creek Project (2024).

Task 3

Joe Dvorak introduced modeling efforts for Task 3 of the Water Resources Study "Velocity Effects and Vertical Mixing in Lake Jocassee Due to a Second Powerhouse" (CFD Modeling in the Whitewater River Cove), the objectives of the study, and noted results are preliminary. He described how a 2-D model was developed first to determine the model extent for CFD modeling; he described CFD model assumptions and domain as well as existing and proposed weir configurations and typical exceedance water elevations for Lake Jocassee over the period of record. J. Dvorak noted all effects of the additional powerhouse are limited to the model domain which accounts for about 11 percent of the total volume of Lake Jocassee. He provided slides showing figures of preliminary CFD modeling results and indicated full results will be provided in the report to be provided this fall.

Participant Discussion and Questions Tasks 1 - 3

- John Hains (via chat) asked, "What are the criteria for "negligible"? This is in reference to language on Slide 15: "Of the "bookend" scenarios analyzed, combined Bad Creek and Bad Creek II operations (39,200 cfs) with Lake Jocassee at minimum pond elevation (1,080 ft msl) was found to have the greatest effect on Whitewater River Cove hydraulics, however at the downstream model boundary that effect was negligible." J. Dvorak replied there are no stated criteria for "negligible" as it is subjective, but today's discussion will include more about the actual results and the effect of the second powerhouse and conclusions will support this statement.
- Elizabeth Miller asked about the orientation of Slide 17. J. Dvorak explained where the I/O structure was and orientation to the lake.
- Alan conveyed a question from Erika Hollis, who asked if this information has yet been
 presented anywhere. J. Dvorak responded that this is the first time these results are being
 presented. A draft report will be issued soon which will provide detail on the overview
 covered during the presentation.
- Dan Rankin commented that from the results we are seeing (i.e., no effect at the
 downstream model domain due to expanding the weir or adding a second powerhouse), the
 main purpose of the weir is primarily to provide a place to dispose of excavation material. J.
 Dvorak agreed expanding the weir would have limited effects on velocities. D. Rankin then
 asked if any consideration has been given to creating another weir? J. Dvorak responded
 that has not been considered but the model has the capability to evaluate other designs.
- Joh Hains (via chat) asked, "Is there any reason that the expanded weir could be expected to change the velocity field at that downstream location?" J. Dvorak indicated we would get into that specifically later in the slides.
- Gerry Yantis asked if water temperature affects CFD modeling or if temperature/other criteria
 were considered. J. Dvorak indicated there are other parameters CFD model can evaluate
 like temperature, but we have not done that the focus here is solely on hydraulics. M.
 Raber added ongoing data collection efforts in the Whitewater River cove for water quality

- parameters (Task 2) supports the modeling effort to help determine mixing effects upstream and downstream.
- William Wood asked about water flow effects from the Thompson River. J. Dvorak indicated
 even at minimum pond, as you get further into the main body of the lake (downstream of
 Thompson River), flow from the Thompson River has a negligible effect on overall flow
 patterns in the lake.
- Ty Ziegler (via chat): "There are some very minor differences in flow patterns/velocities from
 the existing weir to the expanded weir (mostly at maximum drawdown), but by the time you
 get to WQ monitoring location 564.0, the results are similar. Therefore, we shouldn't see any
 differences in vertical mixing/stratification at location 564.0. Joe will have some figures to
 demonstrate."
- Alex Pellet (via chat): "This is off-topic at the moment, but perhaps we can circle back. I'm
 curious to understand one of the questions, I believe was from Dan Rankin. If disposing of
 the rock material is a goal of this, and there are only marginal benefits to weir expansion,
 then we might prefer other configurations of the material which provide superior aquatic
 habitat? Is that correct?"
 - J. Dvorak discussed the shape of the proposed expanded weir is simplified in the model. The length of the crest of the weir drives model results, not the composition of the weir. He deferred to M. Raber to discuss habitat effects of different materials. M. Raber noted that due to temperature density, when water comes across the weir, flow is laminar across the top, and stratification is not affected downstream of the weir (not affected by mixing upstream of the weir) so the geometry of the weir shape wouldn't change that. Would there be a configuration that would provide more/better fish habitat provided? J. Dvorak indicated there is at minimum 20 feet of water over top of the weir keeping flow at the top therefore, roughness of the surface of the crest of the weir would not affect anything.
- A. Stuart stated all Duke Energy lakes have an established minimum clearance for lake structures due to recreation, however, he does not know the exact depth for Lake Jocassee.
 Dan Rankin asked how often lake was at that minimum depth.
 - Mike Abney confirmed Duke Energy Lake Services has a minimum required depth between a structure placed in a lake (e.g., for fish habitat) and the normal minimum lake elevation. That minimum depth varies by lake and is 50 feet from full pool for Lake Jocassee).
- D. Rankin (Slide 55) asked if the size of the mixing zone downstream of the weir simply would double in length (downstream) by expanding the weir. J. Dvorak replied it's not possible to compare full to minimum pond in these mixing scenarios; it's actually an additional 200 feet downstream due to the expanded weir, not doubled.
- E. Miller (Slide 55) asked if flowlines were forming a loop downstream of the weir? J. Dvorak said it's possible but there are about 500 flow lines so it would be impossible to determine; the reason for the flow path (shown on Slides 50 through 55) is due to the natural thalweg of the flow through Whitewater River cove. M. Raber indicated the flow there is about 0.5 fps in the water column, even under worst case conditions (i.e., minimum pond, generation, two powerhouses, expanded weir).
- Lynne Dunne (virtual): Will there be additional operations requests for Bad Creek for ADCP validations for CFD modeling? A. Stuart answered we will not know if additional schedule changes will be necessary until HDR confirms if the data collected under generating and pumping at the five transects is good. (HDR collected ADCP flow data at 5 transects two weeks prior to the meeting, therefore validation data analysis is forthcoming).

Task 4 - CHEOPS

Ed Bruce opened the Task 4 "Water Exchange Rates and Lake Jocassee Reservoir Levels [CHEOPS Modeling])" discussion, summarizing study objectives and goals for today.

A. Stuart clarified there is no proposed change in the volume/capacity of Lake Jocassee associated with Bad Creek II; E. Bruce noted a good analogy is putting a bigger faucet on a bathtub, but it's still the same bathtub.

E. Bruce reviewed the CHEOPS scenarios (baseline and with Bad Creek II). He noted that as an assumption, the second powerhouse would be available immediately (in the model runs), looking at maximum possible change scenarios and determining if there are any effects noticeable statistically and over time. The performance measures will run for X amount of years and determine any long-term effects and handed over the presentation to Jen Huff to explain more about performance measures.

J. Huff distributed a proposed performance measures spreadsheet to the group (emailed to virtual attendees) and described what performance measures are (i.e., statistical summary of how the model performs for a particular measure), provided definitions of terms, and went through individual performance measures considered in this effort.

Erika Hollis asked about the "MISC" (minimum increment of significant change). J. Huff indicated the MISC is a value that was determined by the Operations Resource Committee (RC) formed for Keowee-Toxaway (KT) relicensing. The MISC for each measure indicates what variance from the baseline result for that measure great enough to represent a statistical difference in results. Using output from KT relicensing, J. Huff walked through what each color meant: cells with no color are not significantly different from baseline, green cells have better results than the baseline, and red performed poorer than baseline conditions. For Bad Creek, Duke Energy is proposing to use the measures used for KT relicensing for Jocassee and Keowee (i.e., nothing further downstream).

J. Crutchfield mentioned the performance measures spreadsheet will be on SharePoint for comments; J. Huff asked for comments by August 15 (comments include any proposed new measures) and requests for those proposing new measures, provide details on the measures requested.

Sarah Kulpa asked if the MISC is for the license year or just the number of times something occurs during the entire period of record. E. Bruce noted it could be for either, depending on the measure. S. Kulpa asked J. Huff to describe the philosophy of developing the MISC and asked if there is a benefit to using the same MISC that was developed for KT relicensing. J. Huff indicated the period of record that will be used for Bad Creek runs is the same as was used for KT relicensing (unimpaired flow data from same days and modeled over same number of days), so believes the MISCs to be appropriate. She also stated there was a lot of time and effort dedicated to developing the measures and MISCs during KT relicensings. E. Bruce indicated if stakeholders believe there should be a change to the MISC, the RC is welcome to suggest revisions. J. Huff reiterated the model cannot be run until performance measures are assigned.

E. Miller noted the SCDNR would like to see performance measures 8-19 and (maximum spawning success for black bass and blueback herring) and 42-53 (maximize spawning success for sunfish and threadfin shad) revised. Measures 8-13 and 42-47 should extend through the end of May (currently extend from April 1 through May 15).

- A. Stuart asked for clarification on the MISC would SCDNR want to keep the MISC at 10%. E. Miller indicated 5% might be better for the MISC (5% of the years over the period of record). W. Wood asked for clarification on the MISC J. Huff indicated 10% means 10% of years where it remains within the prescribed range. SCDNR proposed changing the MISC to 5% for measures 8-25 and 42-57.
- J. Huff reviewed performance measure example of spawning elevation using KT example on Slide 68. Difference between baseline/scenario calculation and the MISC (variance).
- D. Rankin sought clarification that Bad Creek cannot change the KT license and J. Huff confirmed.
- D. Rankin noted the PMs may not be adequate to represent fish spawning due to the spawning period having a bell-shaped curve with peak success occurring in the middle of the season. He indicated the measure would more accurately capture success with a tighter time period, not longer, to capture this.
- J. Huff indicated the thinking is that if there is at least one X-day period in spawning season, there would be some spawning success. Spawning seasons shift year-to-year and will continue to do so with climate change. Jeff Lineberger noted the same conversation occurred during KT relicensing.
- J Lineberger reminded the group that the CHEOPS model does not address water quality or factors other than lake levels. E. Bruce and J. Lineberger further described parameters for CHEOPS and future with Bad Creek exchanging water differently than occurred 15 years ago.
- J. Huff asked if it would be helpful to provide the performance measures from KT out from the spreadsheet. E. Hollis indicated it might be helpful.
- A. Stuart noted if an RC member would like to suggest a performance measure but is not sure exactly how to provide that information, Duke Energy will help. J. Huff agreed.
- D. Rankin asked for time to think about parameters for this project vs. SCDNR/Army Corps of Engineers previous parameters for KT relicensing; SCDNR also requests time to review performance measures. J. Huff offered to have a conversation offline if that would be helpful.
- A. Stuart asked D. Rankin if his concerns are related to both Jocassee and Keowee. D. Rankin indicated there was only one year of recruitment issues at Keowee and that was during a maintenance drawdown so he does not believe recruitment issues would extend downstream to Lake Keowee. However, he feels it would be more conservative to include and would like Keowee considered.
- J. Crutchfield and A. Stuart asked if the RC agreed with and could provide confirmation/comments on performance measures by August 15th. Erika Hollis asked if comments need to be formal; J. Huff indicated it could be in any format, including comment bubbles on the spreadsheet provided on SharePoint or simply an email.
- A. Pellett (via chat): "When natural resources performance measures "maximize spawning success", are we saying the fluctuation bands and numbers of consecutive days are sufficient to maximize spawning? Or, should I understand these to be "tolerable" or "sufficient to maintain populations?" I'm not suggesting that we necessarily need to maximize this specific factor (lake elevation) for spawning, I just want to understand the metric as well as I can. I'm not a fish expert... I think Dan just clarified that a bit actually..."

- A. Pellett indicated (via phone) his concern had been answered during the discussion.
- J. Huff thanked the group for the discussion and closed the Water Resources Study discussion.

<<15-Minute Break>>

Aquatic Resources Study Update

Mike Abney provided an overview of study status including updates on the entrainment study (Task 2 – Consultation on Entrainment) as well as Task 3 (Mussel Surveys and Stream Habitat Quality Surveys). M. Abney mentioned that Nick Wahl and others from Duke Energy are currently in the field for Task 3 efforts. He then introduced the two options for the potential access road proposed by Duke Energy for access to the Fisher Knob community during construction, showed the potential spoil locations (to store spoil from excavations for new structures, and briefly introduce the methodology that will be undertaken in response to requests from the SCDNR (i.e., use of SC Stream Quantification Tool [SQT]).

- E. Miller asked about SQT for small streams near spoil sites. M. Abney briefly stated there was a recent field visit with Duke Energy/HDR/SCDNR to inspect two of the representative spoil locations and discussions during the presentation will circle back to the SQT. Mussel surveys will be carried out at stream crossings but not spoil areas. Streams in spoil areas and crossed by the access road were evaluated for potential mussel habitat, however, only Howard Creek and Limber Pole Creek were determined to potentially support habitat with concurrence by the SCNDR during the July 12 site visit. Only those two creeks will be surveyed for mussels in addition to the shoreline of Lake Jocassee. M. Abney indicated surveying methods stated in the approved Study Plan will still be carried out, but the SC SQT will be implemented for the larger streams (e.g., Howard Creek, Limber Pole Creek) at potential stream crossings; he then showed field studies schedule.
- D. Rankin asked if roads would be temporary and what would they be constructed with (i.e., gravel?) and asked for clarification on use. A. Stuart indicated they would be temporary, and the hope is to gravel as much as possible, however some slopes may require a hardpan treatment. The primary reason for the road would be to provide access to the Fisher Knob community to their homes during construction.
- W. Wood asked for confirmation that the bridges would be removed following construction and the roads/area blocked off so people cannot continue to access areas (for off-roading). A. Stuart confirmed.
- D. Rankin asked about the design of the road crossings as there are significant differences on aquatic resources in the design of road crossings. A. Stuart acknowledged there could be different effects based on the two road route options given Option 2 (Slide 74) parallels Howard Creek, potentially resulting in more impacts. Duke Energy is leaning towards Option 1 to minimize impacts to the extent feasible. A. Stuart stated the road is still being designed, but he would ask the team for additional details about the design.
- D. Rankin asked if there have been field surveys conducted along the potential road routes. A. Stuart indicated the routes follow old logging roads to minimize impacts. Eric Mularski indicated a wildlife survey will be carried out for potentially listed species along the potential access road routes, so there will be a more complete dataset available of natural resources in these areas.
- J. Crutchfield asked Alison Jakupka and Kevin Nebiolo (Kleinschmidt Associates) to provide an update on the entrainment study. Kleinschmidt has worked with Duke Energy to obtain water quality

and operations data from 1991-1993. The entrainment report draft has now been revised to remove the swim speed analysis as suggested during earlier meetings and incorporate new data. K. Nebiolo reviewed progress that has been made on the entrainment task in light of new data. He noted that entrainment increases with a decrease in Jocassee elevation.

A. Stuart asked for clarification that entrainment discussions are focused on pumpback (not generation). K. Nebiolo agreed that is the case.

D. Rankin and W. William asked for clarification on which units are upstream/downstream first/on first off. A. Stuart clarified the Bad Creek units are numbered 1-4 moving from upstream to downstream.

A. Stuart asked A. Jakupka when the RC can expect the revised entrainment report. K. Nebiolo responded – he projects end of August for new report (to Duke Energy for review) with an RC review comment period following.

E. Miller asked about relocation of the existing wastewater settling ponds. A Stuart indicated the ponds will be replaced separate from relicensing. E. Miller asked if impacts would be assessed prior to clearing a new location. A. Stuart indicated he did not think the location for the new treatment system will require clearing for new basins.

J. Crutchfield concluded the meeting by thanking attendees for their participation and reviewing the action items.

Action Items

- HDR/Duke Energy will post meeting notes, recording, and presentation to SharePoint site and distribute the link to Water Resources and Aquatic Resources RCs.
- HDR/Duke Energy to provide a SharePoint link to the CHEOPS model performance measures; requested deadline for RC comments is August 15. [If needed, HDR/Duke Energy will schedule a follow-up meeting with RC regarding potential revisions to performance measures].
- Potential revisions to CHEOPS performance measures include measures 8-19 and 42-53 and would include changing MISC from 10% to 5% and extending the date from May 15 to May 31. Suggested revisions (by the SCDNR) are on hold subject to further review; SCDNR (and others) to have a closer look and provide comments and feedback by August 15.
- HDR/Duke Energy to post KT performance measures to the SharePoint site and distribute link to RCs.
- HDR/Duke Energy is currently preparing a technical memo regarding stream surveys and will
 post to the SharePoint site.
- Duke Energy to discuss and provide clarification on road and bridge design for access road.

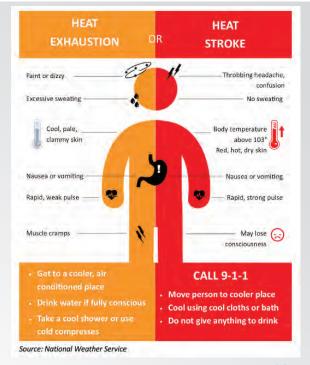
Bad Creek Pumped Storage Project No. 2740

Joint Aquatic and Water Resources Committee Meeting

JULY 27, 2023

1

Meeting Agenda


- Welcome and Meeting Purpose
- Safety Moment
- Introductions and FERC ILP Schedule
- Water Resources Study Update
 - Overview of Tasks
 - CFD Model Discussion
 - Preliminary Results
- Break (15 min)
- CHEOPS Discussion and Performance Measures
- Aquatic Resources Study Update
 - Revised Entrainment Study Report
 - Mussel & Stream Habitat Quality Surveys
- Action Items

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 2

Safety Moment - Heat Safety

- **Tips for Keeping Cool**
 - · Drink water (even if you aren't thirsty). Rule of thumb when working in heat is 1 gallon per 4 hours!
 - Avoid alcohol and caffeine
 - Wear sunscreen (even a mild sunburn can affect the body's ability to cool properly!)
 - Try to schedule outdoor optional outdoor activities for the early morning or evening; if you must work during the day, rest and find shade
 - · Wear loose, light-colored clothing.
- Know the difference between Heat Exhaustion and Heat Stroke.
- Heat Stroke is a MEDICAL EMERGENCY that can lead to death if not treated quickly.

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 3

3

Resource Committees

Lead Technical Manager

John Crutchfield

Aquatic Resources

- Mike Abney
- Nick Wahl

Water Resources

Maverick Raber

Wildlife & Botanical Resources

- Scott Fletcher
- Mike Abney

Project Manager

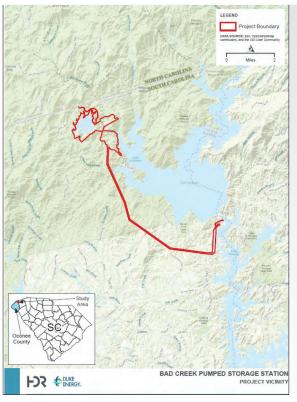
Alan Stuart

Cultural Resources

Christy Churchill

Recreation & Aesthetics

- Alan Stuart
- Ethan Pardue


Operations

- Lynne Dunn
- Ed Bruce

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 4

FERC ILP Schedule

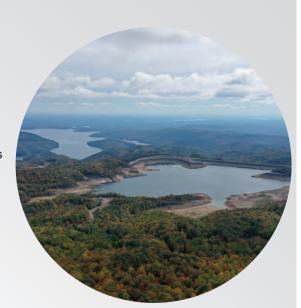
Activity	Responsible Parties	Timeframe	Estimated Filing Date or Deadline
File Notice of Intent (NOI) and Pre-application Document (PAD) (18 CFR §5.5(d))	Licensee	Within 5 years to 5.5 years prior to license expiration	Feb 23, 2022
Initial Tribal Consultation Meeting (18 CFR §5.7)	FERC	No later than 30 days following filing of NOI/PAD	Mar 25, 2022
Issue Notice of NOI/PAD and Scoping Document 1 (SD1) (18 CFR §5.8(a))	FERC	Within 60 days following filing of NOI/PAD	Apr 24, 2022
Conduct Scoping Meetings and site visit (18 CFR §5.8(b)(viii))	FERC	Within 30 days following Notice of NOI/PAD and SD1	May 16-17, 2022
Comments on PAD, SD1, and Study Requests (18 CFR §5.9(a))	Licensee Stakeholders	Within 60 days following Notice of NOI/PAD and SD1	June 23, 2022
Issue Scoping Document 2 (SD2) (18 CFR §5.10)	FERC	Within 45 days following deadline for filing comments on PAD/SD1	Aug 7, 2022
File Proposed Study Plan (PSP) (18 CFR §5.11)	Licensee	Within 45 days following deadline for filing comments on PAD/SD1	Aug 7, 2022
PSP Meeting (18 CFR §5.11(e))	Licensee	Within 30 days following filing of PSP	Sept 7, 2022
Comments on PSP (18 CFR §5.12)	Stakeholders	Within 90 days following filing of PSP	Nov 5, 2022
File Revised Study Plan (RSP) (18 CFR §5.13(a))	Licensee	Within 30 days following deadline for comments on PSP	Dec 5, 2022
Comments on RSP (18 CFR §5.13(b))	Stakeholders	Within 15 days following filing of RSP	Dec 20, 2022
Issue Study Plan Determination (18 CFR §5.13(c))	FERC	Within 30 days following filing of RSP	Jan 4, 2023
Conduct First Season of Studies (18 CFR §5.15)	Licensee	-	Spring-Fall 2023
File Study Progress Reports (18 CFR §5.15(b))	Licensee	Quarterly	Spring 2023 -Fall 2024
File Initial Study Report (ISR) (18 CFR §5.15(c))	Licensee	Pursuant to the Commission-approved study plan or no later than 1 year after Commission approval of the study plan, whichever comes first Jan 4, 2024	

Bad Creek Pumped Storage Project Location and FERC Project Boundary

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 6

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 5

Water Resources Study


Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 7

7

Water Resources Study

Task Refresher

- Task 1 Summary of Existing Water Quality Data And Standards
- Task 2 Water Quality Monitoring in Whitewater River Arm
- Task 3 Velocity Effects and Vertical Mixing in Lake Jocassee Due to a Second Powerhouse (CFD Modeling)
- Task 4 Water Exchange Rates and Lake Jocassee Reservoir Levels (CHEOPS Modeling)
- Task 5 Future Water Quality Monitoring Plan Development

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 8

Water Resources Study

- Task 1 Summary of Existing Water Quality Data and Standards
 - Objective: Compile previously collected water quality data and provide a summary of existing data from Lake Jocassee and Howard Creek under current Project operations and prior to Project operations, while addressing stakeholder concerns.
 - Status: The draft report was uploaded to the SharePoint site on June 30 for a 60-day review period.

SUMMARY OF EXISTING WATER QUALITY AND STANDARDS

DRAFT REPORT

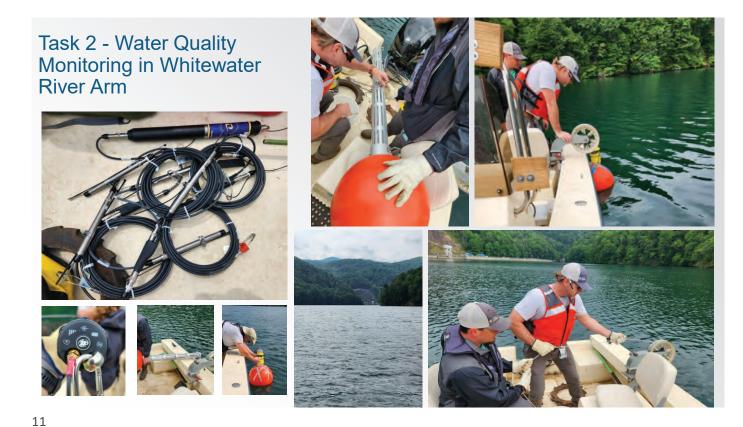
WATER RESOURCES STUDY

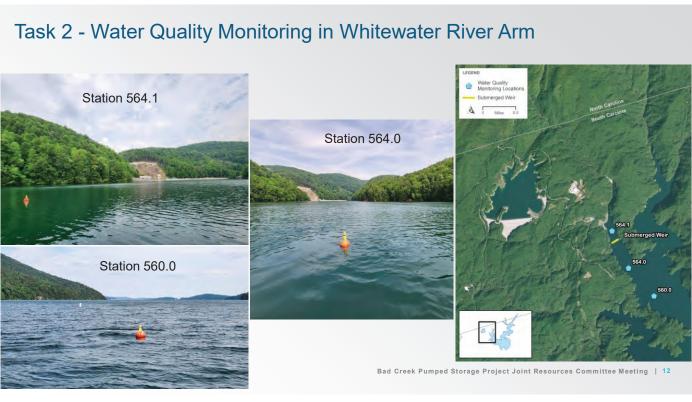
Bad Creek Pumped Storage Project FERC Project No. 2740

Oconee County, South Carolina

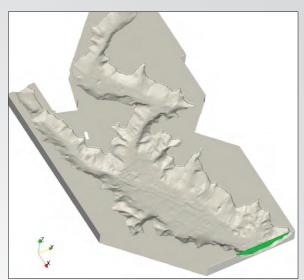
June 30, 2023

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 9


9

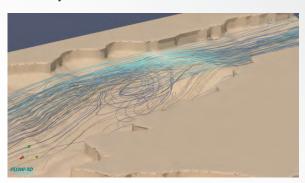

Water Resources Study

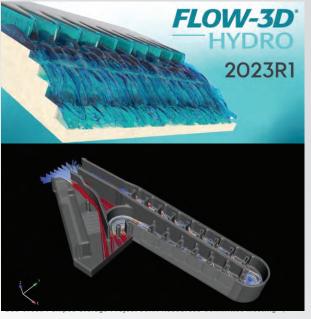
- Task 2 Water Quality Monitoring in Whitewater River Arm
 - Objective: Collect continuous temperature data and periodic DO (bi-weekly) from three historical locations in the Whitewater River Cove to gather current-day representative (i.e., baseline) water quality information in Summer 2023 and 2024.
 - · Status: Ongoing.
 - Dataloggers were deployed May 22nd and 23rd.
 - Four data collection trips have been made and will continue every two weeks through September.


Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 10

Water Resources Study

- Task 3 Velocity Effects and Vertical Mixing in Lake Jocassee Due to a Second Powerhouse (CFD Modeling)
 - Objectives
 - Use a two-dimensional (2-D) hydraulic model to determine the downstream extent of potential effects (i.e., mixing) in the Whitewater River Cove due to an additional powerhouse (Bad Creek II).
 - Develop CFD model to evaluate flows and extent of vertical mixing in the Whitewater River arm and downstream of the submerged weir due to the addition of Bad Creek II.
 - · Status: Ongoing.
 - · Simulations are complete and analyses are ongoing.
 - Velocity data were collected in mid-July along 5 transects in the Whitewater River cove with boatmounted ADCP for ongoing model validation.




Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 13

13

Task 3 – Introduction to Computational Fluid Dynamics

- · Modeling software capable of solving complex hydraulics in three dimensions.
- CFD models solve the three-dimensional form of the Navier-Stokes equations that govern fluid momentum in conjunction with conservation of mass (continuity).
- Commercially available Flow-3D software used for the Bad Creek analysis.

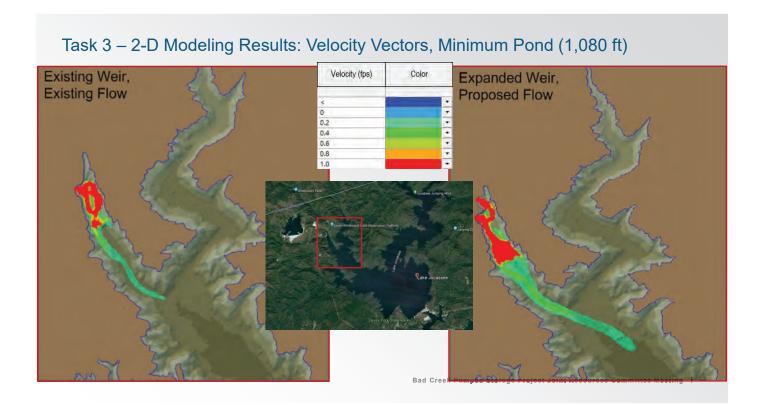
Task 3 – Modeling Steps and Take-Home Message

- 2-D hydraulic model (Innovyze) was developed to help determine the downstream modeling extent (model domain) required for the CFD model.
- 2. CFD model was developed to evaluate hydraulic effects (depth, velocity, flow patterns) of Bad Creek II operations on vertical mixing in the Whitewater River cove.
- 3. Sixteen scenarios were evaluated using pumping and generating modes under existing and proposed conditions (including potentially expanded weir).

Take home message: Of the "bookend" scenarios analyzed, combined Bad Creek and Bad Creek II operations (39,200 cfs) with Lake Jocassee at minimum pond elevation (1,080 ft msl) was found to have the greatest effect on Whitewater River Cove hydraulics, however at the downstream model boundary that effect was negligible.

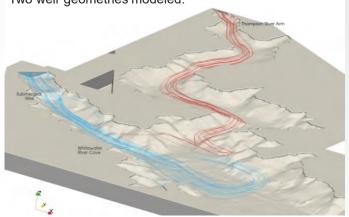
Lake Jocassee Area (full pond): 7,980 acres Modeled Area (full pond): 2,840 acres

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 15


15

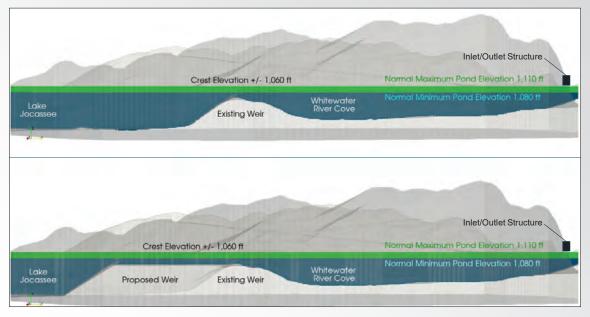
Task 3 – 2-D Modeling [Innovyze ICM]

- CFD modeling requires lengthy computing time, therefore 2-D model was used to quickly determine the approximate CFD modeling extent (modeling boundary).
- 2-D model terrain based on previously gathered Lake Jocassee bathymetry and SC State lidar.
- Scenarios assume full generation/pumping capacity for the entirety of the simulation.
- Simulation length was determined by the time it takes to drain/fill Bad Creek from full pond to maximum drawdown.
- · 2-D modeling is depth-averaged.



Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 16

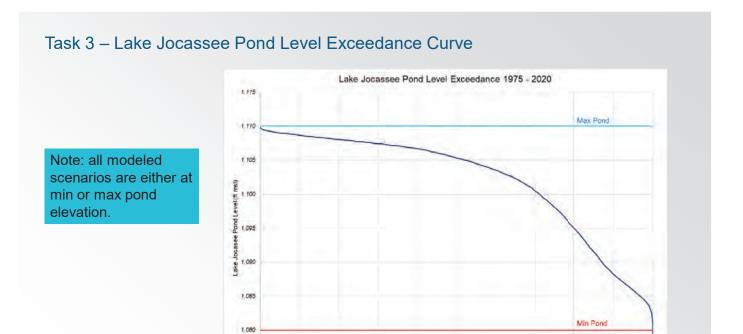
Task 3 – CFD Model Development


- Model domain extends just upstream of confluence with Devil's Fork Arm.
- Inflows and water surface elevations held constant at the inflow boundary.
- · Maximum generating/pumping capacity simulated.
- Thompson River flow included (long term average flow).
- · Two pond levels modeled.
- · Two weir geometries modeled.

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 18

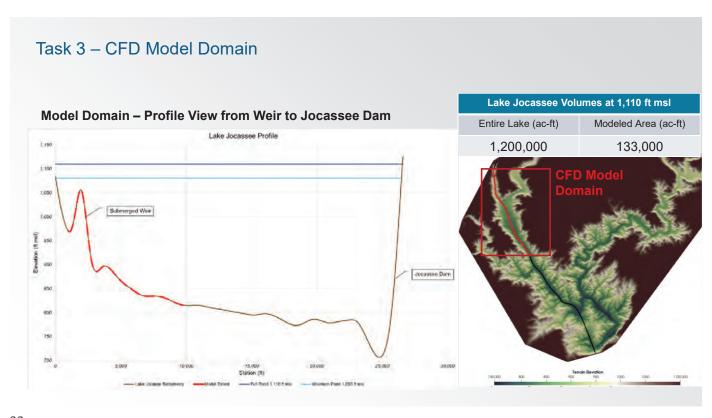
Task 3 – CFD Model Geometries & Scenarios

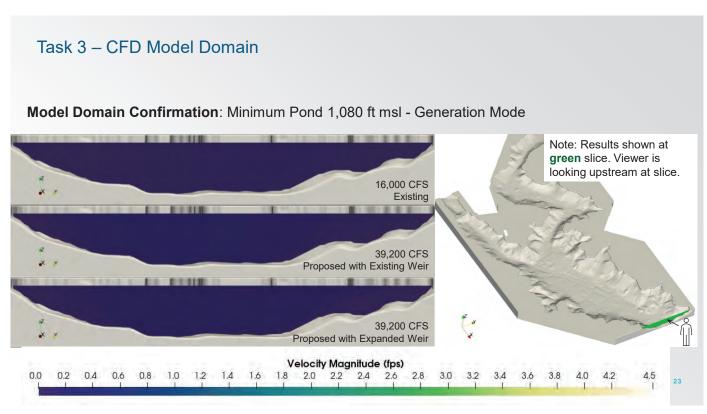
Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 19


19

Task 3 – CFD Modeled Scenarios

Station	Operating Mode	Submerged Weir Configuration	Scenario	Flow (cfs)	Jocassee Reservoir Elevation (ft msl)
Bad Creek Only Upgraded Generation Upgraded Pumping	Generating	Existing	1	16,000	1,110
			2	16,000	1,080
	Dumanina		7	13,780	1,110
		8	13,780	1,080	
	Unavaded Consustion	Existing	13	19,440	1,110
	Upgraded Generation		14	19,440	1,080
	Upgraded Pumping		15	15,000	1,110
			16	15,000	1,080
Bad Creek and Bad Creek II Generating Pumping Generating Pumping	Generating	Existing	3	39,200	1,110
			4	39,200	1,080
	Din		9	32,720	1,110
	Pumping		10	32,720	1,080
	Generating	Expanded	5	39,200	1,110
			6	39,200	1,080
	Pumping		11	32,720	1,110
			12	32,720	1,080


Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 20


| 21

1.075

21

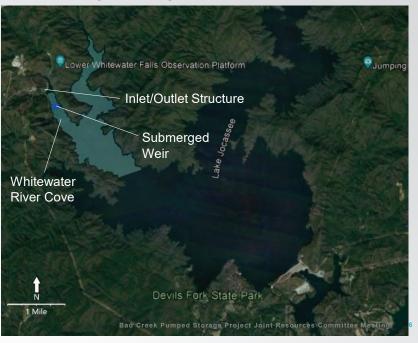


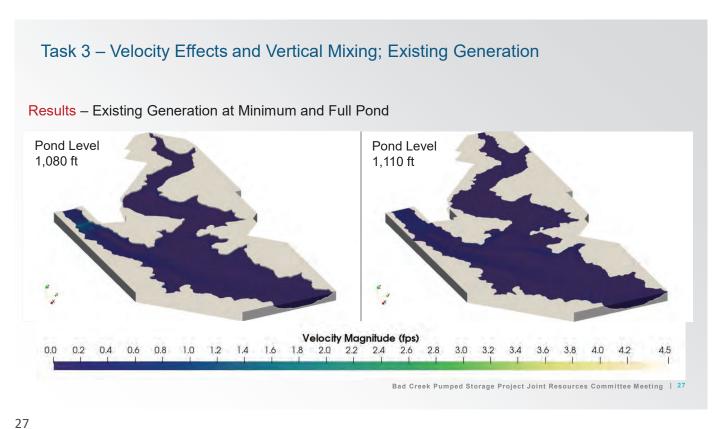
Task 3 – Velocity Effects and Vertical Mixing; Existing Generation

Results – Existing Generation at Full Pond

- Max velocity approx. 0.6 fps
- Teal: < 1.0 fps

(Teal shading indicates model extent.)

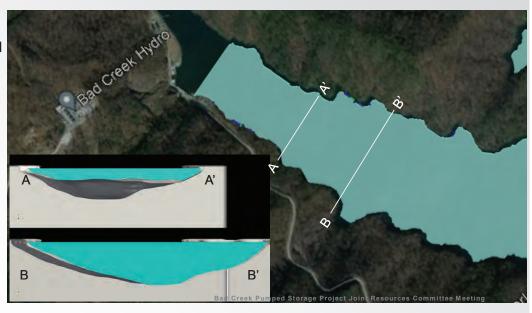

25


Task 3 – Velocity Effects and Vertical Mixing; Existing Generation

Results – Existing Generation at **Minimum Pond**

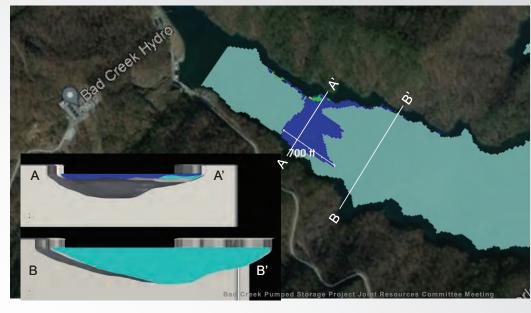
- Max velocity approx. 2.9 fps
- Teal: < 1.0 fps
- Blue: 1.0 2.0 fps
- Green: 2.0 3.0 fps

(Teal shading indicates model extent.)



Results – Existing Generation at Full Pond

- Max velocity approx. 0.6 fps
- Teal: < 1.0 fps


Task 3 – Velocity Effects and Vertical Mixing; Existing Generation

Results - Existing Generation at **Minimum Pond**

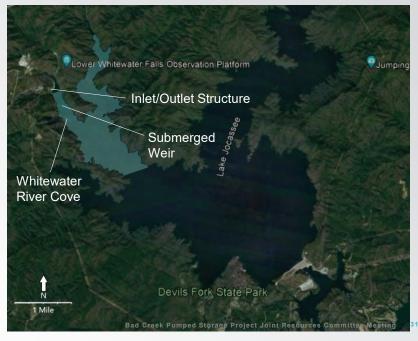
Max velocity approx. 2.9 fps Teal: < 1.0 fps

Blue: 1.0 - 2.0 fps

Green: 2.0 – 3.0 fps

29

CFD Results -**Existing Pumping** Operations

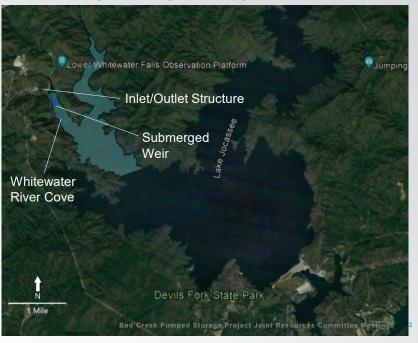

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 30

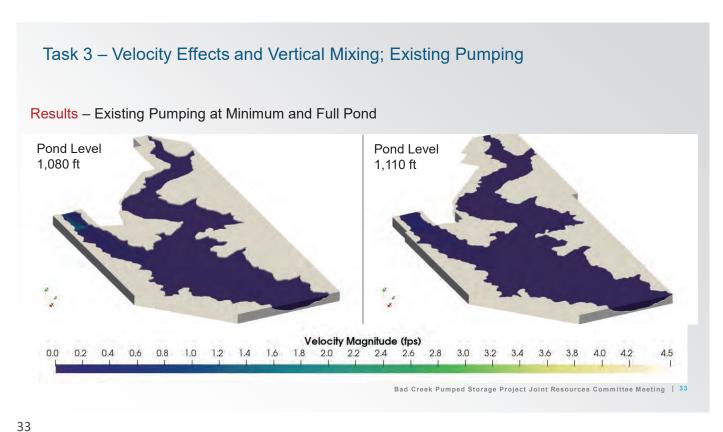
Task 3 – Velocity Effects and Vertical Mixing; Existing Pumping

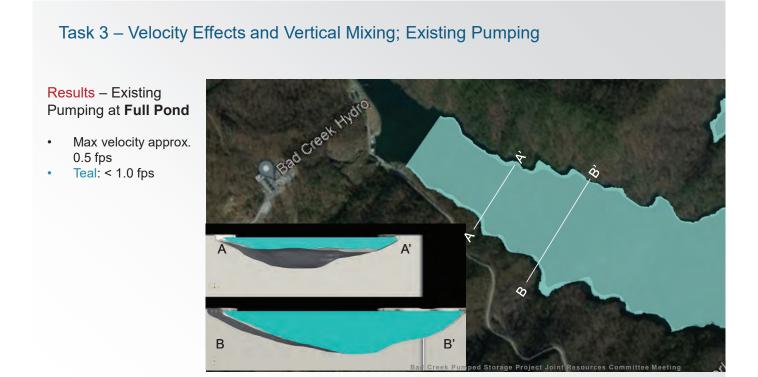
Results – Existing Pumping at Full Pond

- Max velocity approx. 0.5 fps
- Teal: < 1.0 fps

(Teal shading indicates model extent.)

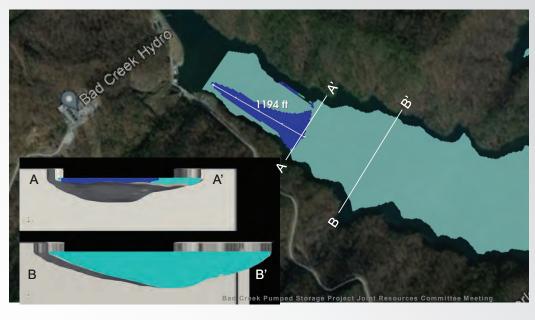

31


Task 3 – Velocity Effects and Vertical Mixing; Existing Pumping


Results – Existing Pumping at Minimum Pond

- Max velocity approx. 1.4 fps
- Teal: < 1.0 fps
- Blue: 1.0 2.0 fps

(Teal shading indicates model extent.)



Task 3 – Velocity Effects and Vertical Mixing; Existing Pumping

Results – Existing Pumping at **Minimum Pond**

- Max velocity approx.2.9 fps
- Teal: < 1.0 fps
- Blue: 1.0 2.0 fps

35

CFD Results – Proposed Generation Operations

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 36

Task 3 – Velocity Effects and Vertical Mixing; Proposed Generation

Results – Proposed Generation at Full Pond

3-D Contours of Velocity

Max velocity approx. 1.3 fps

Teal: < 1.0 fps

Blue: 1.0 – 2.0 fps

(Teal shading indicates model extent.)

37

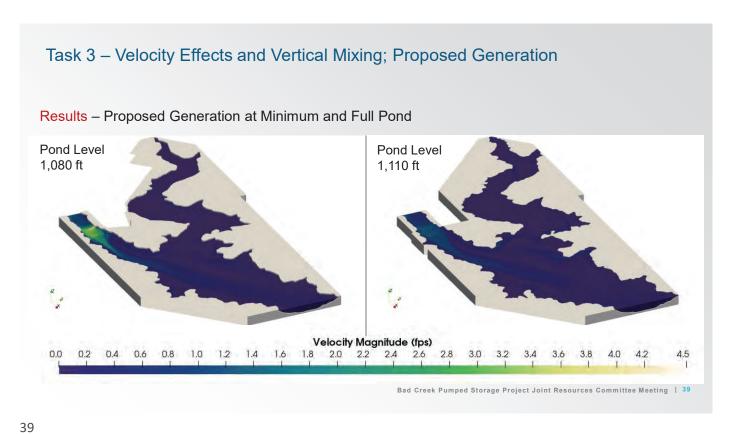
Task 3 – Velocity Effects and Vertical Mixing; Proposed Generation

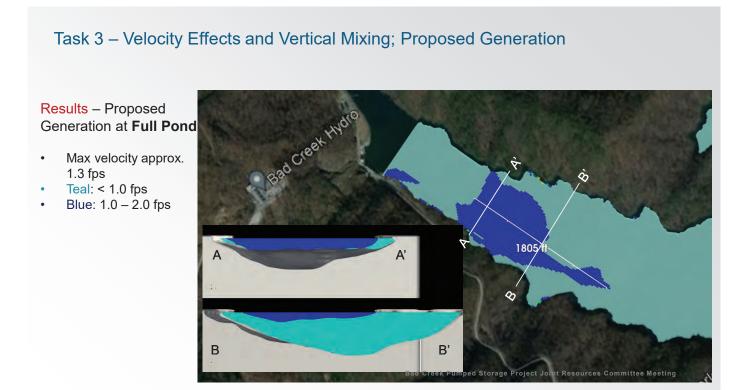
Results – Proposed Generation at Minimum Pond

Max velocity approx. 4.5 fps


Teal: < 1.0 fps

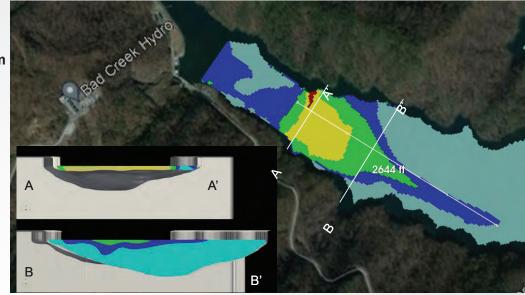
Blue: 1.0 – 2.0 fps
 Green: 2.0 – 3.0 fps


Yellow: 3.0 – 4.0 fps


Red: > 4.0 fps

(Teal shading indicates model extent.)

. . .



Task 3 – Velocity Effects and Vertical Mixing; Proposed Generation

Results – Proposed Generation at Minimum Pond

- Max velocity approx.4.5 fps
- Teal: < 1.0 fps
- Blue: 1.0 2.0 fps
- Green: 2.0 3.0 fps
 Yellow: 3.0 4.0 fps
- Red: > 4.0 fps

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 41

41

CFD Results – Proposed Pumping Operations

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 42

Task 3 – Velocity Effects and Vertical Mixing; Proposed Pumping

Results – Proposed Pumping at Full Pond

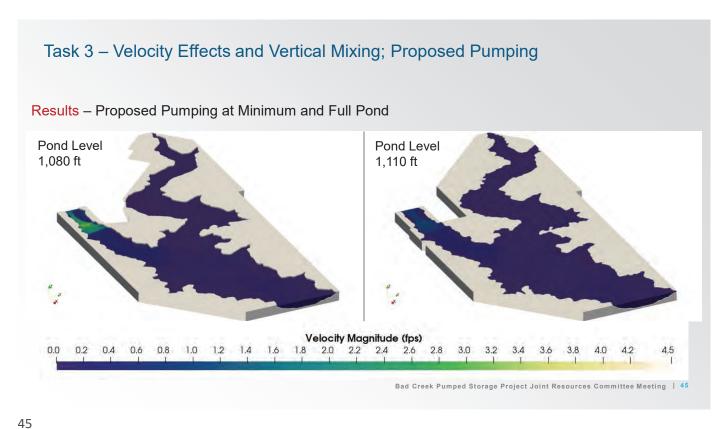
Max velocity approx. 1.1 fps

Teal: < 1.0 fpsBlue: 1.0 - 2.0 fps

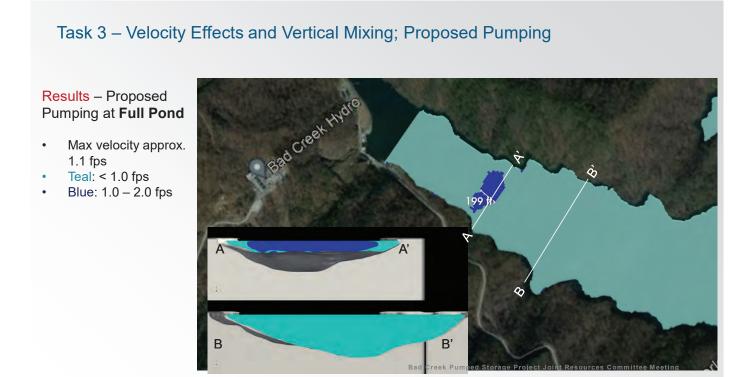
(Teal shading indicates model extent.)

43

Task 3 – Velocity Effects and Vertical Mixing; Proposed Pumping

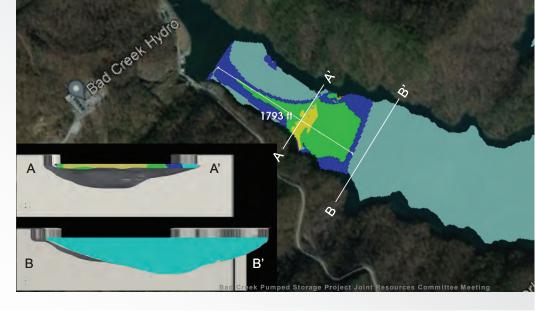

Results – Proposed Pumping at Minimum Pond

Max velocity approx. 3.3 fps


Teal: < 1.0 fps
Blue: 1.0 - 2.0 fps
Green: 2.0 - 3.0 fps
Yellow: 3.0 - 4.0 fps

(Teal shading indicates model extent.)

. .

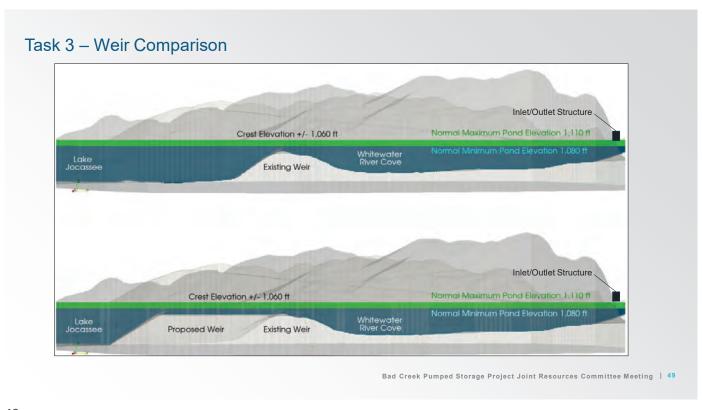

Task 3 – Velocity Effects and Vertical Mixing; Proposed Pumping

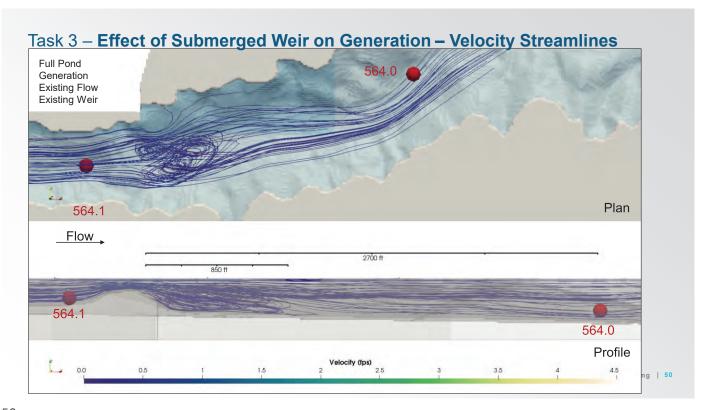
Results - Proposed Pumping at **Minimum Pond**

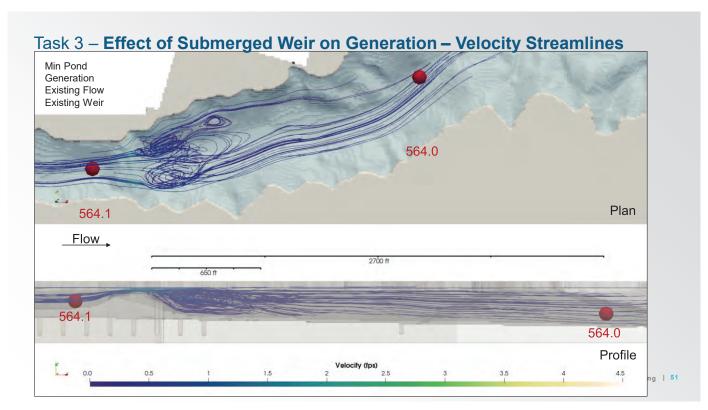
Max velocity approx. 3.3 fps

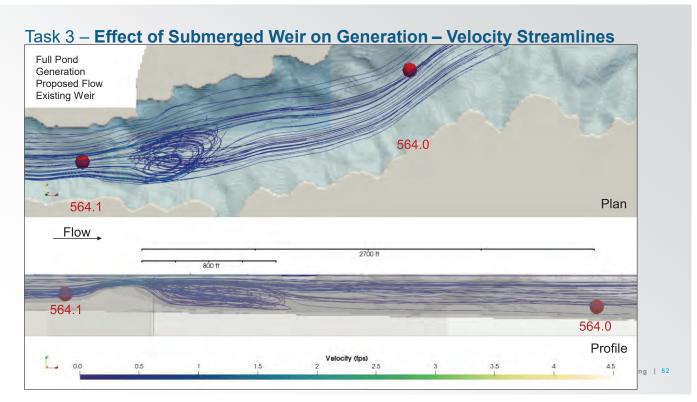
Teal: < 1.0 fps Blue: 1.0 – 2.0 fps Green: 2.0 – 3.0 fps

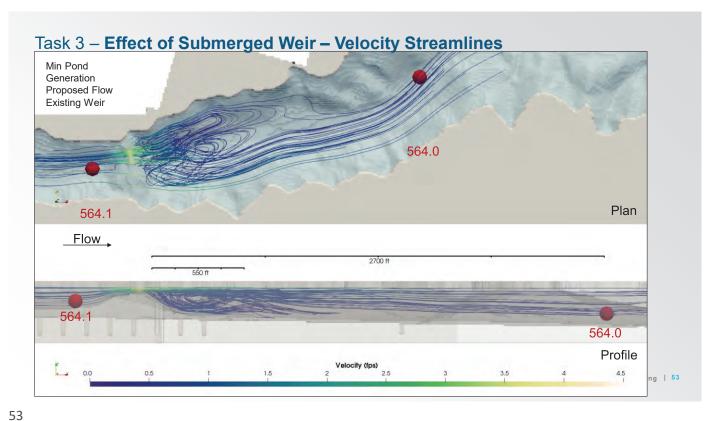
Yellow: 3.0 - 4.0 fps

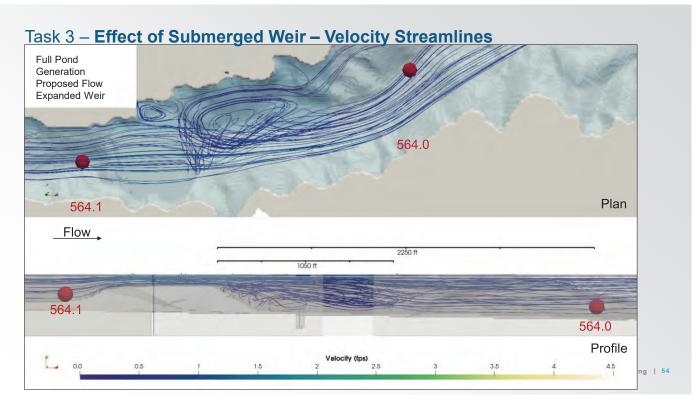


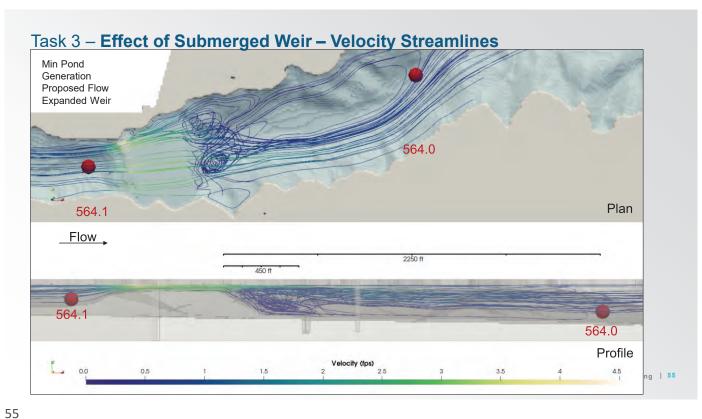

47

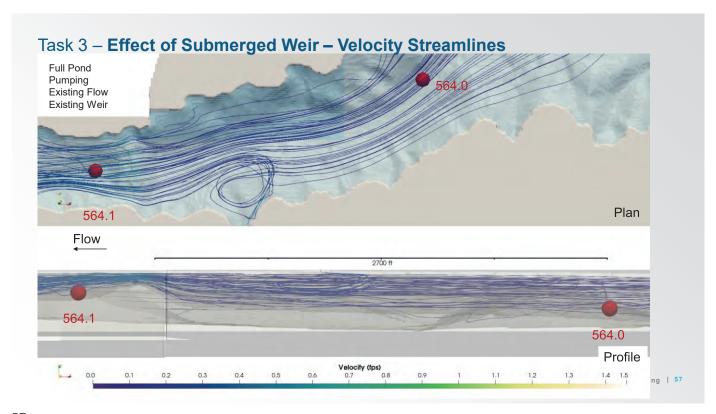

Effect of Submerged Weir Geometry during Generation

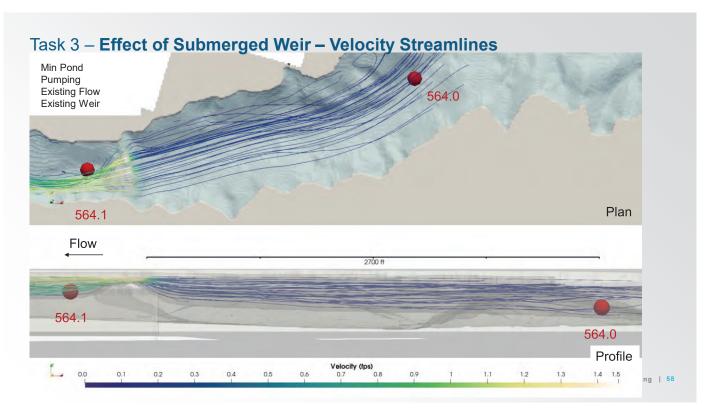


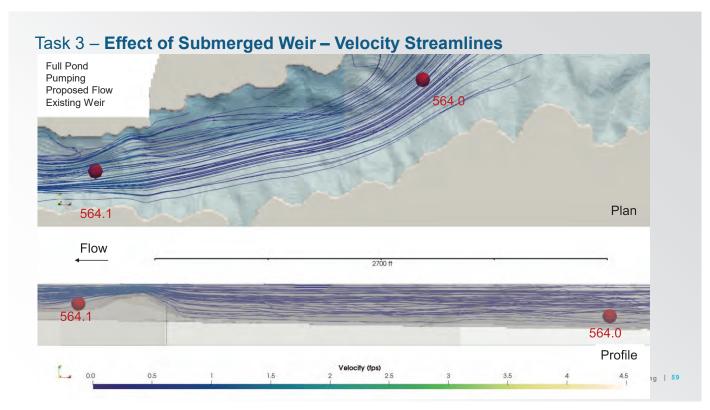

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 48

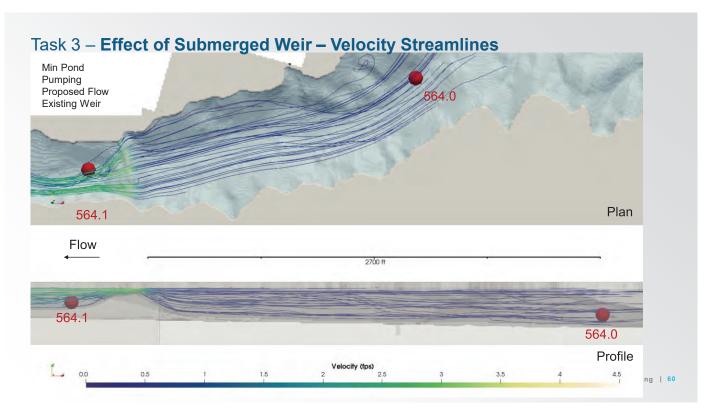


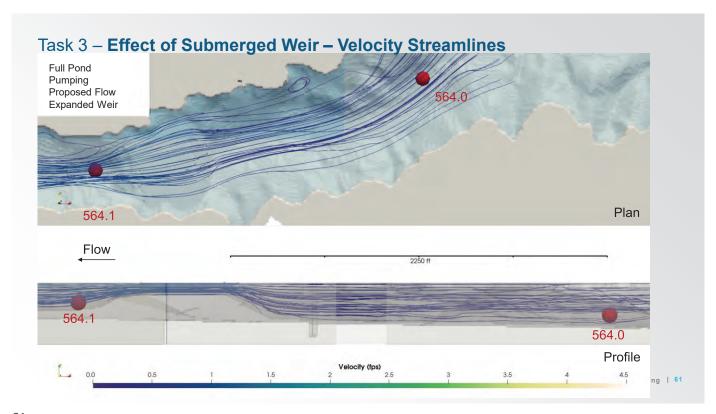


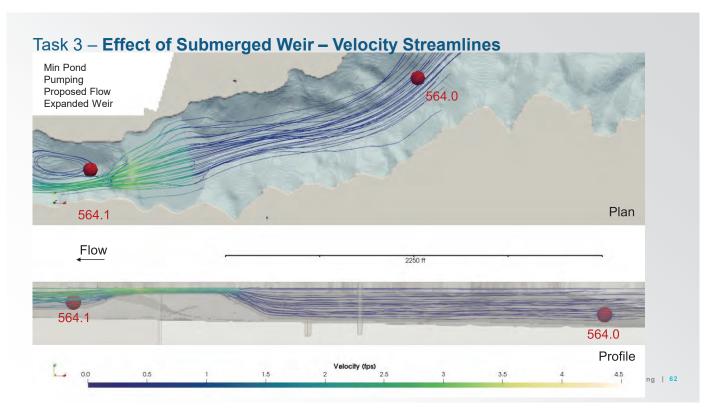












Task 3 – Initial Conclusions from CFD Modeling

Generation

- The energy of the water discharged from Bad Creek is dissipated as it's forced up and over the existing submerged weir.
- · Similar vertical mixing and flow patterns result from flows over existing and expanded weir.
- Similar vertical mixing and flow patterns result from Bad Creek II powerhouse operations.
- Results indicate Bad Creek II powerhouse operations will not alter existing stratification patterns observed at Station 564.0 (downstream of weir).

Pumping

- Hydraulic impacts due to Bad Creek II pumping impacts limited to Whitewater River Cove upstream of submerged weir.
- Pumping in any configuration does not create mixing downstream of submerged weir.

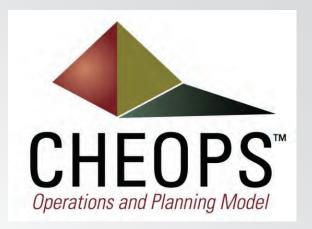
**Draft Report will be distributed in the fall for Resource Committee review

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 63

63

Water Resources Study

Task 4 – Water Exchange Rates and Lake Jocassee Reservoir Levels (CHEOPS Modeling)

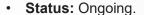


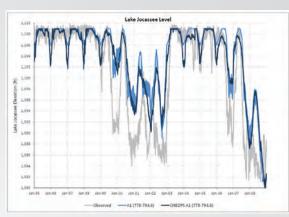
Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 64

Task 4 – Water Exchange Rates and Lake Jocassee Reservoir Levels (CHEOPS Modeling)

Goals for today:

- Initial CHEOPS performance measures
- Modeling scenarios
- · Update on model refinement


Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 65


65

Task 4 – Performance Measures

· Objectives:

- Use the existing CHEOPS model to evaluate the difference in water <u>exchange rate, frequency</u>, <u>and magnitude</u> between Bad Creek Reservoir and Lake Jocassee due to the addition of a second powerhouse.
- Identify and evaluate impacts, if any, to Lake Keowee as a result of operating an additional powerhouse at the Project.

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 66

Task 4 - CHEOPS Scenarios

Baseline:

- · Existing Bad Creek powerhouse
- · Existing Bad Creek license
- KT license
- · Updated demand curve (Bad Creek and Jocassee)
- Updated pumping dispatch curves (Bad Creek and Jocassee)
- Updated weekly drawdown cycle (30,000 ac-ft)

Bad Creek II:

- Baseline plus:
 - 4 Bad Creek II units (identical to existing units)
 - Pumping dispatch curve (Bad Creek II)
 - Assumption: Bad Creek II available for the entire scenario run

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 67

67

Task 4 – Bad Creek Performance Measures

Performance Measures Worksheet

- Minimum Increment of Significant Change (MISC)
- Side-by-side comparison
- Color coded

Line Number	Performance Measures	Criterion (Note 1)	Start Date	End Date	MISC (Note 2)	Baseline	Blend 2A v1	Blend 2A v2	Blend 2A v3	Blend 2B v1	Blend 2B v2	Blend 2B v
	Lake Keowee											
	Glovation Storage Availability											
31	Maximize adherence to reliably meet all Project-related water demands Floyation: Aprilhetics	Number of years reservoir level at or above 798 ft AMSL on May 1	1-May	1-May	- 5	63	65	68	68	65	68	68
12		Percent of time reservoir level at or above 797 ft AMSL	3-bin	11-Dec	20%	82%	91%	93 K	93%	93%	93%	93%
33	Maximize lake levels	Percent of time reservoir level at or above 795 ft AMSL	3-Jan	31-Dec	10%	89%	19%	18%	58N	58%	98%	98%
34	Minimize significant drawdown of lake level	Number of days reservoir level below 796 ft AMSL	1-Ján	31-Dec	- 5	4,112	1,102	1,076	1,091	1,102	1,078	1,093
	Elevation - Recreation											_
38	Design - Jackson	Number of years where cove access (reservoir level below 792 ft AMSL) is restricted for more than 25 days (Note 9)	1-Jan	\$1-Dec	2		n -	п	b	- 6	à	٥
36	Minimize restricted increation	Greatest number of days with restricted cove access (reservoir level below 792 ft AMSL) during higher use months in any calendar year (Nota 9)	1-Mir	31-Oct	5	0	0	0	0	0	0	0
47		Greatest number of days with restricted cove access (reservoir level below 792 ft AMSL) in any calcridar year (Note 9).	3-200	31-Dec	ŝ.	Ó	18	12	12	16	12	12
38	Minimize restricted take boot launching	Number of years where reservoir level is below boot ramp critical level (790 ft AMSL) during higher use months for more than 25 days (Note 10)	1-Mar	31-Oct	2	0	ò	6	ō.	6	0.	0
39		Greatest number of days where reservoir level is below boat ramp critical level (790 ft AMSS) during higher use months in any calendar year (Note 10)	1-Mar.	31-Oct	5	0	0	0	0	0	0	0
40	Maximite boat dock unage	Percent of time reservoir level is at or above level where 85% of docks are usable (796.25 ft AMSA) during higher use months from 7:00 am to 7:00 pm (Note 27)	2-Mar	31-Oct	5%	85%	90%	96N	36%	96%	bes	98N
41	NAMES OF THE PARTY	Percent of time reservoir level is at or above level where 70% of docks are usable (793.5 ft AMSL) during higher use months from 7:00 em to 7:00 pm (Noté 27)	1-Mir	33-Oct	.5%	100%	100%	100%	300%	soek	100%	100%
	Elevation - Natural Resources			1								
42	Minimite number of days water level is below too of riorso	Number of days reservoir level below 754 ft AMSL (Note 11)	1-Jan	\$1-Dec	250	71	108	97	102	130	116	116
43		Percent of years (hourly) reservoir level remains within (-0.5 to 2.0) ft band for 10 consecutive days at least once (Note 20)	15-Mar	15-May	10%	100%	100%	100%	100%	100%	100%	100%
40	Maximize spawning success for black bass and blueback harring	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 15 consecutive days at least once (Note 20)	15-Mar	15-May	10%	100%	100%	100%	100%	100%	100%	100%
45	(2.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0) ft band for 20 consecutive days at least once (Note 20)	15 Mar	15-May	10%	100%	100%	100%	100%	100%	100%	100%
46		Percent of years (hourly) reservoir level remains within (-0.5 to 3.0) ft band for 10 consecutive days at least once (Note 20)	15-Mar	15-May	10%	100%	100%	100%	100%	100%	100%	100N
47	Maximize spawning success for black bass and blueback herring	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 15 consecutive days at least once (Note 20)	15 Mar	15-May	10%	100%	100%	100%	100%	100%	100%	100%
43	(9.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0) ft band for 20 consecutive days at least once (Note 20)	15-Mar	15-May	10%	100%	100%	100%	100%	200%	100%	100%
49	The state of the s	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 10 consecutive days at least once (Note 20)	25-May	15-aul	10%	100%	100%	100%	100%	100%	100%	100%
50	Maximize spawing success for sunfish and threadfin shad	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0) ff band for 15 consecutive days at least once thote 201	15-May	15-iui	10%	100%	100%	100%	:100%	100%	100%	100%
51	(2.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0) ft band	25-May	15-au	10%	97%	100%	100%	92X	100%	100%	99%

Bad Creek Pumped Storage Project Joint Resource Committee Meeting | 68

Task 4 – Bad Creek Performance Measures


- Starting Point: KT Relicensing Performance Measures
 - All Jocassee and Keowee lake level measures & LIP Stages
 - New measure: Measure 7 Number of days where Jocassee reservoir level changes more than 1.0 ft in one hour
 - Revised measures
 - Measure 59 Number of days where Keowee level below critical level (790.0 ft msl) for thermal power operation
 - Measures 61-66 Number of days in LIP Stages; added MISC

Laborate Assessment	1930 1946 1950 1950 1950 1950 1950 1950 1950 1950	1-May 31-Dec 31-Dec 31-Dec 31-Dec 31-Dec 31-Dec	5 2 5 5 5 2 5
1 Minimizes reference to enabling must all projects of the control	1-Apr 1-Ap	31-Dec 31-Dec 31-Dec 31-Oct 31-Oct 31-Oct	2 5 5 2 5
Project related and related Project related and project relate	1-Apr 1-Ap	31-Dec 31-Dec 31-Dec 31-Oct 31-Oct 31-Oct	2 5 5 2 5
Desired and year when come security from embeddeen USDA A Mills (1) another days were security from the security of the securi	1930 1946 1950 1950 1950 1950 1950 1950 1950 1950	31-Oct 31-Oct 31-Oct 31-Oct 31-Oct	5 5 2 5
A Minister curations for continued in a continued i	1930 1946 1950 1950 1950 1950 1950 1950 1950 1950	31-Oct 31-Oct 31-Oct 31-Oct 31-Oct	5 5 2 5
de Moures retrieted routebook de d	1-Mar 15L) in 5-Jan 1-Mar 1-Mar 1-Apr 1-Apr	31-Dec 31-Oct 31-Oct 31-Dec	5 2 5 10
we coloniary our (Block 2) Ministic southerd best blooming Ministic sporting security	1-Mar 1-Mar 1-Mar 1-Apr 1-Apr	31-Oct 31-Oct 31-Occ	2 5
Ministration of both boundary Indicate	t 1-Mar 5-Jun 1-Apr	31-Oct 31-Dcc	5 10
Content makes of days when exercised only in bland board gar garden content of the bland board gar garden led [DOM 7.7]. Minimis affect an exercision of the stand of days after content of datagage after that RD 8 me hear the stand of days after content of the days after that RD 8 me hear the stand of days after content of the days after that RD 8 me hear the stand of days after that the stand of days after content of the days after that RD 8 me hear the stand of days after that the stand of days after that the stand of days after the stand of t	1-Apr	31-Dec	10
Thinkies of these an exceptional flashed or digit when received head disease, norm that D fit is not how to D fit is not how t	1-Apr 1-Apr		
Contract Recombinations of the Contract Security of the Contract Securi	1-Apr	15-Muy	
Multitic spowing secure for the desirable advantage to the desirable and training (2.5-ft threates being) (2.5-ft threates bei	1-Apr	15-Muy	
bit bit between self-index states and self-i			10%
(23-41 intertation load) Percent of your (I bondy) current feet of mania while (35 to 20) fo base for 20 consecution, day at load one (I blos. 5) Minimize opening accord for blosh bors and blosh bors and blosh bors and blosh bors and blosh bors (I blosh bors and blosh bors (I blosh bors and blosh bors) (32-61 fluctuation load) (32-61 fluctuation load)		15-Muy	10%
The Ministrice operating secrets for British bars and British	1-Apr	15-Muy	10%
12 blick bass and blickbock herring (3.5-ft fluctuation band) (3.5-ft fluctuation band) (3.5-ft fluctuation band)	1-Apr	15-Muy	10%
3.5-It Receives band 5	1-Apr	15-Muy	10%
	1-Apr	15-May	10%
consecutive days at least once (Note 5) Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 10	15-Mov	15-Jul	10%
Maximize spawning success for consecutive days at least once (Note 5) Maximize spawning success for space of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 15	15-May	15-Jul	10%
(2.5-ft flecteation band) consecutive days at least once (Note 5) Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 20	15-May	15-Ad	10%
consecutive days at least once (Note 5) Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 10	15-May	15-Ad	10%
Maximize spawning success for consecutive days at least once (Note 5) Maximize spawning success for percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 15	15-May	15-Ad	10%
(3.5-ft fluctuation band) consecutive days at least once (Note 5)	15-May	15-Ad	10%
consecutive days at least once (Note 5)			
20 Minimize entrainment due to Bad Creek Percent of days average reservoir level at or below 1,036 ft AMSL (Note 3)	1-Jan	31-Dec	10%
21 operations Percent of days average recornoir level below 1,096 ft AMSL (Note 3) 22 Maximin litteral habitat during Percent of days average recornoir level above 1,107 ft AMSL (Note 4)	1-Dec	31-Mar 30-Sep	10%
	1-Apr 1-Apr	30-Sep	10%
23 growing scoron Percent of days average recornoir level above 1,105 ft AMSL (Note 4) 24 Maximize litteral habitat during Percent of days average recornoir level above 1,107 ft AMSL (Note 4)	1-Apr 1-Apr	30-Sep 31-Man	10%
25 cpowning cracon Percent of days average recervoir level above 1,105 ft AMSL (Note 4)	1-Apr	31-May	10%
26 Minimize days below take levels that impact Bod Crask operations with the level of the impact Bod Crask operations and the level of the control of the level o	1-Jan	31-Dec	227
27 Minimize days below late levels that Number of days reservoir level below 1,090 ft AMSL (Note 6)	1-Jan	31-Dec	14
28 Minimize days below lake levels that impact Bad Creek afficiency Number of days reservoir level below 1,081 ft AMSL (Note 7)	1-Jan	31-Dec	12
Lake Komuse			
Direction Staroge-Acadebity			
29 Maximize adherence to reliably meet all Number of years reconvoir level at or above 798 ft AMSL on May 1 Project-related water domando	1-May	1-May	5
December Australia			
31 Maximize lake levels Percent of time reservoir level at or above 797 ft AMSL	1-Jun	31-Dec	20%
32 Percent of time reservoir level at or above 735 ft AMSL	1-Jan	31-Dec	10%
33 Minimize significant drowdown of lake Number of days reservoir level below 736 ft AMSL	1-Jun	31-Dec	5

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 69

69

Aquatic Resources Study

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 70

Task 1 – Consultation on Entrainment

Draft Entrainment Study Report

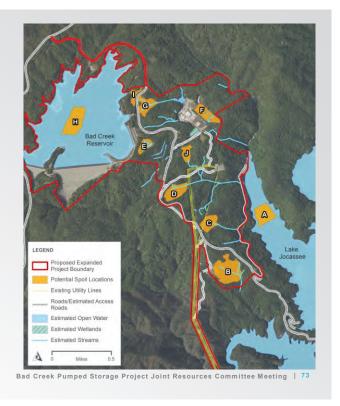
- Meeting with the Aquatic Resources RC in April 2023
- Entrainment study evaluating additional parameters affecting entrainment scenarios
 - Lake surface elevation (+/- 1,099 ft msl; 89 ft)
 - · Water temperature
 - Hours of pumping (day vs night operations)
- Distribute draft study report by November 2023

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 71

71

Task 2 – Desktop Studies on Potential Effects to Pelagic and Littoral Habitat

- Meeting with the Water Resources RC in July 2023 (today)
- · Water Resources Study modeling results
 - 2-D hydraulic model
 - CFD model
 - CHEOPS model
- Discuss desktop study results in early spring 2024



Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 72

Task 3 - Mussel Surveys and Stream Habitat Quality Surveys

Potential Spoil Locations

- Mussel surveys
 - Late July: survey of Lake Jocassee shoreline in the vicinity of Bad Creek inlet/outlet and submerged weir
 - · Mussel habitat is not present at upland potential spoil locations
- Stream habitat assessments
 - NC Stream Assessment Method (NCSAM) and USEPA Rapid Bioassessment Protocol (RBP) will be completed for all streams within potential spoil locations

73

Task 3 – Mussel Surveys and Stream Habitat Quality Surveys

Potential Access Road

- Fish Community & Mussel surveys
 - **Howard Creek**
 - Limber Pole Creek
- Stream habitat assessments
 - All streams crossed by the potential access road
 - NCSAM + USEPA RBP
 - SCDNR Stream Quantification Tool (SQT)

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 74

Task 3 – SCDNR Consultation

- May 2023: SCDNR requested that Duke Energy use the Stream Quantification Tool (SQT) to evaluate streams potentially impacted by Bad Creek II Complex construction activities
- May 24 and June 21, 2023: consultation calls held with SCDNR regarding SQT methodology and applicability
- July 12, 2023: site visit with Lorianne Riggin (SCDNR) to streams within two potential spoil locations
- ➤ A memo is under development which will include a summary of the survey approach for streams within potential spoil locations and along the potential access road.
- Methods described in the RSP still apply.

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 7

75

Task 3 - Mussel Surveys and Stream Habitat Quality Surveys

SCDNR Stream Quantification Tool

- Used to assess functional lift or loss from an action
- Based on five functional categories
- Function-based parameters
 - Reach runoff
 - Floodplain connectivity
 - Flow dynamics
 - · Large woody debris
 - Lateral migration/erosion
 - Riparian vegetation
 - Bed form diversity
 - Biology dependent on drainage area
 - Fish community
 - Macroinvertebrates

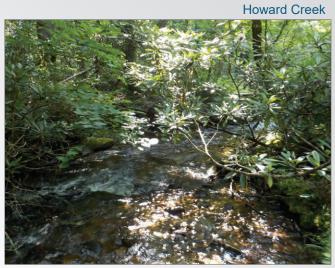
ad Creek Pumped Storage Project Joint Resources Committee Meeting | 7

Task 3 – Mussel Surveys and Stream Habitat Quality Surveys

Field Studies Schedule

Task	Location(s)	Timeframe
Fish community sampling*	Potential access road	Late July - October (3 events)
Mussel surveys*	Lake Jocassee & Potential access road	Late July
Macroinvertebrate sampling*	Potential access road	Early August
Stream habitat assessments (NCSAM + USEPA RBP)*	Potential spoil locations & potential access road	Early-mid October
Stream geomorphic surveys and riparian vegetation assessments	Potential access road	Early-mid October

^{*}Incidental observations of amphibians and reptiles will be documented.


Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 77

77

Task 3 – Mussel Surveys and Stream Habitat Quality Surveys

Limber Pole Creek

Bad Creek Pumped Storage Project Joint Resources Committee Meeting

Questions and Action Items

Measure Number	Performance Measures	Criterion (Note 1)	Start Date	End Date	MISC (Note 2)	Baseline	BCII
	Lake Jocassee						
	Elevation - Storage Availability						
1	Maximize adherence to reliably meet all Project-related water demands	Number of years reservoir level at or above 1,108 ft AMSL on May 1	1-May	1-May	5		
	Elevation - Recreation						
2		Number of years where cove access (reservoir level below 1,090 ft AMSL) is restricted for more than 25 days (Note 3)	1-Jan	31-Dec	2		
3	Minimize restricted recreation	Greatest number of days with restricted cove access (reservoir level below 1,090 ft AMSL) during higher use months in any calendar year (Note 3)	1-Mar	31-Oct	5		
4		Greatest number of days with restricted cove access (reservoir level below 1,090 ft AMSL) in any calendar year (Note 3)	1-Jan	31-Dec	5		
5	Minimize restricted boat launching	Number of years where reservoir level is below boat ramp critical level (1,080 ft AMSL) during higher use months for more than 25 days (Note 4)	1-Mar	31-Oct	2		
6		Greatest number of days where reservoir level is below boat ramp critical level (1,080 ft AMSL) during higher use months in any calendar year (Note 4)	1-Mar	31-Oct	5		
7	Minimize effects on recreational boating	Number of days where reservoir level changes more than 1.0 ft in one hour	1-Jan	31-Dec	10		
	Elevation - Natural Resources						
8	Maximize spawning success for	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 10 consecutive days at least once (Note 5)	1-Apr	31-May	5%		
9	black bass and blueback herring (2.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 15 consecutive days at least once (Note 5)	1-Apr	31-May	5%		
10	(2.5 it inactaction saile)	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 20 consecutive days at least once (Note 5)	1-Apr	31-May	5%		
11		Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 10 consecutive days at least once (Note 5)	1-Apr	31-May	5%		
12	Maximize spawning success for black bass and blueback herring	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 15 consecutive days at least once (Note 5)	1-Apr	31-May	5%		
13	(3.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 20 consecutive days at least once (Note 5)	1-Apr	31-May	5%		
14	A 4. :	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 10 consecutive days at least once (Note 5)	15-May	15-Jul	5%		
15	Maximize spawning success for sunfish and threadfin shad	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 15 consecutive days at least once (Note 5)	15-May	15-Jul	5%		
16	(2.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 20 consecutive days at least once (Note 5)	15-May	15-Jul	5%		
17	A 4. :	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 10 consecutive days at least once (Note 5)	15-May	15-Jul	5%		
18	Maximize spawning success for sunfish and threadfin shad	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 15 consecutive days at least once (Note 5)	15-May	15-Jul	5%		
19	(3.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 20 consecutive days at least once (Note 5)	15-May	15-Jul	5%		
20	Minimize entrainment due to Bad Creek	Percent of days average reservoir level at or below 1,096 ft AMSL (Note 6)	1-Jan	31-Dec	5%		
21	operations	Percent of days average reservoir level below 1,096 ft AMSL (Note 6)	1-Dec	31-Mar	5%		
22	Maximize littoral habitat during growing	Percent of days average reservoir level above 1,107 ft AMSL (Note 7)	1-Apr	30-Sep	5%		
23	season	Percent of days average reservoir level above 1,105 ft AMSL (Note 7)	1-Apr	30-Sep	5%		
24	Maximize littoral habitat during spawning	Percent of days average reservoir level above 1,107 ft AMSL (Note 7)	1-Apr	31-May	5%		

25	season	Percent of days average reservoir level above 1,105 ft AMSL (Note 7)	1-Apr	31-May	5%	Τ
	Pumped Storage					
26	Minimize days below lake levels that impact Bad Creek operations	Number of days reservoir level below 1,099 ft AMSL (Note 8)	1-Jan	31-Dec	227	
27	Minimize days below lake levels that impact Jocassee operations	Number of days reservoir level below 1,090 ft AMSL (Note 8)	1-Jan	31-Dec	14	
28	Minimize days below lake levels that impact Bad Creek efficiency	Number of days reservoir level below 1,081 ft AMSL (Note 9)	1-Jan	31-Dec	12	
	Lake Keowee					
	Elevation - Storage Availability					
29	Maximize adherence to reliably meet all Project-related water demands	Number of years reservoir level at or above 798 ft AMSL on May 1	1-May	1-May	5	
	Elevation - Aesthetics					
31	Maximize lake levels	Percent of time reservoir level at or above 797 ft AMSL	1-Jan	31-Dec	20%	
32		Percent of time reservoir level at or above 795 ft AMSL	1-Jan	31-Dec	10%	
33	Minimize significant drawdown of lake level	Number of days reservoir level below 796 ft AMSL	1-Jan	31-Dec	5	
	Elevation - Recreation					
34		Number of years where cove access (reservoir level below 792 ft AMSL) is restricted for more than 25 days (Note 10)	1-Jan	31-Dec	2	
35	Minimize restricted recreation	Greatest number of days with restricted cove access (reservoir level below 792 ft AMSL) during higher use months in any calendar year (Note 10)	1-Mar	31-Oct	5	
36		Greatest number of days with restricted cove access (reservoir level below 792 ft AMSL) in any calendar year (Note 10)	1-Jan	31-Dec	5	
37	Minimizer and involved to be only and in-	Number of years where reservoir level is below boat ramp critical level (790 ft AMSL) during higher use months for more than 25 days (Note 11)	1-Mar	31-Oct	2	
38	- Willimize restricted take boat faunching	Greatest number of days where reservoir level is below boat ramp critical level (790 ft AMSL) during higher use months in any calendar year (Note 11)	1-Mar	31-Oct	5	
39	Maximiza haat daak usaga	Percent of time reservoir level is at or above level where 85% of docks are usable (796.25 ft AMSL) during higher use months from 7:00 am to 7:00 pm (Note 12)	1-Mar	31-Oct	5%	
40	Maximize lake levels Minimize significant drawdown of lake level Elevation - Recreation Minimize restricted recreation Minimize restricted lake boat launching Maximize boat dock usage Elevation - Natural Resources Minimize number of days water level is below toe of riprap Maximize spawning success for black bass and blueback herring (2.5-ft fluctuation band)	Percent of time reservoir level is at or above level where 70% of docks are usable (793.5 ft AMSL) during higher use months from 7:00 am to 7:00 pm (Note 12)	1-Mar	31-Oct	5%	
	Elevation - Natural Resources					
41	•	Number of days reservoir level below 794 ft AMSL (Note 13)	1-Jan	31-Dec	250	
42	Maximize chauping success for	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 10 consecutive days at least once (Note 14)	15-Mar	31-May	5%	
43	black bass and blueback herring	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 15 consecutive days at least once (Note 14)	15-Mar	31-May	5%	
44	(2.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 20 consecutive days at least once (Note 14)	15-Mar	31-May	5%	
45	Maximing angularing access for	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 10 consecutive days at least once (Note 14)	15-Mar	31-May	5%	
46	Maximize spawning success for black bass and blueback herring	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 15 consecutive days at least once (Note 14)	15-Mar	31-May	5%	
47	(3.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 20 consecutive days at least once (Note 14)	15-Mar	31-May	5%	

48	Maximiza consuming suggests for	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 10 consecutive days at least once (Note 14)	15-May	15-Jul	5%	
49	I SUNTISH AND INTEAUTIN SHAD I	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 15 consecutive days at least once (Note 14)	15-May	15-Jul	5%	
50	(2.5-it fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 20 consecutive days at least once (Note 14)	15-May	15-Jul	5%	
51	Maximiza snawning success for	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 10 consecutive days at least once (Note 14)	15-May	15-Jul	5%	
52	Maximize spawning success for sunfish and threadfin shad (3.5-ft fluctuation band) Maximize littoral habitat during growing season Maximize littoral habitat during spawning season Elevation - Water Supply	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 15 consecutive days at least once (Note 14)	15-May	15-Jul	5%	
53		Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 20 consecutive days at least once (Note 14)	15-May	15-Jul	5%	
54	Maximize littoral habitat during growing	Percent of days average reservoir level above 798 ft AMSL (Note 15)	1-Apr	30-Sep	5%	
55	season	Percent of days average reservoir level above 797 ft AMSL (Note 15)	1-Apr	30-Sep	5%	
56	Maximize littoral habitat during spawning	Percent of days average reservoir level above 798 ft AMSL (Note 15)	1-Apr	31-May	5%	
57	season	Percent of days average reservoir level above 797 ft AMSL (Note 15)	1-Apr	31-May	5%	
	Elevation - Water Supply					
58		Number of days reservoir level below critical level (775 ft AMSL) for shallowest public water supply intake operation (Note 16)	1-Jan	31-Dec	1	
59	Minimize days of restricted operation at lake- located intakes	Number of days reservoir level below critical level (790.0 ft AMSL) for shallowest thermal power station operation (Note 17)	1-Jan	31-Dec	1	
60		Number of days reservoir level below critical level (787.9 ft AMSL) for Keowee dam to supply backup power to ONS (Note 18)	1-Jan	31-Dec	1	
	Duke Energy Hydropower & Water Quantity Management					
61		Number of days in LIP Stage Normal	1-Jan	31-Dec	10	
62		Number of days in LIP Stage 0	1-Jan	31-Dec	10	
63	Keowee-Toxaway Low Inflow Protocol (LIP)	Number of days in LIP Stage 1	1-Jan	31-Dec	10	
64	Stage	Number of days in LIP Stage 2	1-Jan	31-Dec	10	
65		Number of days in LIP Stage 3	1-Jan	31-Dec	10	
66		Number of days in LIP Stage 4	1-Jan	31-Dec	10	

Notes	
	For criterion that measure on an hourly or daily basis, unless stated otherwise:
	a. If an hourly criteria occurs during the average of four contiguous 15-minute periods, then it counts as 1 hour.
1	b. If a daily criterion occurs for 5 contiguous 1-hour periods, then it counts as 1 day.
	Also, daytime flows are assumed to be flows provided between 7:00 am and 7:00 pm. To the extent possible, each criterion is defined in terms of percents and averages/yr so that the same criterion is useful regardless of the length of
	the hydrology period (i.e., 1-yr, 3-yr, full period of record, etc.)
	MISC = Minimum Increment of Significant Change. The MISC has the same units (i.e., days, days/yr, percent, etc.) as does the criterion on that same row of the spreadsheet. If the output of two scenarios for a particular criterion differs
	by less than or equal to the MISC, then there is no significant difference between those two scenarios as far as the criterion in question is concerned. The following guidelines were used to establish the MISC numbers:
2	a. As a general rule, MISC numbers are set at 10% of the possible total for that criterion considering the Start/Stop dates.
	b. MISC numbers for criteria that have the most adverse outcomes if reached are typically set at less than 10% of the possible total for that criterion.
	c. Adjustments to the MISC numbers (up or down) have also been made depending on the desires of the stakeholders that primarily have the interests that are being measured by a particular criterion.
3	Jocassee restricted recreation elevation 1,090 ft AMSL provided by Chris Starker (Upstate Forever) and confirmed by Devils Fork State Park Staff.
4	Jocassee elevation 1,077 ft AMSL is the lowest boat ramp elevation with an additional 3 ft added for boat access. Boat ramp elevations provided by Duke Energy.
5	This criterion evaluates a day as 24 contiguous hours, not as specified in Note 1.

DRAFT - 7/28/2023

6	Jocassee entrainment elevation (1,096 ft AMSL) provided by Bill Marshall of SCDNR.
7	Jocassee fish habitat elevations provided by Bill Marshall of SCDNR.
	Jocassee elevation 1,099 ft AMSL is the elevation at which an MOU between Duke Energy and SCDNR requires Duke Energy to implement operational changes at Bad Creek. Jocassee elevation 1,090 ft AMSL is the elevation at which
8	Jocassee powerhouse efficiency is degraded.
9	Jocassee elevation 1,081 ft AMSL provided by Duke Energy based on impact to pumping equipment.
10	Keowee restricted recreation elevation of 792 ft AMSL provided by James McRacken (HDR) and Scott Fletcher (Duke Energy).
11	Keowee elevation 790 ft AMSL is based on the lowest boat ramp elevation of 787 ft AMSL plus 3 ft for boat access (provided by Duke Energy).
12	Percent of time is measured as the percent of 15-minute time steps at or above threshold elevation during period starting 07:00 am and period ending 7:00 pm.
13	Toe of Keowee reservoir riprap elevation 794 ft AMSL provided by Duke Energy.
14	This criterion evaluates a day as 24 contiguous hours, not as specified in Note 1.
15	Keowee fish habitat elevations provided by Bill Marshall of SCDNR.
16	Keowee elevation 775 ft AMSL was the minimum level permitted in the previous KT FERC License, and the Keowee water supply intakes present during KT relicensing were confirmed to operate at this reservoir level.

Salazar, Maggie

From: maggie.salazar@hdrinc.com

Subject: FW: Bad Creek Relicensing-- CHEOPS Performance Measures Discussed at July 27 Joint

Resource Committees Meeting

Importance: High

From: Crutchfield Jr., John U < John. Crutchfield@duke-energy.com>

Sent: Monday, July 31, 2023 8:57 AM

To: Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Abney, Michael A <Michael.Abney@duke-energy.com>; Amy Breedlove <BreedloveA@dnr.sc.gov>; RankinD <RankinD@dnr.sc.gov>; Elizabeth Miller <MillerE@dnr.sc.gov>; Erika Hollis <ehollis@upstateforever.org>; Settevendemio, Erin <Erin.Settevendemio@hdrinc.com>; Gerry Yantis <gcyantis2@yahoo.com>; jhains@g.clemson.edu; quattrol <quattrol@dnr.sc.gov>; Olds, Melanie J <melanie olds@fws.gov>; amedeemd@dhec.sc.gov; kernm <kernm@dnr.sc.gov>; SelfR <SelfR@dnr.sc.gov>; Wahl, Nick <Nick.Wahl@duke-energy.com>; William T. Wood <woodw@dnr.sc.gov>; Alex Pellett <PellettC@dnr.sc.gov>; Dale <jphillips@greenvillewater.com>; McCarney-Castle, Kerry <Kerry.McCarney-Castle@hdrinc.com>; More, Priyanka <morep@dnr.sc.gov>; Raber, Maverick James <Maverick.Raber@duke-energy.com>; Scott Harder <harders@dnr.sc.gov>; Ziegler, Ty <ty.ziegler@hdrinc.com>; Dvorak, Joe <Joe.Dvorak@hdrinc.com>; Alison Jakupca <alison.jakupca@kleinschmidtgroup.com>; Kevin Nebiolo <Kevin.Nebiolo@KleinschmidtGroup.com>; Jordan Johnson <Jordan.Johnson@KleinschmidtGroup.com>; Bruce, Ed <Ed.Bruce@duke-energy.com>; Dunn, Lynne <Lynne.Dunn@duke-energy.com>; Huff, Jen <Jen.Huff@hdrinc.com>; Fletcher, Scott T <Scott.Fletcher@dukeenergy.com>; Andrew Gleason <andrewandwilla@hotmail.com>; Andy Douglas <adoug41@att.net>; Chris Starker <cstarker@upstateforever.org>; Kelly Kirven <Kelly.Kirven@KleinschmidtGroup.com>; Ken Forrester <forresterk@dnr.sc.gov>; cloningerp@dnr.sc.gov; Rowdy Harris <charris@scprt.com>; suewilliams130@gmail.com;

Willie Simmons <simmonsw@dnr.sc.gov>; phil.mitchell@gmail.com; Bill Ranson-Retired <bill.ranson@retiree.furman.edu>; jhains@g.clemson.edu; Terry Keene <jtk7140@me.com>; Tom Daniel <danielt@dnr.sc.gov>; Greg Mixon <mixong@dnr.sc.gov>

Cc: Kulpa, Sarah <sarah.kulpa@hdrinc.com>; Salazar, Maggie <maggie.salazar@hdrinc.com>; Lineberger, Jeff <Jeff.Lineberger@duke-energy.com>

Subject: RE: Bad Creek Relicensing-- CHEOPS Performance Measures Discussed at July 27 Joint Resource Committees

Meeting

Importance: High

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Dear Bad Creek Relicensing Resource Committee Members:

Thank you for your participation in discussing the proposed CHEOPS performance measures (PM) during our recent July 27 joint resource committees meeting. We will use the PMs for the CHEOPS modeling for the Bad Creek relicensing.

Note this email is being sent to the Aquatics, Water, Recreation & Visual Resources, and Operations Resources Committees members for review and comment.

The PMs are now posted on the SharePoint site here: <u>Bad Creek Relicensing Project – Resource Committees - CHEOPS Performance Measures - All Documents (sharepoint.com).</u>

When you access the site, you will find three files:

- The PMs we reviewed in hard copy format last Thursday.
 - These reflect minimal changes from the PMs used during Keowee-Toxaway (KT) relicensing.
 - The changes from KT relicensing are highlighted in yellow.
- The PMs as potentially revised during our discussion.
 - o The changes discussed by SCDNR during the meeting are highlighted in orange.
- A PM sheet from KT relicensing.
 - This is intended to help you understand how the MISC (minimum increment of significant change) informs the color coding.
 - Scenario results are compared only to the "Baseline CC Low" results.
 - Remember if the cell is not red or green, that means the MISC wasn't met and there's no significant difference between the results for the scenario and the baseline for that particular measure.
 - o The period of record (i.e., the timeframe) for the model is 1939-2011 which equates to 73 years.

As a reminder, we need input as to changes you would like to see by <u>August 15</u> so we can move forward with the modeling. You can provide your input via email to Alan Stuart and me.

Please let Alan or me know if you have questions and thank you for your continued participation in the Bad Creek relicensing.

Regards,

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
526 S. Church Street, EC12Q | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

Meeting Summary

Project: Bad Creek Pumped Storage Project Relicensing

Subject: CHEOPS Performance Measures Meeting Summary

Date: Thursday, August 17, 2023

Location: Microsoft Teams

Attendees (virtual meeting)

John Crutchfield, Duke Energy Alan Stuart, Duke Energy Ed Bruce, Duke Energy Jen Huff, HDR Kerry McCarney-Castle, HDR

Elizabeth Miller, SCDNR Amy Chastain, SCDNR Scott Harder, SCDNR Alex Pellett, SCDNR William Wood, SCDNR

Dan Rankin, SCDNR

Introduction

John Crutchfield welcomed participants and opened the meeting. The meeting's purpose is to discuss CHEOPS performance measures for Bad Creek Pumped Storage Project relicensing and was requested by the South Carolina Department of Natural Resources (SCDNR). J. Crutchfield noted the discussion would be recorded and a written summary would be compiled and distributed. He also provided a safety topic on schools back in session and be mindful of children at bus stops and traffic near schools.

CHEOPS Performance Measures

Elizabeth Miller began the discussion by noting most of their questions revolved around what the "Baseline" would be on some of the performance measures. J. Huff shared her screen and displayed the table of performance measures shared with the Water and Aquatic Joint Resource Committee (RC) during the July 27th meeting. The baseline (column G) will be modeled output from the baseline scenario. The baseline scenario is based on the Keowee-Toxaway (KT) relicensing scenario, so it includes KT license requirements. It also includes upgraded Bad Creek units, an updated Bad Creek reservoir storage volume curve, and new energy dispatch curves associated with operational changes. The CHEOPS model will determine over the period of record how many times the value in question is above or below each criterion. J. Huff shared a completed performance measure sheet from KT relicensing to demonstrate how "baseline" results are displayed.

Ed Bruce reiterated the baseline scenario used for KT relicensing has different model settings than the baseline scenario that will be used for Bad Creek relicensing. These differences include settings related to the upgraded Bad Creek units, an updated Bad Creek reservoir storage volume curve, and new energy dispatch curves associated with operational changes resulting from increased renewables on the Duke Energy system.

Scott Harder stated that SCDNR would like to have the opportunity to see the baseline scenario results before deciding on the minimum increment of significant change (MISC) values.

Dan Rankin indicated the current measures of 10 or 15 consecutive days for black bass spawning are likely too short; the black bass spawning period spans more than 15 days. S. Harder, D. Rankin, and William Wood clarified SCDNR's two main concerns: (1) some performance measure criteria need adjustments and (2) they would like to see the baseline result before setting MISCs.

Alan Stuart asked what SCDNR would like to propose. D. Rankin stated the spawning season criteria would need to be lengthened to realistically capture successful spawning for black bass at Jocassee.

- D. Rankin asked if the baseline would pre-date Bad Creek operations J. Huff responded the model uses historic hydrology and shifts it into the future when it runs operating scenarios. She then described the baseline scenario which incorporates the requirements of the KT license and the upgraded Bad Creek units. The Bad Creek II (BCII) scenario includes the baseline scenario conditions but doubles the number of units at Bad Creek. E. Bruce noted the licensing scenario used for KT relicensing uses a different dispatch curve than what will be used for the Bad Creek relicensing baseline scenario.
- J. Huff asked SCDNR to confirm that for each of the Jocassee black bass spawning measures at different lake level fluctuation bands (-0.5 ft to 2 ft and 3 ft), SCDNR would like to add two measures one for 30 consecutive days and one for 45 consecutive days. She asked the group if there was consensus.
- A. Stuart asked if there would be much difference in the results and the degree of associated effort. J. Huff and E. Bruce responded the computation time would not be greatly increased. D. Rankin asked if there would be benefit in removing the 10, 15, and 20-day criteria and just keeping the 30-and 45-day criteria. Duke Energy and HDR indicated the effort would be the same, so there's no need to remove the 10-, 15-, and 20-day criteria. E. Bruce and A. Stuart asked how SCDNR determined the performance measure consecutive days during the KT relicensing. D. Rankin said he believes it was driven, at least in part, by the U.S. Army Corps of Engineers (USACE) downstream reservoir operations during spawning season.
- E. Bruce indicated Duke Energy would add the new consecutive days and fluctuation criteria; J. Huff agreed and noted Duke Energy and HDR are deferring to stakeholders and those concerned with aquatic resources/fisheries. She also reminded meeting participants the goal is to look at and assess output for Bad Creek II, not baseline output under existing conditions. A. Stuart indicated Duke Energy will go ahead and run for 2 ft and 3 ft fluctuations for 10,15,20,30,45 consecutive days.
- J. Huff asked if SCDNR would like to add the same black bass spawning measures for Lake Keowee as well; D. Rankin responded he didn't think it was necessary based on history in Lake Keowee and spawning success. E. Miller agreed that adding Keowee measures wasn't needed.
- D. Rankin asked if Bad Creek Reservoir was emptied, how much would that raise Lake Jocassee. A. Stuart indicated he thought it was around 4 ft. Kerry McCarney-Castle inserted into the meeting chat per the feasibility report if the total active storage emptied into Lake Jocassee, the lake level would raise 4 ft [Note this is not considering operations at Jocassee].
- J. Huff asked if there were other performance measures the group should discuss.
- E. Miller indicated there were changes they recommended during the July 27th meeting. J. Huff agreed they previously discussed changing the end date for the black bass spawning measure from May 15 to May 31 and also to change the MISC from 10% to 5% for all the spawning period measures. A. Stuart agreed to the conditions and asked if there is value at looking at just the last two

weeks in May on their own. E. Bruce noted that would only make sense if it's connected to the previous period. J. Huff agreed. A. Stuart asked if part of the rationale for choosing May 15 as the end date was based on USACE operations at their downstream project and would there be a concern that since there is already an agreement in place, would we be altering conditions of that agreement. E. Bruce noted production of the performance measures sheet is done in post-processing – nothing about the model scenarios would change.

J. Huff clarified that the performance measures don't affect how the model runs – it's simply a tool for evaluating the model output. In other words, changing the performance measures does not change the model results (i.e., performance measures are not like knobs or levers on a model). The performance measures are there to help assess the output and whether it is favorable. Similar to that, the MISC does not have any bearing on model output, it is simply a visual tool (indicated by different colors) to draw attention to differences between model scenarios (i.e., the MISC does not provide information into the model).

E. Miller asked the group if the end date for the performance measures should be left at May 15 (which is the criteria in the settlement agreement) or should we push it out to May 31; D. Rankin noted that since it's continuous with sunfish spawning it may not matter either way. A. Stuart asked if that is the same for other USACE reservoir periods. D. Rankin was unsure, but noted that in Lake Keowee, spawning is very early (early May) due to warmer waters/thermal discharge from Oconee. Spawning times vary throughout the lake based on temperatures/proximity to the thermal discharge. He also noted that wouldn't be the case in Lake Jocassee (no thermal discharge). D. Rankin said he would defer to E. Miller regarding extension of the spawning criteria end date. J. Huff / E. Bruce noted it wouldn't matter as far as the performance measure production is concerned, so the group agreed to extend the period from May 15 to May 31. SCNDR confirmed they still would like to change the MISC for all the spawning measures to 5% as was proposed at the July meeting.

SCDNR would like to see the baseline scenario output before finalizing the MISCs. The group discussed the granularity of the effort; E. Bruce and J. Huff clarified the difference between baseline and Bad Creek II. A. Stuart stated that a change, for example, from baseline of 5% would be one out of every 20 years. D. Rankin and W. Wood agreed that is minor.

W. Wood reiterated they'd like to see the baseline output before they agree to the MISCs. J. Huff noted that from a scheduling standpoint, this is a challenge. HDR's original plan was to present the modeling results in early October prior to providing the draft study report for stakeholder review. If, however, we need to have a meeting to review the baseline scenario results and revise the MISCs, we likely wouldn't have time to run post-processing of the performance measures sheet and stay on the schedule in the study plan. As an alternative, she suggested run the model and produce the performance measures sheets as planned but can then consider revising MISCs at that point. She reminded the group the only function of the MISC is to draw attention to specific differences between model output. Regardless of the MISC, each performance measure cell would still be populated with the model results for that measure.

- D. Rankin mentioned the SCDNR agreed to the MISCs during KT relicensing (i.e., determined sufficient at that time based on healthy fish population status) so whatever the baseline currently is, that is what the SCDNR originally agreed to; and indicated the concern here is how Bad Creek II affect the fish population.
- J. Huff asked if other stakeholders (other than the SCDNR) would be included in the MISC revisions (since no other comments have been received and SCDNR is the only one that has approached Duke Energy regarding performance measures). Her concern is the amount of time that may be

involved in scheduling a discussion with the larger group. E. Bruce asked what the current schedule is. J. Huff responded we are hoping to have the model output mid-September, review the results with the stakeholders during the first two weeks of October, and then provide the draft report shortly thereafter. Therefore, if additional consultation would be needed (i.e., running baseline, setting MISC, running again), that would push everything out. She suggested again to run the model with the performance measures with the MISCs as-is and potentially modify the MISCs afterwards to eliminate that extra consultation piece. That way, Duke Energy could include all interested stakeholders (not just the SCDNR) in the meeting to go over results and provide the opportunity to view output with MISCs.

A. Stuart noted that would be ok in terms of process, but his concern is the schedule and HDR modeler's medical leave and indicated we could just go with the MISCs that we have and revise after results are provided. If SCDNR doesn't want to see Bad Creek II output, that can be held back.

E. Bruce asked for clarification if SCDNR is ok with the MISCs for the non-fish related measures (such as drought conditions). E. Miller indicated things like that would be out of anybody's control and noted that other MISCs are fine. E. Miller mentioned there could be some potential for other (recreation) people to want to revise the MISCS, also noting everybody is in agreement that the schedule is important. If Duke Energy/HDR can review model output with SCDNR late September, the meeting to go over everything with the RC could be held in early October before HDR modeler's medical leave. If MISCs are revised at that point, Duke Energy would need to re-run the performance measures sheets; Duke Energy and HDR are committed to thorough documentation of the process along the way, especially to capture changes between the draft CHEOPS (Task 4) report and the final (following RC meeting).

A. Stuart reiterated that the consensus is to produce the performance measures sheets using the 5% MISC for fish spawning measures and May 31 extension of the spawning period measures.

E. Bruce asked if B. Krolak (HDR) could be a back-up modeler. J. Huff indicated he or another person in HDR could be possible stand-ins for modeling if schedule became a problem.

Action Items

- The meeting recording and meeting summary will be posted to the Resource Committee SharePoint site and the link will be distributed.
- The consensus from today's meeting is to proceed with running the CHEOPS model (baseline and Bad Creek II) and producing the performance measures sheet for presentation in early October meeting with stakeholders.
- Performance measure changes include the following: include Jocassee black bass spawning measures to evaluate consecutive days criteria for spawning by adding 30 and 45 days.
- Model to run with modifications suggested during the July 27th joint RC meeting to extend spawning performance measure criteria from May 15 to May 31 and decrease the MISC from 10% to 5%.

McCarney-Castle, Kerry

From: Erika Hollis «ehollis@upstateforever.org>
Sent: Monday, August 21, 2023 2:26 PM
To: Stuart, Alan Witten; Crutchfield Jr., John U

Subject: [EXTERNAL] Upstate Forever Comment - Water Resources Report

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

John & Alan,

This email is to notify you that Upstate Forever provided comments on the Water Resources Report for the Bad Creek project via Sharepoint.

Thank you, Erika

Erika J. Hollis Clean Water Director Upstate Forever Greenville, SC 29601 (864) 250-0500 ext. 117 ehollis@upstateforever.org **Subject:** FW: Bad Creek Relicensing-CHEOPS Performance Measures Meeting with SCDNR

Importance: High

From: Crutchfield Jr., John U < John. Crutchfield@duke-energy.com>

Sent: Wednesday, August 23, 2023 10:23 AM

To: Elizabeth Miller < Miller E@dnr.sc.gov>; Scott Harder < harders@dnr.sc.gov>; RankinD < RankinD@dnr.sc.gov>; William T. Wood < woodw@dnr.sc.gov>; Amy Breedlove < BreedloveA@dnr.sc.gov>; Alex Pellett <
Cc: Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Kulpa, Sarah <Sarah.Kulpa@hdrinc.com>; Huff, Jen <Jen.Huff@hdrinc.com>; Bruce, Ed <Ed.Bruce@duke-energy.com>; McCarney-Castle, Kerry <Kerry.McCarney-Castle@hdrinc.com>; Salazar, Maggie <maggie.salazar@hdrinc.com>; Dunn, Lynne <Lynne.Dunn@duke-energy.com>

Subject: Bad Creek Relicensing-CHEOPS Performance Measures Meeting with SCDNR

Importance: High

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Elizabeth, Scott, Dan, William, Amy, and Alex:

The meeting summary, Teams recording (mp4), and spreadsheet of the agreed upon Performance Measures from our August 17, 2023 meeting have been posted and available for your viewing at the Water Resources Committee SharePoint site Water Resources Task 4 CHEOPS Performance Measures Meeting 20230817

Please provide any comments on the meeting summary by Friday, September 15.

Let Alan and me know if you have any questions.

Thank you,

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
526 S. Church Street, EC12Q | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

From: Crutchfield Jr., John U

To: Stuart, Alan Witten; Kulpa, Sarah; McCarney-Castle, Kerry; Salazar, Maggie

Subject: FW: [EXTERNAL] RE: Bad Creek Relicensing Water Resources Committee - Summary of Existing Water Quality Data and Standards Draft Report (Ready for Resource Committee Review)

Date: Tuesday, August 29, 2023 11:55:43 AM

Attachments: jmage003.png jmage004.png

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is eafe

From: gcyantis2@yahoo.com <gcyantis2@yahoo.com>

Sent: Tuesday, August 29, 2023 11:45 AM

To: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Cc: 'Susan Williams' <suewilliams130@att.net>

Subject: [EXTERNAL] RE: Bad Creek Relicensing Water Resources Committee - Summary of Existing Water Quality Data and Standards Draft Report (Ready

for Resource Committee Review)

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password

Iohn

No specific comments from AQD on the Summary of Existing Water Quality Data and Standards Draft Report.

Thank you,

Gerry

From: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com >

Sent: Friday, August 18, 2023 8:01 AM

To: Alex Pellett PellettC@dnr.sc.gov; Amy Breedlove Breedlove Breedlove Breedlove Breedlove Brika Hollis
PellettC@dnr.sc.gov; Erika Hollis
PellettC@dnr.sc.gov; Melanie Olds PellettC@dnr.sc.gov; More Priyanka PellettC@dnr.sc.gov; Ross Self SelftR@dnr.sc.gov; Scott Harder
PellettC@dnr.sc.gov; Stott Hard

Cc: Sarah Kulpa <<u>Sarah.Kulpa@hdrinc.com</u>>; Maggie Salazar <<u>maggie.salazar@hdrinc.com</u>>; Huff, Jen <<u>Jen.Huff@hdrinc.com</u>>

Subject: RE: Bad Creek Relicensing Water Resources Committee - Summary of Existing Water Quality Data and Standards Draft Report (Ready for Resource Committee Review)

Importance: High

Dear Bad Creek Relicensing Water Resources Committee:

Just a reminder that comments on the draft Water Quality Report are due by Tuesday, August 29.

Thanks, John

From: Crutchfield Jr., John U

Sent: Friday, June 30, 2023 6:14 AM

To: Alex Pellett < Pellett (PellettC@dnr.sc.gov); Amy Breedlove < BreedloveA@dnr.sc.gov); Dale Wilde < dwilde@keoweefolks.org); Dan Rankin < RankinD@dnr.sc.gov); David Bereskin < bereskind@greenvillewater.com); Elizabeth Miller < dwillerE@dnr.sc.gov); Erika Hollis < ehollis@upstateforever.org); Gerry Yantis < gcyantis2@yahoo.com); Jeffrey Phillips < jphillips@greenvillewater.com); Kerry McCarney-Castle < Kerry.McCarney-Castle@hdrinc.com); Lynn Quattro < quattrol@dnr.sc.gov); Melanie Olds < melanie_olds@fws.gov); More Priyanka < morep@dnr.sc.gov); Morgan Amedee < amedeemd@dhec.sc.gov); Raber, Maverick James < dayaerick.Raber@duke-energy.com); Ross Self < SelfR@dnr.sc.gov); Scott Harder < harders@dnr.sc.gov); Stuart, Alan Witten < Alan.Stuart@duke-energy.com); William Wood < woodw@dnr.sc.gov); Ziegler, Ty < ty.ziegler@hdrinc.com); Dvorak, Joe < Joe.Dvorak@hdrinc.com)

Cc: Sarah Kulpa <<u>Sarah.Kulpa@hdrinc.com</u>>; Maggie Salazar <<u>maggie.salazar@hdrinc.com</u>>; Huff, Jen <<u>Jen.Huff@hdrinc.com</u>>

Subject: Bad Creek Relicensing Water Resources Committee - Summary of Existing Water Quality Data and Standards Draft Report (Ready for Resource Committee Review)

Importance: High

Dear Bad Creek Relicensing Water Resources Committee:

Duke Energy is pleased to distribute the draft report <u>Summary of Existing Water Quality Data and Standards</u> for Resource Committee review. This draft report satisfies Task 1 of the Bad Creek Relicensing Water Resources Study. The deliverable and associated appendices are available on the Bad Creek Relicensing SharePoint site at the following link: <u>Water Resources Study Reports for RC Review</u>. Duke Energy is requesting a 60-day review period, therefore, please submit all comments by **August 29th**. A confirmation email is kindly requested upon review completion (<u>John.Crutchfield@dukeenergy.com</u>).

Important - Please Read!

- As discussed in the kick-off meeting (July 2022), Duke Energy would like to make relicensing deliverables available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment; therefore, we request all comments be made in the SharePoint Word document. This will eliminate version control issues and result in a consolidated document for comment response.
- We **strongly recommend** opening the document in Word; otherwise the formatting will look distorted. The simplest way to do this is to click on the three dots to the right of the document (circled in red on the screenshot below), choose "Open", then choose "Open in app". This will open the document in Word and you'll have the functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free to reach out to Maggie Salazar for SharePoint access assistance or questions.
- If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page (green bar) of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. (Note the tutorial provides an alternative way to open the document in Word either technique works!)
- Finally, please note the report appendices are provided in the folder as a PDF. There is no way to comment on a PDF from SharePoint; therefore, we suggest either making the comment in the Word document with reference to the figure/page number or providing figure comments in a separate email

Please let Alan Stuart or me know if you have any questions.

Thank you,

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
526 S. Church Street, EC12Q | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

Subject: FW: [EXTERNAL] Re: Bad Creek Relicensing-- CHEOPS Performance Measures Discussed

at July 27 Joint Resource Committees Meeting

Importance: High

From: Dwilde@Keoweefolks.org <dwilde@keoweefolks.org>

Sent: Sunday, September 10, 2023 4:07:02 PM

To: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com >

Cc: Stuart, Alan Witten < Alan. Stuart@duke-energy.com>

Subject: [EXTERNAL] Re: Bad Creek Relicensing-- CHEOPS Performance Measures Discussed at July 27

Joint Resource Committees Meeting

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password. John,

My apologies for missing this deadline. Is it now too late to comment?

This is what Dr. Hains just submitted to me:

After review, the hydrodynamic modeling regarding the submerged weir and the interactions of proposed changes in operation resulting from pumped-storage expansion - seems thorough and state-of-art. I am satisfied with both my ability to understand and interpret the model predictions as well as the validity of the predictions. I see no reason to object to expansion of the submerged weir. Overall I think the hydrodynamic model effort is satisfactory, perhaps even exemplary. That said, it will be interesting to observe future trends of the heat budget for Lake Jocassee and changes, if any, in response to the operational changes.

After review of the CHEOPS model presentation, I wish I could be as confident with that effort as I am with the hydrodynamic modeling. However, there are so many factors under consideration for CHEOPS that it is difficult to arrive at an independent assessment. I am not sure my background is adequate for such an assessment and at this time, any further comment I have might merely serve to confuse things. Therefore I opt not to comment one way or the other.

John Hains

Dale Wilde President, FOLKS

C: 207-604-6539 dwilde@keoweefolks.org

www.keoweefolks.org

"Friends of Lake Keowee Society is dedicated to the preservation and enhancement of Lake Keowee and its watershed through advocacy, conservation, and education."

The content of this email is confidential and intended for the recipient specified in message only. It is strictly forbidden to share any part of this message with any third party, without a written consent of

the sender. If you received this message by mistake, please reply to this message and follow with its deletion, so that we can ensure such a mistake does not occur in the future.

On Aug 9, 2023, at 6:31 AM, Crutchfield Jr., John U < <u>John.Crutchfield@duke-energy.com</u>> wrote:

Dear Bad Creek Relicensing Resource Committee Members:

Good morning! Just a reminder to provide any comments on the proposed CHEOPS performance measures by Tuesday, August 15.

Thanks, John

Subject: FW: Bad Creek Relicensing - Task 2 CFD Modeling Report for Resource Committee

Distribution and Review

Importance: High

From: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Sent: Monday, September 11, 2023 4:04 PM

To: Abney, Michael A <Michael.Abney@duke-energy.com>; Amy Breedlove <BreedloveA@dnr.sc.gov>; RankinD

<RankinD@dnr.sc.gov>; Elizabeth Miller <MillerE@dnr.sc.gov>; Erika Hollis <ehollis@upstateforever.org>;

Settevendemio, Erin <Erin.Settevendemio@hdrinc.com>; Gerry Yantis <gcyantis2@yahoo.com>; jhains@g.clemson.edu; quattrol <quattrol@dnr.sc.gov>; Olds, Melanie J <melanie_olds@fws.gov>; Amedee, Morgan D.

<amedeemd@dhec.sc.gov>; kernm <kernm@dnr.sc.gov>; SelfR <SelfR@dnr.sc.gov>; Stuart, Alan Witten

<Alan.Stuart@duke-energy.com>; Wahl, Nick <Nick.Wahl@duke-energy.com>; William T. Wood <woodw@dnr.sc.gov>;

Alex Pellett < Pellett C@dnr.sc.gov>; Dale Wilde < dwilde@keoweefolks.org>; bereskind

<bereskind@greenvillewater.com>; Jeff Phillips <jphillips@greenvillewater.com>; McCarney-Castle, Kerry

<Kerry.McCarney-Castle@hdrinc.com>; More, Priyanka <morep@dnr.sc.gov>; Raber, Maverick James

<Maverick.Raber@duke-energy.com>; Scott Harder <harders@dnr.sc.gov>; William T. Wood <woodw@dnr.sc.gov>;

Ziegler, Ty <ty.ziegler@hdrinc.com>; Dvorak, Joe <Joe.Dvorak@hdrinc.com>; Alison Jakupca

<alison.jakupca@kleinschmidtgroup.com>; Kevin Nebiolo <Kevin.Nebiolo@KleinschmidtGroup.com>; Bruce, Ed

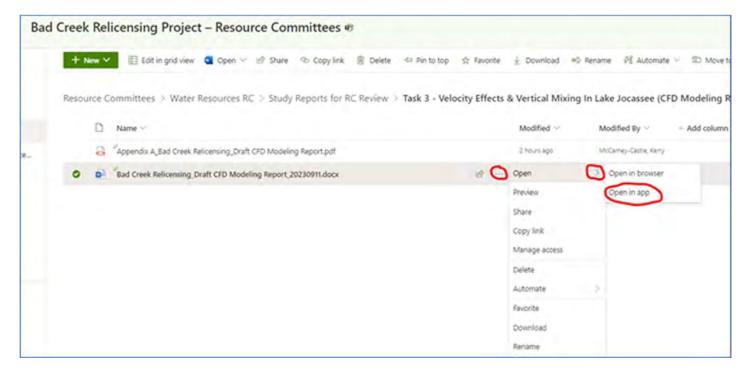
<Ed.Bruce@duke-energy.com>; Dunn, Lynne <Lynne.Dunn@duke-energy.com>; Huff, Jen <Jen.Huff@hdrinc.com>

Cc: Kulpa, Sarah <sarah.kulpa@hdrinc.com>; Salazar, Maggie <maggie.salazar@hdrinc.com>

Subject: Bad Creek Relicensing - Task 2 CFD Modeling Report for Resource Committee Distribution and Review

Importance: High

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.


Dear Bad Creek Relicensing Water and Aquatic Resources Committees:

Duke Energy is pleased to distribute the draft report <u>Velocity Effects and Vertical Mixing in Lake Jocassee Due to a Second Powerhouse</u> (i.e., CFD Modeling Report) for Resource Committee review. This draft report satisfies Task 3 of the Bad Creek Relicensing Water Resources Study. The deliverable and associated appendix are available on the Bad Creek Relicensing SharePoint site at the following link: <u>Task 3 - Velocity Effects & Vertical Mixing In Lake Jocassee (CFD Modeling Report)</u>. Duke Energy is requesting a 30-day review period, therefore, <u>please submit all comments by October 11th</u>. A confirmation email is kindly requested upon review completion (<u>John.Crutchfield@duke-energy.com</u>).

<u>Important – Please Read!</u>

- As discussed in the kick-off meeting (July 2022), Duke Energy would like to make relicensing deliverables
 available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment; therefore,
 we request all comments be made in the SharePoint Word document. This will eliminate version control issues
 and result in a consolidated document for comment response.
- We <u>strongly recommend</u> opening the document in Word; otherwise the formatting will look distorted. The
 simplest way to do this is to click on the three dots to the right of the document (shown below), choose "Open",
 then choose "Open in app". This will open the document in Word and you'll have the functionality you are
 accustomed to. Your changes will be saved automatically as you review. Please feel free to reach out to <u>Maggie</u>
 Salazar for SharePoint access assistance or questions.

- If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page (green bar) of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. (Note the tutorial provides an alternative way to open the document in Word either technique works!)
- Finally, please note the report appendix (Appendix A) is provided in the folder as a PDF. There is no way to comment on a PDF from SharePoint; therefore, we suggest either making the comment in the Word document with reference to the figure/page number or providing figure comments in a separate email.

Please let me know if you have any questions.

Regards,

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
526 S. Church Street, EC12Q | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

Subject: FW: Bad Creek Relicensing Water Resources Committee - Summary of Existing Water

Quality Data and Standards FINAL Report

Importance: High

From: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Sent: Tuesday, September 12, 2023 6:48 AM

To: Alex Pellett <PellettC@dnr.sc.gov>; Amy Breedlove <BreedloveA@dnr.sc.gov>; Dale Wilde <dwilde@keoweefolks.org>; RankinD <RankinD@dnr.sc.gov>; bereskind <bre>

Ablis <ehollis@upstateforever.org>; Gerry Yantis <gcyantis2@yahoo.com>; Jeff

Phillips <jphillips@greenvillewater.com>; McCarney-Castle, Kerry <Kerry.McCarney-Castle@hdrinc.com>; quattrol <quattrol@dnr.sc.gov>; Olds, Melanie J <melanie_olds@fws.gov>; More, Priyanka <morep@dnr.sc.gov>; Amedee, Morgan D. <amedeemd@dhec.sc.gov>; Raber, Maverick James <Maverick.Raber@duke-energy.com>; SelfR <SelfR@dnr.sc.gov>; Scott Harder <harders@dnr.sc.gov>; Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; William T. Wood <woodw@dnr.sc.gov>; Ziegler, Ty <ty.ziegler@hdrinc.com>; Dvorak, Joe <Joe.Dvorak@hdrinc.com>
Cc: Kulpa, Sarah <Sarah.Kulpa@hdrinc.com>; Salazar, Maggie <maggie.salazar@hdrinc.com>; Huff, Jen <Jen.Huff@hdrinc.com>

Subject: Bad Creek Relicensing Water Resources Committee - Summary of Existing Water Quality Data and Standards

FINAL Report Importance: High

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Dear Bad Creek Relicensing Water Resources Committee:

The <u>Summary of Existing Water Quality and Data Standards Final Report</u> is available on SharePoint (.pdf file, SharePoint link provided below). For those who submitted comments, the comments and edits have been addressed in the final report and Duke Energy's responses are captured in a brief comment response table (SharePoint Link also provided below).

Bad Creek Relicensing Summary of Existing Water Quality Data and Standards Final Report 20230912.pdf

Stakeholder Comment Response Table.pdf

Duke Energy plans to file the final report with the next quarterly progress report due to FERC by end of September.

Please let Alan or me know if you have any questions.

Thank you,

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
526 S. Church Street, EC12Q | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

–)	₹.
	-

Agency	Date Submitted	Report Section	Comment	Duke Energy Response
USFWS	7/26/2023		No comments.	No response needed.
Upstate Forever	8/21/2023	5.3.1	This is statement is confusing. How can the samples meet state standards without a numeric threshold? The comment is regarding the following sentence: There is no numeric threshold, however, for trout waters, state standards dictate water temperatures should not vary from levels existing under natural conditions (unless determined some other temperature shall protect the classified uses). Were all samples surface water samples?	South Carolina state water quality standards are used as instream water quality goals to maintain and improve water quality and also serve as the foundation of the Bureau of Water's program. A site-specific numeric standard may be established by the Department; however, some criteria are narrative criteria that describe the desired water quality goal. Narrative criteria provide additional protections when numeric criteria are difficult to specify. The state standard for temperature for trout waters in South Carolina is: Not to vary from levels existing under natural conditions, unless determined some other temperature shall protect the classified uses. Based on Duke Energy's assessment of historic water quality data, the narrative criteria is considered to be met. Minor edits to the report have been incorporated to clarify this point. Yes, all dissolved oxygen (DO) field measurements included in this evaluation were made at the surface (as defined by 0.3-meter-depth per SCDHEC assessment methodology). The word "surface" was added to the sentence to provide added clarification.
		5.3.2, Table 5-5	Provide explanation of below the table.	Per page 70 of 234 of the appendices, DO saturation was not monitored at Station 565.4. The () was meant to indicate "No Data". Clarification has been added as a table note.
		5.3.5	Fix spacing so the table fits on one page	Formatting adjustment made.
		5.3.8	Prefer if entire table was on same page if possible.	Formatting adjustment made.
		5.3.8	Which standard? I'm assuming freshwaters (25 NTU)?	Because Lake Jocassee uses a state standard of 10 NTU for trout waters as described in Section 5.3.8, the sentence refers to the state standard of 10 NTU. Clarification to the sentence was made.

Agency	Date Submitted	Report Section	Comment	Duke Energy Response
Friends of Lake Keowee Society (FOLKS)	7/9/2023	N/A	The report was very thorough and detailed the findings of pre- and post construction to the Bad Creek pump station. The data illustrated that there was little if any pre- to post differences in the studied parameters. FOLKS's primary concern still rests in the area of Howard Creek, which is a high value recreational fishing stream and vital to trout habitat. We are confident that Duke Energy will continue to study future impacts should Bad Creek II pumpstation move forward and will mitigate as necessary to preserve the quality of that creek.	No response needed.
		5.1	Change "ft" to "foot"	Edit accepted.
		5.2	Change "provide" to "provided"	Edit accepted.
		5.3.2, Table 5-5	Can you address why this data is missing?	Per page 70 of 234 of the appendices, DO saturation was not monitored at Station 565.4. The () was meant to indicate "No Data". Clarification has been added as a table note.
		5.3.7	Consider eliminating the word "fairly".	Edit accepted.
		5.3.8	No comma needed between month and yearsame for next bullet	Edit accepted.
		5.3.8	Add comma after year	Edit accepted.
		10	Delete comma.	Edit accepted.
Advocates for Quality Development	8/29/203	NA	No comments.	No response needed.

From: <u>Crutchfield Jr., John U</u>

To: <u>Elizabeth Miller; Scott Harder; RankinD; William T. Wood; Amy Breedlove; Alex Pellett</u>

Cc: Stuart, Alan Witten; Kulpa, Sarah; Huff, Jen; Bruce, Ed; McCarney-Castle, Kerry; Salazar, Maggie; Dunn, Lynne

Subject: RE: [EXTERNAL] RE: Bad Creek Relicensing-CHEOPS Performance Measures Meeting with SCDNR

Date: Wednesday, September 13, 2023 10:37:47 AM

Attachments: <u>image002.png</u>

image003.png

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Elizabeth: The SCDNR revisions have been incorporated into the CHEOPS Performance Measures spreadsheet.

You can review the revisions at the following link: bad_ck_cheops_performance_measures_2023
09 13 Final .xlsx

Let Alan or me know if you have any questions.

Thanks, John

From: Crutchfield Jr., John U

Sent: Wednesday, September 13, 2023 9:54 AM

To: Elizabeth Miller < Miller E@dnr.sc.gov >; Scott V. Harder < Harder S@dnr.sc.gov >; Dan Rankin

<RankinD@dnr.sc.gov>; William T. Wood <WoodW@dnr.sc.gov>; Amy Chastain

<BreedloveA@dnr.sc.gov>; Alex Pellett <PellettC@dnr.sc.gov>

Cc: Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Sarah Kulpa <Sarah.Kulpa@hdrinc.com>; Huff, Jen <Jen.Huff@hdrinc.com>; Bruce, Ed <Ed.Bruce@duke-energy.com>; Kerry McCarney-Castle <Kerry.McCarney-Castle@hdrinc.com>; Maggie Salazar <maggie.salazar@hdrinc.com>; Dunn, Lynne <Lynne.Dunn@duke-energy.com>

Subject: RE: [EXTERNAL] RE: Bad Creek Relicensing-CHEOPS Performance Measures Meeting with SCDNR

Thank you, Elizabeth.

From: Elizabeth Miller < MillerE@dnr.sc.gov Sent: Wednesday, September 13, 2023 9:51 AM

To: Crutchfield Jr., John U < <u>John.Crutchfield@duke-energy.com</u>>; Scott V. Harder

<<u>HarderS@dnr.sc.gov</u>>; Dan Rankin <<u>RankinD@dnr.sc.gov</u>>; William T. Wood

<<u>WoodW@dnr.sc.gov</u>>; Amy Chastain <<u>BreedloveA@dnr.sc.gov</u>>; Alex Pellett <<u>PellettC@dnr.sc.gov</u>>

Cc: Stuart, Alan Witten <<u>Alan.Stuart@duke-energy.com</u>>; Sarah Kulpa <<u>Sarah.Kulpa@hdrinc.com</u>>; Huff, Jen <<u>Jen.Huff@hdrinc.com</u>>; Bruce, Ed <<u>Ed.Bruce@duke-energy.com</u>>; Kerry McCarney-Castle <<u>Kerry.McCarney-Castle@hdrinc.com</u>>; Maggie Salazar <<u>maggie.salazar@hdrinc.com</u>>; Dunn, Lynne <<u>Lynne.Dunn@duke-energy.com</u>>

Subject: [EXTERNAL] RE: Bad Creek Relicensing-CHEOPS Performance Measures Meeting with SCDNR

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

Hi John,

The SCDNR has reviewed the meeting summary and Performance Measures spreadsheet. The SCDNR notes that measures 11 and 12 should be corrected to reflect the 2.5-ft fluctuation band and be described as within -0.5 to 2.0 ft. Similarly, measures 16 and 17 should be corrected to reflect the 3.0-ft fluctuation band and described as within -0.5 to 3.0 ft. Please let me know if you have any questions.

Thank you,

Elizabeth

Elizabeth C. Miller SCDNR

Office: 843-953-3881 Cell: 843-729-4636

From: Crutchfield Jr., John U < <u>John.Crutchfield@duke-energy.com</u>>

Sent: Wednesday, August 23, 2023 10:23 AM

To: Elizabeth Miller < MillerE@dnr.sc.gov>; Scott V. Harder < Harder Mailto:Harder Harder <

<<u>RankinD@dnr.sc.gov</u>>; William T. Wood <<u>WoodW@dnr.sc.gov</u>>; Amy Chastain

<<u>BreedloveA@dnr.sc.gov</u>>; Alex Pellett <<u>PellettC@dnr.sc.gov</u>>

Cc: Stuart, Alan Witten <<u>Alan.Stuart@duke-energy.com</u>>; Sarah Kulpa <<u>Sarah.Kulpa@hdrinc.com</u>>; Huff, Jen <<u>Jen.Huff@hdrinc.com</u>>; Bruce, Ed <<u>Ed.Bruce@duke-energy.com</u>>; Kerry McCarney-Castle <<u>Kerry.McCarney-Castle@hdrinc.com</u>>; Maggie Salazar <<u>maggie.salazar@hdrinc.com</u>>; Dunn, Lynne <<u>Lynne.Dunn@duke-energy.com</u>>

Subject: Bad Creek Relicensing-CHEOPS Performance Measures Meeting with SCDNR

Importance: High

Elizabeth, Scott, Dan, William, Amy, and Alex:

Please provide any comments on the meeting summary by Friday, September 15.

Let Alan and me know if you have any questions.

Thank you,

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
526 S. Church Street, EC12Q | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

EXTERNAL EMAIL: Do not click any links or open any attachments unless you trust the sender and know the content is safe.

Bad Creek CHEOPS Performance Measures 9/13/2023

Measure Number	Performance Measures	Criterion (Note 1)	Start Date	End Date	MISC (Note 2)	Baseline	BCII
	Lake Jocassee Elevation - Storage Availability						
1	Maximize adherence to reliably meet all Project-related water demands Elevation - Recreation	Number of years reservoir level at or above 1,108 ft AMSL on May 1	1-May	1-May	5		
2	Liovation Modelatin	Number of years where cove access (reservoir level below 1,090 ft AMSL) is restricted for more than 25 days (Note 3)	1-Jan	31-Dec	2		
3	Minimize restricted recreation	Greatest number of days with restricted cove access (reservoir level below 1,090 ft AMSL) during higher use months in any calendar year (Note 3)	1-Mar	31-Oct	5		
4		Greatest number of days with restricted cove access (reservoir level below 1,090 ft AMSL) in any calendar year (Note 3)	1-Jan	31-Dec	5		
5	Minimize restricted boat launching	Number of years where reservoir level is below boat ramp critical level (1,080 ft AMSL) during higher use months for more than 25 days (Note 4) Greatest number of days where reservoir level is below boat ramp critical level (1,080 ft AMSL) during	1-Mar	31-Oct	2		
7	Marini Ma	higher use months in any calendar year (Note 4)	1-Mar	31-Oct	5 10		
	Minimize effects on recreational boating Elevation - Natural Resources	Number of days where reservoir level changes more than 1.0 ft in one hour	1-Jan	31-Dec	10		
8		Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 10 consecutive days at least once (Note 5)	1-Apr	31-May	5%		
9	Maximize spawning success for	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 15 consecutive days at least once (Note 5)	1-Apr	31-May	5%		
10	black bass and blueback herring (2.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 20 consecutive days at least once (Note 5)	1-Apr	31-May	5%		
11	(2.5 it indeaddon build)	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 30 consecutive days at least once (Note 5)	1-Apr	31-May	5%		
12		Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 45 consecutive days at least once (Note 5)	1-Apr	31-May	5%		
13		Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 10 consecutive days at least once (Note 5)	1-Apr	31-May	5%		
14	Maximize spawning success for	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 15 consecutive days at least once (Note 5)	1-Apr	31-May	5%		
15	black bass and blueback herring (3.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 20 consecutive days at least once (Note 5)	1-Apr	31-May	5%		
16	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 30 consecutive days at least once (Note 5)	1-Apr	31-May	5%		
17		Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 45 consecutive days at least once (Note 5)	1-Apr	31-May	5%		
18	Maximize spawning success for	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 10 consecutive days at least once (Note 5)	15-May	15-Jul	5%		
19	sunfish and threadfin shad (2.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 15 consecutive days at least once (Note 5)	15-May	15-Jul	5%		
20		Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 20 consecutive days at least once (Note 5)	15-May	15-Jul	5%		
21	Maximize spawning success for	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 10 consecutive days at least once (Note 5) Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 15 consecutive days at least	15-May	15-Jul	5%		
22	sunfish and threadfin shad (3.5-ft fluctuation band)	recent of years (hourly) reservoir level remains within (-0.5 to 3.0)-it band for 25 consecutive days at least once (Note 5) Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 20 consecutive days at least	15-May	15-Jul	5%		
23	Minimize entrainment due to Bad Creek	once (Note 5)	15-May 1-Jan	15-Jul 31-Dec	5% 5%		
25	operations	Percent of days average reservoir level at or below 1,096 ft AMSL (Note 6) Percent of days average reservoir level below 1,096 ft AMSL (Note 6)	1-Jan 1-Dec	31-Dec 31-Mar	5%		
26 27	Maximize littoral habitat during growing season	Percent of days average reservoir level above 1,107 ft AMSL (Note 7) Percent of days average reservoir level above 1,105 ft AMSL (Note 7)	1-Apr 1-Apr	30-Sep 30-Sep	5% 5%		
28	Maximize littoral habitat during spawning	Percent of days average reservoir level above 1,107 ft AMSL (Note 7)	1-Apr	31-May	5%		
30	season Pumped Storage Minimize days below lake levels that impact	Percent of days average reservoir level above 1,105 ft AMSL (Note 7) Number of days reservoir level below 1,099 ft AMSL (Note 8)	1-Apr 1-Jan	31-May 31-Dec	5%		
31	Bad Creek operations Minimize days below lake levels that impact	Number of days reservoir level below 1,090 ft AMSL (Note 8)	1-Jan	31-Dec	14		
32	Jocassee operations Minimize days below lake levels that impact Bad Creek efficiency	Number of days reservoir level below 1,081 ft AMSL (Note 9)	1-Jan	31-Dec	12		
	Lake Keowee						
33	Elevation - Storage Availability Maximize adherence to reliably meet all Project-related water demands	Number of years reservoir level at or above 798 ft AMSL on May 1	1-May	1-May	5		
35	Elevation - Aesthetics	Percent of time reservoir level at or above 797 ft AMSL	1-Jan	31-Dec	20%		
36	Maximize lake levels	Percent of time reservoir level at or above 795 ft AMSL	1-Jan	31-Dec	10%		
37	Minimize significant drawdown of lake level Elevation - Recreation	Number of days reservoir level below 796 ft AMSL	1-Jan	31-Dec	5		
38		Number of years where cove access (reservoir level below 792 ft AMSL) is restricted for more than 25 days (Note 10)	1-Jan	31-Dec	2		
39	Minimize restricted recreation	Greatest number of days with restricted cove access (reservoir level below 792 ft AMSL) during higher use months in any calendar year (Note 10)	1-Mar	31-Oct	5		
40		Greatest number of days with restricted cove access (reservoir level below 792 ft AMSL) in any calendar year (Note 10)	1-Jan	31-Dec	5		
41	Minimize restricted lake boat launching	Number of years where reservoir level is below boat ramp critical level (790 ft AMSL) during higher use months for more than 25 days (Note 11)	1-Mar	31-Oct	2		
42	,	Greatest number of days where reservoir level is below boat ramp critical level (790 ft AMSL) during higher use months in any calendar year (Note 11)	1-Mar	31-Oct	5		
43	Maximize boat dock usage	Percent of time reservoir level is at or above level where 85% of docks are usable (796.25 ft AMSL) during higher use months from 7:00 am to 7:00 pm (Note 12) Described time respectively level is 14 to 4 beyond healthcap 70% of docks are usable (703.5 ft AMSL) during	1-Mar	31-Oct	5%		
44	Eloyation Natival D	Percent of time reservoir level is at or above level where 70% of docks are usable (793.5 ft AMSL) during higher use months from 7:00 am to 7:00 pm (Note 12)	1-Mar	31-Oct	5%		
45	Elevation - Natural Resources Minimize number of days water level is below	Number of days reservoir level below 794 ft AMSL (Note 13)	1-Jan	31-Dec	250		
46	toe of riprap	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 10 consecutive days at least	15-Mar	31-May	5%		
47	Maximize spawning success for black bass and blueback herring	once (Note 14) Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 15 consecutive days at least once (Note 14)	15-Mar	31-May	5%		
48	(2.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 20 consecutive days at least	15-Mar	31-May	5%		
49		once (Note 14) Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 10 consecutive days at least	15-Mar	31-May	5%		
50	Maximize spawning success for black bass and blueback herring	once (Note 14) Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 15 consecutive days at least	15-Mar	31-May	5%		
50	(3.5-ft fluctuation band)	once (Note 14) Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 20 consecutive days at least	15-Mar	31-May	5%		
21		once (Note 14)	19-INI	31-IVIdY	J76		

Bad Creek CHEOPS Performance Measures 9/13/2023

Measure Number	Performance Measures	Criterion (Note 1)	Start Date	End Date	MISC (Note 2)	Baseline	BCII
52	Maximize spawning success for sunfish and threadfin shad (2.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 10 consecutive days at least once (Note 14)	15-May	15-Jul	5%		
53		Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 15 consecutive days at least once (Note 14)	15-May	15-Jul	5%		
54		Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 20 consecutive days at least once (Note 14)	15-May	15-Jul	5%		
55	Maximize spawning success for sunfish and threadfin shad (3.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 10 consecutive days at least once (Note 14)	15-May	15-Jul	5%		
56		Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 15 consecutive days at least once (Note 14)	15-May	15-Jul	5%		
57		Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 20 consecutive days at least once (Note 14)	15-May	15-Jul	5%		
58	Maximize littoral habitat during growing	Percent of days average reservoir level above 798 ft AMSL (Note 15)	1-Apr	30-Sep	5%		
59	season	Percent of days average reservoir level above 797 ft AMSL (Note 15)	1-Apr	30-Sep	5%		
60	Maximize littoral habitat during spawning	Percent of days average reservoir level above 798 ft AMSL (Note 15)	1-Apr	31-May	5%		
61	season	Percent of days average reservoir level above 797 ft AMSL (Note 15)	1-Apr	31-May	5%		
	Elevation - Water Supply						
62		Number of days reservoir level below critical level (775 ft AMSL) for shallowest public water supply intake operation (Note 16)	1-Jan	31-Dec	1		
63	Minimize days of restricted operation at lake- located intakes	Number of days reservoir level below critical level (790.0 ft AMSL) for shallowest thermal power station operation (Note 17)	1-Jan	31-Dec	1		
64		Number of days reservoir level below critical level (787.9 ft AMSL) for Keowee dam to supply backup power to ONS (Note 18)	1-Jan	31-Dec	1		
	Duke Energy Hydropower & Water Quantity Management						
65		Number of days in LIP Stage Normal	1-Jan	31-Dec	10		
66		Number of days in LIP Stage 0	1-Jan	31-Dec	10		
67	Keowee-Toxaway Low Inflow Protocol (LIP)	Number of days in LIP Stage 1	1-Jan	31-Dec	10		
68	Stage	Number of days in LIP Stage 2	1-Jan	31-Dec	10		
68 69	Stage	Number of days in LIP Stage 2 Number of days in LIP Stage 3	1-Jan 1-Jan	31-Dec 31-Dec	10 10		
	Stage						
69	Stage For criterion that measure on an hourly or daily	Number of days in LIP Stage 3 Number of days in LIP Stage 4	1-Jan	31-Dec	10		
69 70	For criterion that measure on an hourly or daily	Number of days in LIP Stage 3 Number of days in LIP Stage 4 basis, unless stated otherwise:	1-Jan	31-Dec	10		
69 70 Notes	For criterion that measure on an hourly or daily a. If an hourly criteria occurs during the average	Number of days in LIP Stage 3 Number of days in LIP Stage 4 basis, unless stated otherwise: of four contiguous 15-minute periods, then it counts as 1 hour.	1-Jan	31-Dec	10		
69 70	For criterion that measure on an hourly or daily a. If an hourly criteria occurs during the average b. If a daily criterion occurs for 5 contiguous 1-h	Number of days in LIP Stage 3 Number of days in LIP Stage 4 basis, unless stated otherwise: of four contiguous 15-minute periods, then it counts as 1 hour. our periods, then it counts as 1 day.	1-Jan 1-Jan	31-Dec 31-Dec	10 10	gardless of the le	noth of the
69 70 Notes	For criterion that measure on an hourly or daily a. If an hourly criteria occurs during the average b. If a daily criterion occurs for 5 contiguous 1-h. Also, daytime flows are assumed to be flows pro	Number of days in LIP Stage 3 Number of days in LIP Stage 4 basis, unless stated otherwise: of four contiguous 15-minute periods, then it counts as 1 hour. our periods, then it counts as 1 day. vided between 7:00 am and 7:00 pm. To the extent possible, each criterion is defined in terms of percents and a	1-Jan 1-Jan	31-Dec 31-Dec	10 10	gardless of the le	ngth of the
69 70 Notes	For criterion that measure on an hourly or daily a. If an hourly criteria occurs during the average b. If a daily criterion occurs for 5 contiguous 1-h Also, daytime flows are assumed to be flows prhydrology period (i.e., 1-yr, 3-yr, full period of re	Number of days in LIP Stage 3 Number of days in LIP Stage 4 basis, unless stated otherwise: of four contiguous 15-minute periods, then it counts as 1 hour. our periods, then it counts as 1 day. wided between 7:00 am and 7:00 pm. To the extent possible, each criterion is defined in terms of percents and a coord, etc.)	1-Jan 1-Jan verages/yr so tha	31-Dec 31-Dec	10 10		
69 70 Notes	For criterion that measure on an hourly or daily a. If an hourly criteria occurs during the average b. If a daily criterion occurs for 5 contiguous 1. Also, daytime flows are assumed to be flows prhydrology period (r.g., 1-yr, 3-yr, full period of r MISC = Minimum Increment of Significant Chan	Number of days in LIP Stage 3 Number of days in LIP Stage 4 basis, unless stated otherwise: of four contiguous 15-minute periods, then it counts as 1 hour. our periods, then it counts as 1 day. owided between 7:00 am and 7:00 pm. To the extent possible, each criterion is defined in terms of percents and a coord, etc.) g. The MISC has the same units (i.e., days, days/yr, percent, etc.) as does the criterion on that same row of the sp	1-Jan 1-Jan verages/yr so the	31-Dec 31-Dec at the same crite	10 10 rion is useful rescenarios for a p	articular criterion	
69 70 Notes	For criterion that measure on an hourly or daily a. If an hourly criteria occurs during the average b. If a daily criterion occurs for 5 contiguous 1-h Also, daytime flows are assumed to be flows prhydrology period (i.e., 1-yr, 3-yr, full period of re MISC – Minimum Increment of Significant Chan less than or equal to the MISC, then there is no	Number of days in LIP Stage 3 Number of days in LIP Stage 4 basis, unless stated otherwise: of four contiguous 15-minute periods, then it counts as 1 hour. our periods, then it counts as 1 day. voided between 7:00 am and 7:00 pm. To the extent possible, each criterion is defined in terms of percents and a coord, etc.) ge. The MISC has the same units (i.e., days, days/yr, percent, etc.) as does the criterion on that same row of the sy significant difference between those two scenarios as far as the criterion in question is concerned. The following	1-Jan 1-Jan verages/yr so the	31-Dec 31-Dec at the same crite	10 10 rion is useful rescenarios for a p	articular criterion	
69 70 Notes	For criterion that measure on an hourly or daily a. If an hourly criteria occurs during the average b. If a daily criterion occurs for 5 contiguous 1-h Also, daytime flows are assumed to be flows prhydrology period (i.e., 1-yr, 3-yr, full period of rf MISC = Minimum Increment of Significant Chan less than or equal to the MISC, then there is no a. As a general rule, MISC numbers are set at 1	Number of days in LIP Stage 3 Number of days in LIP Stage 4 basis, unless stated otherwise: of four contiguous 15-minute periods, then it counts as 1 hour. our periods, then it counts as 1 day. wided between 7:00 am and 7:00 pm. To the extent possible, each criterion is defined in terms of percents and a cord, etc.) ge. The MISC has the same units (i.e., days, days/yr, percent, etc.) as does the criterion on that same row of the significant difference between those two scenarios as far as the criterion in question is concerned. The following 0% of the possible total for that criterion considering the Start/Stop dates.	1-Jan 1-Jan verages/yr so the	31-Dec 31-Dec at the same crite	10 10 rion is useful rescenarios for a p	articular criterion	
69 70 Notes	For criterion that measure on an hourly or daily a. If an hourly criteria occurs during the average b. If a daily criterion occurs for 5 contiguous 1. Also, daytime flows are assumed to be flows prhydrology period (i.e., 1-yr, 3-yr, full period of mISC – Minimum Increment of Significant Chan less than or equal to the MISC, then there is no a. As a general rule, MISC numbers are set at 1. B. MISC numbers for criteria that have the mos	Number of days in LIP Stage 3 Number of days in LIP Stage 4 basis, unless stated otherwise: of four contiguous 15-minute periods, then it counts as 1 hour. our periods, then it counts as 1 day. ovided between 7:00 am and 7:00 pm. To the extent possible, each criterion is defined in terms of percents and a coord, etc.) g. The MISC has the same units (i.e., days, days/yr, percent, etc.) as does the criterion on that same row of the significant difference between those two scenarios as far as the criterion in question is concerned. The following 0% of the possible total for that criterion considering the Start/Stop dates. t adverse outcomes if reached are typically set at less than 10% of the possible total for that criterion.	1-Jan 1-Jan verages/yr so the preadsheet. If the guidelines were	31-Dec 31-Dec at the same crite e output of two used to establis	10 10 serion is useful re- scenarios for a p	articular criterion	
69 70 Notes	For criterion that measure on an hourly or daily a. If an hourly criteria occurs during the average b. If a daily criterion occurs for 5 contiguous 1-h Also, daytime flows are assumed to be flows prhydrology period (i.e., 1-yr, 3-yr, full period of re MISC – Minimum Increment of Significant Chan less than or equal to the MISC, then there is no a. As a general rule, MISC numbers are set at 1 b. MISC numbers for criteria that have the mo: - Adjustments to the MISC numbers (up or do	Number of days in LIP Stage 3 Number of days in LIP Stage 4 basis, unless stated otherwise: of four contiguous 15-minute periods, then it counts as 1 hour. our periods, then it counts as 1 day. vided between 7:00 am and 7:00 pm. To the extent possible, each criterion is defined in terms of percents and a coord, etc.) ge. The MISC has the same units (i.e., days, days/yr, percent, etc.) as does the criterion on that same row of the sy significant difference between those two scenarios as far as the criterion in question is concerned. The following 0% of the possible total for that criterion considering the Start/Stop dates. t adverse outcomes if reached are typically set at less than 10% of the possible total for that criterion. wn) have also been made depending on the desires of the stakeholders that primarily have the interests that are	1-Jan 1-Jan verages/yr so the preadsheet. If the guidelines were	31-Dec 31-Dec at the same crite e output of two used to establis	10 10 serion is useful re- scenarios for a p	articular criterion	
69 70 Notes 1 2	For criterion that measure on an hourly or daily a. If an hourly criteria occurs during the average b. If a daily criterion occurs for 5 contiguous 1-h Also, daytime flows are assumed to be flows prhydrology period (i.e., 1-yr, 3-yr, full period of r MiSC = Minimum Increment of Significant Chan less than or equal to the MiSC, then there is no a. As a general rule, MiSC numbers are set at 1 b. MiSC numbers for criteria that have the most c. Adjustments to the MiSC numbers (up or do Jocassee restricted recreation elevation 1,090 fi	Number of days in LIP Stage 3 Number of days in LIP Stage 4 basis, unless stated otherwise: of four contiguous 15-minute periods, then it counts as 1 hour. our periods, then it counts as 1 day. vided between 7:00 am and 7:00 pm. To the extent possible, each criterion is defined in terms of percents and a scord, etc.) ge. The MISC has the same units (i.e., days, days/yr, percent, etc.) as does the criterion on that same row of the sy significant difference between those two scenarios as far as the criterion in question is concerned. The following 0% of the possible total for that criterion considering the Start/Stop dates. It adverse outcomes if reached are typically set at less than 10% of the possible total for that criterion. wi) have also been made depending on the desires of the stakeholders that primarily have the interests that are AMMSL provided by Chris Starker (Upstate Forever) and confirmed by Deviis Fork State Park Staff.	1-Jan 1-Jan verages/yr so this preadsheet. If the guidelines were	31-Dec 31-Dec at the same crite e output of two used to establis	10 10 serion is useful re- scenarios for a p	articular criterion	
69 70 Notes	For criterion that measure on an hourly or daily a. If an hourly criteria occurs during the average b. If a daily criterion occurs for 5 contiguous b. If a daily criterion occurs for 5 contiguous h. Also, daytime flows are assumed to be flows pr. hydrology period (i.e., 1-yr, 3-yr, full period of re MISC = Minimum Increment of Significant Chan less than or equal to the MISC, then there is no a. As a general rule, MISC numbers are set at 1. B. MISC numbers for criteria that have the mos c. Adjustments to the MISC numbers (up or do Jocassee restricted recreation elevation 1,090 floacassee elevation 1,07 ft AMSL is the lowest the service of the control of the service of the s	Number of days in LIP Stage 3 Number of days in LIP Stage 4 basis, unless stated otherwise: of four contiguous 15-minute periods, then it counts as 1 hour. our periods, then it counts as 1 day. poided between 7:00 am and 7:00 pm. To the extent possible, each criterion is defined in terms of percents and a coord, etc.) g. The MISC has the same units (i.e., days, days/yr, percent, etc.) as does the criterion on that same row of the significant difference between those two scenarios as far as the criterion in question is concerned. The following 0% of the possible total for that criterion considering the Start/Stop dates. at adverse outcomes if reached are typically set at less than 10% of the possible total for that criterion. win) have also been made depending on the desires of the stakeholders that primarily have the interests that are: AMSL provided by Chris Starker (Upstate Forever) and confirmed by Devils Fork State Park Staff.	1-Jan 1-Jan verages/yr so this preadsheet. If the guidelines were	31-Dec 31-Dec at the same crite e output of two used to establis	10 10 serion is useful re- scenarios for a p	articular criterion	
69 70 Notes 1 2 2 3 4 5	For criterion that measure on an hourly or daily a. If an hourly criteria occurs during the average b. If a daily criterion occurs for 5 contiguous 1-h Also, daytime flows are assumed to be flows prhydrology period (i.e., 1-yr, 3-yr, full period of re MISC – Minimum Increment of Significant Chan less than or equal to the MISC, then there is no a. As a general rule, MISC numbers are set at 1 b. MISC numbers for criteria that have the most considerable of the control o	Number of days in LIP Stage 3 Number of days in LIP Stage 4 basis, unless stated otherwise: of four contiguous 15-minute periods, then it counts as 1 hour. our periods, then it counts as 1 day. vided between 7:00 am and 7:00 pm. To the extent possible, each criterion is defined in terms of percents and a coord, etc.) ge. The MISC has the same units (i.e., days, days/yr, percent, etc.) as does the criterion on that same row of the sy significant difference between those two scenarios as far as the criterion in question is concerned. The following 0% of the possible total for that criterion considering the Start/Stop dates. t adverse outcomes if reached are typically set at less than 10% of the possible total for that criterion. wn) have also been made depending on the desires of the stakeholders that primarily have the interests that are: AMSL provided by Chris Starker (Upstate Forever) and confirmed by Devils Fork State Park Staff. toust ramp elevation with an additional 3 ft added for boat access. Boat ramp elevations provided by Duke Energy tours, not as specified in Note 1.	1-Jan 1-Jan verages/yr so this preadsheet. If the guidelines were	31-Dec 31-Dec at the same crite e output of two used to establis	10 10 serion is useful re- scenarios for a p	articular criterion	
69 70 Notes 1 2 2 3 4 5 6	For criterion that measure on an hourly or daily a. If an hourly criteria occurs during the average b. If a daily criterion occurs for 5 contiguous 1. Also, daytime flows are assumed to be flows prhydrology period (i.g., 1-yr, 3-yr, full period of remission of Significant Chan less than or equal to the MISC, then there is no a. As a general rule, MISC numbers are set at 1. MISC numbers for criteria that have the most. Adjustments to the MISC numbers (up or do Jocassee restricted recreation elevation 1,090 ff Jocassee elevation 1,077 ft AMSL is the lowest 1. This criterion evaluates a day as 2 contiguous 1. This criterion evaluates a day as 2 contiguous 1. Jocassee entrainment elevation (1,096 ft AMSL)	Number of days in LIP Stage 3 Number of days in LIP Stage 4 basis, unless stated otherwise: of four contiguous 15-minute periods, then it counts as 1 hour. our periods, then it counts as 1 day. by outperiods, then it counts are depended in terms of percents and a coord, etc.) significant difference between those two scenarios as far as the criterion in question is concerned. The following 0% of the possible total for that criterion considering the Start/Stop dates. It adverse outcomes if reached are typically set at less than 10% of the possible total for that criterion. who have also been made depending on the desires of the stakeholders that primarily have the interests that are 1.4MSL provided by Christ Starker (Upstate Forever) and confirmed by Devils Fork State Park Staff. boat ramp elevation with an additional 3 ft added for boat access. Boat ramp elevations provided by Duke Energy lours, not as specified in Note 1.	1-Jan 1-Jan verages/yr so this preadsheet. If the guidelines were	31-Dec 31-Dec at the same crite e output of two used to establis	10 10 serion is useful re- scenarios for a p	articular criterion	
69 70 Notes 1 2 2 3 4 5	For criterion that measure on an hourly or daily a. If an hourly criteria occurs during the average b. If a daily criterion occurs for 5 contiguous 1. Also, daytime flows are assumed to be flows prhydrology period (i.e., 1-yr, 3-yr, full period of remisses than or equal to the MISC, then there is no a. As a general rule, MISC numbers are set at 1. B. MISC numbers for criteria that have the most. Adjustments to the MISC numbers (up or do Jocassee restricted recreation elevation 1,090 ff cassee restricted recreation elevation 1,090 ff cassee crestricted recreation elevation 1,000 ft cassee criterion evaluates a day as 24 contiguous 1. Dicassee entrainment elevation (1,096 ft AMSL) Jocassee entrainment elevations provided by Bill Jocassee fish habitat elevations provided by Bill	Number of days in LIP Stage 3 Number of days in LIP Stage 4 basis, unless stated otherwise: of four contiguous 15-minute periods, then it counts as 1 hour. our periods, then it counts as 1 day. poided between 7:00 am and 7:00 pm. To the extent possible, each criterion is defined in terms of percents and a coord, etc.) g. The MISC has the same units (i.e., days, days/yr, percent, etc.) as does the criterion on that same row of the sy significant difference between those two scenarios as far as the criterion in question is concerned. The following 0% of the possible total for that criterion considering the Start/Stop dates. at adverse outcomes if reached are typically set at less than 10% of the possible total for that criterion. wn) have also been made depending on the desires of the stakeholders that primarily have the interests that are 1.00 AMSL provided by Chris Starker (Upstate Forever) and confirmed by Devils Fork State Park Staff. AMSL provided by Chris Starker (Upstate Forever) and confirmed by Devils Fork State Park Staff. out ramp elevation with an additional 3 ft added for boat access. Boat ramp elevations provided by Duke Energy nours, not as specified in Note 1. provided by Bill Marshall of SCDNR. Marshall of SCDNR.	1-Jan 1-Jan verages/yr so the preadsheet. If the guidelines were being measured	31-Dec 31-Dec at the same crite e output of two output of two used to establis by a particular of	10 10 10 10 10 10 10 10 10 10 10 10 10 1	varticular criterion bers:	n differs by
69 70 Notes 1 2 2 3 4 5 6 7	For criterion that measure on an hourly or daily a. If an hourly criteria occurs during the average b. If a daily criterion occurs for 5 contiguous 1-h Also, daytime flows are assumed to be flows pr hydrology period (i.e., 1-yr, 3-yr, full period of re MISC – Minimum Increment of Significant Chan less than or equal to the MISC, then there is no a. As a general rule, MISC numbers are set at 1 b. MISC numbers for criteria that have the most. Adjustments to the MISC numbers (up or do Jocassee restricted recreation elevation 1,090 ft Jocassee elevation 1,077 ft AMSL is the lowest this criterion evaluates a day as 24 contiguous I Jocassee entrainment elevation (1,096 ft AMSL) Jocassee fish habitat elevations provided by Bill Jocassee flevation 1,097 ft AMSL is the elevation scassee elevation 1,099 ft AMSL is the elevation scansee and scanse and scanse are scanse scanse are scanse and scanse are scanse are scanse and scanse are scanse and scanse are scanse are scanse are scanse are scanse are scanse and scanse are scanse are scanse are scanse are	Number of days in LIP Stage 3 Number of days in LIP Stage 4 basis, unless stated otherwise: of four contiguous 15-minute periods, then it counts as 1 hour. our periods, then it counts as 1 day. by outperiods, then it counts are depended in terms of percents and a coord, etc.) significant difference between those two scenarios as far as the criterion in question is concerned. The following 0% of the possible total for that criterion considering the Start/Stop dates. It adverse outcomes if reached are typically set at less than 10% of the possible total for that criterion. who have also been made depending on the desires of the stakeholders that primarily have the interests that are 1.4MSL provided by Christ Starker (Upstate Forever) and confirmed by Devils Fork State Park Staff. boat ramp elevation with an additional 3 ft added for boat access. Boat ramp elevations provided by Duke Energy lours, not as specified in Note 1.	1-Jan 1-Jan verages/yr so the preadsheet. If the guidelines were being measured	31-Dec 31-Dec at the same crite e output of two output of two used to establis by a particular of	10 10 10 10 10 10 10 10 10 10 10 10 10 1	varticular criterion bers:	n differs by
69 70 Notes 1 2 3 4 5 6 7	For criterion that measure on an hourly or daily a. If an hourly criteria occurs during the average b. If a daily criterion occurs for 5 contiguous 1. Also, daytime flows are assumed to be flows prhydrology period [i.e., 1-yr, 3-yr, full period of removed flows are assumed to be flows prhydrology period [i.e., 1-yr, 3-yr, full period of removed flows are assumed to be flows are as a set at 1 less than or equal to the MISC, then there is no a. As a general rule, MISC numbers are set at 1. MISC numbers for criteria that have the most. Adjustments to the MISC numbers (up or do Jacassee restricted recreation elevation 1,090 ff Jocassee elevation 1,077 ft AMSL is the lowest this criterion evaluates a day as 24 contiguous 1 Jocassee entrainment elevation (1,096 ft AMSL) Jocassee fish habitat elevations provided by Bill Jocassee elevation 1,099 ft AMSL is the elevation classees elevation 1,099 ft ft AMSL is the elevation classees elevation 1,099 ft ft AMSL is the elevation classees elevation 1,099 ft ft ft fciency is degraded.	Number of days in LIP Stage 3 Number of days in LIP Stage 4 basis, unless stated otherwise: of four contiguous 15-minute periods, then it counts as 1 hour. our periods, then it counts as 1 day. by out periods, then it counts as 1 day. by outded between 7:00 am and 7:00 pm. To the extent possible, each criterion is defined in terms of percents and a coord, etc.) g. The MISC has the same units (i.e., days, days/yr, percent, etc.) as does the criterion on that same row of the significant difference between those two scenarios as far as the criterion in question is concerned. The following 0% of the possible total for that criterion considering the Start/Stop dates. It adverse outcomes if reached are typically set at less than 10% of the possible total for that criterion. who have also been made depending on the desires of the stakeholders that primarily have the interests that are. AMSL provided by Chris Starker (Upstate Forever) and confirmed by Dewils Fork State Park Staft. toat ramp elevation with an additional 3 ft added for boat access. Boat ramp elevations provided by Duke Energy tours, not as specified in Note 1. provided by Bill Marshall of SCDNR. Marshall of SCDNR. nat which an MOU between Duke Energy and SCDNR requires Duke Energy to implement operational changes at	1-Jan 1-Jan verages/yr so the preadsheet. If the guidelines were being measured	31-Dec 31-Dec at the same crite e output of two output of two used to establis by a particular of	10 10 10 10 10 10 10 10 10 10 10 10 10 1	varticular criterion bers:	n differs by
69 70 Notes 1 2 2 3 4 5 6 7 7	For criterion that measure on an hourly or daily a. If an hourly criteria occurs during the average b. If a daily criterion occurs for 5 contiguous 1-h Also, daytime flows are assumed to be flows prhydrology period (i.e., 1-yr, 3-yr, full period of remisses than or equal to the MISC, then there is no a. As a general rule, MISC numbers are set at 1. b. MISC numbers for criteria that have the most. Adjustments to the MISC numbers (up or do Jocassee restricted recreation elevation 1,090 ff admisses of the control of the MISC numbers (up or do Jocassee entrainment elevation (1,096 ft AMSI) Jocassee entrainment elevation (1,096 ft AMSI) Jocassee elevation 1,099 ft AMSI is the elevation Jocassee elevation of the MISC numbers (up or do Jocassee elevation 1,099 ft AMSI is the elevation Jocassee elevation 1,098 ft AMSI is the elevation Jocassee elevation 1,098 ft AMSI is the elevation Jocassee elevation 1,098 ft AMSI is the elevation Jocassee elevation 1,081 ft AMSI, provided by Dicassee powerhouse efficiency is degraded.	Number of days in LIP Stage 3 Number of days in LIP Stage 4 basis, unless stated otherwise: of four contiguous 15-minute periods, then it counts as 1 hour. our periods, then it counts as 1 day. povided between 7:00 am and 7:00 pm. To the extent possible, each criterion is defined in terms of percents and a coord, etc.) g. The MISC has the same units (i.e., days, days/yr, percent, etc.) as does the criterion on that same row of the spignificant difference between those two scenarios as far as the criterion in question is concerned. The following 0% of the possible total for that criterion considering the Start/Stop dates. at adverse outcomes if reached are typically set at less than 10% of the possible total for that criterion. wn) have also been made depending on the desires of the stakeholders that primarily have the interests that are: AMSI, provided by Chris Starker (Upstate Forever) and confirmed by Devils Fork State Park Staff. sout ramp elevation with an additional 3 ft added for boat access. Boat ramp elevations provided by Duke Energy hours, not as specified in Note 1. provided by Bill Marshall of SCDNR. Marshall of SCDNR. nat which an MOU between Duke Energy and SCDNR requires Duke Energy to implement operational changes at use Energy based on impact to pumping equipment.	1-Jan 1-Jan verages/yr so the preadsheet. If the guidelines were being measured	31-Dec 31-Dec at the same crite e output of two output of two used to establis by a particular of	10 10 10 10 10 10 10 10 10 10 10 10 10 1	varticular criterion bers:	n differs by
69 70 Notes 1 2 2 3 4 5 6 7 8 9	For criterion that measure on an hourly or daily a. If an hourly criteria occurs during the average b. If a daily criterion occurs for 5 contiguous 1-h Also, daytime flows are assumed to be flows prhydrology period (i.e., 1-yr, 3-yr, full period of r MISC – Minimum Increment of Significant Chan Jess than or equal to the MISC, then there is no a. As a general rule, MISC numbers are set at 1 b. MISC numbers for criteria that have the moc. Adjustments to the MISC numbers (up or do Locassee restricted recreation elevation 1,090 ft Jocassee elevation 1,077 ft AMSL is the lowest This criterion evaluates a day as 24 contiguous 1 Jocassee entrainment elevation (1,096 ft AMSL) Jocassee fish habitat elevations provided by Bill Jocassee elevation 1,099 ft AMSL is the elevatio Jocassee powerhouse efficiency is degraded. Jocassee elevation 1,081 ft AMSL is the elevatio Jocassee elevation 1,081 ft AMSL provided by Bill School (1,086 ft AMSL) and the selevation Jocassee elevation 1,098 ft AMSL is the elevation Jocassee elevation 1,098 ft ams of the provided by Bill provided by B	Number of days in LIP Stage 3 Number of days in LIP Stage 4 basis, unless stated otherwise: of four contiguous 15-minute periods, then it counts as 1 hour. our periods, then it counts as 1 day. vided between 7:00 am and 7:00 pm. To the extent possible, each criterion is defined in terms of percents and a scord, etc.) ge. The MISC has the same units (i.e., days, days/yr, percent, etc.) as does the criterion on that same row of the significant difference between those two scenarios as far as the criterion in question is concerned. The following 0% of the possible total for that criterion considering the Start/Stop dates. It adverse outcomes if reached are typically set at less than 10% of the possible total for that criterion. with have also been made depending on the desires of the stakeholders that primarily have the interests that are: AMSL provided by Chris Starker (Upstate Forever) and confirmed by Dewils Fork State Park Staff. poat ramp elevation with an additional 3 ft added for boat access. Boat ramp elevations provided by Duke Energy uours, not as specified in Note 1. provided by Bill Marshall of SCDNR. Marshall of SCDNR. nat which an MOU between Duke Energy and SCDNR requires Duke Energy to implement operational changes at uke Energy based on impact to pumping equipment.	1-Jan 1-Jan verages/yr so the preadsheet. If the guidelines were being measured	31-Dec 31-Dec at the same crite e output of two output of two used to establis by a particular of	10 10 10 10 10 10 10 10 10 10 10 10 10 1	varticular criterion bers:	n differs by
69 70 Notes 1 2 2 3 4 5 6 7 7	For criterion that measure on an hourly or daily a. If an hourly criteria occurs during the average b. If a daily criterion occurs for 5 contiguous 1-h Also, daytime flows are assumed to be flows prhydrology period (i.e., 1-yr, 3-yr, full period of r MISC – Minimum Increment of Significant Chan Jess than or equal to the MISC, then there is no a. As a general rule, MISC numbers are set at 1 b. MISC numbers for criteria that have the moc. Adjustments to the MISC numbers (up or do Locassee restricted recreation elevation 1,090 ft Jocassee elevation 1,077 ft AMSL is the lowest This criterion evaluates a day as 24 contiguous 1 Jocassee entrainment elevation (1,096 ft AMSL) Jocassee fish habitat elevations provided by Bill Jocassee elevation 1,099 ft AMSL is the elevatio Jocassee powerhouse efficiency is degraded. Jocassee elevation 1,081 ft AMSL is the elevatio Jocassee elevation 1,081 ft AMSL provided by Bill School (1,086 ft AMSL) and the selevation Jocassee elevation 1,098 ft AMSL is the elevation Jocassee elevation 1,098 ft ams of the provided by Bill provided by B	Number of days in LIP Stage 3 Number of days in LIP Stage 4 basis, unless stated otherwise: of four contiguous 15-minute periods, then it counts as 1 hour. our periods, then it counts as 1 day. povided between 7:00 am and 7:00 pm. To the extent possible, each criterion is defined in terms of percents and a coord, etc.) g. The MISC has the same units (i.e., days, days/yr, percent, etc.) as does the criterion on that same row of the spignificant difference between those two scenarios as far as the criterion in question is concerned. The following 0% of the possible total for that criterion considering the Start/Stop dates. at adverse outcomes if reached are typically set at less than 10% of the possible total for that criterion. wn) have also been made depending on the desires of the stakeholders that primarily have the interests that are: AMSI, provided by Chris Starker (Upstate Forever) and confirmed by Devils Fork State Park Staff. sout ramp elevation with an additional 3 ft added for boat access. Boat ramp elevations provided by Duke Energy hours, not as specified in Note 1. provided by Bill Marshall of SCDNR. Marshall of SCDNR. nat which an MOU between Duke Energy and SCDNR requires Duke Energy to implement operational changes at use Energy based on impact to pumping equipment.	1-Jan 1-Jan verages/yr so the preadsheet. If the guidelines were being measured	31-Dec 31-Dec at the same crite e output of two output of two used to establis by a particular of	10 10 10 10 10 10 10 10 10 10 10 10 10 1	varticular criterion bers:	n differs by
69 70 Notes 1 2 2 3 4 5 6 7 8 9	For criterion that measure on an hourly or daily a. If an hourly criteria occurs during the average b. If a daily criterion occurs for 5 contiguous 1-h Also, daytime flows are assumed to be flows prhydrology period (i.e., 1-yr, 3-yr, full period of rind MISC = Minimum Increment of Significant Chan less than or equal to the MISC, then there is no a. As a general rule, MISC numbers are set at 1. B. MISC numbers for criteria that have the most. Adjustments to the MISC numbers (up or do cassee restricted recreation elevation 1,090 fl Jocassee elevation 1,077 ft AMSL is the lowest this criterion evaluates a day as 24 contiguous 1 Jocassee elevation evaluates of AMSL is the elevation Jocassee powerhouse efficiency is degraded. Jocassee elevation 1,091 ft AMSL provided by DI Keowee restricted recreation elevation of 792 ft Keowee elevation 790 ft AMSL is based on the levation of 792 ft.	Number of days in LIP Stage 3 Number of days in LIP Stage 4 basis, unless stated otherwise: of four contiguous 15-minute periods, then it counts as 1 hour. our periods, then it counts as 1 day. vided between 7:00 am and 7:00 pm. To the extent possible, each criterion is defined in terms of percents and a scord, etc.) ge. The MISC has the same units (i.e., days, days/yr, percent, etc.) as does the criterion on that same row of the significant difference between those two scenarios as far as the criterion in question is concerned. The following 0% of the possible total for that criterion considering the Start/Stop dates. It adverse outcomes if reached are typically set at less than 10% of the possible total for that criterion. with have also been made depending on the desires of the stakeholders that primarily have the interests that are: AMSL provided by Chris Starker (Upstate Forever) and confirmed by Dewils Fork State Park Staff. poat ramp elevation with an additional 3 ft added for boat access. Boat ramp elevations provided by Duke Energy uours, not as specified in Note 1. provided by Bill Marshall of SCDNR. Marshall of SCDNR. nat which an MOU between Duke Energy and SCDNR requires Duke Energy to implement operational changes at uke Energy based on impact to pumping equipment.	1-Jan 1-Jan verages/yr so the preadsheet. If the guidelines were being measured	31-Dec 31-Dec at the same crite e output of two output of two used to establis by a particular of	10 10 10 10 10 10 10 10 10 10 10 10 10 1	varticular criterion bers:	n differs by
69 70 Notes	For criterion that measure on an hourly or daily a. If an hourly criteria occurs during the average b. If a daily criterion occurs for 5 contiguous 1-h Also, daytime flows are assumed to be flows prhydrology period (i.e., 1-yr, 3-yr, full period of rind MISC = Minimum Increment of Significant Chan less than or equal to the MISC, then there is no a. As a general rule, MISC numbers are set at 1. B. MISC numbers for criteria that have the most. Adjustments to the MISC numbers (up or do cassee restricted recreation elevation 1,090 fl Jocassee elevation 1,077 ft AMSL is the lowest this criterion evaluates a day as 24 contiguous 1 Jocassee elevation evaluates of AMSL is the elevation Jocassee powerhouse efficiency is degraded. Jocassee elevation 1,091 ft AMSL provided by DI Keowee restricted recreation elevation of 792 ft Keowee elevation 790 ft AMSL is based on the levation of 792 ft.	Number of days in LIP Stage 3 Number of days in LIP Stage 4 basis, unless stated otherwise: of four contiguous 15-minute periods, then it counts as 1 hour. our periods, then it counts as 1 day. vided between 7:00 am and 7:00 pm. To the extent possible, each criterion is defined in terms of percents and a coord, etc.) g. The MISC has the same units (i.e., days, days/yr, percent, etc.) as does the criterion on that same row of the spisignificant difference between those two scenarios as far as the criterion in question is concerned. The following 0% of the possible total for that criterion considering the Start/Stop dates. at adverse outcomes if reached are typically set at less than 10% of the possible total for that criterion. wn) have also been made depending on the desires of the stakeholders that primarily have the interests that are: AMSL provided by Chris Starker (Upstate Forever) and confirmed by Devils Fork State Park Staff. boat ramp elevation with an additional 3 ft added for boat access. Boat ramp elevations provided by Duke Energy bours, not as specified in Note 1. provided by Bill Marshall of SCONR. mat which an MOU between Duke Energy and SCDNR requires Duke Energy to implement operational changes at uke Energy based on impact to pumping equipment. LAMSL provided by James McRacken (HOR) and ScOTT Fletcher (Duke Energy). Seminute time steps at or above threshold elevation during period starting 07:00 am and period ending 7:00 pm.	1-Jan 1-Jan verages/yr so the preadsheet. If the guidelines were being measured	31-Dec 31-Dec at the same crite e output of two output of two used to establis by a particular of	10 10 10 10 10 10 10 10 10 10 10 10 10 1	varticular criterion bers:	n differs by
69 70 Notes 1 2 3 4 5 6 7 7 8 9 10 11 12	For criterion that measure on an hourly or daily a. If an hourly criteria occurs during the average b. If a daily criteria occurs during the average b. If a daily criterion occurs for 5 contiguous 1-h Also, daytime flows are assumed to be flows prhydrology period (i.e., 1-yr, 3-yr, full period of row MISC – Minimum Increment of Significant Chan less than or equal to the MISC, then there is no a. As a general rule, MISC numbers are set at 1.b MISC numbers for criteria that have the mos c. Adjustments to the MISC numbers (up or do Jocassee restricted recreation elevation 1,090 ft a MSL) Jocassee entrainment elevation (1,096 ft a MSL) Jocassee entrainment elevation (1,096 ft a MSL) Jocassee elevation 1,097 ft AMSL is the elevatio Jocassee powerhouse efficiency is degraded. Jocassee powerhouse efficiency is degraded. Jocassee elevation 1,081 ft AMSL provided by D Keowee restricted recreation elevation of 792 ft Kowee elevation 790 ft AMSL is stop on the life of time is measured as the percent of 1 time is measured as the percent of	Number of days in LIP Stage 3 Number of days in LIP Stage 4 basis, unless stated otherwise: of four contiguous 15-minute periods, then it counts as 1 hour. our periods, then it counts as 1 day. voided between 7:00 am and 7:00 pm. To the extent possible, each criterion is defined in terms of percents and a scord, etc.) ge. The MISC has the same units (i.e., days, days/yr, percent, etc.) as does the criterion on that same row of the s significant difference between those two scenarios as far as the criterion in question is concerned. The following 0% of the possible total for that criterion considering the Start/Stop dates. It adverse outcomes if reached are typically set at less than 10% of the possible total for that criterion. with lave also been made depending on the desires of the stakeholders that primarily have the interests that are: AMSL provided by Chris Starker (Upstate Forever) and confirmed by Devils Fork State Park Staff. Dout ramp elevation with an additional 3 ft added for boat access. Boat ramp elevations provided by Duke Energy hours, not as specified in Note 1. provided by Bill Marshall of SCDNR. Marshall of SCDNR. nat which an MOU between Duke Energy and SCDNR requires Duke Energy to implement operational changes at use Energy based on impact to pumping equipment. **AMSL provided by Dy James McRacken (HDR) and Scott Fletcher (Duke Energy). Semest boat ramp elevation of 73 ft AMSL plus 3 ft for boat access (provided by Duke Energy). Somest boat ramp elevation of 73 ft AMSL plus 3 ft for boat access (provided by Duke Energy).	1-Jan 1-Jan verages/yr so the preadsheet. If the guidelines were being measured	31-Dec 31-Dec at the same crite e output of two output of two used to establis by a particular of	10 10 10 10 10 10 10 10 10 10 10 10 10 1	varticular criterion bers:	n differs by
69 70 Notes	For criterion that measure on an hourly or daily a. If an hourly criteria occurs during the average b. If a daily criterion occurs for 5 contiguous 1-h Also, daytime flows are assumed to be flows pr hydrology period (i.e., 1-yr, 3-yr, full period of r MISC – Minimum Increment of Significant Chan less than or equal to the MISC, then there is no a. As a general rule, MISC numbers are set at 1 b. MISC numbers for criteria that have the moc. Adjustments to the MISC numbers (up or do Jocassee restricted recreation elevation 1,090 ff Jocassee elevation 1,077 ff AMSL is the lowest by Jocassee elevation 1,077 ff AMSL is the lowest by Jocassee elevation 1,099 ff AMSL or the elevation Jocassee elevation 1,099 ff AMSL is the elevation Jocassee elevation 1,099 ff AMSL is the elevation Jocassee elevation 1,099 ff AMSL is the elevation Jocassee elevation 1,098 ff AMSL is the olevation Jocassee elevation 1,098 ff AMSL is the elevation Jocassee elevation 1,098 ff AMSL is the elevation Jocassee elevation 1,098 ff AMSL is the elevation Jocassee elevation 1,099 ff AMSL is based on the IP Revener estricted recreation elevation of 792 ff Keowee restricted recreation elevation 1793 ff Keowee elevation 794 ff AMSL is based on the IP Percent of time is measured as the percent of 1 Toe of Keowee reservoir riprap elevation 794 ft	Number of days in LIP Stage 3 Number of days in LIP Stage 4 basis, unless stated otherwise: of four contiguous 15-minute periods, then it counts as 1 hour. our periods, then it counts as 1 day. poided between 7:00 am and 7:00 pm. To the extent possible, each criterion is defined in terms of percents and a coord, etc.) g. The MISC has the same units (i.e., days, days/yr, percent, etc.) as does the criterion on that same row of the significant difference between those two scenarios as far as the criterion in question is concerned. The following 0% of the possible total for that criterion considering the Start/Stop dates. at adverse outcomes if reached are typically set at less than 10% of the possible total for that criterion. wn) have also been made depending on the desires of the stakeholders that primarily have the interests that are: AMSL provided by Chris Starker (Upstate Forever) and confirmed by Devils Fork State Park Staff. Outsr, not as specified in Note 1. provided by Bill Marshall of SCDNR. Marshall of SCDNR. Marshall of SCDNR. na twhich an MOU between Duke Energy and SCDNR requires Duke Energy to implement operational changes at uke Energy based on impact to pumping equipment. AMSL provided by James McRacken (HDR) and Scott Fletcher (Duke Energy). west boat ramp elevation of 78 fr AMSL pus 3 ff or boat access (provided by Duke Energy). Serminute time steps at or above threshold elevation during period starting 07:00 am and period ending 7:00 pm. AMSL provided by Duke Energy.	1-Jan 1-Jan verages/yr so the preadsheet. If the guidelines were being measured	31-Dec 31-Dec at the same crite e output of two output of two used to establis by a particular of	10 10 10 10 10 10 10 10 10 10 10 10 10 1	varticular criterion bers:	n differs by

From: Crutchfield Jr., John U

To: Olds, Melanie J

Cc: <u>Stuart, Alan Witten; Kulpa, Sarah; McCarney-Castle, Kerry; Salazar, Maggie</u>

Subject: RE: [EXTERNAL] Bad Creek Relicensing - Task 2 CFD Modeling Report for Resource Committee Distribution and Review

Date: Wednesday, September 27, 2023 10:44:29 AM

Attachments: image003.png

image004.png image005.png image006.png

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Melanie: Thank you for the report review and response.

Regards,

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
525 South Tryon Street, DEP-35B | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

From: Olds, Melanie J <melanie_olds@fws.gov>
Sent: Wednesday, September 27, 2023 10:37 AM

To: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Subject: Re: [EXTERNAL] Bad Creek Relicensing - Task 2 CFD Modeling Report for Resource Committee Distribution

and Review

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

John,

The Service has completed review of the CFD Modeling Report. I don't have any comments and will defer to other agencies that have more specialized experience in this type of modeling.

Melanie

Melanie Olds

Fish & Wildlife Biologist

Regulatory Team Lead/FERC Coordinator

U.S. Fish and Wildlife Service

South Carolina Ecological Services Field Office

176 Croghan Spur Road, Suite 200

Phone: (843) 534-0403

Review

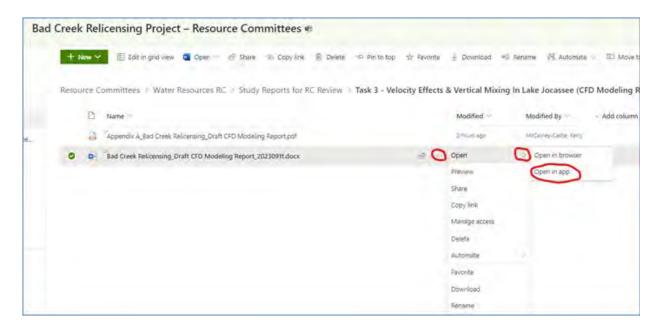
NOTE: This email correspondence and any attachments to and from this sender is subject to the Freedom of Information Act (FOIA) and may be disclosed to third parties.

From: Crutchfield Jr., John U < <u>John.Crutchfield@duke-energy.com</u>>

Sent: Monday, September 11, 2023 4:03 PM

To: Abney, Michael A <michael.abney@duke-energy.com>; Amy Breedlove <BreedloveA@dnr.sc.gov>; Dan Rankin <\(\text{RankinD@dnr.sc.gov}\); Elizabeth Miller <\(\text{MillerE@dnr.sc.gov}\); Erika Hollis <\(\text{ehollis@upstateforever.org}\); Erin Settevendemio <\(\text{Erin.Settevendemio@hdrinc.com}\); Gerry Yantis <\(\text{gcyantis2@yahoo.com}\); John Haines <\(\text{jhains@g.clemson.edu}\); quattrol@dnr.sc.gov <\(\text{quattrol@dnr.sc.gov}\); Olds, Melanie J <\(\text{melanie_olds@fws.gov}\); Morgan Amedee <\(\text{amedeemd@dhec.sc.gov}\); Morgan Kern <\(\text{kernm@dnr.sc.gov}\); SelfR@dnr.sc.gov <\(\text{SelfR@dnr.sc.gov}\); Stuart, Alan Witten <\(\text{Alan.Stuart@duke-energy.com}\); Wahl, Nick <\(\text{Nick.Wahl@duke-energy.com}\); William Wood <\(\text{woodw@dnr.sc.gov}\); Alex Pellett <\(\text{PellettC@dnr.sc.gov}\); Dale Wilde <\(\text{dwilde@keoweefolks.org}\); David Bereskin <\(\text{bereskind@greenvillewater.com}\); Jeffrey Phillips <\(\text{jphillips@greenvillewater.com}\); Kerry McCarney-Castle <\(\text{kerry.McCarney-Castle@hdrinc.com}\); Priyanka More <\(\text{morep@dnr.sc.gov}\); Raber, Maverick James <\(\text{Maverick.Raber@duke-energy.com}\); Scott V. Harder <\(\text{HarderS@dnr.sc.gov}\); William Wood <\(\text{woodw@dnr.sc.gov}\); Ziegler, Ty <\(\text{ty.ziegler@hdrinc.com}\); Dvorak, Joe <\(\text{Joe.Dvorak@hdrinc.com}\); Alison Jakupca <\(\text{alison.jakupca@kleinschmidtgroup.com}\); Kevin Nebiolo <\(\text{kevin.nebiolo@kleinschmidtgroup.com}\); Bruce, Ed <\(\text{Ed.Bruce@duke-energy.com}\); Dunn, Lynne <\(\text{Lynne.Dunn@duke-energy.com}\); Huff, Jen <\(\text{Jen.Huff@hdrinc.com}\)

Cc: Sarah Kulpa <<u>sarah.kulpa@hdrinc.com</u>>; Maggie Salazar <<u>maggie.salazar@hdrinc.com</u>> **Subject:** [EXTERNAL] Bad Creek Relicensing - Task 2 CFD Modeling Report for Resource Committee Distribution and


This email has been received from outside of DOI - Use caution before clicking on links, opening attachments, or responding.

Dear Bad Creek Relicensing Water and Aquatic Resources Committees:

Duke Energy is pleased to distribute the draft report <u>Velocity Effects and Vertical Mixing in Lake Jocassee Due to a Second Powerhouse</u> (i.e., CFD Modeling Report) for Resource Committee review. This draft report satisfies Task 3 of the Bad Creek Relicensing Water Resources Study. The deliverable and associated appendix are available on the Bad Creek Relicensing SharePoint site at the following link: Task 3 - Velocity Effects & Vertical Mixing In Lake Jocassee (CFD Modeling Report). Duke Energy is requesting a 30-day review period, therefore, please submit all comments by October 11th. A confirmation email is kindly requested upon review completion (John.Crutchfield@dukeenergy.com).

Important - Please Read!

- As discussed in the kick-off meeting (July 2022), Duke Energy would like to make relicensing deliverables available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment; therefore, we request all comments be made in the SharePoint Word document. This will eliminate version control issues and result in a consolidated document for comment response.
- We **strongly recommend** opening the document in Word; otherwise the formatting will look distorted. The simplest way to do this is to click on the three dots to the right of the document (shown below), choose "Open", then choose "Open in app". This will open the document in Word and you'll have the functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free to reach out to **Maggie Salazar** for SharePoint access assistance or questions.
- If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page (green bar) of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. (Note the tutorial provides an alternative way to open the document in Word either technique works!)
- Finally, please note the report appendix (Appendix A) is provided in the folder as a PDF. There is no way to comment on a PDF from SharePoint; therefore, we suggest either making the comment in the Word document with reference to the figure/page number or providing figure comments in a separate email.

Please let me know if you have any questions.

Regards,

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
526 S. Church Street, EC12Q | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

From: Crutchfield Jr., John U

To: Stuart, Alan Witten; Kulpa, Sarah; McCarney-Castle, Kerry; Salazar, Maggie

Subject: FW: [EXTERNAL] RE: Bad Creek Relicensing - Task 2 CFD Modeling Report for Resource Committee Distribution and Review

Date: Thursday, October 5, 2023 1:59:05 PM

image003.png Attachments:

image004.pnq

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

FYI.

From: gcyantis2@yahoo.com <gcyantis2@yahoo.com>

Sent: Thursday, October 5, 2023 1:55 PM

To: Crutchfield Jr., John U < John. Crutchfield@duke-energy.com>

Subject: [EXTERNAL] RE: Bad Creek Relicensing - Task 2 CFD Modeling Report for Resource Committee Distribution

and Review

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

John,

I have reviewed and have no comments. Thank you for the reminder message.

Regards, **Gerry Yantis**

AQD

From: Crutchfield Jr., John U < John. Crutchfield@duke-energy.com>

Sent: Wednesday, October 4, 2023 10:19 AM

To: Abney, Michael A < Michael. Abney@duke-energy.com >; Amy Breedlove < Breedlove A@dnr.sc.gov >; Dan Rankin <<u>RankinD@dnr.sc.gov</u>>; Elizabeth Miller <<u>MillerE@dnr.sc.gov</u>>; Erika Hollis <<u>ehollis@upstateforever.org</u>>; Erin Settevendemio < Frin. Settevendemio@hdrinc.com >; Gerry Yantis < gcvantis2@vahoo.com >; John Haines <<u>ihains@g.clemson.edu</u>>; Lynn Quattro <<u>quattrol@dnr.sc.gov</u>>; Melanie Olds <<u>melanie_olds@fws.gov</u>>; Morgan Amedee <amedeemd@dhec.sc.gov>; Morgan Kern <kernm@dnr.sc.gov>; Ross Self <SelfR@dnr.sc.gov>; Stuart, Alan Witten <<u>Alan.Stuart@duke-energy.com</u>>; Wahl, Nick <<u>Nick.Wahl@duke-energy.com</u>>; William Wood <woodw@dnr.sc.gov>; Alex Pellett <<u>PellettC@dnr.sc.gov</u>>; Dale Wilde <<u>dwilde@keoweefolks.org</u>>; David Bereskin <bereskind@greenvillewater.com>; Jeffrey Phillips <jphillips@greenvillewater.com>; Kerry McCarney-Castle < <u>Kerry.McCarney-Castle@hdrinc.com</u>>; More Priyanka < <u>morep@dnr.sc.gov</u>>; Raber, Mayerick James <<u>Maverick.Raber@duke-energy.com</u>>; Scott Harder <<u>harders@dnr.sc.gov</u>>; William Wood <<u>woodw@dnr.sc.gov</u>>; Ziegler, Ty <<u>ty.ziegler@hdrinc.com</u>>; Dvorak, Joe <<u>Joe.Dvorak@hdrinc.com</u>>; Alison Jakupca <a in square a lison.jakupca@kleinschmidtgroup.com>; Kevin Nebiolo Kevin.Nebiolo@KleinschmidtGroup.com; Bruce, Ed <<u>Ed.Bruce@duke-energy.com</u>>; Dunn, Lynne <<u>Lynne.Dunn@duke-energy.com</u>>; Huff, Jen <<u>Jen.Huff@hdrinc.com</u>>

Cc: Sarah Kulpa <sarah.kulpa@hdrinc.com>; Maggie Salazar <maggie.salazar@hdrinc.com>

Subject: RE: Bad Creek Relicensing - Task 2 CFD Modeling Report for Resource Committee Distribution and Review

Dear Bad Creek Relicensing Water and Aquatic Resources Committees:

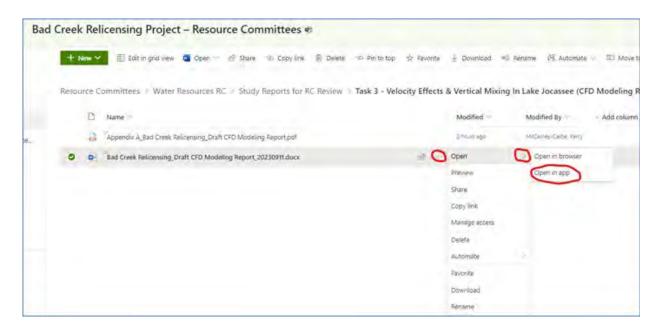
Just a reminder that comments on due on the draft CFD modeling report next Wednesday, October 11.

Thanks,

John

From: Crutchfield Jr., John U

Sent: Monday, September 11, 2023 4:04 PM


To: Abney, Michael A < Michael. Abney@duke-energy.com >; Amy Breedlove < Breedlove A@dnr.sc.gov >; Dan Rankin <<u>RankinD@dnr.sc.gov</u>>; Elizabeth Miller <<u>MillerE@dnr.sc.gov</u>>; Erika Hollis <<u>ehollis@upstateforever.org</u>>; Erin Settevendemio < Frin. Settevendemio@hdrinc.com >; Gerry Yantis < gcvantis2@vahoo.com >; John Haines <ihains@g.clemson.edu>; Lynn Quattro <<u>quattrol@dnr.sc.gov</u>>; Melanie Olds <<u>melanie olds@fws.gov</u>>; Morgan Amedee <amedeemd@dhec.sc.gov>; Morgan Kern <kernm@dnr.sc.gov>; Ross Self <SelfR@dnr.sc.gov>; Stuart, Alan Witten <<u>Alan.Stuart@duke-energy.com</u>>; Wahl, Nick <<u>Nick.Wahl@duke-energy.com</u>>; William Wood <woodw@dnr.sc.gov>; Alex Pellett <<u>PellettC@dnr.sc.gov</u>>; Dale Wilde <<u>dwilde@keoweefolks.org</u>>; David Bereskin <bereskind@greenvillewater.com>; Jeffrey Phillips <iphillips@greenvillewater.com>; Kerry McCarney-Castle < <u>Kerry.McCarney-Castle@hdrinc.com</u>>; More Priyanka < <u>morep@dnr.sc.gov</u>>; Raber, Maverick James < Maverick.Raber@duke-energy.com >; Scott Harder < harders@dnr.sc.gov >; William Wood < woodw@dnr.sc.gov >; Ziegler, Ty <tv.ziegler@hdrinc.com>; Dvorak, Joe <<u>Joe.Dvorak@hdrinc.com</u>>; Alison Jakupca <a in square a lison.jakupca@kleinschmidtgroup.com>; Kevin Nebiolo Kevin.Nebiolo@KleinschmidtGroup.com; Bruce, Ed <<u>Ed.Bruce@duke-energy.com</u>>; Dunn, Lynne <<u>Lynne.Dunn@duke-energy.com</u>>; Huff, Jen <<u>Jen.Huff@hdrinc.com</u>> Cc: Sarah Kulpa <sarah.kulpa@hdrinc.com>; Maggie Salazar <maggie.salazar@hdrinc.com> Subject: Bad Creek Relicensing - Task 2 CFD Modeling Report for Resource Committee Distribution and Review Importance: High

Dear Bad Creek Relicensing Water and Aquatic Resources Committees:

Duke Energy is pleased to distribute the draft report <u>Velocity Effects and Vertical Mixing in Lake Jocassee Due to a Second Powerhouse</u> (i.e., CFD Modeling Report) for Resource Committee review. This draft report satisfies Task 3 of the Bad Creek Relicensing Water Resources Study. The deliverable and associated appendix are available on the Bad Creek Relicensing SharePoint site at the following link: Task 3 - Velocity Effects & Vertical Mixing In Lake Jocassee (CFD Modeling Report). Duke Energy is requesting a 30-day review period, therefore, please submit all comments by October 11th. A confirmation email is kindly requested upon review completion (John.Crutchfield@dukeenergy.com).

Important - Please Read!

- As discussed in the kick-off meeting (July 2022), Duke Energy would like to make relicensing deliverables available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment; therefore, we request all comments be made in the SharePoint Word document. This will eliminate version control issues and result in a consolidated document for comment response.
- We <u>strongly recommend</u> opening the document in Word; otherwise the formatting will look distorted. The simplest way to do this is to click on the three dots to the right of the document (shown below), choose "Open", then choose "Open in app". This will open the document in Word and you'll have the functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free to reach out to <u>Maggie Salazar</u> for SharePoint access assistance or questions.
- If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page (green bar) of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. (Note the tutorial provides an alternative way to open the document in Word either technique works!)
- Finally, please note the report appendix (Appendix A) is provided in the folder as a PDF. There is no way to comment on a PDF from SharePoint; therefore, we suggest either making the comment in the Word document with reference to the figure/page number or providing figure comments in a separate email.

Please let me know if you have any questions.

Regards,

John Crutchfield

To: Kulpa, Sarah; McCarney-Castle, Kerry; Ziegler, Ty; Raber, Maverick James; Salazar, Maggie; Bruce, Ed

Cc: Stuart, Alan Witten

Subject: FW: [EXTERNAL] Re: Bad Creek Relicensing - Task 2 CFD Modeling Report for Resource Committee Distribution and Review

Date: Wednesday, October 11, 2023 8:53:01 AM

Attachments: image001.png image002.png

image002.png

Response to Bad Creek Relicensing - Task 2 CFD Modeling Report 11 Oct 2023.pdf

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

FYI.

From: John Hains < jhains@g.clemson.edu>
Sent: Wednesday, October 11, 2023 8:42 AM

To: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>; Stuart, Alan Witten < Alan.Stuart@duke-

energy.com>; Dale Wilde <dwilde@keoweefolks.org>

Subject: [EXTERNAL] Re: Bad Creek Relicensing - Task 2 CFD Modeling Report for Resource Committee Distribution and

Review

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

I have attached my comments on the Bad Creek Relicensing - Task 2 CFD Modeling Report. Please accept my thanks for the opportunity to review the report.

John Hains

Friends of Lake Keowee Society

On Wed, Oct 4, 2023 at 10:20 AM Crutchfield Jr., John U < John.Crutchfield@duke-energy.com > wrote:

Dear Bad Creek Relicensing Water and Aquatic Resources Committees:

Just a reminder that comments on due on the draft CFD modeling report next Wednesday, October 11.

Thanks, John

From: Crutchfield Jr., John U

Sent: Monday, September 11, 2023 4:04 PM

To: Abney, Michael A < Michael.Abney@duke-energy.com>; Amy Breedlove < BreedloveA@dnr.sc.gov>; Dan Rankin < RankinD@dnr.sc.gov>; Elizabeth Miller < MillerE@dnr.sc.gov>; Erika Hollis < ehollis@upstateforever.org>; Erin Settevendemio < Erin.Settevendemio@hdrinc.com>; Gerry Yantis < gcyantis2@yahoo.com>; John Haines < jhains@g.clemson.edu>; Lynn Quattro < quattrol@dnr.sc.gov>; Melanie Olds < melanie_olds@fws.gov>; Morgan Amedee < amedeemd@dhec.sc.gov>; Morgan Kern < kernm@dnr.sc.gov>; Ross Self < SelfR@dnr.sc.gov>; Stuart, Alan Witten < Alan.Stuart@duke-energy.com>; Wahl, Nick < Nick.Wahl@duke-energy.com>; William Wood < woodw@dnr.sc.gov>; Alex Pellett < PellettC@dnr.sc.gov>; Dale Wilde < dwilde@keoweefolks.org>; David Bereskin < bereskind@greenvillewater.com>; Jeffrey Phillips < jphillips@greenvillewater.com>; Kerry McCarney-Castle < Kerry.McCarney-Castle@hdrinc.com>; More Priyanka < morep@dnr.sc.gov>; Raber, Maverick James < Maverick.Raber@duke-energy.com>; Scott Harder < harders@dnr.sc.gov>; William Wood < woodw@dnr.sc.gov>; Ziegler, Ty < ty.ziegler@hdrinc.com>; Dvorak, Joe < Joe.Dvorak@hdrinc.com>; Alison Jakupca < alison.jakupca@kleinschmidtgroup.com>; Bruce, Ed < Ed.Bruce@duke-energy.com>; Dunn, Lynne < Lynne.Dunn@duke-energy.com>; Huff, Jen < Jen.Huff@hdrinc.com>

Cc: Sarah Kulpa <<u>sarah.kulpa@hdrinc.com</u>>; Maggie Salazar <<u>maggie.salazar@hdrinc.com</u>>

Subject: Bad Creek Relicensing - Task 2 CFD Modeling Report for Resource Committee Distribution and Review

Importance: High

Dear Bad Creek Relicensing Water and Aquatic Resources Committees:

Duke Energy is pleased to distribute the draft report <u>Velocity Effects and Vertical Mixing in Lake Jocassee Due to a Second Powerhouse</u> (i.e., CFD Modeling Report) for Resource Committee review. This draft report satisfies Task 3 of the Bad Creek Relicensing Water Resources Study. The deliverable and associated appendix are available on the Bad Creek Relicensing SharePoint site at the following link: <u>Task 3 - Velocity Effects & Vertical Mixing In Lake Jocassee</u> (CFD Modeling Report). Duke Energy is requesting a 30-day review period, therefore, <u>please submit all comments by October 11th</u>. A confirmation email is kindly requested upon review completion (<u>John.Crutchfield@dukeenergy.com</u>).

Important - Please Read!

- As discussed in the kick-off meeting (July 2022), Duke Energy would like to make relicensing deliverables available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment; therefore, we request all comments be made in the SharePoint Word document. This will eliminate version control issues and result in a consolidated document for comment response.
- We **strongly recommend** opening the document in Word; otherwise the formatting will look distorted. The simplest way to do this is to click on the three dots to the right of the document (shown below), choose "Open", then choose "Open in app". This will open the document in Word and you'll have the functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free to reach out to **Maggie Salazar** for SharePoint access assistance or questions.
- If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page (green bar) of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. (Note the tutorial provides an alternative way to open the document in Word either technique works!)
- Finally, please note the report appendix (Appendix A) is provided in the folder as a PDF. There is no way to comment on a PDF from SharePoint; therefore, we suggest either making the comment in the Word document with reference to the figure/page number or providing figure comments in a separate email.

_
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

Please let me know if you have any questions.

Regards,

John Crutchfield

Project Manager II

Water Strategy, Hydro Licensing & Lake Services

Regulated & Renewable Energy

Duke Energy

526 S. Church Street, EC12Q | Charlotte, NC 28202

Office 980-373-2288 | Cell 919-757-1095

To: Abney, Michael A; Amy Breedlove; RankinD; Elizabeth Miller; Erika Hollis; Settevendemio, Erin; Gerry Yantis;

Jhains@g.clemson.edu; quattrol; Olds, Melanie J; Amedee, Morgan D.; kernm; SelfR; Stuart, Alan Witten; Wahl, Nick; William T. Wood; Alex Pellett; Dale Wilde; bereskind; Jeff Phillips; McCarney-Castle, Kerry; More, Priyanka; Raber, Maverick James; Scott Harder; William T. Wood; Ziegler, Ty; Dvorak, Joe; Alison Jakupca; Kevin Nebiolo;

Bruce, Ed; Dunn, Lynne; Huff, Jen

Cc: <u>Kulpa, Sarah; Salazar, Maggie</u>

Subject: Bad Creek Relicensing - CFD Modeling FINAL Report Posted on Stakeholder SharePoint Site

Date: Friday, October 27, 2023 9:35:02 AM

Attachments: <u>image001.png</u>

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Dear Bad Creek Relicensing Water and Aquatic Resources Committees:

Good morning!

The final CFD modeling report "Velocity Effects and Vertical Mixing in Lake Jocassee due to a Second Powerhouse" (Task 3 of the Water Resources Study) is available on SharePoint at the link below. This report will be filed with the Initial Study Report in January. We appreciate feedback received on the report - a brief comment response table is also provided at the SharePoint link and includes Duke Energy's responses to comments.

Final Report

Thank you for your participation in the Bad Creek relicensing and we look forward to continued collaboration in the coming months.

Regards,

John Crutchfield

Agency	Date Submitted	Comment	Duke Energy Response
USFWS	9/27/2023	No comments.	No response needed.
AQD	10/5/2023	No comments.	No response needed.
Friends of Lake Keowee Society (FOLKS)	ee 10/11/2023	I have read the CFD document and in my opinion the technical approach to the modeling study is sound. I have no criticisms to what has been done or what was described in the document. However, I do have some additional comments and questions that relate, I believe, to aspects of the limnology of this system that may not be addressed by this effort. Please correct me if I am mistaken or if these aspects are going to be addressed in other phases of these studies.	Thank you for your review. Duke Energy appreciates your feedback conveying your approval of the CFD modeling approach and results covered under Task 3 of the Bad Creek Water Resources Study for Project relicensing. The main objective of this study task was to develop 2-D and 3-D models and use these models to evaluate flows and the extent of vertical mixing in the Whitewater River cove (downstream of the submerged weir) due to the addition of a second inlet/outlet structure. Key results indicate hydraulic effects in Lake Jocasee due to operations are limited to the area upstream of the Devil's Fork / Whitewater River confluence and natural stratification is maintained downstream of the weir under all modeled scenarios. Model results show Bad Creek II powerhouse operations will not alter existing stratification patterns observed downstream of the weir or further downstream into Lake Jocassee. Some aspects of biological, chemical, and physical features of Lake Jocassee (i.e., limnology) are incorporated in part under other studies, namely Tasks 2 and 3 of the Aquatic Resources Study (i.e., biology and aquatic habitat), Task 1 of the Water Quality Study (i.e., historic and current water quality trends including
		1. The mean discharge of the Savannah River at Clyo, GA is in the range of 9K cfs. The maximum outflow that has been projected for Bad Creek under the operation of the additional powerhouse is therefore about three times the mean flow of the Savannah River near its mouth for whatever length of time that power demand requires such release from Bad Creek. That, to my mind, raises a few questions that appear not to be addressed by the modeling effort.	stratification), and Task 5 (future Water Quality Monitoring Plan); however, based on FERC project nexus and the seven study criterial, other aspects, including movement of water through the watershed and biogeochemical changes that occur en route, aren't considered to be affected by Bad Creek Project operations and, therefore, were not included in FERC's Study Plan Determination. The total contributing drainage area for the Bad Creek Reservoir is approximately 1.5 square miles (mi²), therefore, downstream contributing flows are minor (approximately 5.0 cubic feet per second from seepage through the dams). Water is exchanged between the upper Bad Creek Reservoir and Lake Jocassee, commonly alternating between generating and pumping on a daily basis; the maximum allowable drawdown is 160 feet, which will not change under the proposed configuration. Flows exchanged between the two water bodies do not directly connect with flows in the Savannah River, therefore there is no impact on flows downstream in the Savannah River resulting from Bad Creek Project operations. The exception would be during extreme droughts where Duke Energy must release Bad Creek's storage to stay in compliance with USACE and SEPA to maintain hydropower generating requirements downstream. Additionally, there are 8 dams downstream of Bad Creek and accounting for attenuation over more than 300 miles of stream length as well as reservoir retention/evaporation downstream, plus various water uses downstream along the water course, one would not expect similarity in a direct comparison of Bad Creek Project flows with flows near the mouth of the Savannah River.
		2. There is a well-established concept that has to do with vertical transport of thermal energy (heat) during wind-induced water movement, called 'work of the wind'. In this process a lake that experiences wind-forced lateral shear currents and resulting eddy diffusivity tends to transport energy (primarily, but not limited to, absorbed solar energy) to depths greater than expected without such water motion. While wind may not be a great factor for such transport to great depths in Lake Jocassee compared to pumped-storage operation at Jocassee Hydro, flows such as predicted by this document (3x the Savannah River) may induce such transport and thus affect the lake in a similar manner. The question therefore remains as to how much such transport will occur and what will be its lateral and vertical extent into Lake Jocassee as well as its resulting effect on vertical thermal patterns.	Heat transport due to wind was not included in the scope for Task 3 (i.e., CFD modeling of the Whitewater River arm to determine velocity and mixing effects downstream of the submerged weir due to a second powerhouse). It is important to remember that Bad Creek is a pumped storage system, such that water is exchanged between the upper and lower reservoirs; the water is not altered in any way and the retention time in the upper reservoir is very short due to frequent exchange. This will also be true of Bad Creek II; the same volume of water will be exchanged between the two reservoirs, albeit more frequently. CFD modeling indicates that vertical mixing from Project flows is limited to the portion of Whitewater River arm upstream of the weir (under both Project scenarios). Based on historical and current water quality data at depth, vertical temperature and DO stratification is observed across all water quality monitoring sites in Lake Jocassee. Wind-induced water movement and subsequent transport of thermal energy during wind-induced water movement is a natural process not impacted by the existing or proposed projects, nor is there a connection between the project and its potential effect on the applicable resource, and therefore, would not meet FERC relicensing nexus criteria. [§5.9(b)(5) Explain any nexus between project operations and effects (direct, indirect, and/or cumulative) on the resource to be studied, and how the study results would inform the development of license requirements.]
		3. Given this unknown, and building on the aforementioned question, it would be a useful (and feasible) exercise to compute both the empirical (Birgean) and the analytical heat budgets for all years prior to and after the operation of the Bad Creek Project. For past years the two approaches would allow for a comparison and measure of their accuracy. Then, employing the capability of the hydrodynamic model, to predict the heat budgets for Lake Jocassee that result during max/min operations conditions for the additional units in Bad Creek II.	Computation of heat budgets for Lake Jocassee was not included in the scope for Task 3 (i.e., CFD modeling of the Whitewater River arm to determine velocity and mixing effects downstream of the submerged weir due to a second powerhouse). The heat budget of a reservoir is typically controlled by heat fluxes at the lake surface including shortwave radiation, incoming and outgoing longwave radiation, and the latent heat flux. ² These are natural processes and not impacted by the existing or proposed projects, nor is there a connection between the project and its potential effect on the applicable resource, and therefore, would not meet FERC relicensing nexus criteria. [\$5.9(b)(5) Explain any nexus between project operations and effects (direct, indirect, and/or cumulative) on the resource to be studied, and how the study results would inform the development of license requirements.]

¹ https://www.ferc.gov/sites/default/files/2020-04/UnderstandingtheStudyCriteriaILP.pdf ² Schmid, M. and Read, J. 2021. Heat Budget of Lakes. Earth Systems and Environmental Sciences. Encyclopedia of Inland Waters (Volume 1). https://doi.org/10.1016/B978-0-12-819166-8.00011-6.

Agency	Date Submitted	Comment	Duke Energy Response
		4. Aspects such as these will be quite different between stratified and non-stratified conditions and may find the greatest sensitivity for operation during a transition period such as occurs during spring warming. It would be important to address this for all months and all operational conditions such as lake surface elevation and release dynamics.	Historical water quality monitoring data show most years exhibit year-round stratification at all monitoring stations in Lake Jocassee except for the station immediately downstream of the Project discharge where water is mixed. All seasons have been evaluated for stratification patterns (DO and temperature) in Lake Jocassee and the period of record (40 plus years) shows stratification is maintained throughout all seasons, with the exception of very cold winters when the lake becomes isothermal, though at varying depths depending on season. CFD modeling results (and historical water quality data) show stratification downstream of the submerged weir is retained, including scenarios of Bad Creek I and Bad Creek II operating under maximum drawdown conditions (1,080 feet above mean sea level). Additionally, because Bad Creek operates as a pumped storage, there are no additive effects on thermal characteristics or aquatic habitat in the lake and no concern for thermal alteration on biological processes. Additionally, release dynamics are not applicable to the existing (or proposed) project operations. Under existing license articles for the Project as well as the Memorandum of Understanding (MOU) between Duke Energy and the South Carolina Department of Natural Resources, long-term monitoring of trout habitat and water quality will continue to ensure management and maintenance of the high-quality fishery resources.
		5. In other studies of pumped-storage, the supplemental kinetic energy during operations has been found to stimulate biological processes such as primary production. Because the nature of such stimulation is dependent on the unique characteristics of each situation this may or may not be of importance for Lake Jocassee. The potential influence of thermal alterations on biological processes merely adds an additional 'layer' to the question. This question may fall outside of the scope of the CFD modeling effort. Nevertheless, it is an unknown that needs to be addressed during some aspect of this overall study effort for relicensing and the addition of Bad Creek II.	The supplemental kinetic energy created during project operations has not been evaluated, nor its potential to stimulate biological processes (water from the upper reservoir is released in generating mode, converting from potential energy to kinetic energy by the flowing water). Water quality and biological/aquatic monitoring has been performed since the impoundment of the reservoir. Lake Jocassee is designated as TPGT, which are freshwaters suitable for supporting growth of stocked trout populations and a balanced indigenous aquatic community of fauna and flora. Lake Jocassee is included in the highest water quality classification (i.e., excellent rating) as designated by SCDHEC and preservation of existing conditions is recommended, with most tributaries within the watershed fully supporting their designated use. Lake Jocassee is one of only a few reservoirs in South Carolina that possesses the necessary aquatic habitat (water temperatures and DO) to support both a warmwater and a coldwater (salmonid [trout]) fishery year-round. SCDHEC has consistently identified Lake Jocassee (as well as downstream Lake Keowee) among the cleanest South Carolina reservoirs based on data from 1980-1981, 1985-1986, and 1989-1990 studies. Recent data continue to indicate Lake Jocassee fully supports aquatic life and recreational designated uses under current Project operations and this is expected to remain the same under future operations (i.e., with the addition of Bad Creek II) given the CFD model results which indicate limited, rapidly dissipating mixing on the downstream side of the submerged weir. Therefore, supplemental energy from the existing (or proposed) powerhouse is not

anticipated to alter or stimulate biological processes in the lake.

To: Abney, Michael A; Amy Breedlove; RankinD; Elizabeth Miller; Erika Hollis; Settevendemio, Erin; Gerry Yantis;

jhains@g.clemson.edu; quattrol; Olds, Melanie J; Amedee, Morgan D.; kernm; SelfR; Stuart, Alan Witten; Wahl, Nick; William T. Wood; Alex Pellett; Dale Wilde; bereskind; Jeff Phillips; McCarney-Castle, Kerry; More, Priyanka; Raber, Maverick James; Scott Harder; William T. Wood; Ziegler, Ty; Dvorak, Joe; Alison Jakupca; Kevin Nebiolo;

Bruce, Ed; Dunn, Lynne; Huff, Jen

Cc: Kulpa, Sarah; Salazar, Maggie; Lineberger, Jeff

Subject: Bad Creek Relicensing - ILP Study Plans and Reports Schedule Update

Date: Tuesday, October 31, 2023 12:02:43 PM

Importance: High

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Dear Bad Creek Relicensing Water and Aquatic Resources Committees:

I hope this email finds you well and that you have been able to get out and enjoy the fantastic weather we are having this fall. It is hard to believe it is nearly November, and as we all know, the days start slipping by quickly as the year wraps up.

Duke Energy and our consultants have been working diligently to complete the first year ILP studies and advance the study reports. I wanted to take this opportunity to provide you with a preview of Resource Committee reviews that will be requested over the next month and the upcoming FERC ILP process milestones.

- 1. **Initial Study Report (ISR)** We expect to file the ISR on or just before the FERC ILP deadline of January 4, 2024.
- 2. ISR Meeting The ISR meeting is to be held within 15 days of the ISR filing. Duke Energy is coordinating availability with FERC staff, and we are presently planning to conduct the ISR Meeting at the Duke Energy Wenwood Operations Center (Greenville, SC) on Wednesday, January 17th. Please note this meeting date is subject to change depending up FERC staff availability and if it shifts to another date in January, we will let you know so you can plan accordingly. Your attendance at this meeting is greatly appreciated and encouraged, but a Teams meeting will be made available for participants who are unable to travel.

3. Water Resources Study Reports

- a. **Task 2** study report "Whitewater River Cove Water Quality Field Study":
 - i. Will not be completed until the end of the 2024 (2nd) ILP study season.
 - ii. A summary of Year 1 results will be provided in the ISR.
- b. **Task 3** study report "Velocity Effects and Vertical Mixing in

Lake Jocassee Due to a Second Powerhouse":

- i. The Resource Committee comment period on this report is closed.

 Thank you to RC members who provided comments.
- ii. We are developing an addendum to that report to include field verification results (ADCP velocity measurements in the Whitewater River Cove) as discussed at the July 27th Joint RC Meeting. This addendum will be submitted to the Water Resources RC (via the SharePoint Site) by November 10 for a 30-day review and will be submitted with the ISR.
- iii. The Task 3 study report (in entirety) will be filed with FERC with the ISR. This filing will include documentation of consultation with the RC and response to comments received. (Responses to comments will also be posted separately to the SharePoint site).
- c. **Task 4** study report "Water Exchange Rates and Lake Jocassee Reservoir Levels":
 - The Duke Energy relicensing team continues to work through CHEOPS model updates, calibration, and simulations of the designated operating scenarios for Bad Creek II. We presently expect to include a status update in the ISR and distribute the draft report to the Water and Aquatics Resources RCs in Q1 2024.

4. Aquatic Resources Study Reports

- a. **Task 1** study report "Entrainment Report (Revised)" will be shared with the Aquatics RC by November 3 for a final 30-day review period.
- b. **Task 2** study report "Desktop Studies on Pelagic and Littoral Habitat Effects" requires input from the Water Resources Task 4 study report described above. We presently expect to include a status update in the ISR and distribute the draft report to the Aquatics RC in Q1 2024.
- c. **Task 3** study report "Mussel Surveys and Stream Habitat Quality Surveys" will be submitted to the Aquatics RC as a draft for review and we are targeting submittal to the RC by November 17. Duke Energy will be requesting an expedited (3-week) review period by the RC, due to the coming holidays.

If you have any questions at all about any of the activities described above or the process in general, please do not hesitate to reach out to me or Alan Stuart directly.

Thank you for your continued participation in this process, and on behalf of Duke Energy, we look forward to a productive quarter and advancing the Bad Creek Project relicensing in collaboration with this group and other stakeholders.

Regards,

John Crutchfield

To: Kulpa, Sarah; McCarney-Castle, Kerry

Subject: FW: [EXTERNAL] Re: Bad Creek Relicensing - ILP Study Plans and Reports Schedule Update

Date: Tuesday, October 31, 2023 1:01:34 PM

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

FYI.

From: John Hains <jhains@g.clemson.edu> Sent: Tuesday, October 31, 2023 12:42 PM

To: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>; Stuart, Alan Witten

<Alan.Stuart@duke-energy.com>; Dale Wilde <dwilde@keoweefolks.org>

Subject: [EXTERNAL] Re: Bad Creek Relicensing - ILP Study Plans and Reports Schedule Update

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

I will be out of the country for the entire month of January. If I have internet access where I am during the meeting I will try to connect virtually.

Thanks for letting us know the overall plan.

John Hains

On Tue, Oct 31, 2023 at 12:02 PM Crutchfield Jr., John U < <u>John.Crutchfield@duke-energy.com</u>> wrote:

Dear Bad Creek Relicensing Water and Aquatic Resources Committees:

I hope this email finds you well and that you have been able to get out and enjoy the fantastic weather we are having this fall. It is hard to believe it is nearly November, and as we all know, the days start slipping by quickly as the year wraps up.

Duke Energy and our consultants have been working diligently to complete the first year ILP studies and advance the study reports. I wanted to take this opportunity to provide you with a preview of Resource Committee reviews that will be requested over the next month and the upcoming FERC ILP process milestones.

- 1. **Initial Study Report (ISR)** We expect to file the ISR on or just before the FERC ILP deadline of January 4, 2024.
- 2. ISR Meeting The ISR meeting is to be held within 15 days of the ISR filing. Duke Energy is

coordinating availability with FERC staff, and we are presently planning to conduct the ISR Meeting at the Duke Energy Wenwood Operations Center (Greenville, SC) on Wednesday, January 17th. Please note this meeting date is subject to change depending up FERC staff availability and if it shifts to another date in January, we will let you know so you can plan accordingly. Your attendance at this meeting is greatly appreciated and encouraged, but a Teams meeting will be made available for participants who are unable to travel.

3. Water Resources Study Reports

- a. **Task 2** study report "Whitewater River Cove Water Quality Field Study":
 - i. Will not be completed until the end of the 2024 (2^{nd}) ILP study season.
 - $\mbox{ii.} \qquad \mbox{A summary of Year 1 results} \\ \mbox{will be provided in the ISR.}$
- b. **Task 3** study report "Velocity Effects and Vertical Mixing in Lake Jocassee Due to a Second Powerhouse":
 - i. The Resource Committee comment period on this report is closed. Thank you to RC members who provided comments.
 - ii. We are developing an addendum to that report to include field verification results (ADCP velocity measurements in the Whitewater River Cove) as discussed at the July 27th Joint RC Meeting. This addendum will be submitted to the Water Resources RC (via the SharePoint Site) by November 10 for a 30-day review and will be submitted with the ISR.
 - iii. The Task 3 study report (in entirety) will be filed with FERC with the ISR. This filing will include documentation of consultation with the RC and response to comments received. (Responses to comments will also be posted separately to the SharePoint site).
- c. **Task 4** study report "Water Exchange Rates and Lake Jocassee Reservoir Levels":
 - i. The Duke Energy relicensing team continues to work through CHEOPS model updates, calibration, and simulations of the designated operating scenarios for Bad Creek II. We presently expect to include a status update in the ISR and distribute the draft report to the

Water and Aquatics Resources RCs in Q1 2024.

4. Aquatic Resources Study Reports

- a. **Task 1** study report "Entrainment Report (Revised)" will be shared with the Aquatics RC by November 3 for a final 30-day review period.
- b. **Task 2** study report "Desktop Studies on Pelagic and Littoral Habitat Effects" requires input from the Water Resources Task 4 study report described above. We presently expect to include a status update in the ISR and distribute the draft report to the Aquatics RC in Q1 2024.
- c. **Task 3** study report "Mussel Surveys and Stream Habitat Quality Surveys" will be submitted to the Aquatics RC as a draft for review and we are targeting submittal to the RC by November 17. Duke Energy will be requesting an expedited (3-week) review period by the RC, due to the coming holidays.

If you have any questions at all about any of the activities described above or the process in general, please do not hesitate to reach out to me or Alan Stuart directly.

Thank you for your continued participation in this process, and on behalf of Duke Energy, we look forward to a productive quarter and advancing the Bad Creek Project relicensing in collaboration with this group and other stakeholders.

Regards,

John Crutchfield

To: Abney, Michael A; Amy Breedlove; RankinD; Elizabeth Miller; Erika Hollis; Settevendemio, Erin; Gerry Yantis; jhains@g.clemson.edu;

quattrol; Olds, Melanie J; Amedee, Morgan D.; kernm; SelfR; Stuart, Alan Witten; Wahl, Nick; William T. Wood; Alex Pellett; Dale Wilde; bereskind; Jeff Phillips; McCarney-Castle, Kerry; More, Priyanka; Raber, Maverick James; Scott Harder; William T. Wood;

Ziegler, Ty; Dvorak, Joe; Alison Jakupca; Kevin Nebiolo; Bruce, Ed; Dunn, Lynne; Huff, Jen

Cc: Kulpa, Sarah; Salazar, Maggie

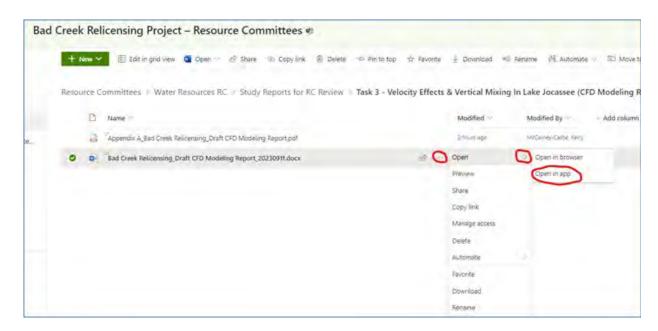
Subject: Bad Creek Relicensing - CFD Verification Addendum Report Review Request

Date: Monday, November 6, 2023 10:39:41 AM

Attachments: image001.png image002.png
Importance: High

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Dear Bad Creek Relicensing Water and Aquatic Resources Committees:


Duke Energy is pleased to distribute the <u>Bad Creek CFD Model Verification Draft Addendum</u> for stakeholder review. This draft report includes methods and results of the field study performed to verify CFD modeling results and will be attached to the already-finalized Task 3 study report (Velocity Effects and Vertical Mixing in Lake Jocassee Due to a Second Powerhouse). The deliverable is available on the Bad Creek Relicensing SharePoint site at the following link: CFD Model Verification Addendum Draft Report.

Duke Energy is requesting a 30-day review period, therefore, please submit all comments by **<u>December 6th</u>**. A confirmation email is kindly requested upon review completion (email me at <u>John.Crutchfield@duke-energy.com</u>).

Important – Please Read!

- As discussed in the kick-off meeting (July 2022), Duke Energy would like to make relicensing deliverables available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment; therefore, we request all comments be made in the SharePoint Word document using tracked changes. This will eliminate version control issues and result in a consolidated document for comment response.
- We strongly recommend opening the document in Word; otherwise the formatting will look distorted. The simplest way to do this is to click on the three dots to the right of the document (example shown below), choose "Open", then choose "Open in app". This will open the document in Word and you'll have the functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free to reach out to McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word — either technique works!])

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

From: Crutchfield Jr., John U

To: Stuart, Alan Witten; Kulpa, Sarah; McCarney-Castle, Kerry; Huff, Jen

Subject: FW: [EXTERNAL] RE: Bad Creek Relicensing - CFD Verification Addendum Report Review Request

Date: Wednesday, December 6, 2023 6:05:03 AM

image003.png Attachments:

image004.pnq

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

From: gcyantis2@yahoo.com <gcyantis2@yahoo.com>

Sent: Tuesday, December 5, 2023 4:01 PM

To: Crutchfield Jr., John U < John. Crutchfield@duke-energy.com>

Cc: 'Sue Williams' <suewilliams130@gmail.com>

Subject: [EXTERNAL] RE: Bad Creek Relicensing - CFD Verification Addendum Report Review Request

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

I have reviewed the document. No comments from AQD at this time.

From: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com >

Sent: Wednesday, November 29, 2023 8:53 AM

To: Abney, Michael A < Michael. Abney@duke-energy.com >; Amy Breedlove < Breedlove A@dnr.sc.gov >; Dan Rankin <RankinD@dnr.sc.gov>; Elizabeth Miller <MillerE@dnr.sc.gov>; Erika Hollis <ehollis@upstateforever.org>; Erin Settevendemio < Frin. Settevendemio@hdrinc.com >; Gerry Yantis < gcvantis 2@vahoo.com >; John Haines <i hains@g.clemson.edu>; Lynn Quattro < quattrol@dnr.sc.gov>; Melanie Olds < melanie olds@fws.gov>; Morgan Amedee <amedeemd@dhec.sc.gov>; Morgan Kern <kernm@dnr.sc.gov>; Ross Self <<u>SelfR@dnr.sc.gov</u>>; Stuart, Alan Witten <<u>Alan.Stuart@duke-energy.com</u>>; Wahl, Nick <<u>Nick.Wahl@duke-energy.com</u>>; William Wood <woodw@dnr.sc.gov>; Alex Pellett <<u>PellettC@dnr.sc.gov</u>>; Dale Wilde <<u>dwilde@keoweefolks.org</u>>; David Bereskin <bereskind@greenvillewater.com>; Jeffrey Phillips <jphillips@greenvillewater.com; Kerry McCarney-Castle < <u>Kerry.McCarney-Castle@hdrinc.com</u>>; More Priyanka < <u>morep@dnr.sc.gov</u>>; Raber, Maverick James <<u>Maverick.Raber@duke-energy.com</u>>; Scott Harder <<u>harders@dnr.sc.gov</u>>; William Wood <<u>woodw@dnr.sc.gov</u>>;

Ziegler, Ty <tv.ziegler@hdrinc.com>; Dvorak, Joe <<u>Joe.Dvorak@hdrinc.com</u>>; Alison Jakupca

<a in square a lison.jakupca@kleinschmidtgroup.com>; Kevin Nebiolo Kevin.Nebiolo@KleinschmidtGroup.com; Bruce, Ed

<<u>Ed.Bruce@duke-energy.com</u>>; Dunn, Lynne <<u>Lynne.Dunn@duke-energy.com</u>>; Huff, Jen <<u>Jen.Huff@hdrinc.com</u>>

Cc: Sarah Kulpa < sarah.kulpa@hdrinc.com >; Maggie Salazar < maggie.salazar@hdrinc.com >

Subject: RE: Bad Creek Relicensing - CFD Verification Addendum Report Review Request

Dear Bad Creek Relicensing Water and Aquatic Resources Committees:

Just a reminder comments are due on the Bad Creek CFD Model Verification Draft Addendum by **December 6th**.

Regards,

John Crutchfield

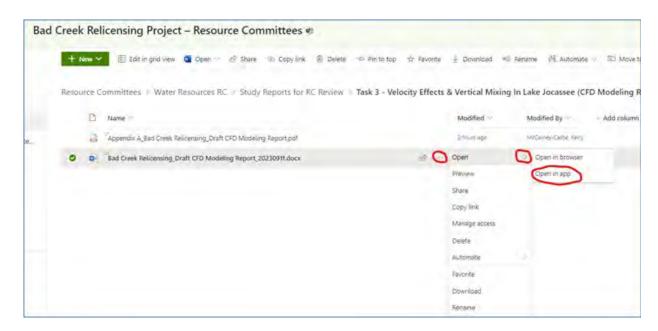
From: Crutchfield Jr., John U

Sent: Monday, November 6, 2023 10:39 AM

Subject: Bad Creek Relicensing - CFD Verification Addendum Report Review Request

Importance: High

Dear Bad Creek Relicensing Water and Aquatic Resources Committees:


Duke Energy is pleased to distribute the <u>Bad Creek CFD Model Verification Draft Addendum</u> for stakeholder review. This draft report includes methods and results of the field study performed to verify CFD modeling results and will be attached to the already-finalized Task 3 study report (Velocity Effects and Vertical Mixing in Lake Jocassee Due to a Second Powerhouse). The deliverable is available on the Bad Creek Relicensing SharePoint site at the following link: <u>CFD Model Verification Addendum</u> <u>Draft Report</u>.

Duke Energy is requesting a 30-day review period, therefore, please submit all comments by **December 6th**. A confirmation email is kindly requested upon review completion (email me at John.Crutchfield@duke-energy.com).

Important – Please Read!

- As discussed in the kick-off meeting (July 2022), Duke Energy would like to make relicensing deliverables available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment; therefore, we request all comments be made in the SharePoint Word document using tracked changes. This will eliminate version control issues and result in a consolidated document for comment response.
- We strongly recommend opening the document in Word; otherwise the formatting will look distorted. The
 simplest way to do this is to click on the three dots to the right of the document (example shown below),
 choose "Open", then choose "Open in app". This will open the document in Word and you'll have the
 functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free
 to reach out to @McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word – either technique works!])

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

From: <u>Elizabeth Miller</u>

To: Crutchfield Jr., John U; Abney, Michael A; Amy Breedlove; RankinD; Erika Hollis; Settevendemio, Erin; Gerry Yantis;

jhains@g.clemson.edu; quattrol; Olds, Melanie J; Amedee, Morgan D.; Morgan Kern; SelfR; Stuart, Alan Witten; Wahl, Nick; William T. Wood; Alex Pellett; Dale Wilde; bereskind; Jeff Phillips; McCarney-Castle, Kerry; More, Priyanka; Raber, Mayerick James; Scott Harder;

William T. Wood; Ziegler, Ty; Dvorak, Joe; Alison Jakupca; Kevin Nebiolo; Bruce, Ed; Dunn, Lynne; Huff, Jen

Cc: <u>Kulpa, Sarah; Salazar, Maggie</u>

Subject: RE: Bad Creek Relicensing - CFD Verification Addendum Report Review Request

Date: Wednesday, December 6, 2023 3:04:33 PM

Attachments: <u>image001.png</u> <u>image002.png</u>

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hi John,

Staff with the South Carolina Department of Natural Resources have reviewed the Bad Creek CFD Model Verification Draft Addendum and have no comments to offer.

Thank you,

Elizabeth

Elizabeth C. Miller SCDNR

Office: 843-953-3881 Cell: 843-729-4636

From: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Sent: Monday, November 6, 2023 10:39 AM

To: Abney, Michael A <Michael.Abney@duke-energy.com>; Amy Chastain <BreedloveA@dnr.sc.gov>; Dan Rankin <RankinD@dnr.sc.gov>; Elizabeth Miller <MillerE@dnr.sc.gov>; Erika Hollis <ehollis@upstateforever.org>; Erin Settevendemio <Erin.Settevendemio@hdrinc.com>; Gerry Yantis <gcyantis2@yahoo.com>; John Haines <jhains@g.clemson.edu>; Lynn Quattro <QuattroL@dnr.sc.gov>; Olds, Melanie J <melanie_olds@fws.gov>; Morgan Amedee <amedeemd@dhec.sc.gov>; Morgan Kern <KernM@dnr.sc.gov>; Ross Self <SelfR@dnr.sc.gov>; Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Wahl, Nick <Nick.Wahl@duke-energy.com>; William T. Wood <WoodW@dnr.sc.gov>; Alex Pellett <PellettC@dnr.sc.gov>; Dale Wilde <dwilde@keoweefolks.org>; David Bereskin

<br/

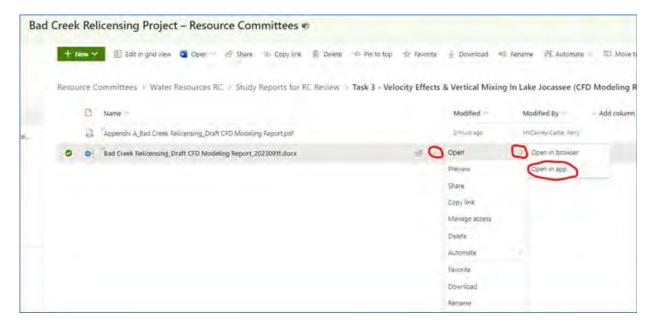
Cc: Sarah Kulpa <sarah.kulpa@hdrinc.com>; Maggie Salazar <maggie.salazar@hdrinc.com>

Subject: Bad Creek Relicensing - CFD Verification Addendum Report Review Request

Importance: High

Dear Bad Creek Relicensing Water and Aquatic Resources Committees:

Duke Energy is pleased to distribute the <u>Bad Creek CFD Model Verification Draft Addendum</u> for stakeholder review. This draft report includes methods and results of the field study performed to verify CFD modeling results and will be attached to the already-finalized Task 3 study report (Velocity Effects and Vertical Mixing in Lake Jocassee Due to a Second Powerhouse). The deliverable is available on the Bad Creek Relicensing SharePoint site at the following link: CFD Model Verification Addendum Draft Report.


Duke Energy is requesting a 30-day review period, therefore, please submit all comments by **December 6th**. A

confirmation email is kindly requested upon review completion (email me at John.Crutchfield@duke-energy.com).

Important - Please Read!

- As discussed in the kick-off meeting (July 2022), Duke Energy would like to make relicensing deliverables
 available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment;
 therefore, we request all comments be made in the SharePoint Word document using tracked changes. This
 will eliminate version control issues and result in a consolidated document for comment response.
- We strongly recommend opening the document in Word; otherwise the formatting will look distorted. The simplest way to do this is to click on the three dots to the right of the document (example shown below), choose "Open", then choose "Open in app". This will open the document in Word and you'll have the functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free to reach out to McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word — either technique works!])

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

EXTERNAL EMAIL: Do not click any links or open any attachments unless you trust the sender and know the conter is safe.	١t

From: Olds, Melanie J

To: Elizabeth Miller; Crutchfield Jr., John U; Abney, Michael A; Amy Breedlove; RankinD; Erika Hollis; Settevendemio, Erin; Gerry Yantis;

jhains@g.clemson.edu; quattrol; Amedee, Morgan D.; Morgan Kern; SelfR; Stuart, Alan Witten; Wahl, Nick; William T. Wood; Alex Pellett; Dale Wilde; bereskind; Jeff Phillips; McCarney-Castle, Kerry; More, Priyanka; Raber, Maverick James; Scott Harder; William T.

Wood; Ziegler, Ty; Dvorak, Joe; Alison Jakupca; Kevin Nebiolo; Bruce, Ed; Dunn, Lynne; Huff, Jen

Cc: Kulpa, Sarah; Salazar, Maggie

Subject: Re: [EXTERNAL] RE: Bad Creek Relicensing - CFD Verification Addendum Report Review Request

Date: Thursday, December 7, 2023 9:53:34 AM

Attachments: image001.png

image002.png Outlook-xihqhflz.png Outlook-nw51s0xi.png

You don't often get email from melanie_olds@fws.gov. Learn why this is important

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

John,

The Service has reviewed the CFD Verification report and has no comments.

Melanie

Melanie Olds

Fish & Wildlife Biologist

Regulatory Team Lead/FERC Coordinator

U.S. Fish and Wildlife Service South Carolina Ecological Services Field Office 176 Croghan Spur Road, Suite 200 Charleston, SC 29407

Phone: (843) 534-0403

NOTE: This email correspondence and any attachments to and from this sender is subject to the Freedom of Information Act (FOIA) and may be disclosed to third parties.

From: Elizabeth Miller < Miller E@dnr.sc.gov>
Sent: Wednesday, December 6, 2023 3:04 PM

To: Crutchfield Jr., John U <john.crutchfield@duke-energy.com>; Abney, Michael A <michael.abney@duke-energy.com>; Amy Chastain <BreedloveA@dnr.sc.gov>; Dan Rankin <RankinD@dnr.sc.gov>; Erika Hollis <ehollis@upstateforever.org>; Erin Settevendemio <Erin.Settevendemio@hdrinc.com>; Gerry Yantis <gcyantis2@yahoo.com>; John Haines <jhains@g.clemson.edu>; quattrol@dnr.sc.gov <quattrol@dnr.sc.gov>; Olds, Melanie J <melanie_olds@fws.gov>; Morgan Amedee <amedeemd@dhec.sc.gov>; Morgan Kern <KernM@dnr.sc.gov>; SelfR@dnr.sc.gov <SelfR@dnr.sc.gov>; Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Wahl, Nick <Nick.Wahl@duke-energy.com>; William T. Wood <WoodW@dnr.sc.gov>; Alex Pellett <PellettC@dnr.sc.gov>; Dale Wilde <dwilde@keoweefolks.org>; David Bereskin

Speriyanka More <morep@dnr.sc.gov>; Raber, Maverick James <Maverick.Raber@duke-energy.com>; Scott V. Harder <HarderS@dnr.sc.gov>; William T. Wood <WoodW@dnr.sc.gov>; Ziegler, Ty <ty.ziegler@hdrinc.com>; Dvorak, Joe <Joe.Dvorak@hdrinc.com>; Alison Jakupca <alison.jakupca@kleinschmidtgroup.com>; Bruce, Ed <Ed.Bruce@duke-energy.com>; Dunn, Lynne <Lynne.Dunn@duke-energy.com>; Huff, Jen <Jen.Huff@hdrinc.com>

Cc: Sarah Kulpa <sarah.kulpa@hdrinc.com>; Maggie Salazar <maggie.salazar@hdrinc.com>

Subject: [EXTERNAL] RE: Bad Creek Relicensing - CFD Verification Addendum Report Review Request

This email has been received from outside of DOI - Use caution before clicking on links, opening attachments, or responding.

Hi John,

Staff with the South Carolina Department of Natural Resources have reviewed the Bad Creek CFD Model Verification Draft Addendum and have no comments to offer.

Thank you,

Elizabeth

Elizabeth C. Miller SCDNR Office: 843-953-38

Office: 843-953-3881 Cell: 843-729-4636

From: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Sent: Monday, November 6, 2023 10:39 AM

To: Abney, Michael A <Michael.Abney@duke-energy.com>; Amy Chastain <BreedloveA@dnr.sc.gov>; Dan Rankin <RankinD@dnr.sc.gov>; Elizabeth Miller <MillerE@dnr.sc.gov>; Erika Hollis <ehollis@upstateforever.org>; Erin Settevendemio <Erin.Settevendemio@hdrinc.com>; Gerry Yantis <gcyantis2@yahoo.com>; John Haines <jhains@g.clemson.edu>; Lynn Quattro <QuattroL@dnr.sc.gov>; Olds, Melanie J <melanie_olds@fws.gov>; Morgan Amedee <amedeemd@dhec.sc.gov>; Morgan Kern <KernM@dnr.sc.gov>; Ross Self <SelfR@dnr.sc.gov>; Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Wahl, Nick <Nick.Wahl@duke-energy.com>; William T. Wood <WoodW@dnr.sc.gov>; Alex Pellett <PellettC@dnr.sc.gov>; Dale Wilde <dwilde@keoweefolks.org>; David Bereskin

<br/

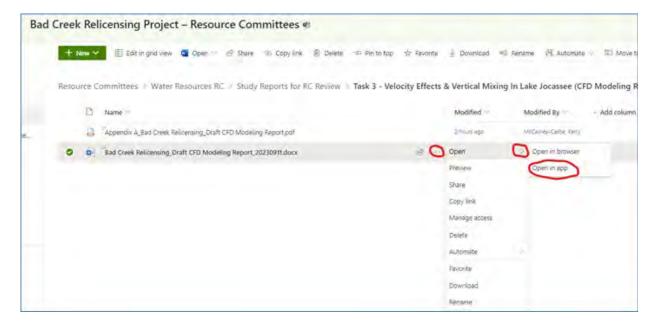
Subject: Bad Creek Relicensing - CFD Verification Addendum Report Review Request

Importance: High

Dear Bad Creek Relicensing Water and Aquatic Resources Committees:

Duke Energy is pleased to distribute the <u>Bad Creek CFD Model Verification Draft Addendum</u> for stakeholder review. This draft report includes methods and results of the field study performed to verify CFD modeling results and will be attached to the already-finalized Task 3 study report (Velocity Effects and Vertical Mixing in Lake Jocassee Due to a Second Powerhouse). The deliverable is available on the Bad Creek Relicensing SharePoint site at the following link: CFD Model Verification Addendum Draft Report.

Duke Energy is requesting a 30-day review period, therefore, please submit all comments by **<u>December 6th</u>**. A confirmation email is kindly requested upon review completion (email me at <u>John.Crutchfield@duke-energy.com</u>).


Important - Please Read!

• As discussed in the kick-off meeting (July 2022), Duke Energy would like to make relicensing deliverables available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment;

therefore, we request all comments be made in the SharePoint Word document using tracked changes. This will eliminate version control issues and result in a consolidated document for comment response.

We strongly recommend opening the document in Word; otherwise the formatting will look distorted. The
simplest way to do this is to click on the three dots to the right of the document (example shown below),
choose "Open", then choose "Open in app". This will open the document in Word and you'll have the
functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free
to reach out to McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word – either technique works!])

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
525 South Tryon Street, DEP-35B | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

EXTERNAL EMAIL: Do not click any links or open any attachments unless you trust the sender and know the content is safe.

To: Alex Pellett; Alison Jakupca; Amy Breedlove; Andrew Grosse; Austen Attaway; bereskind; Wes Cooler; Dan

Rankin; Andy Douglas; Greg Mixon; jhains@g.clemson.edu; Erika Hollis; Jeff Phillips; Jennifer Kindel; jtk7140@me.com; Keith A. Bradley; Kelly Kirven; Ken Forrester; Kulpa, Sarah; quattrol; Dunn, Lynne; Raber, Maverick James; McCarney-Castle, Kerry; Abney, Michael A; Elizabeth Miller; Iputnammitchell@gmail.com; Amedee, Morgan D.; Morgan Kern; Mularski, Eric; Wahl, Nick; Olds, Melanie J; Pat Cloninger; More, Priyanka; Bill

Ranson-Retired; SelfR; Rowdy Harris; Salazar, Maggie; Samantha Tessel; Fletcher, Scott T; Scott Harder; Settevendemio, Erin; Chris Starker; Stuart, Alan Witten; Tom Daniel; Dale Wilde; William T. Wood;

suewilliams130@gmail.com; simmonsw@dnr.sc.gov; gcyantis2@yahoo.com; Kevin Nebiolo

Cc: <u>Lineberger, Jeff</u>

Subject: Bad Creek Relicensing Joint Resource Committees Meeting- CHEOPS Modeling Results (Water Resources Task

No. 4)--SAVE THE DATE

Date: Wednesday, February 21, 2024 5:40:02 PM

Importance: High

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Dear Bad Creek Relicensing Resource Committee Stakeholders:

Duke Energy would like to convene a joint meeting of the Water Resources, Aquatic Resources, Recreation & Visual Resources and Operations Resources Committees to review the CHEOPS modeling results including the previously established Performance Measures.

The meeting will be a virtual Teams meeting scheduled for Thursday, April 4, 9 am-12 pm.

A meeting notice will be sent to you in the next few days.

Please let Alan or me know if you have any questions.

Regards,

John

Crutchfield

McCarney-Castle, Kerry

Subject:Bad Creek Relicensing Joint Resource Committees Meeting- CHEOPS Modeling Results

(Water Resources Task No. 4)

Location: Microsoft Teams Meeting

 Start:
 Thu 4/4/2024 9:00 AM

 End:
 Thu 4/4/2024 12:00 PM

Show Time As: Tentative

Recurrence: (none)

Meeting Status: Not yet responded

Organizer: Crutchfield Jr., John U

Importance: High

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

----Original Appointment-----

From: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Sent: Wednesday, March 6, 2024 10:43 AM

To: Crutchfield Jr., John U; Huff, Jen

Subject: Bad Creek Relicensing Joint Resource Committees Meeting- CHEOPS Modeling Results (Water Resources Task

No. 4)

When: Thursday, April 4, 2024 9:00 AM-12:00 PM (UTC-05:00) Eastern Time (US & Canada).

Where: Microsoft Teams Meeting

Importance: High

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Dear Bad Creek Relicensing Resource Committee Stakeholders:

Duke Energy would like to convene a joint meeting of the Water Resources, Aquatic Resources, Recreation & Visual Resources and Operations Resources Committees to review the CHEOPS modeling results including the previously established Performance Measures.

The meeting will be a virtual Teams meeting scheduled for Thursday, April 4, 9 am-12 pm. The Teams meeting link is given below.

An agenda will be sent to you prior to the meeting.

Thanks, John Crutchfield

Microsoft Teams meeting

Join on your computer, mobile app or room device

Click here to join the meeting

Meeting ID: 287 441 250 204

Passcode: sWCCrk

Download Teams | Join on the web

Join with a video conferencing device

duke-energy@m.webex.com

Video Conference ID: 112 202 243 4

Alternate VTC instructions

Or call in (audio only)

<u>+1 704-659-4701,,740976269#</u> United States, Charlotte

Phone Conference ID: 740 976 269#

Find a local number | Reset PIN

<u>Learn More</u> | <u>Help</u> | <u>Meeting options</u>

To: Alex Pellett; Alison Jakupca; Amy Breedlove; Andrew Grosse; Austen Attaway; bereskind; Wes Cooler; Dan Rankin; Andy Douglas;

Greg Mixon; jhains@g.clemson.edu; Erika Hollis; Jeff Phillips; Jennifer Kindel; jtk7140@me.com; Keith A. Bradley; Kelly Kirven; Ken Forrester; quattrol; Dunn, Lynne; Raber, Maverick James; McCarney-Castle, Kerry; Abney, Michael A; Elizabeth Miller; Iputnammitchell; Amedee, Morgan D.; Morgan Kern; Mularski, Eric; Wahl, Nick; Olds, Melanie J; Pat Cloninger; More, Priyanka; Bill Ranson-Retired; SelfR; Charles (Rowdy) B Harris; Salazar, Maggie; Samantha Tessel; Fletcher, Scott T; Scott Harder; Settevendemio, Erin; Chris Starker; Stuart, Alan Witten; Tom Daniel; Dale Wilde; William T, Wood; suewilliams130@gmail.com; simmonsw@dnr.sc.gov;

gcyantis2; Kevin Nebiolo; Huff, Jen; Andrew Gleason; glenn@hilliardgrp.com; phil.mitchell@gmail.com

Cc: Lineberger, Jeff; Kulpa, Sarah; Scangas, Angie; Ziegler, Ty

Subject: Bad Creek Relicensing - CHEOPS Modeling Draft Report Ready for Review and April 4 Meeting Agenda

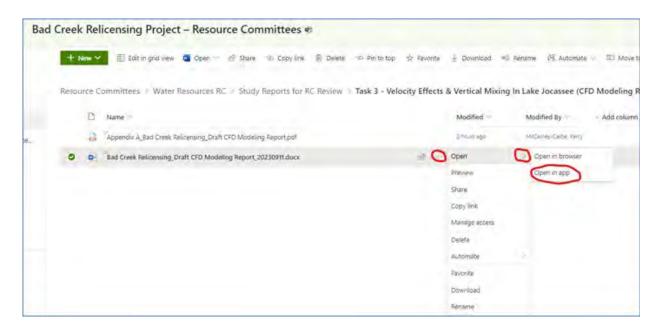
Date: Wednesday, March 27, 2024 7:23:03 AM

Attachments: image001.png

2024 04 04 joint rc mtg agenda.docx

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Dear Bad Creek Resource Committee members:


Duke Energy is pleased to distribute the draft Water Resources – Task 4 (i.e., CHEOPS Modeling) report for your review. This draft includes the results from CHEOPS modeling for the Baseline and Bad Creek II scenarios as well as populated Performance Measures sheets. The draft report is available on the SharePoint site using this link: Bad Creek Relicensing Project — Resource Committees - Draft CHEOPS report - All Documents (sharepoint.com).

Please provide your comments within the draft report using Track Changes as explained further below within 30 days (**April 26, 2024**). When you have completed your review – even if you have no comments – I would appreciate an email stating that is the case.

Important - Please Read!

- As discussed in the kick-off meeting (July 2022), Duke Energy is providing relicensing deliverables on the SharePoint site for relicensing participants to access, review, and comment on files. Please <u>provide all</u> <u>comments in the SharePoint Word document using tracked changes</u>. This will eliminate version control issues, enable relicensing participants to gain insight into one another's comments, and result in a consolidated document for comment response.
- We strongly recommend opening the document in Word; otherwise the formatting will look distorted. The simplest way to do this is to click on the three dots to the right of the document (example shown below), choose "Open", then choose "Open in app". This will open the document in Word and you'll have the functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free to reach out to McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word — either technique works!])

We will be discussing the draft report and report findings during the April 4, 2024, Joint Resource Committee meeting. I have attached the meeting agenda for your reference.

If you have questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

Agenda

Project: Bad Creek Pumped Storage Project Relicensing

Subject: Water Resources, Operations, Aquatic Resources, and Recreation Resources Resource Committees

Meeting

Date: Thursday, April 04, 2024

Location: Virtual

Introduction

• Welcome and Meeting Purpose

Safety Moment

Water Resources, Task 4 - Water Exchange Rates and Lake Jocassee Reservoir Levels (CHEOPS Modeling)

- CHEOPS Model Refresher
- Scenario Descriptions
- Results
- Next Steps

Water Resources, Task 3 – Velocity Effects and Vertical Mixing in Lake Jocassee Due to a Second Powerhouse (CFD Modeling)

Additional CFD Modeling Results

Closing

- Next steps
- Action item review

To: <u>Stuart, Alan Witten; Kulpa, Sarah; Huff, Jen; McCarney-Castle, Kerry</u>

Cc: Salazar, Maggie

Subject: FW: [EXTERNAL] RE: Bad Creek Relicensing - CHEOPS Modeling Draft Report Ready for Review and April 4 Meeting Agenda

Date: Thursday, April 4, 2024 10:28:13 AM

Attachments: image001.png

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

FYI, original email sent to Maggie.

From: gcyantis2@yahoo.com <gcyantis2@yahoo.com>

Sent: Thursday, April 4, 2024 9:28 AM

To: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Cc: 'Sue Williams' <suewilliams130@gmail.com>

Subject: [EXTERNAL] RE: Bad Creek Relicensing - CHEOPS Modeling Draft Report Ready for Review and April 4

Meeting Agenda

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

John,

I've reviewed the draft CHEOPS report and have no comments.

I've copied Sue in case she has comments to represent from AQD.

Thank you,

Gerry

From: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com >

Sent: Wednesday, March 27, 2024 7:23 AM

To: PellettC@dnr.sc.gov; Alison.Jakupca@KleinschmidtGroup.com; BreedloveA@dnr.sc.gov; grossea@dnr.sc.gov; attawaya@dnr.sc.gov; bereskind@greenvillewater.com; wes.cooler@mac.com; RankinD@dnr.sc.gov; adoug41@att.net; mixong@dnr.sc.gov; jhains@g.clemson.edu; ehollis@upstateforever.org;

iphillips@greenvillewater.com; kindeli@dnr.sc.gov; itk7140@me.com; bradleyk@dnr.sc.gov;

Kelly,Kirven@KleinschmidtGroup.com; forresterk@dnr.sc.gov; quattrol@dnr.sc.gov; Dunn, Lynne

<<u>Lynne.Dunn@duke-energy.com</u>>; Raber, Maverick James <<u>Maverick.Raber@duke-energy.com</u>>; <u>Kerry.McCarney-</u>

Castle@hdrinc.com; Abney, Michael A < Michael. Abney@duke-energy.com >; Elizabeth Miller < Miller E@dnr.sc.gov >;

lputnammitchell@gmail.com; amedeemd@dhec.sc.gov; kernm@dnr.sc.gov; Mularski, Eric -HDRInc

<<u>Eric.Mularski@HDRInc.com</u>>; Wahl, Nick <<u>Nick.Wahl@duke-energy.com</u>>; <u>melanie_olds@fws.gov</u>;

cloningerp@dnr.sc.gov; morep@dnr.sc.gov; bill.ranson@retiree.furman.edu; SelfR@dnr.sc.gov; charris@scprt.com;

Maggie.Salazar@hdrinc.com; Tessels@dnr.sc.gov; Fletcher, Scott T <Scott.Fletcher@duke-energy.com>;

harders@dnr.sc.gov; Erin.Settevendemio@hdrinc.com; cstarker@upstateforever.org; Stuart, Alan Witten

<a href="mailto:dan.S

suewilliams130@gmail.com; simmonsw@dnr.sc.gov; gcyantis2@yahoo.com; Kevin Nebiolo

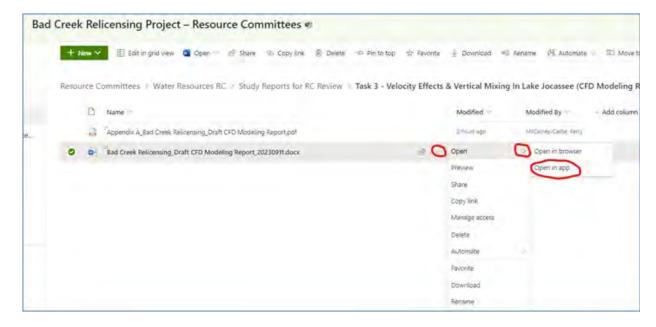
< <u>Kevin.Nebiolo@KleinschmidtGroup.com</u>>; Jen Huff < <u>jen.huff@hdrinc.com</u>>; Andrew Gleason

Cc: Lineberger, Jeff < ! Sarah Kulpa < Sarah.Kulpa@hdrinc.com;

angie.scangas@hdrinc.com; Ziegler, Ty <ty.ziegler@hdrinc.com>

Subject: Bad Creek Relicensing - CHEOPS Modeling Draft Report Ready for Review and April 4 Meeting Agenda

Dear Bad Creek Resource Committee members:


Duke Energy is pleased to distribute the draft Water Resources – Task 4 (i.e., CHEOPS Modeling) report for your review. This draft includes the results from CHEOPS modeling for the Baseline and Bad Creek II scenarios as well as populated Performance Measures sheets. The draft report is available on the SharePoint site using this link: Bad Creek Relicensing Project – Resource Committees - Draft CHEOPS report - All Documents (sharepoint.com).

Please provide your comments within the draft report using Track Changes as explained further below within 30 days (**April 26, 2024**). When you have completed your review – even if you have no comments – I would appreciate an email stating that is the case.

Important - Please Read!

- As discussed in the kick-off meeting (July 2022), Duke Energy is providing relicensing deliverables on the
 SharePoint site for relicensing participants to access, review, and comment on files. Please <u>provide all</u>
 comments in the SharePoint Word document using tracked changes. This will eliminate version control issues,
 enable relicensing participants to gain insight into one another's comments, and result in a consolidated
 document for comment response.
- We strongly recommend opening the document in Word; otherwise the formatting will look distorted. The
 simplest way to do this is to click on the three dots to the right of the document (example shown below),
 choose "Open", then choose "Open in app". This will open the document in Word and you'll have the
 functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free
 to reach out to McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word — either technique works!])

We will be discussing the draft report and report findings during the April 4, 2024, Joint Resource Committee meeting. I have attached the meeting agenda for your reference.

If you have questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

To: <u>Stuart, Alan Witten; Kulpa, Sarah; Huff, Jen; McCarney-Castle, Kerry</u>

Cc: Salazar, Maggie

Subject: FW: [EXTERNAL] Re: Bad Creek Relicensing - CHEOPS Modeling Draft Report Ready for Review and April 4

Meeting Agenda

Date: Thursday, April 4, 2024 10:33:27 AM

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

FYI, original email forwarded to Maggie for consultation record.

From: Sue Williams <suewilliams130@gmail.com>

Sent: Thursday, April 4, 2024 10:28 AM

To: gcyantis2@yahoo.com

Cc: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Subject: [EXTERNAL] Re: Bad Creek Relicensing - CHEOPS Modeling Draft Report Ready for Review

and April 4 Meeting Agenda

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

I also have no comments. Today's presentation was very helpful in understanding the report.

Sue Williams Six Mile, SC

On Apr 4, 2024, at 09:28, gcyantis2@yahoo.com wrote:

John.

I've reviewed the draft CHEOPS report and have no comments.

I've copied Sue in case she has comments to represent from AQD.

Thank you,

Gerry

From: Crutchfield Jr., John U < <u>John.Crutchfield@duke-energy.com</u>>

Sent: Wednesday, March 27, 2024 7:23 AM

To: PellettC@dnr.sc.gov; Alison.Jakupca@KleinschmidtGroup.com; BreedloveA@dnr.sc.gov; grossea@dnr.sc.gov; attawaya@dnr.sc.gov;

bereskind@greenvillewater.com; wes.cooler@mac.com; RankinD@dnr.sc.gov;

adoug41@att.net; mixong@dnr.sc.gov; jhains@g.clemson.edu;

ehollis@upstateforever.org; jphillips@greenvillewater.com; kindelj@dnr.sc.gov; itk7140@me.com; bradlevk@dnr.sc.gov; Kellv.Kirven@KleinschmidtGroup.com; forresterk@dnr.sc.gov; guattrol@dnr.sc.gov; Dunn, Lynne <Lynne.Dunn@dukeenergy.com>; Raber, Maverick James < Maverick.Raber@duke-energy.com>; Kerry.McCarney-Castle@hdrinc.com; Abney, Michael A < Michael.Abney@dukeenergy.com>; Elizabeth Miller <<u>MillerE@dnr.sc.gov</u>>; <u>lputnammitchell@gmail.com</u>; amedeemd@dhec.sc.gov; kernm@dnr.sc.gov; Mularski, Eric -HDRInc <<u>Eric.Mularski@HDRInc.com</u>>; Wahl, Nick <<u>Nick.Wahl@duke-energy.com</u>>; melanie_olds@fws.gov; cloningerp@dnr.sc.gov; morep@dnr.sc.gov; bill.ranson@retiree.furman.edu; SelfR@dnr.sc.gov; charris@scprt.com; Maggie.Salazar@hdrinc.com; Tessels@dnr.sc.gov; Fletcher, Scott T <<u>Scott.Fletcher@duke-energy.com</u>>; <u>harders@dnr.sc.gov</u>; <u>Erin.Settevendemio@hdrinc.com</u>; <u>cstarker@upstateforever.org</u>; Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; danielt@dnr.sc.gov; dwilde@keoweefolks.org; woodw@dnr.sc.gov; suewilliams130@gmail.com; simmonsw@dnr.sc.gov; gcyantis2@yahoo.com; Kevin Nebiolo <<u>Kevin.Nebiolo@KleinschmidtGroup.com</u>>; Jen Huff <<u>ien.huff@hdrinc.com</u>>; Andrew Gleason <<u>andrewandwilla@hotmail.com</u>>; Glenn Hilliard <glenn@hilliardgrp.com>; phil.mitchell@gmail.com **Cc:** Lineberger, Jeff < <u>Jeff.Lineberger@duke-energy.com</u>>; Sarah Kulpa <<u>Sarah.Kulpa@hdrinc.com</u>>; <u>angie.scangas@hdrinc.com</u>; Ziegler, Ty <tv.ziegler@hdrinc.com>

Subject: Bad Creek Relicensing - CHEOPS Modeling Draft Report Ready for Review and April 4 Meeting Agenda

Dear Bad Creek Resource Committee members:

Duke Energy is pleased to distribute the draft Water Resources – Task 4 (i.e., CHEOPS Modeling) report for your review. This draft includes the results from CHEOPS modeling for the Baseline and Bad Creek II scenarios as well as populated Performance Measures sheets. The draft report is available on the SharePoint site using this link: Bad Creek Relicensing Project – Resource Committees - Draft CHEOPS report - All Documents (sharepoint.com).

Please provide your comments within the draft report using Track Changes as explained further below within 30 days (**April 26, 2024**). When you have completed your review – even if you have no comments – I would appreciate an email stating that is the case.

<u>Important – Please Read!</u>

1. As discussed in the kick-off meeting (July 2022), Duke Energy is providing relicensing deliverables on the SharePoint site for relicensing participants to access, review, and comment on files. Please provide all comments in the SharePoint Word document using tracked changes. This will eliminate version control issues, enable relicensing participants to gain insight into one another's comments, and result in a consolidated document for comment response.

2. We strongly recommend opening the document in Word; otherwise the formatting will look distorted. The simplest way to do this is to click on the three dots to the right of the document (example shown below), choose "Open", then choose "Open in app". This will open the document in Word and you'll have the functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free to reach out to @McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word – either technique works!])

<image001.png>

We will be discussing the draft report and report findings during the April 4, 2024, Joint Resource Committee meeting. I have attached the meeting agenda for your reference.

If you have questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
525 South Tryon Street, DEP-35B | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

From: Crutchfield Jr., John U

To: McCarney-Castle, Kerry

Subject: FW: [EXTERNAL] Re: Bad Creek Relicensing - CHEOPS Modeling Draft Report Ready for Review and April 4 Meeting Agenda

Date: Tuesday, April 9, 2024 8:15:22 AM

Attachments: <u>image001.png</u>

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

From: Erika Hollis <ehollis@upstateforever.org>

Sent: Monday, April 8, 2024 3:43 PM

To: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Subject: [EXTERNAL] Re: Bad Creek Relicensing - CHEOPS Modeling Draft Report Ready for Review and April 4

Meeting Agenda

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

John.

I have completed my review of the CHEOPS model and have no comments to offer.

Best regards, Erika

Erika J. Hollis Clean Water Director Upstate Forever 507 Pettigru St Greenville, SC 29601 (864) 250-0500 ext. 117 ehollis@upstateforever.org

From: Crutchfield Jr., John U < John. Crutchfield@duke-energy.com >

Date: Wednesday, March 27, 2024 at 7:23 AM

To: PellettC@dnr.sc.gov <PellettC@dnr.sc.gov>, Alison.Jakupca@KleinschmidtGroup.com <Alison.Jakupca@KleinschmidtGroup.com>, BreedloveA@dnr.sc.gov <BreedloveA@dnr.sc.gov>, grossea@dnr.sc.gov <grossea@dnr.sc.gov>, attawaya@dnr.sc.gov <attawaya@dnr.sc.gov>, bereskind@greenvillewater.com

bereskind@greenvillewater.com

'wes.cooler@mac.com>, RankinD@dnr.sc.gov <RankinD@dnr.sc.gov>, adoug41@att.net <adoug41@att.net>, mixong@dnr.sc.gov <mixong@dnr.sc.gov>, jhains@g.clemson.edu <ihains@g.clemson.edu>, Erika Hollis <ehollis@upstateforever.org>, jphillips@greenvillewater.com <iphillips@greenvillewater.com>, kindelj@dnr.sc.gov <kindelj@dnr.sc.gov>, itk7140@me.com <iptk7140@me.com>, bradleyk@dnr.sc.gov

bradleyk@dnr.sc.gov>, quattrol@dnr.sc.gov <quattrol@dnr.sc.gov>, Dunn, forresterk@dnr.sc.gov <forresterk@dnr.sc.gov>, quattrol@dnr.sc.gov <quattrol@dnr.sc.gov>, Dunn,

Lynne < Lynne. Dunn@duke-energy.com >, Raber, Maverick James < Maverick. Raber@duke-

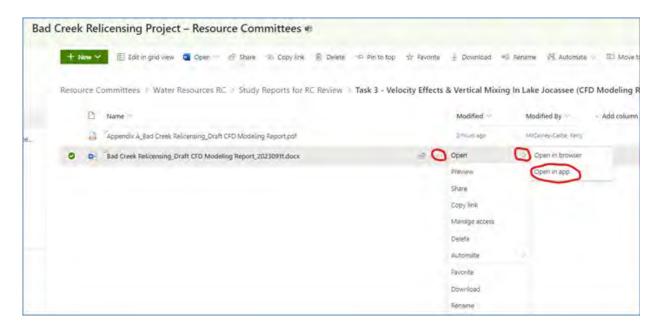
energy.com>, Kerry.McCarney-Castle@hdrinc.com <Kerry.McCarney-Castle@hdrinc.com>, Abney, Michael A < Michael. Abney@duke-energy.com >, Elizabeth Miller < Miller E@dnr.sc.gov >, lputnammitchell@gmail.com <lputnammitchell@gmail.com>, amedeemd@dhec.sc.gov ">, kernm@dnr.sc.gov">, kernm@dnr.sc.gov">, Mularski, Eric -HDRInc <<u>Eric.Mularski@HDRInc.com</u>>, Wahl, Nick < Nick.Wahl@duke-energy.com>, melanie_olds@fws.gov <melanie_olds@fws.gov>, cloningerp@dnr.sc.gov <cloningerp@dnr.sc.gov>, morep@dnr.sc.gov <morep@dnr.sc.gov>, bill.ranson@retiree.furman.edu

bill.ranson@retiree.furman.edu>, SelfR@dnr.sc.gov <SelfR@dnr.sc.gov>, charris@scprt.com <charris@scprt.com>, Maggie.Salazar@hdrinc.com < Maggie.Salazar@hdrinc.com >, Tessels@dnr.sc.gov <<u>Tessels@dnr.sc.gov</u>>, Fletcher, Scott T <<u>Scott.Fletcher@duke-energy.com</u>>, <u>harders@dnr.sc.gov</u> <a href="mailto:, Erin.Settevendemio@hdrinc.com, Chris Starker <cstarker@upstateforever.org>, alan.stuart@duke-energy.com <alan.stuart@dukeenergy.com>, danielt@dnr.sc.goy <danielt@dnr.sc.goy>, dwilde@keoweefolks.org dwilde@keoweefolks.org, woodw@dnr.sc.gov <woodw@dnr.sc.gov>, suewilliams130@gmail.com <suewilliams130@gmail.com>, simmonsw@dnr.sc.gov <simmonsw@dnr.sc.gov>, gcyantis2@yahoo.com <gcyantis2@yahoo.com >, Kevin Nebiolo < Kevin.Nebiolo@KleinschmidtGroup.com >, Jen Huff < jen.huff@hdrinc.com >, Andrew Gleason <andrewandwilla@hotmail.com>, Glenn Hilliard <glenn@hilliardgrp.com>, phil.mitchell@gmail.com <phil.mitchell@gmail.com>

Cc: Lineberger, Jeff < Jeff.Lineberger@duke-energy.com >, Sarah Kulpa < Sarah.Kulpa@hdrinc.com >, Angie.Scangas@hdrinc.com < angie.scangas@hdrinc.com >, Ziegler, Ty < ty.ziegler@hdrinc.com > Subject: Bad Creek Relicensing - CHEOPS Modeling Draft Report Ready for Review and April 4 Meeting Agenda

Dear Bad Creek Resource Committee members:

Duke Energy is pleased to distribute the draft Water Resources – Task 4 (i.e., CHEOPS Modeling) report for your review. This draft includes the results from CHEOPS modeling for the Baseline and Bad Creek II scenarios as well as populated Performance Measures sheets. The draft report is available on the SharePoint site using this link: <u>Bad Creek Relicensing Project – Resource Committees - Draft CHEOPS report - All Documents (sharepoint.com)</u>.


Please provide your comments within the draft report using Track Changes as explained further below within 30 days (**April 26, 2024**). When you have completed your review – even if you have no comments – I would appreciate an email stating that is the case.

Important - Please Read!

- As discussed in the kick-off meeting (July 2022), Duke Energy is providing relicensing deliverables on the
 SharePoint site for relicensing participants to access, review, and comment on files. Please provide all
 comments in the SharePoint Word document using tracked changes. This will eliminate version control issues,
 enable relicensing participants to gain insight into one another's comments, and result in a consolidated
 document for comment response.
- We strongly recommend opening the document in Word; otherwise the formatting will look distorted. The
 simplest way to do this is to click on the three dots to the right of the document (example shown below),
 choose "Open", then choose "Open in app". This will open the document in Word and you'll have the
 functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free
 to reach out to McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same

tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word – either technique works!])

We will be discussing the draft report and report findings during the April 4, 2024, Joint Resource Committee meeting. I have attached the meeting agenda for your reference.

If you have questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
525 South Tryon Street, DEP-35B | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

From: Crutchfield Jr., John U

Alex Pellett; Alison Jakupca; Amy Breedlove; Andrew Grosse; Austen Attaway; bereskind; Wes Cooler; Dan To:

Rankin; Andy Douglas; Greg Mixon; jhains@g.clemson.edu; Erika Hollis; Jeff Phillips; Jennifer Kindel;

jtk7140@me.com; Keith A. Bradley; Kelly Kirven; Ken Forrester; quattrol; Dunn, Lynne; Raber, Maverick James; McCarney-Castle, Kerry; Abney, Michael A; Elizabeth Miller; Iputnammitchell; Amedee, Morgan D.; Morgan Kern; Mularski, Eric; Wahl, Nick; Olds, Melanie J; Pat Cloninger; More, Priyanka; Bill Ranson-Retired; SelfR; Charles (Rowdy) B Harris; Salazar, Maggie; Samantha Tessel; Fletcher, Scott T; Scott Harder; Settevendemio, Erin; Chris Starker; Stuart, Alan Witten; Tom Daniel; Dale Wilde; William T. Wood; suewilliams130@gmail.com;

simmonsw@dnr.sc.gov; gcyantis2; Kevin Nebiolo; Huff, Jen; Andrew Gleason; glenn@hilliardgrp.com;

phil.mitchell@gmail.com

Cc: Lineberger, Jeff; Kulpa, Sarah; Scangas, Angie; Ziegler, Ty

Subject: RE: Bad Creek Relicensing - CHEOPS Modeling April 4 Meeting Summary and Materials

Date: Thursday, April 18, 2024 9:17:43 AM

Attachments: image001.png

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Dear Bad Creek Resource Committee Members:

The meeting materials from the CHEOPS Results and CFD Addendum Meeting (virtual) held on April 4th have been uploaded to: 20240404 Water and Operations Joint RC Meeting CHEOPS Results and CFD Addendum. (Meeting Summary, Meeting Presentation, and Meeting Recording).

Please let Alan or me know if you have any questions about the meeting information.

Regards,

John Crutchfield

Project Manager II Water Strategy, Hydro Licensing & Lake Services Regulated & Renewable Energy **Duke Energy** 525 South Tryon Street, DEP-35B | Charlotte, NC 28202 Office 980-373-2288 | Cell 919-757-1095

Meeting Minutes

Project:	Bad Creek Relicensing
Subject:	CHEOPS Results and CFD Addendum
Date:	Thursday, April 04, 2024
Location:	Teams

Attendees:

Sue Williams (AQD)
Gerry Yantis (AQD)
John Crutchfield (Duke Energy)
Lynne Dunne (Duke Energy)
Alan Stuart (Duke Energy)
Glenn Hilliard (FTC)
John Hains (FOLKS)
Dale Wilde (FOLKS)
Jen Huff (HDR)

Sarah Kulpa (HDR)
Kerry McCarney-Castle (HDR)
Angie Scangas (HDR)
Ty Ziegler (HDR)
Wes Cooler (Naturaland Trust)
Morgan Amedee (SCDHEC)
Amy Chastain (SCDNR)
Elizabeth Miller (SCNDR)
Rowdy Harris (SCDPRT)

Introduction

John Crutchfield opened the meeting, facilitated introductions, shared the agenda, and provided a safety moment on safe driving through work zones.

CHEOPS Modeling Discussion

Jen Huff provided opening remarks for the CHEOPS discussion, noting that HDR's lead modeler Angie Scangas has limited connectivity (due to snowstorm in New England) so J. Huff will cover the presentation, but A. Scangas will be available to answer technical questions. J. Huff then presented a refresher on the CHEOPS model and the Savannah River CHEOPS model developed for Keowee-Toxaway Project (KT) relicensing. The Savannah River CHEOPS model includes the 2014 Operating Agreement between Duke Energy, U.S. Army Corps of Engineers (USACE), and Southeastern Power Administration (SEPA) as well as the requirements of the KT Low Inflow Protocol (LIP).

Adjustments to the Savannah River model for Bad Creek relicensing included updating the generation and pumping load shapes for Bad Creek Pumped Storage Station (Bad Creek) and Jocassee Pumped Storage Station (Jocassee). J. Huff presented a graph for an example day (July 6, 2011) with the original pump/gen cycle used during KT relicensing and the updated pump/gen cycle used for Bad Creek relicensing (Slide 9). During KT relicensing, Bad Creek and Jocassee typically generated during the day and pumped at night. Now, however, increased renewables on the Duke Energy system cause pumping during the afternoon with generation needed at night. Generating and pumping is also influenced by how much water is available and FERC license requirements.

No changes were made to the hydrology dataset which includes 1939 - 2011 daily unimpaired inflow (UIF) hydrology. Operations under two climate change conditions were also modeled: (1) CCLow represents a 3°F temperature increase (with 10% increase in evaporation) and (2) CCHigh represents a 6°F degree temperature increase (with 20% increase in evaporation) plus 10% decrease in inflow to the system.

The two model scenarios were: (1) Baseline (existing facilities and FERC license requirements) and (2) Baseline + Bad Creek II (i.e., the alternative).

J. Huff explained under typical operations, Bad Creek and Jocassee operate together in sync (i.e., when one pumps, the other pumps, and when one generates, the other generates). Therefore, the Bad Creek and Jocassee reservoir elevations have generally risen and fallen in tandem as demonstrated on Slide 12 by the green "reservoir elevation line" on the Baseline scenario figures. Under the Bad Creek II scenario, Bad Creek pumps more water to the Upper Reservoir (UR) and exceeds the amount Jocassee pumps from Lake Keowee for a period of time (the negative inflow period shown on the graph). This causes the green reservoir elevation line for Jocassee to remain in a smaller "band". Ty Ziegler added that the increase in generation and pumping capability with Bad Creek II will have a more dramatic effect on UR elevations and less of an effect on the lower reservoir (Lake Jocassee elevation).

Dale Wilde asked if the green line (elevation) on the upper right figure (Slide 12) goes down to 30,000. J. Huff explained the green line is aligned with the right-hand axis (elevation in feet). A. Scangas added that hydroelectric operations (blue line) correlates to the left-hand axis (flow in cubic feet per second). T. Ziegler noted that with Bad Creek II the hydraulic capacity is essentially doubled so the UR will be better utilized with Bad Creek II operations; only a portion of the capacity of the UR is currently used. Accordingly, the model shows more water fluctuation in the UR and less fluctuation in Lake Jocassee under the Bad Creek II scenario. Approximately 0.5 feet less fluctuation occurs at Jocassee under the Bad Creek II scenario.

J. Huff showed simulated reservoir elevations for Bad Creek under Baseline and Bad Creek II under climate change scenarios, noting that under CCHigh conditions, the model simulated Bad Creek reservoir near maximum drawdown at times. However, during these times pumping and generating was still simulated as water moves within the Duke Energy system.

Glenn Hilliard asked if there could be a situation in the future with extreme (high) temperatures and full use of Bad Creek II, where there is a risk for power production problems such that power may not be available on subsequent days and Duke Energy would not be able to operate. J. Huff noted that the 2014 Operating Agreement dictates how much water can be used/stored in Duke Energy reservoirs during times of low-inflow periods (i.e., droughts) versus the downstream USACE reservoirs. Duke Energy cannot stop releases from Keowee such that lower reservoirs (downstream) don't have enough water to continue releases into the Savannah River. The 2014 Operating Agreement ensures that the amount of usable storage in the system remains in balance. A specified volume of water can be kept in the upper reservoirs during severe drought conditions.

T. Ziegler added that the 73-year hydrology dataset used for CHEOPS captures the most severe drought that has occurred in the basin.

J. Huff discussed Lake Jocassee reservoir elevations, showing there is very little difference between maximum, minimum, median, and operating band under both scenarios. Differences between Bad Creek II and Baseline scenarios are minor and the largest difference between Baseline and Bad Creek II water levels is observed under CCHigh, as expected.

Spawning performance measures for black bass and blueback herring (under normal hydrology) have seasonal requirements. Lake Jocassee's water surface fluctuation band needs to be held within 2.5 feet during spawning season such that dewatering of nests does not occur. Performance Measures and MISCs¹ were determined in collaboration with relicensing stakeholders (in the summer and fall of 2023) and a 2.5-foot fluctuation band was selected to maximize spawning conditions for targeted fish species. Under the Bad Creek II scenario, there are more years meeting the 2.5-foot fluctuation band restriction than under Baseline operations, which indicates improved chance for spawning success under Bad Creek II operations. For example, Performance Measure 8 is met 100 percent of the time under the Bad Creek II scenario versus 71 percent of the time under the Baseline scenario.

John Hains (via chat) asked why these results were considered surprising. J. Huff clarified she had not expected to see much effect to Lake Jocassee reservoir elevations under Bad Creek II operations. However, considering that Bad Creek operates in tandem with Lake Jocassee, it is actually not surprising water levels would fluctuate within a smaller range. T. Ziegler added since Bad Creek II operations double pumping and generating flows, water pumped up to the UR is essentially being replaced in Lake Jocassee from Lake Keowee. Even though the UR has an increased fluctuation band under Bad Creek II, Lake Jocassee has a smaller fluctuation band.

- J. Huff showed model results for Lake Keowee, demonstrating negligible changes to the max, min, or fluctuation band would be expected under Bad Creek II operations.
- D. Wilde asked why the hydrology data only goes up to 2011. J. Huff answered the hydrology data period of record includes the years 1939 through 2011. The model shifts the hydrology data into the future and then uses the historic rainfall, temperature, and evaporation conditions when it models each operational scenario. Sarah Kulpa mentioned a separate analysis was carried out (prior to modelling for Bad Creek) to ensure updating the hydrology wasn't necessary since it would be a large effort. Results from the sensitivity analysis showed incorporating data from the last 12 years would not add any different extremes for wet and dry years than what are already included in the dataset, therefore, the investment was deemed not worth the return. T. Ziegler and J. Huff added the existing 73-year hydrology dataset includes normal and wet years and also the drought of record for the Savannah River Basin, therefore, it includes the bookends for hydrologic data that can be reasonably expected over the term of the next license, especially when used in conjunction with the two modeled climate change scenarios.
- J. Huff discussed the rate of change for Bad Creek and Jocassee elevation fluctuations. The rate of change in water level fluctuation, or how quickly the reservoir elevation changes, could have implications for boat launching in Lake Jocassee. Therefore, model output was evaluated

¹ Minimum increment of significant change

to see how often fluctuations of >1 foot in 1 hour might occur (representing a very slow boat launch); results showed that would never happen.

Rowdy Harris noted boat ramp use and boat launching is less of an issue than people who tie up a boat at a campground site or hiking trailhead for several hours. They can return to find their boat on dry land with no way to get it back into water. J. Huff reiterated that the model shows approximately 0.5 feet less 24-hour fluctuation under Bad Creek II operations than under the Baseline operations for Lake Jocassee. Therefore, we would expect this would be less likely under the Bad Creek II scenario compared to the Baseline scenario conditions.

J. Hains asked if Jocassee and Bad Creek always operate in tandem. J. Huff explained the model doesn't consider hydro-specific components (like outages, etc.) so there could be a time Bad Creek could operate independently of Jocassee, but generally speaking, they would operate in tandem unless there is some sort of external factor or emergency situation that can't be predicted in a model.

A. Stuart said he talked with Aaron Dale (manager of Duke Energy Operations Group) and he conveyed it would be almost impossible to operate Bad Creek and Jocassee out of sequence (i.e., one hydro pumping while the other generated). There may be occurrences where one hydro may begin pumping or generating before the other, but that would be very a short-term phenomenon and wouldn't be picked up by the CHEOPS model.

- J. Hains asked if there is a scenario where Bad Creek would operate with no operation at Jocassee. A. Scangas noted that scenario was not observed in the CHEOPS model results but could happen for very short time periods as mentioned previously. Planned and unplanned outages or other grid emergencies would be the only likely cases where Bad Creek would operate out of sync with Jocassee, which are events the model cannot incorporate or predict.
- J. Huff explained the goal of the KT LIP is to reduce water losses within the Duke Energy system consistent with the 2014 Operating Agreement and showed days in the KT LIP Stages under the Baseline and Bad Creek II scenarios. Under the Bad Creek II scenario, time (days) in LIP stage zero increases. This is due to the role remaining reservoir storage plays in determining LIP stage. Under Bad Creek II operations, the model releases downstream flows from Keowee that likely would not happen if a human operator were in control. As the model sees Lake Keowee fill, it releases a small amount of water into Lake Hartwell resulting in a small loss of water from the Duke Energy system. These small day-to-day changes in remaining reservoir storage can shift the system from normal LIP stage (i.e., not in the LIP) to LIP stage zero.
- D. Wilde asked for confirmation if the LIP changed in 2011. A. Stuart responded there was no LIP in place prior to 2011, but the 1968 Operating Agreement between Duke Energy, the USACE, and SEPA was in place. Under the 1968 Operating Agreement, Duke Energy was required to release up to 25,000 acre-feet of water per week during droughts. The 2014 Operating Agreement developed during KT relicensing has resulted in a more equitable distribution of water during droughts. S. Kulpa reiterated the 2011 historical dataset is used as a proxy for the future; A. Scangas added historical hydrology is used to simulate under a future lens applying current operating rules. T. Ziegler noted the 1939-2011 hydrology database only

provides the amount of inflow to the Duke Energy and USACE reservoirs - the CHEOPS model layers on the operational instructions and constraints.

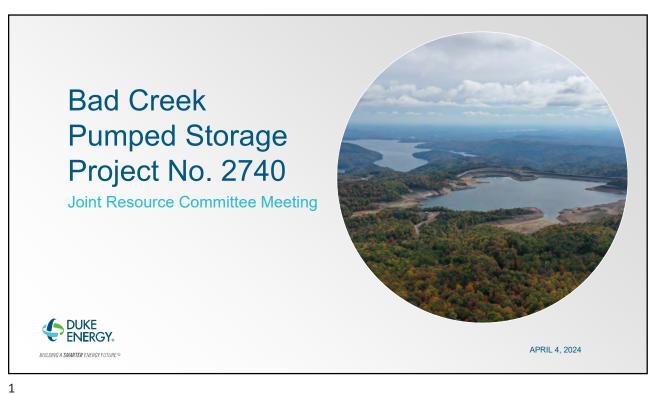
The USACE's Lake Hartwell and Thurmond Lake cumulative discharge curves show no difference associated with Duke Energy operations between Baseline and Bad Creek II scenarios.

J. Huff then summarized the study conclusions, opened the floor for more questions, and noted the draft study report was posted on the Relicensing SharePoint site on March 26. Duke Energy kindly requests comments by April 26.

CFD Addendum Discussion

T. Ziegler briefly discussed additional CFD modeling being carried out due to design changes for the proposed Bad Creek II facility (i.e., increased hydraulic capacities due to variable speed vs. single speed pump turbines). This topic was introduced at the Initial Study Report meeting in January 2024. Generation flows increased ~2 percent which would not be dissimilar from flows already modeled using the existing CFD model, however, increased pumping capacity could result in a ~9 percent increase in flows. Therefore, additional pumping flow scenarios were modeled at Lake Jocassee minimum (1,080 feet above mean sea level [ft msl]), full (1,110 ft msl), and intermediate (1,096 ft msl) pond levels.

The CFD model used for this task is the same model used in the feasibility² study as it has a finer resolution that the CFD model used for the relicensing³ study under the Water Resources Study (Task 3).


- D. Wilde asked if there is an overlay image between existing submerged weir vs. the expanded weir. T. Ziegler noted there are figures of both configurations of the weir in the CFD report included in the Initial Study Report and noted the proposed expanded weir crest elevation would stay the same (as the existing weir) and would be expanded in the downstream direction (i.e., towards the main body of Lake Jocassee).
- J. Crutchfield opened the floor for questions or comments.
- J. Hains asked if there are any plans to restrict boating access to Whitewater River cove after construction and operation. A. Stuart said there would be no access restrictions to Whitewater River cove after construction, but Whitewater River cove would be closed during construction. Duke Energy may install a warning cable around the new intake alcove with a buoy system.

² The CFD report for the feasibility study was included with the Revised Study Report in Appendix I.

³ The CFD report for the relicensing study was included with the Initial Study Report in Appendix A.

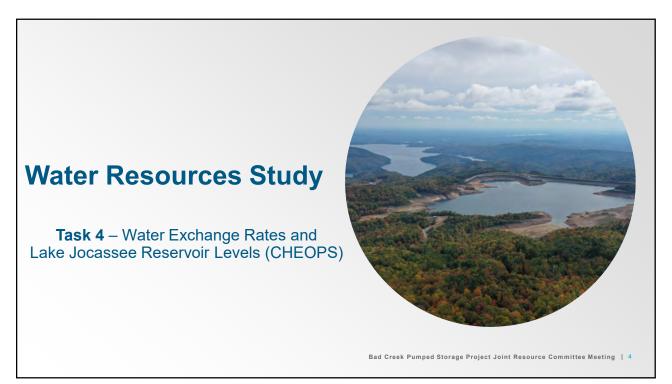
Action Items

- The draft CHEOPS report has been distributed via the relicensing SharePoint site; comments from stakeholders are requested by April 26, 2024.
- Meeting summary and slide deck will be posted to the SharePoint site in approximately 2 weeks.

Agenda

- Welcome and Meeting Purpose
- Safety Moment
- Task 4 CHEOPSTM Modeling
- Task 3 CFD Modeling
- Adjourn

Bad Creek Pumped Storage Project Joint Resource Committee Meeting | 2


Safety Moment - Road Work Safety

- Summer is the busiest time of year for road work!
- Safety Tips for driving in Work Zones:
 - Pay attention! Eliminate distractions.
 - Be alert for work zone signs and flaggers.
 - · Watch out for road debris.
 - Don't tailgate!!
 - Be patient and obey posted speed limits.
 - The penalty for speeding through a signed work zone is an additional \$250.
 - Don't change lanes.
 - Expect the unexpected: <u>Keep an eye out for workers and their equipment</u>.
 - When possible, use alternate routes or travel at non-peak times to avoid traffic congestion.

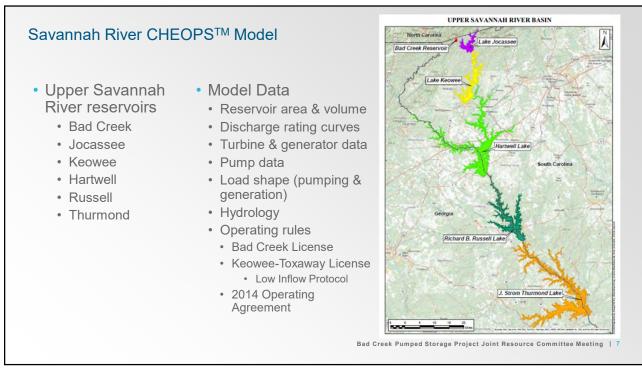
Bad Creek Pumped Storage Project Joint Resource Committee Meeting | 3

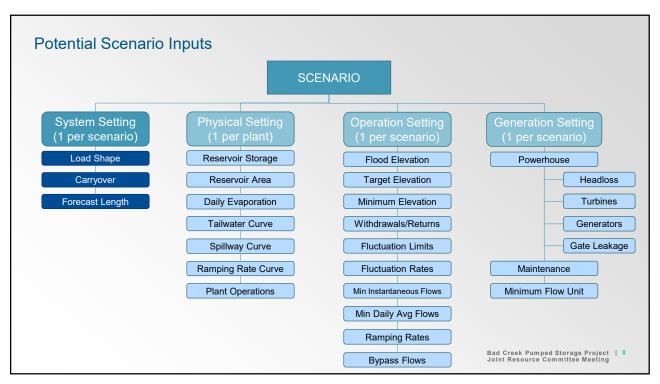
3

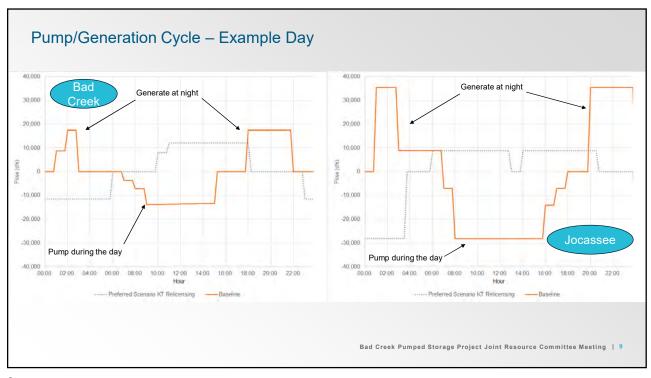
- CHEOPSTM Model Refresher
- Scenario Descriptions
- Results
- Comparison of Effects
- Next Steps

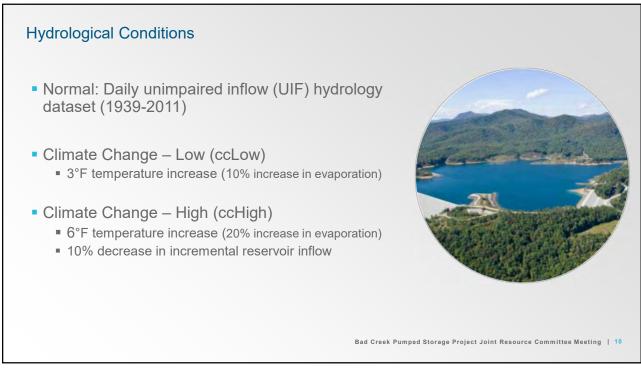
Bad Creek Pumped Storage Project Joint Resource Committee Meeting | 5

_

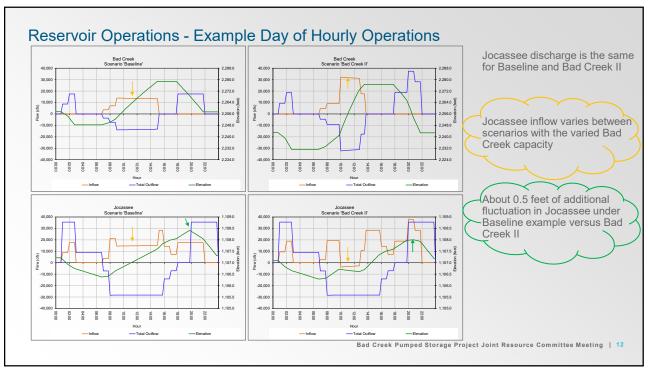

CHEOPS™ (Computer Hydro Electric Operations & Planning Software)

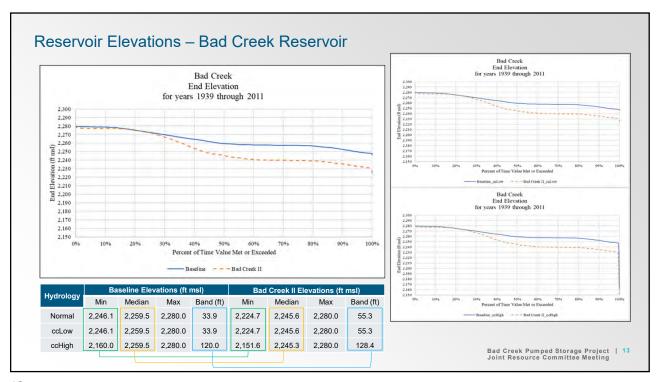

- Hydrologic water quantity simulation model used to evaluate:
 - · Potential economic effects of alternative operations
 - · Upgrades & modifications
 - · Physical & operational changes related to FERC relicensing
- User-definable input data:
 - · Energy production for peak & off-peak periods
 - · Variable durations for daily peak & off-peak periods
 - · Instream or bypass flows in each river reach
 - Water level variation limits in each reservoir or impoundment
 - · Unit performance curves
 - Unit availability
 - · Minimum flows & ramp rates
 - · Hydrology from historical, typical water or calendar

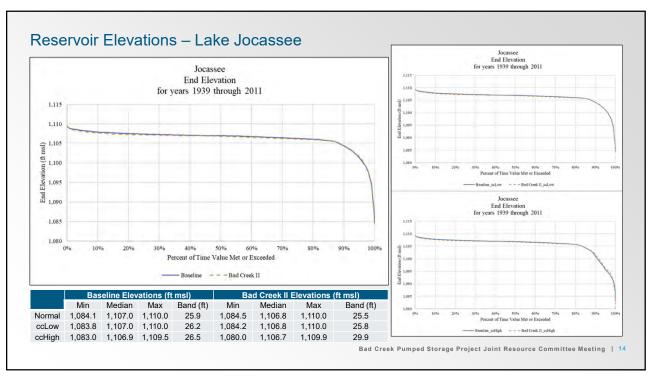



Operations model a software tool for
evaluating a wide
range of physical &
operational
constraints on a
hydroelectric
facility

Bad Creek Pumped Storage Project Joint Resource Committee Meeting | 6

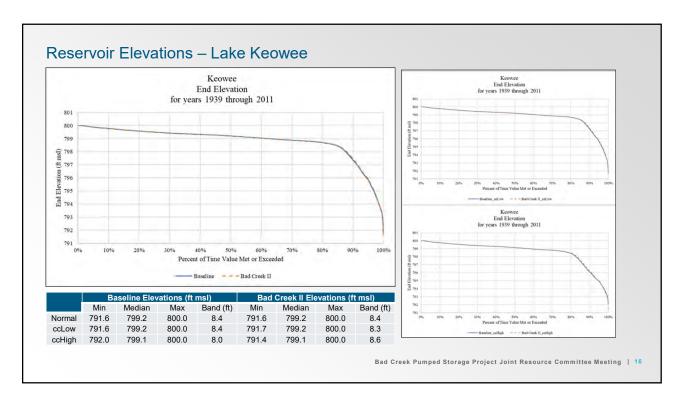

CHEOPS™ & Bad Creek Relicensing

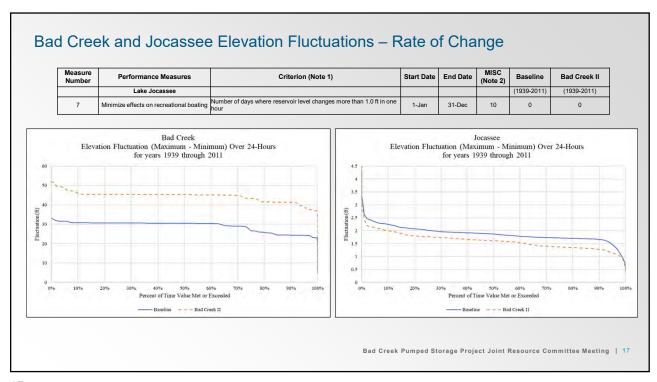

- Scenarios
 - Baseline (existing facilities and FERC license requirements)
 - Alternative: Baseline + Bad Creek II
- Operational effects of scenarios
 - Lake level fluctuations at Bad Creek, Jocassee & Keowee
 - Rate of change in lake levels
 - Low Inflow Protocol (LIP) Stages
 - Keowee Releases to Lake Hartwell

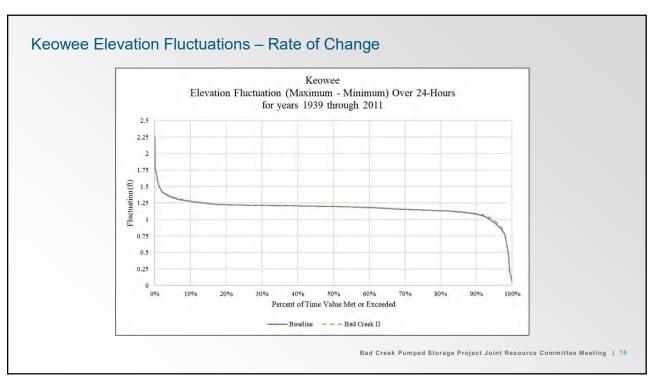


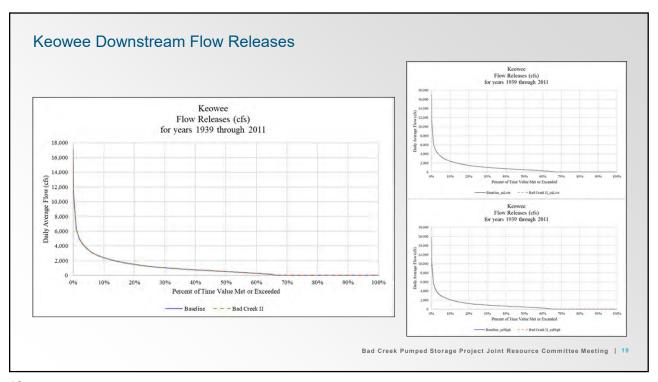
Bad Creek Pumped Storage Project Joint Resource Committee Meeting | 11

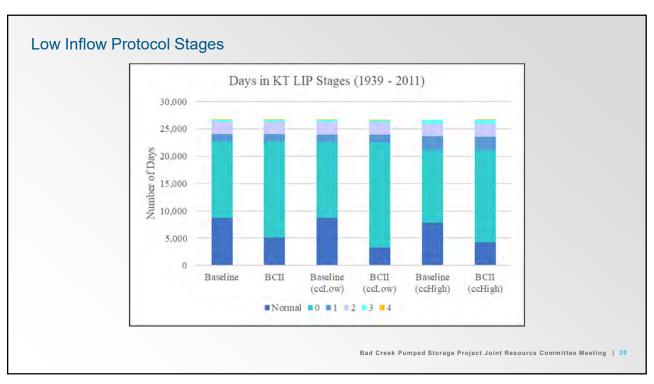
11

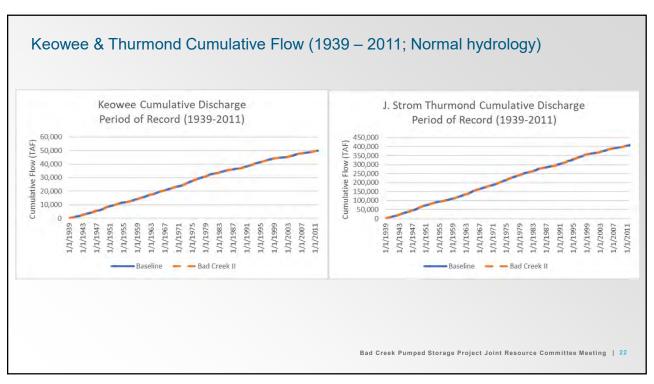



Lake Jocassee Reservoir Levels – Spawning Performance Measures (Normal Hydrology)


Measure Number	Performance Measures	Criterion (Note 1)	Start Date	End Date	MISC (Note 2)	Baseline	Bad Creek II
	Lake Jocassee					(1939-2011)	(1939-2011)
	Elevation - Natural Resources						
8		Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 10 consecutive days at least once (Note 5)	1-Apr	31-May	5%	71%	100%
9		Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 15 consecutive days at least once (Note 5)	1-Apr	31-May	5%	34%	99%
10	Maximize spawning success for black bass and blueback herring (2.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 20 consecutive days at least once (Note 5)	1-Apr	31-May	5%	19%	89%
11	(2.5-it iluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 30 consecutive days at least once (Note 5)	1-Apr	31-May	5%	0%	59%
12		Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 45 consecutive days at least once (Note 5)	1-Apr	31-May	5%	0%	0%
13	Maximize spawning success for black bass and blueback herring (3.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 10 consecutive days at least once (Note 5)	1-Apr	31-May	5%	100%	100%
14		Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 15 consecutive days at least once (Note 5)	1-Apr	31-May	5%	100%	100%
15		Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 20 consecutive days at least once (Note 5)	1-Apr	31-May	5%	100%	99%
16	nerring (3.3-it inactuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 30 consecutive days at least once (Note 5)	1-Apr	31-May	5%	95%	97%
17		Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 45 consecutive days at least once (Note 5)	1-Apr	31-May	5%	56%	82%
18	Maximize spawning success for sunfish and threadfin shad (2.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 10 consecutive days at least once (Note 5)	15-May	15-Jul	5%	45%	100%
19		Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 15 consecutive days at least once (Note 5)	15-May	15-Jul	5%	14%	92%
20		Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 20 consecutive days at least once (Note 5)	15-May	15-Jul	5%	0%	3%
21	Maximize spawning success for sunfish and threadfin shad (3.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 10 consecutive days at least once (Note 5)	15-May	15-Jul	5%	100%	100%
22		Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 15 consecutive days at least once (Note 5)	15-May	15-Jul	5%	100%	100%
23		Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 20 consecutive days at least once (Note 5)	15-May	15-Jul	5%	79%	99%

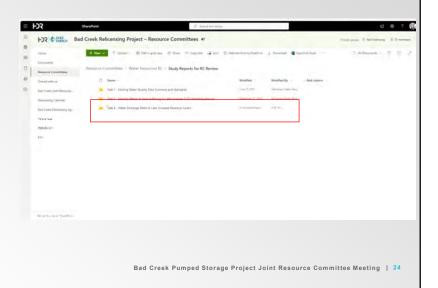

Bad Creek Pumped Storage Project Joint Resource Committee Meeting | 15


15



	ages – Performa	ilice Measures			I MINO		
Measure Number	Performance Measures	Criterion (Note 1)	Start Date	End Date	MISC (Note 2)	Baseline	Bad Creek II
	Duke Energy Hydropower & Water Quantity Management						
64		Number of days in LIP Stage Normal (Note 19)	1-Jan	31-Dec		8,728	5,102
65	_	Number of days in LIP Stage 0	1-Jan	31-Dec		13,972	17,584
66		Number of days in LIP Stage 1	1-Jan	31-Dec		1,351	1,351
67	Stage	Number of days in LIP Stage 2	1-Jan	31-Dec		2,185	2,199
68		Number of days in LIP Stage 3	1-Jan	31-Dec		378	378
69	1	Number of days in LIP Stage 4	1-Jan	31-Dec		49	49
Measure Number	Performance Measures	Criterion (Note 1)	Start Date	End Date	MISC (Note 2)	Baseline_ccLow	Bad Creek II_ccLow
	Duke Energy Hydropower & Water Quantity Management						
64		Number of days in LIP Stage Normal (Note 19)	1-Jan	31-Dec		8,707	3,366
65		Number of days in LIP Stage 0	1-Jan	31-Dec		13,860	19,187
66		Number of days in LIP Stage 1	1-Jan	31-Dec		1,421	1,435
67	Stage	Number of days in LIP Stage 2	1-Jan	31-Dec		2,241	2,227
68		Number of days in LIP Stage 3	1-Jan	31-Dec		385	399
69		Number of days in LIP Stage 4	1-Jan	31-Dec		49	49
Measure Number	Performance Measures	Criterion (Note 1)	Start Date	End Date	MISC (Note 2)	Baseline_ccHigh	Bad Creek II_ccHigh
	Duke Energy Hydropower & Water Quantity Management						
64		Number of days in LIP Stage Normal (Note 19)	1-Jan	31-Dec		7,860	4,276
65		Number of days in LIP Stage 0	1-Jan	31-Dec		13,160	16,793
66	Keowee-Toxaway Low Inflow Protocol (LIP)	Number of days in LIP Stage 1	1-Jan	31-Dec		2,625	2,527
67	Stage	Number of days in LIP Stage 2	1-Jan	31-Dec		2,213	2,304
68		Number of days in LIP Stage 3	1-Jan	31-Dec		805	728
69		Number of days in LIP Stage 4	1-Jan	31-Dec		0	35

Summary Conclusions – Bad Creek II Effects


- Bad Creek Reservoir elevation: Wider operating band
- Lake Keowee and Lake Jocassee elevations: Comparable to Baseline
- Lake Jocassee reservoir level fluctuations rate of change (24-hour period): Smaller than Baseline
- Lake Keowee water intakes: No effect
- Keowee-Toxaway Low Inflow Protocol (LIP)
 - Stage 0 frequency increases
 - Differences diminish in the more advanced stages of the KT LIP
- USACE reservoirs, Savannah River flows: Minimal effect

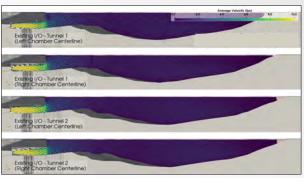
Bad Creek Pumped Storage Project Joint Resource Committee Meeting | 23

23

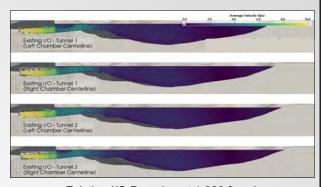
Next Steps

- Review draft study report
 - Posted to SharePoint site
 - Comments due: April 26, 2024

Additional CFD Modeling – Overview

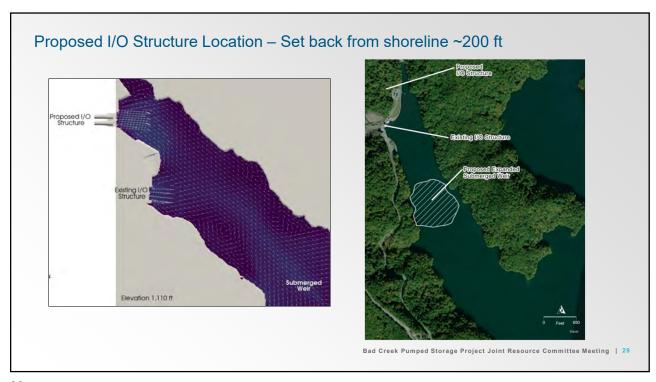

- Additional CFD modeling is ongoing to incorporate recent design changes (from single-speed to variable speed turbines) at Bad Creek II, which will result in slightly higher hydraulic capacities than originally modeled
- Generation flows will increase by just ~2 percent while flows under pumping will increase by ~9 percent; therefore, only updated pumping capacities will be modeled
- Three scenarios will be modeled: full pond (1,110 ft msl), max drawdown (1,080 ft msl), and intermediate (1,096 ft msl); these elevations are consistent with those modeled during the feasibility study
- Because focus is on near-field flows (i.e., vicinity of inlet/outlet structure), the same CFD model used for the **feasibility study** will be used for updated modeling instead of the CFD model used for the relicensing study (which focused on flows downstream of the weir)
- Findings will be drafted **as an addendum** to the previous CFD Report and will be distributed to stakeholders for review in Q2

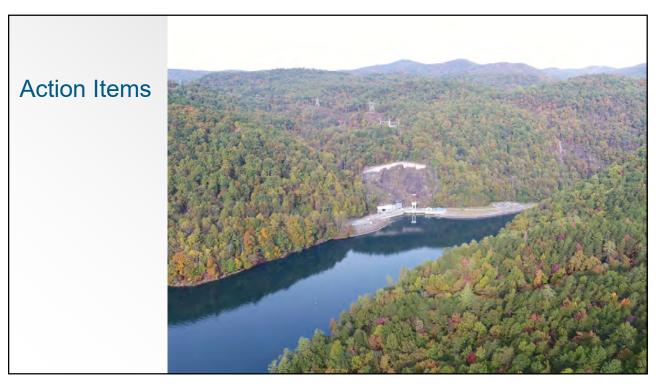
Bad Creek Pumped Storage Project Joint Resource Committee Meeting | 27


27

Previous Results (Feasibility Study) - Existing Operations

Similar figures will be developed for updated pumping at Bad Creek II with proposed I/O structure




Existing I/O Pumping at 1,110 ft msl

Existing I/O Pumping at 1,080 ft msl

Bad Creek Pumped Storage Project Joint Resource Committee Meeting | 28

 From:
 Crutchfield Jr., John U

 To:
 McCarney-Castle, Kerry

 Cc:
 Stuart, Alan Witten

Subject: FW: [EXTERNAL] Re: Bad Creek Relicensing - CHEOPS Modeling Draft Report Ready for Review and April 4 Meeting Agenda

(COMMENTS DUE 4/26)

Date: Friday, April 19, 2024 4:41:30 PM

Attachments: image001.png

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

From: Charles (Rowdy) B Harris <charris@scprt.com>

Sent: Friday, April 19, 2024 4:35 PM

To: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>; Adin T Fell < afell@scprt.com>

Subject: [EXTERNAL] Re: Bad Creek Relicensing - CHEOPS Modeling Draft Report Ready for Review and April 4

Meeting Agenda (COMMENTS DUE 4/26)

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

SCPRT has no comments.

From: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com >

Sent: Friday, April 19, 2024 7:52 AM

To: PellettC@dnr.sc.gov < PellettC@dnr.sc.gov>; Alison.Jakupca@KleinschmidtGroup.com

<a>Alison.Jakupca@KleinschmidtGroup.com>; BreedloveA@dnr.sc.gov <BreedloveA@dnr.sc.gov>;

grossea@dnr.sc.gov <grossea@dnr.sc.gov>; attawaya@dnr.sc.gov <attawaya@dnr.sc.gov>;

 $\underline{bereskind@greenvillewater.com} < \underline{bereskind@greenvillewater.com} >; \underline{wes.cooler@mac.com}$

<wes.cooler@mac.com>; RankinD@dnr.sc.gov <RankinD@dnr.sc.gov>; adoug41@att.net <adoug41@att.net>;

mixong@dnr.sc.gov <mixong@dnr.sc.gov>; jhains@g.clemson.edu <jhains@g.clemson.edu>;

ehollis@upstateforever.org <ehollis@upstateforever.org>; jphillips@greenvillewater.com

<jphillips@greenvillewater.com>; kindelj@dnr.sc.gov <kindelj@dnr.sc.gov>; jtk7140@me.com <jtk7140@me.com>;

<u>bradleyk@dnr.sc.gov</u> <<u>bradleyk@dnr.sc.gov</u>>; <u>Kelly.Kirven@KleinschmidtGroup.com</u>

<Kelly.Kirven@KleinschmidtGroup.com>; forresterk@dnr.sc.gov <forresterk@dnr.sc.gov>; quattrol@dnr.sc.gov

<quattrol@dnr.sc.gov>; Dunn, Lynne <<u>Lynne.Dunn@duke-energy.com</u>>; Raber, Maverick James

< Maverick.Raber@duke-energy.com>; Kerry.McCarney-Castle@hdrinc.com < Kerry.McCarney-Castle@hdrinc.com>;

Abney, Michael A < Michael. Abney@duke-energy.com >; Elizabeth Miller < Miller E@dnr.sc.gov >;

lputnammitchell@gmail.com <|putnammitchell@gmail.com>; amedeemd@dhec.sc.gov <amedeemd@dhec.sc.gov>;

kernm@dnr.sc.gov <kernm@dnr.sc.gov>; Mularski, Eric -HDRInc <hDRInc.com>; Wahl, Nick

< Nick.Wahl@duke-energy.com>; melanie olds@fws.gov < melanie olds@fws.gov >; cloningerp@dnr.sc.gov

<<u>cloningerp@dnr.sc.gov</u>>; morep@dnr.sc.gov <morep@dnr.sc.gov>; bill.ranson@retiree.furman.edu

< bill.ranson@retiree.furman.edu>; SelfR@dnr.sc.gov < SelfR@dnr.sc.gov>; Charles (Rowdy) B Harris

<<u>charris@scprt.com</u>>; Maggie.Salazar@hdrinc.com <<u>Maggie.Salazar@hdrinc.com</u>>; <u>Tessels@dnr.sc.gov</u>

<<u>Tessels@dnr.sc.gov</u>>; Fletcher, Scott T <<u>Scott.Fletcher@duke-energy.com</u>>; <u>harders@dnr.sc.gov</u>

kernel-number-10, erin.Settevendemio@hdrinc.com < kernel-number-10, erin.Settevendemio@hdrinc.com , erin.Settevendemio@hdrinc.com kernel-number-10, erin.Set

<u>cstarker@upstateforever.org</u> <<u>cstarker@upstateforever.org</u>>; Stuart, Alan Witten <<u>Alan.Stuart@duke-energy.com</u>>;

danielt@dnr.sc.gov <danielt@dnr.sc.gov>; dwilde@keoweefolks.org <dwilde@keoweefolks.org>;

woodw@dnr.sc.gov <woodw@dnr.sc.gov>; suewilliams130@gmail.com <suewilliams130@gmail.com>;

simmonsw@dnr.sc.gov <simmonsw@dnr.sc.gov>; gcyantis2@yahoo.com <gcyantis2@yahoo.com>; Kevin Nebiolo

< <u>Kevin.Nebiolo@KleinschmidtGroup.com</u>>; Jen Huff < <u>jen.huff@hdrinc.com</u>>; Andrew Gleason

<andrewandwilla@hotmail.com>; Glenn Hilliard <glenn@hilliardgrp.com>; phil.mitchell@gmail.com

Cc: Lineberger, Jeff < <u>Jeff.Lineberger@duke-energy.com</u>>; Kulpa, Sarah -hdrinc < <u>Sarah.Kulpa@hdrinc.com</u>>; Angie.Scangas@hdrinc.com < <u>angie.scangas@hdrinc.com</u>>; Ziegler, Ty < <u>ty.ziegler@hdrinc.com</u>>

Subject: RE: Bad Creek Relicensing - CHEOPS Modeling Draft Report Ready for Review and April 4 Meeting Agenda (COMMENTS DUE 4/26)

Dear Bad Creek Resource Committee members:

Just a reminder that comments are due on the CHEOPS Modeling Draft Report by next Friday, April 26.

Thanks, John

From: Crutchfield Jr., John U

Sent: Wednesday, March 27, 2024 7:23 AM

To: PellettC@dnr.sc.gov; Alison.Jakupca@KleinschmidtGroup.com; BreedloveA@dnr.sc.gov; grossea@dnr.sc.gov; attawaya@dnr.sc.gov; bereskind@greenvillewater.com; wes.cooler@mac.com; RankinD@dnr.sc.gov; adoug41@att.net; mixong@dnr.sc.gov; jhains@g.clemson.edu; ehollis@upstateforever.org; iphillips@greenvillewater.com; kindeli@dnr.sc.gov; jtk7140@me.com; bradlevk@dnr.sc.gov; Kelly.Kirven@KleinschmidtGroup.com; forresterk@dnr.sc.gov; quattrol@dnr.sc.gov; Dunn, Lynne <<u>Lynne.Dunn@duke-energy.com</u>>; Raber, Maverick James <<u>Maverick.Raber@duke-energy.com</u>>; <u>Kerry.McCarney-</u> Castle@hdrinc.com; Abney, Michael A < Michael.Abney@duke-energy.com >; millere@dnr.sc.gov; lputnammitchell@gmail.com; amedeemd@dhec.sc.gov; kernm@dnr.sc.gov; Eric Mularski <<u>Eric.Mularski@hdrinc.com</u>>; Wahl, Nick <<u>Nick.Wahl@duke-energv.com</u>>; <u>melanie_olds@fws.gov</u>; cloningerp@dnr.sc.gov; morep@dnr.sc.gov; bill.ranson@retiree.furman.edu; SelfR@dnr.sc.gov; charris@scprt.com; Maggie.Salazar@hdrinc.com; Tessels@dnr.sc.gov; Fletcher, Scott T < Scott.Fletcher@duke-energy.com>; harders@dnr.sc.gov; Erin.Settevendemio@hdrinc.com; cstarker@upstateforever.org; Stuart, Alan Witten <<u>Alan.Stuart@duke-energy.com</u>>; <u>danielt@dnr.sc.gov; dwilde@keoweefolks.org; woodw@dnr.sc.gov;</u> suewilliams130@gmail.com; simmonsw@dnr.sc.gov; gcyantis2@yahoo.com; Kevin Nebiolo <<u>Kevin.Nebiolo@KleinschmidtGroup.com</u>>; Jen Huff <<u>jen.huff@hdrinc.com</u>>; Andrew Gleason <andrewandwilla@hotmail.com>; Glenn Hilliard <glenn@hilliardgrp.com>; phil.mitchell@gmail.com

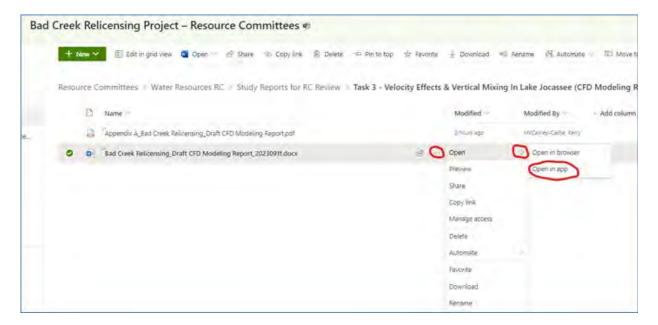
Subject: Bad Creek Relicensing - CHEOPS Modeling Draft Report Ready for Review and April 4 Meeting Agenda

Cc: Lineberger, Jeff < Jeff.Lineberger@duke-energy.com >; Sarah Kulpa < Sarah.Kulpa@hdrinc.com >;

Dear Bad Creek Resource Committee members:

Angie.Scangas@hdrinc.com; Ziegler, Ty <tv.ziegler@hdrinc.com>

Duke Energy is pleased to distribute the draft Water Resources – Task 4 (i.e., CHEOPS Modeling) report for your review. This draft includes the results from CHEOPS modeling for the Baseline and Bad Creek II scenarios as well as populated Performance Measures sheets. The draft report is available on the SharePoint site using this link: Bad Creek Relicensing Project – Resource Committees - Draft CHEOPS report - All Documents (sharepoint.com).


Please provide your comments within the draft report using Track Changes as explained further below within 30 days (**April 26, 2024**). When you have completed your review – even if you have no comments – I would appreciate an email stating that is the case.

<u>Important – Please Read!</u>

 As discussed in the kick-off meeting (July 2022), Duke Energy is providing relicensing deliverables on the SharePoint site for relicensing participants to access, review, and comment on files. Please <u>provide all</u> <u>comments in the SharePoint Word document using tracked changes</u>. This will eliminate version control issues,

- enable relicensing participants to gain insight into one another's comments, and result in a consolidated document for comment response.
- We strongly recommend opening the document in Word; otherwise the formatting will look distorted. The
 simplest way to do this is to click on the three dots to the right of the document (example shown below),
 choose "Open", then choose "Open in app". This will open the document in Word and you'll have the
 functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free
 to reach out to @McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word – either technique works!])

We will be discussing the draft report and report findings during the April 4, 2024, Joint Resource Committee meeting. I have attached the meeting agenda for your reference.

If you have questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
525 South Tryon Street, DEP-35B | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

From: Crutchfield Jr., John U

To: McCarney-Castle, Kerry; Stuart, Alan Witten

Subject: Fwd: [EXTERNAL] Re: Bad Creek Relicensing - CHEOPS Modeling Draft Report Ready for Review and April 4 Meeting Agenda (COMMENTS DUE

4/26)

Date: Saturday, April 20, 2024 7:26:23 AM

Attachments: <u>image001.png</u>

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Get Outlook for iOS

From: Yantis Gerry <gcyantis2@yahoo.com> Sent: Saturday, April 20, 2024 3:24 AM

To: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Cc: Sue Williams < suewilliams 130@gmail.com>

Subject: [EXTERNAL] Re: Bad Creek Relicensing - CHEOPS Modeling Draft Report Ready for Review and April 4

Meeting Agenda (COMMENTS DUE 4/26)

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

John,

From an AQD perspective, we have no comments CHEOPS Modeling Draft Report.

Thank you, Gerry

Advocates for Quality Development

Sent from Yahoo Mail for iPhone

On Friday, April 19, 2024, 1:52 PM, Crutchfield Jr., John U < John. Crutchfield@duke-energy.com> wrote:

Dear Bad Creek Resource Committee members:

Just a reminder that comments are due on the CHEOPS Modeling Draft Report by next Friday, April 26.

Thanks, John

From: Crutchfield Jr., John U

Sent: Wednesday, March 27, 2024 7:23 AM

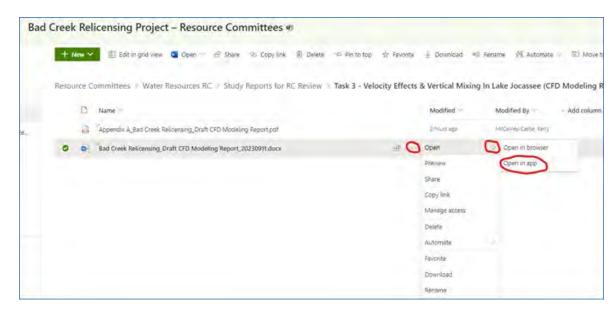
To: PellettC@dnr.sc.gov; Alison.Jakupca@KleinschmidtGroup.com; BreedloveA@dnr.sc.gov; grossea@dnr.sc.gov; attawaya@dnr.sc.gov; bereskind@greenvillewater.com; wes.cooler@mac.com; RankinD@dnr.sc.gov; adoug41@att.net; mixong@dnr.sc.gov; jhains@g.clemson.edu; ehollis@upstateforever.org; jphillips@greenvillewater.com; kindelj@dnr.sc.gov; jtk7140@me.com; bradleyk@dnr.sc.gov; Kelly.Kirven@KleinschmidtGroup.com; forresterk@dnr.sc.gov; quattrol@dnr.sc.gov; Dunn, Lynne <Lynne.Dunn@duke-energy.com>; Raber, Maverick James <Maverick.Raber@duke-energy.com>; Kerry.McCarney-Castle@hdrinc.com; Abney, Michael A <Michael.Abney@duke-energy.com>; millere@dnr.sc.gov; lputnammitchell@gmail.com; amedeemd@dhec.sc.gov; kernm@dnr.sc.gov; Eric Mularski <Eric.Mularski@hdrinc.com>; Wahl, Nick <Nick.Wahl@duke-energy.com>; melanie_olds@fws.gov; cloningerp@dnr.sc.gov; morep@dnr.sc.gov; bill.ranson@retiree.furman.edu; SelfR@dnr.sc.gov; charris@scprt.com; Maggie.Salazar@hdrinc.com; Tessels@dnr.sc.gov; Fletcher, Scott T

<Scott.Fletcher@duke-energy.com>; harders@dnr.sc.gov; Erin.Settevendemio@hdrinc.com;
cstarker@upstateforever.org; Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; danielt@dnr.sc.gov;
dwilde@keoweefolks.org; woodw@dnr.sc.gov; suewilliams130@gmail.com; simmonsw@dnr.sc.gov;
gcyantis2@yahoo.com; Kevin Nebiolo <Kevin.Nebiolo@KleinschmidtGroup.com>; Jen Huff
<jen.huff@hdrinc.com>; Andrew Gleason <andrewandwilla@hotmail.com>; Glenn Hilliard
<glenn@hilliardgrp.com>; phil.mitchell@gmail.com

Cc: Lineberger, Jeff <Jeff.Lineberger@duke-energy.com>; Sarah Kulpa <Sarah.Kulpa@hdrinc.com>; Angie.Scangas@hdrinc.com; Ziegler, Ty <ty.ziegler@hdrinc.com>

Subject: Bad Creek Relicensing - CHEOPS Modeling Draft Report Ready for Review and April 4 Meeting Agenda

Dear Bad Creek Resource Committee members:


Duke Energy is pleased to distribute the draft Water Resources – Task 4 (i.e., CHEOPS Modeling) report for your review. This draft includes the results from CHEOPS modeling for the Baseline and Bad Creek II scenarios as well as populated Performance Measures sheets. The draft report is available on the SharePoint site using this link: Bad Creek Relicensing Project — Resource Committees - Draft CHEOPS report - All Documents (sharepoint.com).

Please provide your comments within the draft report using Track Changes as explained further below within 30 days (**April 26, 2024**). When you have completed your review – even if you have no comments – I would appreciate an email stating that is the case.

Important - Please Read!

- As discussed in the kick-off meeting (July 2022), Duke Energy is providing relicensing deliverables on
 the SharePoint site for relicensing participants to access, review, and comment on files. Please <u>provide</u>
 <u>all comments in the SharePoint Word document using tracked changes</u>. This will eliminate version
 control issues, enable relicensing participants to gain insight into one another's comments, and result
 in a consolidated document for comment response.
- We strongly recommend opening the document in Word; otherwise the formatting will look distorted. The simplest way to do this is to click on the three dots to the right of the document (example shown below), choose "Open", then choose "Open in app". This will open the document in Word and you'll have the functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free to reach out to @McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word — either technique works!])

We will be discussing the draft report and report findings during the April 4, 2024, Joint Resource Committee meeting. I have attached the meeting agenda for your reference.

If you have questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
525 South Tryon Street, DEP-35B | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

Subject:

FW: Bad Creek Relicensing - CHEOPS Modeling FINAL Report

From: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Sent: Tuesday, April 30, 2024 10:09 AM

To: Alex Pellett < Pellett C@dnr.sc.gov>; Alison Jakupca < Alison.Jakupca@KleinschmidtGroup.com>; Amy Breedlove <BreedloveA@dnr.sc.gov>; Andrew Grosse <grossea@dnr.sc.gov>; Austen Attaway <attawaya@dnr.sc.gov>; bereskind <bereskind@greenvillewater.com>; Wes Cooler <wes.cooler@mac.com>; Dan Rankin <RankinD@dnr.sc.gov>; Andy Douglas <adoug41@att.net>; Greg Mixon <mixong@dnr.sc.gov>; jhains@g.clemson.edu; Erika Hollis <ehollis@upstateforever.org>; Jeff Phillips <iphillips@greenvillewater.com>; Jennifer Kindel <kindelj@dnr.sc.gov>; itk7140@me.com; Keith A. Bradley <bradleyk@dnr.sc.gov>; Kelly Kirven <Kelly.Kirven@KleinschmidtGroup.com>; Ken Forrester <forresterk@dnr.sc.gov>; quattrol <quattrol@dnr.sc.gov>; Dunn, Lynne <Lynne.Dunn@duke-energy.com>; Raber, Maverick James <Maverick.Raber@duke-energy.com>; McCarney-Castle, Kerry <Kerry.McCarney-Castle@hdrinc.com>; Abney, Michael A < Michael.Abney@duke-energy.com>; Elizabeth Miller < Miller E@dnr.sc.gov>; <kernm@dnr.sc.gov>; Mularski, Eric <Eric.Mularski@HDRInc.com>; Wahl, Nick <Nick.Wahl@duke-energy.com>; Olds, Melanie J <melanie olds@fws.gov>; Pat Cloninger <cloningerp@dnr.sc.gov>; More, Priyanka <morep@dnr.sc.gov>; Bill Ranson-Retired <bill.ranson@retiree.furman.edu>; SelfR <SelfR@dnr.sc.gov>; Charles (Rowdy) B Harris <charris@scprt.com>; Salazar, Maggie <Maggie.Salazar@hdrinc.com>; Samantha Tessel <Tessels@dnr.sc.gov>; Fletcher, Scott T <Scott.Fletcher@duke-energy.com>; Scott Harder <harders@dnr.sc.gov>; Settevendemio, Erin <Erin.Settevendemio@hdrinc.com>; Chris Starker <cstarker@upstateforever.org>; Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Tom Daniel <danielt@dnr.sc.gov>; Dale Wilde <dwilde@keoweefolks.org>; William T. Wood <woodw@dnr.sc.gov>; suewilliams130@gmail.com; simmonsw@dnr.sc.gov; gcyantis2 <gcyantis2@yahoo.com>; Kevin Nebiolo <Kevin.Nebiolo@KleinschmidtGroup.com>; Huff, Jen <jen.huff@hdrinc.com>; Andrew Gleason <andrewandwilla@hotmail.com>; glenn@hilliardgrp.com; phil.mitchell@gmail.com Cc: Lineberger, Jeff <Jeff.Lineberger@duke-energy.com>; Kulpa, Sarah <Sarah.Kulpa@hdrinc.com>; Scangas, Angie

<angie.scangas@hdrinc.com>; Ziegler, Ty <ty.ziegler@hdrinc.com>

Subject: RE: Bad Creek Relicensing - CHEOPS Modeling FINAL Report

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Dear Bad Creek Resource Committee members:

The CHEOPS modeling report has been finalized and can be accessed at the Bad Creek Relicensing SharePoint site:

20240326 Bad Creek CHEOPS Final Report.pdf

Please let Alan or me know if you have any questions.

Regards,

John Crutchfield

Project Manager II Water Strategy, Hydro Licensing & Lake Services Regulated & Renewable Energy **Duke Energy** 525 South Tryon Street, DEP-35B | Charlotte, NC 28202 Office 980-373-2288 | Cell 919-757-1095

From: <u>Crutchfield Jr., John U</u>

To: Alex Pellett; Amy Breedlove; Dale Wilde; Dan Rankin; bereskind; Elizabeth Miller; Erika Hollis; gcyantis2; Jeff Phillips; Huff, Jen;

McCarney-Castle, Kerry; quattrol; Olds, Melanie J; More, Priyanka; Amedee, Morgan D.; Raber, Maverick James; Ross Self; Scott Harder; Stuart, Alan Witten; William T. Wood; Abney, Michael A; Amy Breedlove; Dan Rankin; Elizabeth Miller; Erika Hollis; Settevendemio, Erin; gcyantis2; Huff, Jen; jhains@g.clemson.edu; quattrol; Olds, Melanie J; Amedee, Morgan D.; Morgan Kern; Ross Self; Stuart, Alan Witten; Wahl, Nick; William T. Wood; Alex Pellett; Alison Jakupca; Bruce, Ed; Dan Rankin; Dunn, Lynne; Elizabeth Miller; Greg Mixon; Huff, Jen; jhains@g.clemson.edu; Salazar, Maggie; Amedee, Morgan D.; Pat Cloninger; Charles (Rowdy) B Harris; Kulpa, Sarah; Stuart, Alan Witten; Terry Keene; Tom Daniel; Amy Breedlove; Andrew Gleason; Andy Douglas; Bill Ranson-Retired; Chris Starker; Dale Wilde; Dan Rankin; Elizabeth Miller; glenn@hilliardgrp.com; Huff, Jen; Kelly Kirven; Ken Forrester; quattrol; Salazar, Maggie; Amedee, Morgan D.; Pardue, Ethan; Pat Cloninger; Phil Mitchell; PShirley; Ross Self; Charles (Rowdy) B Harris;

Stuart, Alan Witten; suewilliams130@gmail.com; William T. Wood; Willie Simmons

Cc: Kulpa, Sarah; McCarney-Castle, Kerry; Ziegler, Ty; Scangas, Angie

Subject: Bad Creek Relicensing - Bad Creek CFD Model Updated Pumping Rates Draft Addendum (REVIEW REQUESTED)

Date: Wednesday, June 12, 2024 11:58:09 AM

Attachments: image001.png image002.png

Importance: High

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Dear Bad Creek Relicensing Resources Committees:

Duke Energy is pleased to distribute the **Bad Creek CFD Model Updated Pumping Rates Draft Addendum** for Resource Committee review. This draft report is the second addendum to the Task 3 final report (*Velocity Effects and Vertical Mixing in Lake Jocassee Duke to a Second Powerhouse*), which was filed with the Initial Study Report in January of this year. The purpose of the addendum is to provide results of additional CFD modeling performed to incorporate increased hydraulic pumping at Bad Creek II from a recently proposed technology modification (variable speed pump-turbines vs. single speed). The deliverable is available on the Bad Creek Relicensing SharePoint site at the following link: Addendum 2_Updated Pumping CFD Model Report. Duke Energy is requesting a 30-day review period, therefore, please submit all comments by **July 12**. A confirmation email is kindly requested upon review completion (email me at John.Crutchfield@duke-energy.com).

Important – Please Read!

- As discussed in the kick-off meeting (July 2022), Duke Energy would like to make relicensing deliverables
 available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment;
 therefore, we request all comments be made in the SharePoint Word document using tracked changes. This
 will eliminate version control issues and result in a consolidated document for comment response.
- We strongly recommend opening the document in Word; otherwise, the formatting will look distorted. The simplest way to do this is to click on the three dots to the right of the document (example shown below), choose "Open", then choose "Open in app". This will open the document in Word, and you'll have the functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free to reach out to McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word — either technique works!])

Also, please note this draft report addendum is being sent to the Water Resources, Aquatics, Operations, and Recreation & Visual Resource committees, and you may receive multiple emails if you are on several of these committees' distribution lists. I apologize in advance if you get multiple emails.

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

Subject: FW: [EXTERNAL] Re: Bad Creek Relicensing - Bad Creek CFD Model Updated Pumping Rates Draft Addendum (REVIEW REQUESTED)

Date: Wednesday, June 12, 2024 1:28:32 PM

Attachments: <u>image001.png</u> <u>image002.png</u>

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

From: Andrew Gleason <andrewandwilla@hotmail.com>

Sent: Wednesday, June 12, 2024 1:25 PM

To: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Cc: Bill Ranson-Retired < bill.ranson@retiree.furman.edu>

Subject: [EXTERNAL] Re: Bad Creek Relicensing - Bad Creek CFD Model Updated Pumping Rates Draft Addendum

(REVIEW REQUESTED)

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

I will not be making any comments on this report. Bill Ranson may, but I doubt it.

Andrew Gleason Foothills Trail Conservancy Chairman 864-546-1589

andrewandwilla@hotmail.com

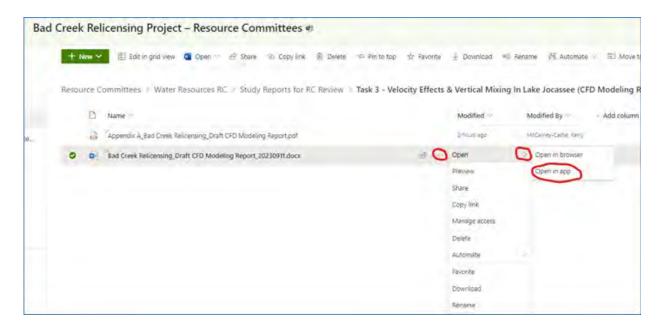
From: Crutchfield Jr., John U < <u>John.Crutchfield@duke-energy.com</u>>

Sent: Wednesday, June 12, 2024 11:57 AM

To: Alex Pellett <PellettC@dnr.sc.gov>; Amy Breedlove <BreedloveA@dnr.sc.gov>; Dale Wilde <dwilde@keoweefolks.org>; Dan Rankin <RankinD@dnr.sc.gov>; David Bereskin <bre>
| Sereskind@greenvillewater.com>; Elizabeth Miller <MillerE@dnr.sc.gov>; Erika Hollis <ehollis@upstateforever.org>; Gerry Yantis </e>
| Sereskind@greenvillewater.com>; Jen Huff <ien.huff@hdrinc.com>; Kerry McCarney-Castle Kerry McCarney-Castle@hdrinc.com; Lynn Quattro Morgan Amedee <a href="McCarney-Castle@hdrinc.c

<melanie_olds@fws.gov>; Morgan Amedee <amedeemd@dhec.sc.gov>; Morgan Kern <kernm@dnr.sc.gov>; Ross Self <SelfR@dnr.sc.gov>; Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Wahl, Nick <Nick.Wahl@dukeenergy.com>; William Wood <woodw@dnr.sc.gov>; Alex Pellett <PellettC@dnr.sc.gov>; Alison Jakupca Alison.Jakupca@KleinschmidtGroup.com; Bruce, Ed Ed.Bruce@duke-energy.com; Dan Rankin <<u>RankinD@dnr.sc.gov</u>>; Dunn, Lynne <<u>Lynne.Dunn@duke-energy.com</u>>; Elizabeth Miller <<u>MillerE@dnr.sc.gov</u>>; Greg Mixon <mixong@dnr.sc.gov>; Jen Huff <jen.huff@hdrinc.com>; John Haines <jhains@g.clemson.edu>; Maggie Salazar <maggie.salazar@hdrinc.com>; Morgan Amedee <amedeemd@dhec.sc.gov>; Pat Cloninger <cloningerp@dnr.sc.gov>; Rowdy Harris <charris@scprt.com>; Kulpa, Sarah -hdrinc <Sarah.Kulpa@hdrinc.com>; Stuart, Alan Witten <<u>Alan.Stuart@duke-energy.com</u>>; Terry Keene <<u>jtk7140@me.com</u>>; Tom Daniel <<u>danielt@dnr.sc.gov</u>>; Amy Breedlove <<u>BreedloveA@dnr.sc.gov</u>>; Andrew Gleason <andrewandwilla@hotmail.com>; Andy Douglas <adoug41@att.net>; Bill Ranson <bill.ranson@retiree.furman.edu>; Chris Starker < cstarker@upstateforever.org >; Dale Wilde < dwilde@keoweefolks.org >; Dan Rankin <RankinD@dnr.sc.gov>; Elizabeth Miller <MillerE@dnr.sc.gov>; Glenn Hilliard <glenn@hilliardgrp.com>; Jen Huff <ien.huff@hdrinc.com>; Kelly Kirven <Kelly.Kirven@KleinschmidtGroup.com>; Ken Forrester <forresterk@dnr.sc.gov>; Lynn Quattro <quattrol@dnr.sc.gov>; Maggie Salazar <maggie.salazar@hdrinc.com>; Morgan Amedee <amedeemd@dhec.sc.gov>; Pardue, Ethan <<u>Ethan.Pardue@duke-energy.com</u>>; Pat Cloninger <cloningerp@dnr.sc.gov>; Phil Mitchell <phil.mitchell@gmail.com>; Phil Shirley <pshirley@oconeeco.com>; Ross Self <<u>SelfR@dnr.sc.gov</u>>; Rowdy Harris <<u>charris@scprt.com</u>>; Stuart, Alan Witten <<u>Alan.Stuart@duke-energy.com</u>>; Sue Williams <<u>suewilliams130@gmail.com</u>>; William Wood <<u>woodw@dnr.sc.gov</u>>; Willie Simmons <simmonsw@dnr.sc.gov>

Cc: Kulpa, Sarah -hdrinc <<u>Sarah.Kulpa@hdrinc.com</u>>; Kerry McCarney-Castle <<u>Kerry.McCarney-Castle@hdrinc.com</u>>; Ziegler, Ty <<u>ty.ziegler@hdrinc.com</u>>; <u>Angie.Scangas@hdrinc.com</u> <<u>angie.scangas@hdrinc.com</u>> **Subject:** Bad Creek Relicensing - Bad Creek CFD Model Updated Pumping Rates Draft Addendum (REVIEW REQUESTED)


Dear Bad Creek Relicensing Resources Committees:

Duke Energy is pleased to distribute the **Bad Creek CFD Model Updated Pumping Rates Draft Addendum** for Resource Committee review. This draft report is the second addendum to the Task 3 final report (*Velocity Effects and Vertical Mixing in Lake Jocassee Duke to a Second Powerhouse*), which was filed with the Initial Study Report in January of this year. The purpose of the addendum is to provide results of additional CFD modeling performed to incorporate increased hydraulic pumping at Bad Creek II from a recently proposed technology modification (variable speed pump-turbines vs. single speed). The deliverable is available on the Bad Creek Relicensing SharePoint site at the following link: Addendum 2_Updated Pumping CFD Model Report. Duke Energy is requesting a 30-day review period, therefore, please submit all comments by **July 12**. A confirmation email is kindly requested upon review completion (email me at John.Crutchfield@duke-energy.com).

Important - Please Read!

- As discussed in the kick-off meeting (July 2022), Duke Energy would like to make relicensing deliverables available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment; therefore, we request all comments be made in the SharePoint Word document using tracked changes. This will eliminate version control issues and result in a consolidated document for comment response.
- We strongly recommend opening the document in Word; otherwise, the formatting will look distorted. The simplest way to do this is to click on the three dots to the right of the document (example shown below), choose "Open", then choose "Open in app". This will open the document in Word, and you'll have the functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free to reach out to McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word — either technique works!])

Also, please note this draft report addendum is being sent to the Water Resources, Aquatics, Operations, and Recreation & Visual Resource committees, and you may receive multiple emails if you are on several of these committees' distribution lists. I apologize in advance if you get multiple emails.

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

Subject: FW: [EXTERNAL] Re: Bad Creek Relicensing - Bad Creek CFD Model Updated Pumping Rates Draft Addendum

(REVIEW REQUESTED)

Date: Wednesday, June 12, 2024 12:51:28 PM

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

From: Sue Williams <suewilliams130@gmail.com>

Sent: Wednesday, June 12, 2024 12:50 PM

To: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Subject: [EXTERNAL] Re: Bad Creek Relicensing - Bad Creek CFD Model Updated Pumping Rates Draft

Addendum (REVIEW REQUESTED)

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

I have reviewed the Addendum.

Sue Williams Six Mile, SC

On Jun 12, 2024, at 11:58, Crutchfield Jr., John U < <u>John.Crutchfield@duke-energy.com</u>> wrote:

Dear Bad Creek Relicensing Resources Committees:

Duke Energy is pleased to distribute the **Bad Creek CFD Model Updated Pumping Rates Draft Addendum** for Resource Committee review. This draft report is the second addendum to the Task 3 final report (*Velocity Effects and Vertical Mixing in Lake Jocassee Duke to a Second Powerhouse*), which was filed with the Initial Study Report in January of this year. The purpose of the addendum is to provide results of additional CFD modeling performed to incorporate increased hydraulic pumping at Bad Creek II from a recently proposed technology modification (variable speed pump-turbines vs. single speed). The deliverable is available on the Bad Creek Relicensing SharePoint site at the following link:

<image001.png>

Addendum 2_Updated Pumping CFD Model Report. Duke Energy is requesting a 30-

day review period, therefore, please submit all comments by **July 12**. A confirmation email is kindly requested upon review completion (email me at John.Crutchfield@dukeenergy.com).

Important - Please Read!

- As discussed in the kick-off meeting (July 2022), Duke Energy would like to make relicensing deliverables available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment; therefore, we request all comments be made in the SharePoint Word document using tracked changes. This will eliminate version control issues and result in a consolidated document for comment response.
- 2. We strongly recommend opening the document in Word; otherwise, the formatting will look distorted. The simplest way to do this is to click on the three dots to the right of the document (example shown below), choose "Open", then choose "Open in app". This will open the document in Word, and you'll have the functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free to reach out to @McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word – either technique works!])

<image002.png>

Also, please note this draft report addendum is being sent to the Water Resources, Aquatics, Operations, and Recreation & Visual Resource committees, and you may receive multiple emails if you are on several of these committees' distribution lists. I apologize in advance if you get multiple emails.

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

Subject: FW: [EXTERNAL] CFD Model Report
Date: Tuesday, July 2, 2024 11:00:12 AM

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

FYI.

From: John Hains <jhains@g.clemson.edu> **Sent:** Tuesday, July 2, 2024 10:59 AM

To: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Cc: Dale Wilde <dwilde@keoweefolks.org> **Subject:** [EXTERNAL] CFD Model Report

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

Good Morning John,

I have finished my review of the report and as I think I mentioned to Alan at an earlier date, I believe the modeling for this is good and I have criticism neither of the way it was done, nor of the report and addendum.

However, when subsequent field studies have commenced in order to confirm the predictions of the model, I stand by my request to make before/after field data from Lake Jocassee available. It would also be useful in that analysis to revisit the before/after operational lake data for Bad Creek I...for the purpose of making a complete comparison between the proposed project and the way the lake responded to the original project.

I will be glad to discuss this further with you if that is needed.

Best,

John Hains

Subject: FW: [EXTERNAL] Re: Bad Creek Relicensing - Bad Creek CFD Model Updated Pumping Rates Draft Addendum (REVIEW REQUESTED)

Date: Wednesday, July 3, 2024 5:05:16 PM

Attachments: <u>image001.png</u> <u>image002.png</u>

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

From: Erika Hollis <ehollis@upstateforever.org>

Sent: Wednesday, July 3, 2024 4:12 PM

To: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Subject: [EXTERNAL] Re: Bad Creek Relicensing - Bad Creek CFD Model Updated Pumping Rates Draft Addendum

(REVIEW REQUESTED)

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

John,

I have reviewed the Bad Creek CFD Model Update and have no comments.

Thank you, Erika Hollis

Erika J. Hollis Clean Water Director Upstate Forever 507 Pettigru St Greenville, SC 29601 (864) 250-0500 ext. 117 ehollis@upstateforever.org

From: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com >

Date: Wednesday, June 12, 2024 at 11:58 AM

To: Alex Pellett < Pellett C@dnr.sc.gov >, Amy Breedlove < BreedloveA@dnr.sc.gov >, dwilde@keoweefolks.org < dwilde@keoweefolks.org >, Dan Rankin < RankinD@dnr.sc.gov >, David Bereskin < bereskind@greenvillewater.com >, Elizabeth Miller < Miller E@dnr.sc.gov >, Erika Hollis

<ehollis@upstateforever.org>, Gerry Yantis <gcyantis2@yahoo.com>, Jeffrey Phillips

<iphillips@greenvillewater.com>, Jen Huff <ien.huff@hdrinc.com>, Kerry McCarney-Castle

< Kerry. McCarney-Castle@hdrinc.com >, Lynn Quattro < quattrol@dnr.sc.gov >, Melanie Olds

<melanie_olds@fws.gov>, More Priyanka <morep@dnr.sc.gov>, Morgan Amedee

<a href="mailto:amedeemd@dhec.sc.gov, Raber, Maverick James < Maverick.Raber@duke-energy.com, Ross Self

<<u>SelfR@dnr.sc.gov</u>>, Scott Harder <<u>harders@dnr.sc.gov</u>>, <u>alan.stuart@duke-energy.com</u>

<a href="mailto:square:squ

< Michael. Abney@duke-energy.com >, Amy Breedlove < Breedlove A@dnr.sc.gov >, Dan Rankin

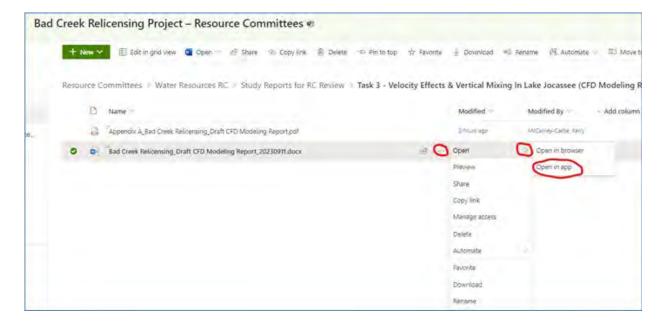
<RankinD@dnr.sc.gov>, Elizabeth Miller <MillerE@dnr.sc.gov>, Erika Hollis

```
<ehollis@upstateforever.org>, Erin Settevendemio <<a href="mailto:Erin.Settevendemio@hdrinc.com">Erin.Settevendemio@hdrinc.com</a>>, Gerry Yantis
<gcyantis2@yahoo.com>, Jen Huff <jen.huff@hdrinc.com>, John Haines <jhains@g.clemson.edu>,
Lynn Quattro <quattrol@dnr.sc.gov>, Melanie Olds <melanie olds@fws.gov>, Morgan Amedee
<amedeemd@dhec.sc.gov>, Morgan Kern <kernm@dnr.sc.gov>, Ross Self <SelfR@dnr.sc.gov>,
alan.stuart@duke-energy.com <alan.stuart@duke-energy.com>, Wahl, Nick <Nick.Wahl@duke-
energy.com>, William Wood <woodw@dnr.sc.gov>, Alex Pellett <PellettC@dnr.sc.gov>, Alison
Jakupca <<u>Alison.Jakupca@KleinschmidtGroup.com</u>>, Bruce, Ed <<u>Ed.Bruce@duke-energy.com</u>>, Dan
Rankin < RankinD@dnr.sc.gov >, Dunn, Lynne < Lynne.Dunn@duke-energy.com >, Elizabeth Miller
< Miller E@dnr.sc.gov>, Greg Mixon mixong@dnr.sc.gov>, Jen Huff ien.huff@hdrinc.com>, John
Haines < jhains@g.clemson.edu >, Maggie Salazar < maggie.salazar@hdrinc.com >, Morgan Amedee
<amedeemd@dhec.sc.gov>, Pat Cloninger <cloningerp@dnr.sc.gov>, Rowdy Harris
<<u>charris@scprt.com</u>>, Kulpa, Sarah -hdrinc <<u>Sarah.Kulpa@hdrinc.com</u>>, <u>alan.stuart@duke-</u>
energy.com <alan.stuart@duke-energy.com>, Terry Keene <itk7140@me.com>, Tom Daniel
<danielt@dnr.sc.gov>, Amy Breedlove <BreedloveA@dnr.sc.gov>, Andrew Gleason
<andrewandwilla@hotmail.com>, Andy Douglas <adoug41@att.net>, Bill Ranson
<br/><bill.ranson@retiree.furman.edu>, Chris Starker <cstarker@upstateforever.org>,
dwilde@keoweefolks.org <dwilde@keoweefolks.org>, Dan Rankin <RankinD@dnr.sc.gov>, Elizabeth
Miller < Miller E@dnr.sc.gov >, Glenn Hilliard < glenn@hilliardgrp.com >, Jen Huff
<ien.huff@hdrinc.com>, Kelly Kirven <<u>Kelly.Kirven@KleinschmidtGroup.com</u>>, Ken Forrester
<forresterk@dnr.sc.gov>, Lynn Quattro <quattrol@dnr.sc.gov>, Maggie Salazar
<maggie.salazar@hdrinc.com>, Morgan Amedee <amedeemd@dhec.sc.gov>, Pardue, Ethan
< <u>Ethan.Pardue@duke-energy.com</u>>, Pat Cloninger < <u>cloningerp@dnr.sc.gov</u>>, Phil Mitchell
hil.mitchell@gmail.com
, Phil Shirley
oconeeco.com
, Ross Self
SelfR@dnr.sc.gov
,
Rowdy Harris <charris@scprt.com>, alan.stuart@duke-energy.com <alan.stuart@duke-energy.com>,
Sue Williams < suewilliams 130@gmail.com >, William Wood < woodw@dnr.sc.gov >, Willie Simmons
<simmonsw@dnr.sc.gov>
```

Cc: Kulpa, Sarah -hdrinc <<u>Sarah.Kulpa@hdrinc.com</u>>, Kerry McCarney-Castle <<u>Kerry.McCarney-Castle@hdrinc.com</u>>, Ziegler, Ty <<u>ty.ziegler@hdrinc.com</u>>, <u>Angie.Scangas@hdrinc.com</u><angie.scangas@hdrinc.com>

Subject: Bad Creek Relicensing - Bad Creek CFD Model Updated Pumping Rates Draft Addendum (REVIEW REQUESTED)

Dear Bad Creek Relicensing Resources Committees:


Duke Energy is pleased to distribute the **Bad Creek CFD Model Updated Pumping Rates Draft Addendum** for Resource Committee review. This draft report is the second addendum to the Task 3 final report (*Velocity Effects and Vertical Mixing in Lake Jocassee Duke to a Second Powerhouse*), which was filed with the Initial Study Report in January of this year. The purpose of the addendum is to provide results of additional CFD modeling performed to incorporate increased hydraulic pumping at Bad Creek II from a recently proposed technology modification (variable speed pump-turbines vs. single speed). The deliverable is available on the Bad Creek Relicensing SharePoint site at the following link: Addendum 2_Updated Pumping CFD Model Report. Duke Energy is requesting a 30-day review period, therefore, please submit all comments by **July 12**. A confirmation email is kindly requested upon review completion (email me at John.Crutchfield@duke-energy.com).

Important - Please Read!

• As discussed in the kick-off meeting (July 2022), Duke Energy would like to make relicensing deliverables available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment;

- therefore, we request all comments be made in the SharePoint Word document using tracked changes. This will eliminate version control issues and result in a consolidated document for comment response.
- We strongly recommend opening the document in Word; otherwise, the formatting will look distorted. The
 simplest way to do this is to click on the three dots to the right of the document (example shown below),
 choose "Open", then choose "Open in app". This will open the document in Word, and you'll have the
 functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free
 to reach out to @McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word — either technique works!])

Also, please note this draft report addendum is being sent to the Water Resources, Aquatics, Operations, and Recreation & Visual Resource committees, and you may receive multiple emails if you are on several of these committees' distribution lists. I apologize in advance if you get multiple emails.

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

Subject: FW: [EXTERNAL] Re: Bad Creek Relicensing - Bad Creek CFD Model Updated Pumping Rates Draft Addendum

(REVIEW REQUESTED)

Date: Monday, July 8, 2024 7:34:49 AM

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

From: Dale Wilde <dwilde@keoweefolks.org>

Sent: Monday, July 8, 2024 7:32 AM

To: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Subject: [EXTERNAL] Re: Bad Creek Relicensing - Bad Creek CFD Model Updated Pumping Rates Draft

Addendum (REVIEW REQUESTED)

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

John,

To my knowledge, John Hains was going to submit his comments. To date he has had no negative comments regarding this model.

See you Thursday.

Ms. Dale Wilde President, FOLKS C: 207-604-6539

E: dwilde@keoweefolks.org

Friends of Lake Keowee Society is dedicated to the preservation and enhancement of Lake Keowee and its watershed through advocacy, conservation, and education.

On Jul 8, 2024, at 6:54 AM, Crutchfield Jr., John U < <u>John.Crutchfield@dukeenergy.com</u>> wrote:

Dear Bad Creek Relicensing Resources Committees:

Just a reminder that comments on the Bad Creek CFD Model Updated Pumping Rates

Thanks, John

From: Crutchfield Jr., John U

Sent: Wednesday, June 12, 2024 11:58 AM

To: Alex Pellett < Pellett C@dnr.sc.gov >; Amy Breedlove < Breedlove A@dnr.sc.gov >; Dale Wilde <<u>dwilde@keoweefolks.org</u>>; Dan Rankin <<u>RankinD@dnr.sc.gov</u>>; David Bereskin <<u>bereskind@greenvillewater.com</u>>; Elizabeth Miller <<u>MillerE@dnr.sc.gov</u>>; Erika Hollis <ehollis@upstateforever.org>; Gerry Yantis <gcvantis2@yahoo.com>; Jeffrey Phillips <iphillips@greenvillewater.com>; Jen Huff <ien.huff@hdrinc.com>; Kerry McCarney-Castle < Kerry. McCarney-Castle@hdrinc.com >; Lynn Quattro < quattrol@dnr.sc.gov >; Melanie Olds melanie Olds melanie olds@fws.gov; More Priyanka melanie-olds@fws.gov; More Priyanka <a href="mailto:melanie-olds@fws Amedee <amedeemd@dhec.sc.gov>; Raber, Maverick James <<u>Maverick.Raber@duke-</u> energy.com>; Ross Self <<u>SelfR@dnr.sc.gov</u>>; Scott Harder <<u>harders@dnr.sc.gov</u>>; Stuart, Alan Witten < <u>Alan.Stuart@duke-energy.com</u>>; William Wood <woodw@dnr.sc.gov>; Abney, Michael A < Michael. Abney@duke-energy.com>; Amy Breedlove <<u>BreedloveA@dnr.sc.gov</u>>; Dan Rankin <<u>RankinD@dnr.sc.gov</u>>; Elizabeth Miller < Miller <a href="mailto:MillerE@dnr.sc.gov" Settevendemio < Erin.Settevendemio@hdrinc.com; Gerry Yantis <gcyantis2@yahoo.com>; Jen Huff <ien.huff@hdrinc.com>; John Haines <ihains@g.clemson.edu>; Lynn Quattro <quattrol@dnr.sc.gov>; Melanie Olds <melanie_olds@fws.gov>; Morgan Amedee <amedeemd@dhec.sc.gov>; Morgan Kern <<u>kernm@dnr.sc.gov</u>>; Ross Self <<u>SelfR@dnr.sc.gov</u>>; Stuart, Alan Witten <<u>Alan.Stuart@duke-energy.com</u>>; Wahl, Nick <<u>Nick.Wahl@duke-energy.com</u>>; William Wood <<u>woodw@dnr.sc.gov</u>>; Alex Pellett <<u>PellettC@dnr.sc.gov</u>>; Alison Jakupca Alison.Jakupca@KleinschmidtGroup.com; Bruce, Ed <Ed.Bruce@duke-energy.com; Dan Rankin <RankinD@dnr.sc.gov>; Dunn, Lynne <Lynne.Dunn@duke-energy.com>; Elizabeth Miller < Miller E@dnr.sc.gov >; Greg Mixon < mixong@dnr.sc.gov >; Jen Huff <<u>ien.huff@hdrinc.com</u>>; John Haines <<u>ihains@g.clemson.edu</u>>; Maggie Salazar <maggie.salazar@hdrinc.com>; Morgan Amedee <amedeemd@dhec.sc.gov>; Pat Cloninger <<u>cloningerp@dnr.sc.gov</u>>; Rowdy Harris <<u>charris@scprt.com</u>>; Sarah Kulpa <<u>Sarah.Kulpa@hdrinc.com</u>>; Stuart, Alan Witten <<u>Alan.Stuart@duke-energy.com</u>>; Terry Keene < itk7140@me.com >; Tom Daniel < danielt@dnr.sc.gov >; Amy Breedlove <BreedloveA@dnr.sc.gov>; Andrew Gleason <andrewandwilla@hotmail.com>; Andv Douglas <adoug41@att.net>; Bill Ranson

bill.ranson@retiree.furman.edu>; Chris Starker <<u>cstarker@upstateforever.org</u>>; Dale Wilde <<u>dwilde@keoweefolks.org</u>>; Dan Rankin <RankinD@dnr.sc.gov>; Elizabeth Miller <MillerE@dnr.sc.gov>; Glenn Hilliard <glenn@hilliardgrp.com>; Jen Huff <jen.huff@hdrinc.com>; Kelly Kirven <Kelly.Kirven@KleinschmidtGroup.com>; Ken Forrester <forresterk@dnr.sc.gov>; Lynn Quattro <<u>quattrol@dnr.sc.gov</u>>; Maggie Salazar <<u>maggie.salazar@hdrinc.com</u>>; Morgan Amedee amedeemd@dhec.sc.gov; Pardue, Ethan <Ethan.Pardue@duke- energy.com>; Pat Cloninger <<u>cloningerp@dnr.sc.gov</u>>; Phil Mitchell <phil.mitchell@gmail.com>; Phil Shirley <pshirley@oconeeco.com>; Ross Self <<u>SelfR@dnr.sc.gov</u>>; Rowdy Harris <<u>charris@scprt.com</u>>; Stuart, Alan Witten

<<u>Alan.Stuart@duke-energy.com</u>>; Sue Williams <<u>suewilliams130@gmail.com</u>>; William Wood <<u>woodw@dnr.sc.gov</u>>; Willie Simmons <<u>simmonsw@dnr.sc.gov</u>>

Cc: Kulpa, Sarah -hdrinc <<u>Sarah.Kulpa@hdrinc.com</u>>; Kerry McCarney-Castle <<u>Kerry.McCarney-Castle@hdrinc.com</u>>; Ziegler, Ty <<u>ty.ziegler@hdrinc.com</u>>; Angie.Scangas@hdrinc.com

Subject: Bad Creek Relicensing - Bad Creek CFD Model Updated Pumping Rates Draft Addendum (REVIEW REQUESTED)

Importance: High

Dear Bad Creek Relicensing Resources Committees:

Duke Energy is pleased to distribute the **Bad Creek CFD Model Updated Pumping Rates Draft Addendum** for Resource Committee review. This draft report is the second addendum to the Task 3 final report (*Velocity Effects and Vertical Mixing in Lake Jocassee Duke to a Second Powerhouse*), which was filed with the Initial Study Report in January of this year. The purpose of the addendum is to provide results of additional CFD modeling performed to incorporate increased hydraulic pumping at Bad Creek II from a recently proposed technology modification (variable speed pump-turbines vs. single speed). The deliverable is available on the Bad Creek Relicensing SharePoint site at the following link:

<image001.png>

<u>Addendum 2_Updated Pumping CFD Model Report</u>. Duke Energy is requesting a 30-day review period, therefore, please submit all comments by <u>July 12</u>. A confirmation email is kindly requested upon review completion (email me at <u>John.Crutchfield@dukeenergy.com</u>).

Important – Please Read!

- As discussed in the kick-off meeting (July 2022), Duke Energy would like to make relicensing deliverables available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment; therefore, we request all comments be made in the SharePoint Word document using tracked changes. This will eliminate version control issues and result in a consolidated document for comment response.
- 2. We strongly recommend opening the document in Word; otherwise, the formatting will look distorted. The simplest way to do this is to click on the three dots to the right of the document (example shown below), choose "Open", then choose "Open in app". This will open the document in Word, and you'll have the functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free to reach out to @McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides

an alternative way to open the document in Word – either technique works!])

<image002.png>

Also, please note this draft report addendum is being sent to the Water Resources, Aquatics, Operations, and Recreation & Visual Resource committees, and you may receive multiple emails if you are on several of these committees' distribution lists. I apologize in advance if you get multiple emails.

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

Subject: FW: [EXTERNAL] Re: Bad Creek Relicensing - Bad Creek CFD Model Updated Pumping Rates Draft Addendum (REVIEW REQUESTED)

Date: Monday, July 8, 2024 7:48:25 AM

Attachments: image001.png image002.png

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

From: Andrew Gleason <andrewandwilla@hotmail.com>

Sent: Monday, July 8, 2024 7:45 AM

To: Crutchfield Jr., John U < John. Crutchfield@duke-energy.com>

Cc: Bill Ranson-Retired < bill.ranson@retiree.furman.edu>

Subject: [EXTERNAL] Re: Bad Creek Relicensing - Bad Creek CFD Model Updated Pumping Rates Draft Addendum

(REVIEW REQUESTED)

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

I have reviewed and do not have any comments.

Andrew Gleason Foothills Trail Conservancy Chairman 864-546-1589 andrewandwilla@hotmail.com

From: Crutchfield Jr., John U < <u>John.Crutchfield@duke-energy.com</u>>

Sent: Monday, July 8, 2024 6:53 AM

To: Alex Pellett <PellettC@dnr.sc.gov>; Amy Breedlove <BreedloveA@dnr.sc.gov>; Dale Wilde <dwilde@keoweefolks.org>; Dan Rankin <RankinD@dnr.sc.gov>; David Bereskin <bre>
| Sereskind@greenvillewater.com>; Elizabeth Miller <MillerE@dnr.sc.gov>; Erika Hollis <ehollis@upstateforever.org>; Gerry Yantis </e>
| Sereskind@greenvillewater.com>; Jeffrey Phillips <iphillips@greenvillewater.com>; Jen Huff <iph.huff@hdrinc.com>; Kerry McCarney-Castle Kerry McCarney-Castle@hdrinc.com; Lynn Quattro Quattrol@dnr.sc.gov; Melanie Olds Melanie Olds Melanie Ol

<melanie_olds@fws.gov>; Morgan Amedee <amedeemd@dhec.sc.gov>; Morgan Kern <kernm@dnr.sc.gov>; Ross Self <SelfR@dnr.sc.gov>; Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Wahl, Nick <Nick.Wahl@dukeenergy.com>; William Wood <woodw@dnr.sc.gov>; Alex Pellett <PellettC@dnr.sc.gov>; Alison Jakupca Alison.Jakupca@KleinschmidtGroup.com; Bruce, Ed Ed.Bruce@duke-energy.com; Dan Rankin <<u>RankinD@dnr.sc.gov</u>>; Dunn, Lynne <<u>Lynne.Dunn@duke-energy.com</u>>; Elizabeth Miller <<u>MillerE@dnr.sc.gov</u>>; Greg Mixon <mixong@dnr.sc.gov>; Jen Huff <jen.huff@hdrinc.com>; John Haines <jhains@g.clemson.edu>; Maggie Salazar < maggie.salazar@hdrinc.com>; Morgan Amedee < amedeemd@dhec.sc.gov>; Pat Cloninger <cloningerp@dnr.sc.gov>; Rowdy Harris <charris@scprt.com>; Kulpa, Sarah -hdrinc <Sarah.Kulpa@hdrinc.com>; Stuart, Alan Witten <<u>Alan.Stuart@duke-energy.com</u>>; Terry Keene <<u>jtk7140@me.com</u>>; Tom Daniel <<u>danielt@dnr.sc.gov</u>>; Amy Breedlove <<u>BreedloveA@dnr.sc.gov</u>>; Andrew Gleason <andrewandwilla@hotmail.com>; Andy Douglas <adoug41@att.net>; Bill Ranson <bill.ranson@retiree.furman.edu>; Chris Starker < cstarker@upstateforever.org >; Dale Wilde < dwilde@keoweefolks.org >; Dan Rankin <RankinD@dnr.sc.gov>; Elizabeth Miller <MillerE@dnr.sc.gov>; Glenn Hilliard <glenn@hilliardgrp.com>; Jen Huff <ien.huff@hdrinc.com>; Kelly Kirven <Kelly.Kirven@KleinschmidtGroup.com>; Ken Forrester <forresterk@dnr.sc.gov>; Lynn Quattro <quattrol@dnr.sc.gov>; Maggie Salazar <maggie.salazar@hdrinc.com>; Morgan Amedee <amedeemd@dhec.sc.gov>; Pardue, Ethan <<u>Ethan.Pardue@duke-energy.com</u>>; Pat Cloninger <cloningerp@dnr.sc.gov>; Phil Mitchell <phil.mitchell@gmail.com>; Phil Shirley <pshirley@oconeeco.com>; Ross Self <<u>SelfR@dnr.sc.gov</u>>; Rowdy Harris <<u>charris@scprt.com</u>>; Stuart, Alan Witten <<u>Alan.Stuart@duke-energy.com</u>>; Sue Williams <<u>suewilliams130@gmail.com</u>>; William Wood <<u>woodw@dnr.sc.gov</u>>; Willie Simmons <simmonsw@dnr.sc.gov>

Cc: Kulpa, Sarah -hdrinc <<u>Sarah.Kulpa@hdrinc.com</u>>; Kerry McCarney-Castle <<u>Kerry.McCarney-Castle@hdrinc.com</u>>; Ziegler, Ty <<u>ty.ziegler@hdrinc.com</u>>; <u>Angie.Scangas@hdrinc.com</u> <<u>angie.scangas@hdrinc.com</u>> **Subject:** RE: Bad Creek Relicensing - Bad Creek CFD Model Updated Pumping Rates Draft Addendum (REVIEW REQUESTED)

Dear Bad Creek Relicensing Resources Committees:

Just a reminder that comments on the Bad Creek CFD Model Updated Pumping Rates Draft Addendum are due by **July 12**.

Thanks, John

From: Crutchfield Jr., John U

Sent: Wednesday, June 12, 2024 11:58 AM

To: Alex Pellett <<u>PellettC@dnr.sc.gov</u>>; Amy Breedlove <<u>BreedloveA@dnr.sc.gov</u>>; Dale Wilde <<u>dwilde@keoweefolks.org</u>>; Dan Rankin <<u>RankinD@dnr.sc.gov</u>>; David Bereskin <<u>bereskind@greenvillewater.com</u>>; Elizabeth Miller < Miller E@dnr.sc.gov >; Erika Hollis < ehollis@upstateforever.org >; Gerry Yantis <gcvantis2@vahoo.com>; Jeffrey Phillips <iphillips@greenvillewater.com>; Jen Huff <ien.huff@hdrinc.com>; Kerry McCarney-Castle < Kerry.McCarney-Castle@hdrinc.com; Lynn Quattro < quattrol@dnr.sc.gov; Melanie Olds <melanie_olds@fws.gov>; More Priyanka <morep@dnr.sc.gov>; Morgan Amedee <amedeemd@dhec.sc.gov>; Raber, Maverick James < Maverick.Raber@duke-energy.com >; Ross Self < SelfR@dnr.sc.gov >; Scott Harder <harders@dnr.sc.gov>; Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; William Wood <woodw@dnr.sc.gov>; Abney, Michael A < Michael. Abney@duke-energy.com >; Amy Breedlove < Breedlove A@dnr.sc.gov >; Dan Rankin <<u>RankinD@dnr.sc.gov</u>>; Elizabeth Miller <<u>MillerE@dnr.sc.gov</u>>; Erika Hollis <<u>ehollis@upstateforever.org</u>>; Erin Settevendemio < Frin. Settevendemio@hdrinc.com >; Gerry Yantis < gcyantis2@yahoo.com >; Jen Huff <ien.huff@hdrinc.com>; John Haines <ihains@g.clemson.edu>; Lynn Quattro <quattrol@dnr.sc.gov>; Melanie Olds <melanie_olds@fws.gov>; Morgan Amedee <amedeemd@dhec.sc.gov>; Morgan Kern <kernm@dnr.sc.gov>; Ross Self <SelfR@dnr.sc.gov>; Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Wahl, Nick <Nick.Wahl@dukeenergy.com>; William Wood <woodw@dnr.sc.gov>; Alex Pellett <PellettC@dnr.sc.gov>; Alison Jakupca <a href="mailto:Bruce@duk <RankinD@dnr.sc.gov>; Dunn, Lynne <Lynne.Dunn@duke-energy.com>; Elizabeth Miller <MillerE@dnr.sc.gov>; Greg Mixon <mixong@dnr.sc.gov>; Jen Huff <ien.huff@hdrinc.com>; John Haines <ihains@g.clemson.edu>; Maggie

Salazar <maggie.salazar@hdrinc.com>; Morgan Amedee <amedeemd@dhec.sc.gov>; Pat Cloninger <cloningerp@dnr.sc.gov>; Rowdy Harris <charris@scprt.com>; Sarah Kulpa <Sarah.Kulpa@hdrinc.com>; Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Terry Keene <itativate <ita

Cc: Kulpa, Sarah -hdrinc <<u>Sarah.Kulpa@hdrinc.com</u>>; Kerry McCarney-Castle <<u>Kerry.McCarney-Castle@hdrinc.com</u>>; Ziegler, Ty <<u>tv.ziegler@hdrinc.com</u>>; <u>Angie.Scangas@hdrinc.com</u>

Subject: Bad Creek Relicensing - Bad Creek CFD Model Updated Pumping Rates Draft Addendum (REVIEW REQUESTED)

Importance: High

Dear Bad Creek Relicensing Resources Committees:

Duke Energy is pleased to distribute the **Bad Creek CFD Model Updated Pumping Rates Draft Addendum** for Resource Committee review. This draft report is the second addendum to the Task 3 final report (*Velocity Effects and Vertical Mixing in Lake Jocassee Duke to a Second Powerhouse*), which was filed with the Initial Study Report in January of this year. The purpose of the addendum is to provide results of additional CFD modeling performed to incorporate increased hydraulic pumping at Bad Creek II from a recently proposed technology modification (variable speed pump-turbines vs. single speed). The deliverable is available on the Bad Creek Relicensing SharePoint site at the following link: Addendum 2_Updated Pumping CFD Model Report. Duke Energy is requesting a 30-day review period, therefore, please submit all comments by July 12. A confirmation email is kindly requested upon review completion (email me at John.Crutchfield@duke-energy.com).

Important - Please Read!

- As discussed in the kick-off meeting (July 2022), Duke Energy would like to make relicensing deliverables available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment; therefore, we request all comments be made in the SharePoint Word document using tracked changes. This will eliminate version control issues and result in a consolidated document for comment response.
- We strongly recommend opening the document in Word; otherwise, the formatting will look distorted. The
 simplest way to do this is to click on the three dots to the right of the document (example shown below),
 choose "Open", then choose "Open in app". This will open the document in Word, and you'll have the
 functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free
 to reach out to @McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word — either technique works!])

Also, please note this draft report addendum is being sent to the Water Resources, Aquatics, Operations, and Recreation & Visual Resource committees, and you may receive multiple emails if you are on several of these committees' distribution lists. I apologize in advance if you get multiple emails.

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

Subject: FW: [EXTERNAL] Re: Bad Creek Relicensing - Bad Creek CFD Model Updated Pumping Rates Draft Addendum (REVIEW REQUESTED)

Date: Tuesday, July 9, 2024 6:50:04 AM

Attachments: image001.png image002.png

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

From: Bill Ranson-Retired < bill.ranson@retiree.furman.edu>

Sent: Tuesday, July 9, 2024 6:24 AM

To: Andrew Gleason <andrewandwilla@hotmail.com>; Crutchfield Jr., John U <John.Crutchfield@duke-energy.com> **Subject:** [EXTERNAL] Re: Bad Creek Relicensing - Bad Creek CFD Model Updated Pumping Rates Draft Addendum

(REVIEW REQUESTED)

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

No comments from me.

Bill Ranson

From: Andrew Gleason andrewandwilla@hotmail.com>

Date: Wednesday, June 12, 2024 at 1:24 PM

To: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Cc: Bill Ranson-Retired < bill.ranson@retiree.furman.edu >

Subject: Re: Bad Creek Relicensing - Bad Creek CFD Model Updated Pumping Rates Draft Addendum

(REVIEW REQUESTED)

I will not be making any comments on this report. Bill Ranson may, but I doubt it.

Andrew Gleason Foothills Trail Conservancy Chairman 864-546-1589

andrewandwilla@hotmail.com

From: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com >

Sent: Wednesday, June 12, 2024 11:57 AM

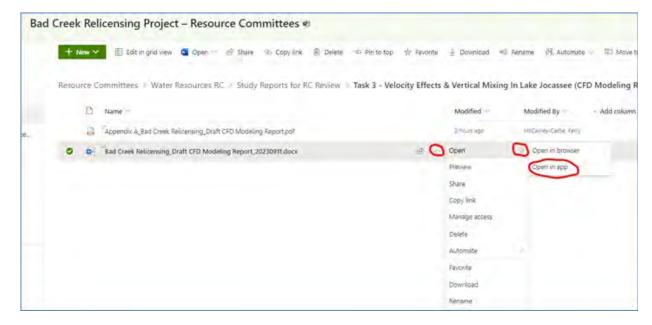
To: Alex Pellett < Pellett

```
<a href="mailto:dwilde@keoweefolks.org">dwilde@keoweefolks.org</a>; Dan Rankin <a href="mailto:RankinD@dnr.sc.gov">Rankin & RankinD@dnr.sc.gov</a>; David Bereskin <a href="mailto:bereskind@greenvillewater.com">bereskind@greenvillewater.com</a>; David Bereskin <a href="mailto:bereskind@greenvillewater.com">bereskind@greenvillewater.com</a>;
Elizabeth Miller < Miller E@dnr.sc.gov>; Erika Hollis < ehollis@upstateforever.org>; Gerry Yantis
<gcvantis2@vahoo.com>; Jeffrey Phillips <iphillips@greenvillewater.com>; Jen Huff <ien.huff@hdrinc.com>; Kerry
McCarney-Castle < Kerry. McCarney-Castle@hdrinc.com>; Lynn Quattro < quattro l@dnr.sc.gov>; Melanie Olds
<melanie_olds@fws.gov>; More Priyanka <morep@dnr.sc.gov>; Morgan Amedee <amedeemd@dhec.sc.gov>;
Raber, Maverick James < Maverick.Raber@duke-energy.com >; Ross Self < SelfR@dnr.sc.gov >; Scott Harder
<a href="mailto:sc.gov"></a>; Stuart, Alan Witten <a href="mailto:Alan.Stuart@duke-energy.com"></a>; William Wood <a href="mailto:woodw@dnr.sc.gov"></a>; Stuart, Alan Witten <a href="mailto:Alan.Stuart@duke-energy.com"></a>; William Wood <a href="mailto:woodw@dnr.sc.gov"></a>; Stuart, Alan Witten <a href="mailto:Alan.Stuart@duke-energy.com"></a>; William Wood <a href="mailto:woodw@dnr.sc.gov"></a>; Stuart, Alan Witten <a href="mailto:Alan.Stuart@duke-energy.com"></a>; William Wood <a href="mailto:woodw@dnr.sc.gov"></a>; Stuart, Alan Witten <a href="mailto:Alan.Stuart@duke-energy.com"></a>; William Wood <a href="mailto:woodw@dnr.sc.gov"></a>; Stuart, Alan Witten <a href="mailto:alan.Stuart@duke-energy.com"></a>; William Wood <a href="mailto:woodw@dnr.sc.gov"></a>; William Woodw@dnr.sc.gov</a>; William Wood <a href="mailto:woodw@dnr.sc.gov"></a>; William Wood <a href="mailto:woodw@dnr.sc.gov"></a>; William Wood <a href="mailto:woodw@dnr.sc.gov"></a>; William Woodw@dnr.sc.gov</a>; William Woodw@dnr.sc.gov</a>; William Woodw@dnr.sc.gov</a>; William Woodw@dnr.sc.gov</a>; William Woodw@dnr.sc.gov</a>; William Woodw@dnr.sc.gov</a>; Wi
Abney, Michael A < Michael. Abney@duke-energy.com >; Amy Breedlove < Breedlove A@dnr.sc.gov >; Dan Rankin
<<u>RankinD@dnr.sc.gov</u>>; Elizabeth Miller <<u>MillerE@dnr.sc.gov</u>>; Erika Hollis <<u>ehollis@upstateforever.org</u>>; Erin
Settevendemio < Frin. Settevendemio@hdrinc.com >; Gerry Yantis < gcyantis2@yahoo.com >; Jen Huff
<ien.huff@hdrinc.com>; John Haines <ihains@g.clemson.edu>; Lynn Quattro <quattrol@dnr.sc.gov>; Melanie Olds
<melanie_olds@fws.gov>; Morgan Amedee <amedeemd@dhec.sc.gov>; Morgan Kern <kernm@dnr.sc.gov>; Ross
Self <SelfR@dnr.sc.gov>; Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Wahl, Nick <Nick.Wahl@duke-
energy.com>; William Wood <woodw@dnr.sc.gov>; Alex Pellett <PellettC@dnr.sc.gov>; Alison Jakupca
<a href="mailto:</a>Alison.Jakupca@KleinschmidtGroup.com">; Bruce, Ed <<a href="mailto:Ed.Bruce@duke-energy.com">Ed.Bruce@duke-energy.com</a>; Dan Rankin
<RankinD@dnr.sc.gov>; Dunn, Lynne <Lynne.Dunn@duke-energy.com>; Elizabeth Miller <MillerE@dnr.sc.gov>;
Greg Mixon <mixong@dnr.sc.gov>; Jen Huff <ien.huff@hdrinc.com>; John Haines <ihains@g.clemson.edu>; Maggie
Salazar <maggie.salazar@hdrinc.com>; Morgan Amedee <amedeemd@dhec.sc.gov>; Pat Cloninger
<cloningerp@dnr.sc.gov>; Rowdy Harris <charris@scprt.com>; Kulpa, Sarah -hdrinc <Sarah.Kulpa@hdrinc.com>;
Stuart, Alan Witten <<u>Alan.Stuart@duke-energy.com</u>>; Terry Keene <<u>jtk7140@me.com</u>>; Tom Daniel
<<u>danielt@dnr.sc.gov</u>>; Amy Breedlove <<u>BreedloveA@dnr.sc.gov</u>>; Andrew Gleason
<andrewandwilla@hotmail.com>; Andy Douglas <adoug41@att.net>; Bill Ranson <bill.ranson@retiree.furman.edu>;
Chris Starker < cstarker@upstateforever.org>; Dale Wilde < dwilde@keoweefolks.org>; Dan Rankin
<RankinD@dnr.sc.gov>; Elizabeth Miller <MillerE@dnr.sc.gov>; Glenn Hilliard <glenn@hilliardgrp.com>; Jen Huff
<ien.huff@hdrinc.com>; Kelly Kirven <Kelly.Kirven@KleinschmidtGroup.com>; Ken Forrester
<forresterk@dnr.sc.gov>; Lynn Quattro <quattrol@dnr.sc.gov>; Maggie Salazar <maggie.salazar@hdrinc.com>;
Morgan Amedee <amedeemd@dhec.sc.gov>; Pardue, Ethan <<u>Ethan.Pardue@duke-energy.com</u>>; Pat Cloninger
<cloningerp@dnr.sc.gov>; Phil Mitchell <phil.mitchell@gmail.com>; Phil Shirley <pshirley@oconeeco.com>; Ross
Self <SelfR@dnr.sc.gov>; Rowdy Harris <charris@scprt.com>; Stuart, Alan Witten <Alan.Stuart@duke-energy.com>;
Sue Williams <<u>suewilliams130@gmail.com</u>>; William Wood <<u>woodw@dnr.sc.gov</u>>; Willie Simmons
<simmonsw@dnr.sc.gov>
Cc: Kulpa, Sarah -hdrinc <<u>Sarah.Kulpa@hdrinc.com</u>>; Kerry McCarney-Castle <<u>Kerry.McCarney-Castle@hdrinc.com</u>>;
```

Cc: Kulpa, Sarah -hdrinc <<u>Sarah.Kulpa@hdrinc.com</u>>; Kerry McCarney-Castle <<u>Kerry.McCarney-Castle@hdrinc.com</u>>; Ziegler, Ty <<u>ty.ziegler@hdrinc.com</u>>; <u>Angie.Scangas@hdrinc.com</u> <<u>angie.scangas@hdrinc.com</u>>
Subject: Bad Creek Relicensing - Bad Creek CFD Model Updated Pumping Rates Draft Addendum (REVIEW REQUESTED)

Dear Bad Creek Relicensing Resources Committees:

Duke Energy is pleased to distribute the **Bad Creek CFD Model Updated Pumping Rates Draft Addendum** for Resource Committee review. This draft report is the second addendum to the Task 3 final report (*Velocity Effects and Vertical Mixing in Lake Jocassee Duke to a Second Powerhouse*), which was filed with the Initial Study Report in January of this year. The purpose of the addendum is to provide results of additional CFD modeling performed to incorporate increased hydraulic pumping at Bad Creek II from a recently proposed technology modification (variable speed pump-turbines vs. single speed). The deliverable is available on the Bad Creek Relicensing SharePoint site at the following link: Addendum 2_Updated Pumping CFD Model Report. Duke Energy is requesting a 30-day review period, therefore, please submit all comments by **July 12**. A confirmation email is kindly requested upon review completion (email me at John.Crutchfield@duke-energy.com).


Important - Please Read!

• As discussed in the kick-off meeting (July 2022), Duke Energy would like to make relicensing deliverables available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment;

therefore, we request all comments be made in the SharePoint Word document using tracked changes. This will eliminate version control issues and result in a consolidated document for comment response.

We strongly recommend opening the document in Word; otherwise, the formatting will look distorted. The
simplest way to do this is to click on the three dots to the right of the document (example shown below),
choose "Open", then choose "Open in app". This will open the document in Word, and you'll have the
functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free
to reach out to @McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word – either technique works!])

Also, please note this draft report addendum is being sent to the Water Resources, Aquatics, Operations, and Recreation & Visual Resource committees, and you may receive multiple emails if you are on several of these committees' distribution lists. I apologize in advance if you get multiple emails.

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

This individual is retired from Furman University. The content of this email does not necessarily represent the views of the University.

Subject: FW: [EXTERNAL] Bad Creek Relicensing - Bad Creek CFD Model Updated Pumping Rates Draft Addendum (REVIEW REQUESTED)

Date: Tuesday, July 9, 2024 11:53:06 AM

Attachments: <u>image001.png</u>

image002.pnq Outlook-lr0l3pdt.pnq Outlook-goyfw22y.png

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

From: Olds, Melanie J <melanie_olds@fws.gov>

Sent: Tuesday, July 9, 2024 11:34 AM

To: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Subject: Re: [EXTERNAL] Bad Creek Relicensing - Bad Creek CFD Model Updated Pumping Rates Draft Addendum

(REVIEW REQUESTED)

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

John,

Due to workload and not having expertise in this type of model the Service will not be reviewing and will defer to other Resource Committee's members for their expertise and comments.

Melaníe

Melanie Olds

Fish & Wildlife Biologist

Regulatory Team Lead/FERC Coordinator

U.S. Fish and Wildlife Service

South Carolina Ecological Services Field Office

176 Croghan Spur Road, Suite 200

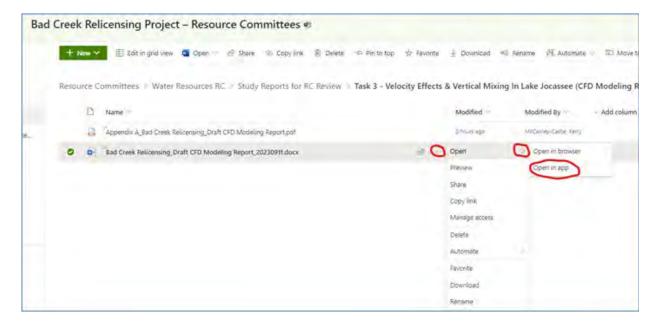
Charleston, SC 29407

Phone: (843) 534-0403

From: Crutchfield Jr., John U < <u>John.Crutchfield@duke-energy.com</u>>

```
Sent: Wednesday, June 12, 2024 11:57 AM
To: Alex Pellett < PellettC@dnr.sc.gov >; Amy Breedlove < BreedloveA@dnr.sc.gov >; Dale Wilde
<dwilde@keoweefolks.org>; Dan Rankin <RankinD@dnr.sc.gov>; David Bereskin <br/>bereskind@greenvillewater.com>;
Elizabeth Miller < Miller E@dnr.sc.gov>; Erika Hollis < ehollis@upstateforever.org>; Gerry Yantis
<gcvantis2@vahoo.com>; Jeffrey Phillips <iphillips@greenvillewater.com>; Jen Huff <ien.huff@hdrinc.com>; Kerry
McCarney-Castle < Kerry. McCarney-Castle@hdrinc.com >; quattrol@dnr.sc.gov < quattrol@dnr.sc.gov >; Olds,
Melanie J < melanie olds@fws.gov >; More Priyanka < morep@dnr.sc.gov >; Morgan Amedee
<amedeemd@dhec.sc.gov>; Raber, Maverick James < Maverick.Raber@duke-energv.com>; SelfR@dnr.sc.gov
<<u>SelfR@dnr.sc.gov</u>>; Scott Harder <<u>harders@dnr.sc.gov</u>>; Stuart, Alan Witten <<u>Alan.Stuart@duke-energy.com</u>>;
William Wood <<u>woodw@dnr.sc.gov</u>>; Abney, Michael A <<u>michael.abney@duke-energy.com</u>>; Amy Breedlove
<BreedloveA@dnr.sc.gov>; Dan Rankin <RankinD@dnr.sc.gov>; Elizabeth Miller <MillerE@dnr.sc.gov>; Erika Hollis
<ehollis@upstateforever.org>; Erin Settevendemio <<u>Erin.Settevendemio@hdrinc.com</u>>; Gerry Yantis
<gcyantis2@yahoo.com>; Jen Huff <ien.huff@hdrinc.com>; John Haines <ihains@g.clemson.edu>;
quattrol@dnr.sc.gov <quattrol@dnr.sc.gov>; Olds, Melanie J <melanie_olds@fws.gov>; Morgan Amedee
<amedeemd@dhec.sc.gov>; Morgan Kern <kernm@dnr.sc.gov>; SelfR@dnr.sc.gov <SelfR@dnr.sc.gov>; Stuart, Alan
Witten <<u>Alan.Stuart@duke-energy.com</u>>; Wahl, Nick <<u>Nick.Wahl@duke-energy.com</u>>; William Wood
<woodw@dnr.sc.gov>; Alex Pellett < PellettC@dnr.sc.gov>; Alison Jakupca
<a href="mailto:Alison.Jakupca@KleinschmidtGroup.com"><a href="mailto:Alison.Jakupca.Alison.Jakupca.gom"><a href="mailto:Alison.Jakupca.gom"><a href="mailto:Alison.Jakupca.gom"><a href="mailto:Alison.Jakupca.gom"><a href="mailto:Alison.Jakupca.gom"><a href="mailto
<RankinD@dnr.sc.gov>; Dunn, Lynne <Lynne.Dunn@duke-energy.com>; Elizabeth Miller <MillerE@dnr.sc.gov>;
Greg Mixon <mixong@dnr.sc.gov>; Jen Huff <ien.huff@hdrinc.com>; John Haines <ihains@g.clemson.edu>; Maggie
Salazar <<u>maggie.salazar@hdrinc.com</u>>; Morgan Amedee <<u>amedeemd@dhec.sc.gov</u>>; Pat Cloninger
<cloningerp@dnr.sc.gov>; Rowdy Harris <charris@scprt.com>; Kulpa, Sarah -hdrinc <Sarah.Kulpa@hdrinc.com>;
Stuart, Alan Witten <<u>Alan.Stuart@duke-energy.com</u>>; Terry Keene <<u>itk7140@me.com</u>>; Tom Daniel
<<u>danielt@dnr.sc.gov</u>>; Amy Breedlove <<u>BreedloveA@dnr.sc.gov</u>>; Andrew Gleason
<andrewandwilla@hotmail.com>; Andy Douglas <adoug41@att.net>; Bill Ranson <bill.ranson@retiree.furman.edu>;
Chris Starker <<u>cstarker@upstateforever.org</u>>; Dale Wilde <<u>dwilde@keoweefolks.org</u>>; Dan Rankin
<RankinD@dnr.sc.gov>; Elizabeth Miller <MillerE@dnr.sc.gov>; Glenn Hilliard <glenn@hilliardgrp.com>; Jen Huff
<jen.huff@hdrinc.com>; Kelly Kirven <<u>Kelly.Kirven@KleinschmidtGroup.com</u>>; Ken Forrester
<forresterk@dnr.sc.gov>; quattrol@dnr.sc.gov <quattrol@dnr.sc.gov>; Maggie Salazar
<maggie.salazar@hdrinc.com>; Morgan Amedee <amedeemd@dhec.sc.gov>; Pardue, Ethan <Ethan.Pardue@duke-
energy.com>; Pat Cloninger <cloningerp@dnr.sc.gov>; Phil Mitchell <phil.mitchell@gmail.com>; Phil Shirley
<pshirley@oconeeco.com>; SelfR@dnr.sc.gov <SelfR@dnr.sc.gov>; Rowdy Harris <charris@scprt.com>; Stuart, Alan
Witten < Alan.Stuart@duke-energy.com >; Sue Williams < suewilliams130@gmail.com >; William Wood
<woodw@dnr.sc.gov>; Willie Simmons <simmonsw@dnr.sc.gov>
Cc: Kulpa, Sarah -hdrinc <<u>Sarah.Kulpa@hdrinc.com</u>>; Kerry McCarney-Castle <<u>Kerry.McCarney-Castle@hdrinc.com</u>>;
Ziegler, Ty <ty.ziegler@hdrinc.com>; Angie.Scangas@hdrinc.com <angie.scangas@hdrinc.com>
Subject: [EXTERNAL] Bad Creek Relicensing - Bad Creek CFD Model Updated Pumping Rates Draft Addendum
(REVIEW REQUESTED)
```

This email has been received from outside of DOI - Use caution before clicking on links, opening attachments, or responding.


Dear Bad Creek Relicensing Resources Committees:

Duke Energy is pleased to distribute the **Bad Creek CFD Model Updated Pumping Rates Draft Addendum** for Resource Committee review. This draft report is the second addendum to the Task 3 final report (*Velocity Effects and Vertical Mixing in Lake Jocassee Duke to a Second Powerhouse*), which was filed with the Initial Study Report in January of this year. The purpose of the addendum is to provide results of additional CFD modeling performed to incorporate increased hydraulic pumping at Bad Creek II from a recently proposed technology modification (variable speed pump-turbines vs. single speed). The deliverable is available on the Bad Creek Relicensing SharePoint site at the following link: Addendum 2_Updated Pumping CFD Model Report. Duke Energy is requesting a 30-day review period, therefore, please submit all comments by **July 12**. A confirmation email is kindly requested upon review completion (email me at John.Crutchfield@duke-energy.com).

Important - Please Read!

- As discussed in the kick-off meeting (July 2022), Duke Energy would like to make relicensing deliverables available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment; therefore, we request all comments be made in the SharePoint Word document using tracked changes. This will eliminate version control issues and result in a consolidated document for comment response.
- We strongly recommend opening the document in Word; otherwise, the formatting will look distorted. The
 simplest way to do this is to click on the three dots to the right of the document (example shown below),
 choose "Open", then choose "Open in app". This will open the document in Word, and you'll have the
 functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free
 to reach out to McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word — either technique works!])

Also, please note this draft report addendum is being sent to the Water Resources, Aquatics, Operations, and Recreation & Visual Resource committees, and you may receive multiple emails if you are on several of these committees' distribution lists. I apologize in advance if you get multiple emails.

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

From: <u>Crutchfield Jr., John U</u>

To: Alex Pellett; Amy Breedlove; Dale Wilde; Dan Rankin; bereskind; Elizabeth Miller; Erika Hollis; gcyantis2; Jeff

Phillips: Huff, Jen; McCarney-Castle, Kerry; quattrol; Olds, Melanie J; More, Priyanka; Amedee, Morgan D.; Raber, Maverick James; Ross Self; Scott Harder; Stuart, Alan Witten; William T. Wood; Abney, Michael A; Amy

Breedlove; Dan Rankin; Elizabeth Miller; Erika Hollis; Settevendemio, Erin; gcyantis2; Huff, Jen;

jhains@g.clemson.edu; quattrol; Olds, Melanie J; Amedee, Morgan D.; Morgan Kern; Ross Self; Stuart, Alan Witten; Wahl, Nick; William T. Wood; Alex Pellett; Alison Jakupca; Bruce, Ed; Dan Rankin; Dunn, Lynne; Elizabeth Miller; Greg Mixon; Huff, Jen; jhains@g.clemson.edu; Salazar, Maggie; Amedee, Morgan D.; Pat Cloninger; Charles (Rowdy) B Harris; Kulpa, Sarah; Stuart, Alan Witten; Terry Keene; Tom Daniel; Amy Breedlove; Andrew Gleason; Andy Douglas; Bill Ranson-Retired; Chris Starker; Dale Wilde; Dan Rankin; Elizabeth Miller; glenn@hilliardgrp.com; Huff, Jen; Kelly Kirven; Ken Forrester; guattrol; Salazar, Maggie; Amedee, Morgan

D.; Pardue, Ethan; Pat Cloninger; Phil Mitchell; PShirley; Ross Self; Charles (Rowdy) B Harris; Stuart, Alan

Witten; suewilliams130@gmail.com; William T. Wood; Willie Simmons

Kulpa, Sarah; McCarney-Castle, Kerry; Ziegler, Ty; Scangas, Angie

Subject: RE: Bad Creek Relicensing - Bad Creek CFD Model Updated Pumping Rates Addendum (FINAL)

Date: Tuesday, September 10, 2024 1:57:54 PM

Attachments: <u>image001.png</u>

Importance: High

Cc:

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Dear Bad Creek Relicensing Resources Committees:

Duke Energy is pleased to distribute the final **Bad Creek CFD Model Updated Pumping Rates Addendum** for your reference. This report will be included with the Updated Study Report as an addendum to the Task 3 report (i.e., Velocity Effects and Vertical Mixing in Lake Jocassee Due to a Second Powerhouse Report), which was finalized last year and filed with the Initial Study Report. The addendum will also be filed with FERC as an attachment to the sixth Quarterly Progress Report.

You can access the final addendum at the link given below:

Addendum 2 Updated Pumping CFD Model Report

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

From: <u>Crutchfield Jr., John U</u>

To: <u>Alex Pellett; Amy Breedlove; Dale Wilde; Dan Rankin; bereskind; Elizabeth Miller; Erika Hollis; gcyantis2; Jeff Phillips; McCarney-Castle,</u>

Kerry; quattrol; Olds, Melanie J; More, Priyanka; Amedee, Morgan D.; Raber, Maverick James; Ross Self; Scott Harder; Stuart, Alan Witten; William T. Wood; Abney, Michael A; Settevendemio, Erin; Huff, Jen; jhains@q.clemson.edu; Wahl, Nick; Ericah Beason

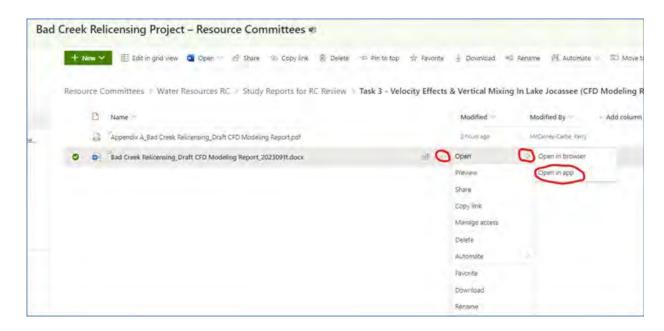
Cc: Kulpa, Sarah; Ziegler, Ty; Salazar, Maggie

Subject: Bad Creek Relicensing - Bad Creek II Power Complex Draft Water Quality Monitoring Plan (READY FOR REVIEW)

Date: Friday, October 4, 2024 10:49:39 AM

Attachments: imaqe001.pnq imaqe002.pnq

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.


Dear Bad Creek Relicensing Aquatic and Water Resources Committees:

Duke Energy is pleased to distribute the Bad Creek II Power Complex **Water Quality Monitoring Plan** draft report for Resource Committee review (Water Resources Study, Task 5). This draft has been developed in consultation with and reviewed by the South Carolina Department of Environmental Services (SCDES). The deliverable is available on the Bad Creek Relicensing SharePoint site at the following link: Task 5 - Water Quality Monitoring Plan. Duke Energy is requesting a 30-day review period, therefore, please submit all comments by **November 4th**. A confirmation email is kindly requested upon review completion (email me at John.Crutchfield@duke-energy.com).

Important - Please Read!

- We request all comments be made in the SharePoint Word document using tracked changes. This will eliminate version control issues and result in a consolidated document for comment response.
- We strongly recommend opening the document in Word; otherwise, the formatting will look distorted. The simplest way to do this is to click on the three dots to the right of the document (example shown below), choose "Open", then choose "Open in app". This will open the document in Word, and you'll have the functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free to reach out to @McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word — either technique works!])

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

From: <u>Crutchfield Jr., John U</u>

To: <u>Alex Pellett; Amy Breedlove; Dale Wilde; Dan Rankin; bereskind; Elizabeth Miller; Erika Hollis; Gerry Yantis; Jeff Phillips; Huff, Jen;</u>

McCarney-Castle, Kerry; guattrol; Olds, Melanie J; More, Priyanka; Amedee, Morgan D.; Raber, Maverick James; Ross Self; Scott

Harder; Stuart, Alan Witten; William T. Wood; Morgan D. Amedee

Cc: <u>Kulpa, Sarah; Ziegler, Ty; Salazar, Maggie</u>

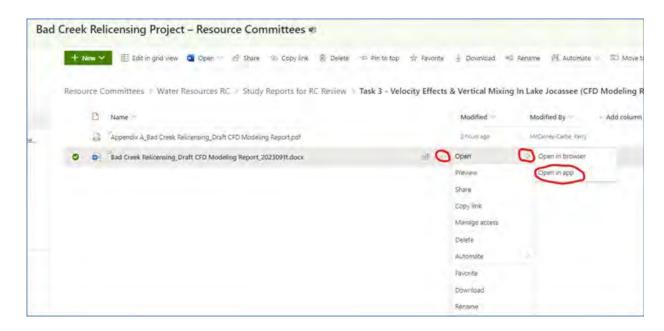
Subject: Bad Creek Relicensing Water Resources Task 2-Water Quality Monitoring in Whitewater River Arm Draft Report (READY FOR REVIEW)

Date: Friday, October 25, 2024 10:21:42 AM

Attachments: image001.pnq image002.pnq

Importance: High

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.


Dear Bad Creek Relicensing Water Resources Committee:

Duke Energy is pleased to distribute the <u>Water Quality Monitoring in Whitewater River Arm</u> draft report for Resource Committee review. This draft report satisfies Task 2 of the Bad Creek Relicensing Water Resources Study and presents results of continuous and bi-weekly water quality monitoring at three locations in the Whitewater River arm over two study seasons (June-Sept 2023 & 2024) to provide additional information on the function of the submerged weir and vertical mixing as well as baseline conditions under recently upgraded Project operations. The deliverable is available on the Bad Creek Relicensing SharePoint site at the following link: Task 2 - Water Quality Monitoring in Whitewater River Arm. Duke Energy is requesting a 30-day review period, therefore, please submit all comments by **November 25th**. A confirmation email is kindly requested upon review completion (email me at John.Crutchfield@duke-energy.com).

Important - Please Read!

- Duke Energy would like to make relicensing deliverables available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment; therefore, we request all comments be made in the <u>SharePoint Word document using tracked changes</u>. This will eliminate version control issues and result in a consolidated document for comment response.
- We strongly recommend opening the document in Word; otherwise, the formatting will look distorted. The simplest way to do this is to click on the three dots to the right of the document (example shown below), choose "Open", then choose "Open in app". This will open the document in Word, and you'll have the functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free to reach out to @McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word – either technique works!])

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

Subject: FW: [EXTERNAL] Bad Creek Relicensing - Bad Creek II Power Complex Draft Water Quality Monitoring Plan (READY FOR REVIEW)

Date: Friday, November 1, 2024 10:12:25 AM

Attachments: <u>image001.png</u>

image002.pnq Outlook-fel5dksf.pnq Outlook-isc3qdyu.png

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

From: Olds, Melanie J <melanie_olds@fws.gov> Sent: Friday, November 1, 2024 10:08 AM

To: Crutchfield Jr., John U < John. Crutchfield@duke-energy.com>

Subject: Re: [EXTERNAL] Bad Creek Relicensing - Bad Creek II Power Complex Draft Water Quality Monitoring Plan

(READY FOR REVIEW)

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

John,

The Service has completed review and has no comments.

Melanie

Melanie Olds

Fish & Wildlife Biologist

Regulatory Team Lead/FERC Coordinator

U.S. Fish and Wildlife Service

South Carolina Ecological Services Field Office

176 Croghan Spur Road, Suite 200

Charleston, SC 29407

Phone: (843) 534-0403

NOTE: This email correspondence and any attachments to and from this sender is subject to the Freedom of Information Act (FOIA) and may be disclosed to third parties.

From: Crutchfield Jr., John U < <u>John.Crutchfield@duke-energy.com</u>>

Sent: Friday, October 4, 2024 10:49 AM

To: Alex Pellett < PellettC@dnr.sc.gov >; Amy Breedlove < BreedloveA@dnr.sc.gov >; Dale Wilde

<dwilde@keoweefolks.org>; Dan Rankin <RankinD@dnr.sc.gov>; David Bereskin <bereskind@greenvillewater.com>;

Elizabeth Miller < Miller E@dnr.sc.gov >; Erika Hollis < ehollis@upstateforever.org >; Gerry Yantis

<gcyantis2@yahoo.com>; Jeffrey Phillips <iphillips@greenvillewater.com>; Kerry McCarney-Castle

<kerry.McCarney-Castle@hdrinc.com>; quattrol@dnr.sc.gov <quattrol@dnr.sc.gov>; Olds, Melanie J

<melanie_olds@fws.gov>; More Priyanka <morep@dnr.sc.gov>; Morgan Amedee <amedeemd@dhec.sc.gov>;

 $Raber, Maverick \ James < \underline{Maverick.Raber@duke-energy.com} >; \underline{SelfR@dnr.sc.gov} < \underline{SelfR@dnr.sc.gov} >; Scott \ Harder \\ Laber = \underline{Maverick.Raber@duke-energy.com} >; \underline{SelfR@dnr.sc.gov} < \underline{SelfR@dnr.sc.gov} >; Scott \ Harder \\ Laber = \underline{Maverick.Raber@duke-energy.com} >; \underline{SelfR@dnr.sc.gov} < \underline{SelfR@dnr.sc.gov} >; \underline{SelfR@dnr.sc.gov}$

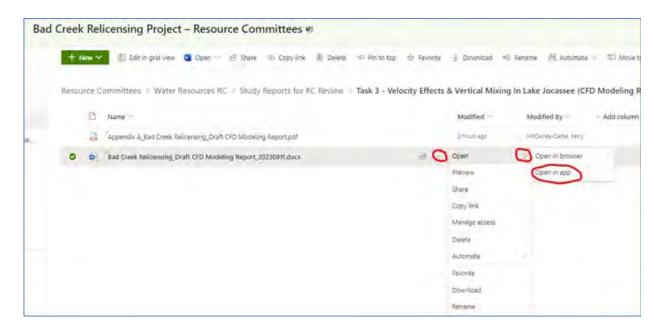
Abney, Michael A < <u>Michael.Abney@duke-energy.com</u>>; Erin Settevendemio < <u>Erin.Settevendemio@hdrinc.com</u>>; Jen Huff < <u>ien.huff@hdrinc.com</u>>; John Haines < <u>ihains@g.clemson.edu</u>>; Wahl, Nick < <u>Nick.Wahl@duke-</u>

energy.com>; Ericah Beason <BeasonE@dnr.sc.gov>

Cc: Kulpa, Sarah -hdrinc <<u>Sarah.Kulpa@hdrinc.com</u>>; Ziegler, Ty <<u>ty.ziegler@hdrinc.com</u>>; Maggie Salazar <<u>maggie.salazar@hdrinc.com</u>>

Subject: [EXTERNAL] Bad Creek Relicensing - Bad Creek II Power Complex Draft Water Quality Monitoring Plan (READY FOR REVIEW)

This email has been received from outside of DOI - Use caution before clicking on links, opening attachments, or responding.


Dear Bad Creek Relicensing Aquatic and Water Resources Committees:

Duke Energy is pleased to distribute the Bad Creek II Power Complex Water Quality Monitoring Plan draft report for Resource Committee review (Water Resources Study, Task 5). This draft has been developed in consultation with and reviewed by the South Carolina Department of Environmental Services (SCDES). The deliverable is available on the Bad Creek Relicensing SharePoint site at the following link: Task 5 - Water Quality Monitoring Plan. Duke Energy is requesting a 30-day review period, therefore, please submit all comments by November 4th. A confirmation email is kindly requested upon review completion (email me at John.Crutchfield@duke-energy.com).

Important - Please Read!

- We request all comments be made in the SharePoint Word document using tracked changes. This will eliminate version control issues and result in a consolidated document for comment response.
- We strongly recommend opening the document in Word; otherwise, the formatting will look distorted. The simplest way to do this is to click on the three dots to the right of the document (example shown below), choose "Open", then choose "Open in app". This will open the document in Word, and you'll have the functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free to reach out to McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word — either technique works!])

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

Subject: FW: [EXTERNAL] Re: Bad Creek Relicensing - Bad Creek II Power Complex Draft Water Quality Monitoring Plan (READY FOR REVIEW)

Date: Monday, November 4, 2024 8:27:29 AM

Attachments: image001.png image002.png

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

From: Dale Wilde <dwilde@keoweefolks.org> Sent: Monday, November 4, 2024 8:23 AM

To: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Cc: Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Kelly Schaeffer <Kelly.Schaeffer@kleinschmidtgroup.com> **Subject:** [EXTERNAL] Re: Bad Creek Relicensing - Bad Creek II Power Complex Draft Water Quality Monitoring Plan (READY FOR REVIEW)

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

I have spoken with John Hains, and neither of us have any further comments on this OMP.

Ms. Dale Wilde President, FOLKS C: 207-604-6539

E: dwilde@keoweefolks.org

Friends of Lake Keowee Society is dedicated to the preservation and enhancement of Lake Keowee and its watershed through advocacy, conservation, and education.

On Oct 28, 2024, at 6:58 AM, Crutchfield Jr., John U < John.Crutchfield@duke-energy.com > wrote:

Dear Bad Creek Relicensing Aquatic and Water Resources Committees:

Just a reminder the Bad Creek II Power Complex Water Quality Monitoring Plan draft report is due by November $4^{\rm th}$.

Regards, John

From: Crutchfield Jr., John U

Sent: Friday, October 4, 2024 10:49 AM

To: Alex Pellett < Pellett < Pellett C@dnr.sc.gov>; Amy Breedlove < BreedloveA@dnr.sc.gov>; Dale Wilde

<<u>dwilde@keoweefolks.org</u>>; Dan Rankin <<u>RankinD@dnr.sc.gov</u>>; David Bereskin

<<u>bereskind@greenvillewater.com</u>>; Elizabeth Miller <<u>MillerE@dnr.sc.gov</u>>; Erika Hollis

<ehollis@upstateforever.org>; Gerry Yantis <gcyantis2@yahoo.com>; Jeffrey Phillips

<iphillips@greenvillewater.com>; Kerry McCarney-Castle <Kerry.McCarney-Castle@hdrinc.com>; Lynn

Quattro <quattrol@dnr.sc.gov>; Melanie Olds <melanie_olds@fws.gov>; More Priyanka

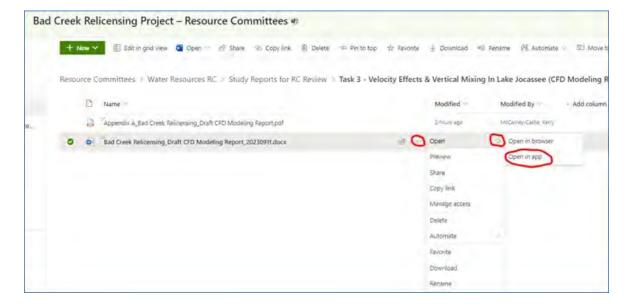
<morep@dnr.sc.gov>; Morgan Amedee <amedeemd@dhec.sc.gov>; Raber, Maverick James

<<u>Maverick.Raber@duke-energy.com</u>>; Ross Self <<u>SelfR@dnr.sc.gov</u>>; Scott Harder <<u>harders@dnr.sc.gov</u>>;

Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; William Wood <woodw@dnr.sc.gov>; Abney, Michael A <<u>Michael.Abney@duke-energy.com</u>>; Erin Settevendemio <<u>Erin.Settevendemio@hdrinc.com</u>>; Jen Huff <<u>jen.huff@hdrinc.com</u>>; John Haines <<u>jhains@g.clemson.edu</u>>; Wahl, Nick <<u>Nick.Wahl@duke-energy.com</u>>; Ericah Beason <<u>BeasonE@dnr.sc.gov</u>>

Cc: Kulpa, Sarah -hdrinc <<u>Sarah.Kulpa@hdrinc.com</u>>; Ziegler, Ty <<u>ty.ziegler@hdrinc.com</u>>; Maggie Salazar <<u>maggie.salazar@hdrinc.com</u>>

Subject: Bad Creek Relicensing - Bad Creek II Power Complex Draft Water Quality Monitoring Plan (READY FOR REVIEW)


Dear Bad Creek Relicensing Aquatic and Water Resources Committees:

Duke Energy is pleased to distribute the Bad Creek II Power Complex Water Quality Monitoring Plan draft report for Resource Committee review (Water Resources Study, Task 5). This draft has been developed in consultation with and reviewed by the South Carolina Department of Environmental Services (SCDES). The deliverable is available on the Bad Creek Relicensing SharePoint site at the following link: Task 5 - Water Quality Monitoring Plan. Duke Energy is requesting a 30-day review period, therefore, please submit all comments by November 4th. A confirmation email is kindly requested upon review completion (email me at John.Crutchfield@duke-energy.com).

Important - Please Read!

- 1. <u>We request all comments be made in the SharePoint Word document using tracked changes.</u> This will eliminate version control issues and result in a consolidated document for comment response.
- 2. We strongly recommend opening the document in Word; otherwise, the formatting will look distorted. The simplest way to do this is to click on the three dots to the right of the document (example shown below), choose "Open", then choose "Open in app". This will open the document in Word, and you'll have the functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free to reach out to McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word — either technique works!])

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

From: <u>Crutchfield Jr., John U</u>

To: Alex Pellett; Amy Breedlove; Dale Wilde; Dan Rankin; bereskind; Elizabeth Miller; Erika Hollis; Gerry Yantis; Jeff

Phillips: McCarney-Castle, Kerry; quattrol; Olds, Melanie J: More, Priyanka; Amedee, Morgan D.; Raber, Maverick James; Ross Self; Scott Harder; Stuart, Alan Witten; William T. Wood; Abney, Michael A; Settevendemio, Erin;

Huff, Jen; jhains@g.clemson.edu; Wahl, Nick; Ericah Beason; Morgan D. Amedee

Cc: <u>Kulpa, Sarah; Ziegler, Ty; Salazar, Maggie</u>

Subject: RE: Bad Creek Relicensing - Bad Creek II Power Complex Water Quality Monitoring Plan Draft Report (FINAL

DRAFT)

Date: Tuesday, November 12, 2024 6:20:49 AM

Attachments: <u>image001.png</u>

Importance: High

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Dear Bad Creek Relicensing Aquatic and Water Resources Committees:

The finalized Bad Creek II Power Complex Water Quality Monitoring Plan draft report has been uploaded to the Resource Committee SharePoint link: Final Report.

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

From: <u>Crutchfield Jr., John U</u>

To: Alex Pellett; Amy Breedlove; Dale Wilde; Dan Rankin; bereskind; Elizabeth Miller; Erika Hollis; Gerry Yantis; Jeff

Phillips; Huff, Jen; McCarney-Castle, Kerry; quattrol; Olds, Melanie J; More, Priyanka; Amedee, Morgan D.; Raber, Maverick James; Ross Self; Scott Harder; Stuart, Alan Witten; William T. Wood; Morgan D. Amedee;

Abney, Michael A

Cc: <u>Kulpa, Sarah; Ziegler, Ty; Salazar, Maggie</u>

Subject: RE: Bad Creek Relicensing Water Resources Task 2-Water Quality Monitoring in Whitewater River Arm Draft

Report (FINAL REPORT)

Date: Sunday, December 1, 2024 6:28:47 PM

Attachments: <u>image001.png</u>

Importance: High

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Dear Bad Creek Relicensing Water Resources Committee:

Duke Energy is pleased to distribute the <u>Water Quality Monitoring in Whitewater River Arm</u> final report. This report satisfies Task 2 of the Bad Creek Relicensing Water Resources Study and is accessible from the folder linked below. As always, Duke Energy appreciates your participation in the Bad Creek Relicensing.

Final Report

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

From: Abney, Michael A

To: Elizabeth Miller; Erika Hollis; jhains@g.clemson.edu; Amedee, Morgan D.; Olds, Melanie J; Amy Breedlove; Dan

Rankin; Ross Self; quattrol; William T. Wood; Ericah Beason; Dale Wilde; Alex Pellett; Scott Harder; More.

Priyanka; Jeff Phillips

Cc: Wahl, Nick; Settevendemio, Erin; Raber, Maverick James; McCarney-Castle, Kerry; Stuart, Alan Witten; Ziegler,

Ty; Huff, Jen; Kulpa, Sarah

Subject: Final Bad Creek II Power Complex Water Quality Monitoring Plan

Date: Friday, February 7, 2025 7:36:10 AM

Attachments: <u>image001.png</u>

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Dear Bad Creek Relicensing Aquatic and Water Resources Committees:

Duke Energy is pleased to distribute the final Bad Creek II Power Complex <u>Water Quality</u> <u>Monitoring Plan</u>. This report satisfies Task 5 of the Bad Creek Relicensing Water Resources Study and is accessible from the folder linked below. As always, Duke Energy appreciates your participation in the Bad Creek Relicensing.

Final Report

If you have any questions, please contact Alan Stuart or me.

Regards,

Mike

Michael Abney

Water Strategy, Hydro Licensing & Lake Services Regulated & Renewable Energy Duke Energy 525 S. Tryon St, Mail Code DEP – 35B Charlotte, NC 28202 Office 980-373-0435 | Cell 704-975-4358

Michael.Abney@duke-energy.com

From: <u>McCarney-Castle, Kerry</u>

To: Abney, Michael A; Salazar, Maggie

Subject: RE: [EXTERNAL] Re: Final Bad Creek II Power Complex Water Quality Monitoring Plan

Date: Friday, February 21, 2025 8:35:00 AM

Attachments: image001.png

From: Abney, Michael A < Michael. Abney@duke-energy.com>

Sent: Friday, February 21, 2025 8:30 AM

To: McCarney-Castle, Kerry < Kerry. McCarney-Castle@hdrinc.com>; Salazar, Maggie

<Maggie.Salazar@hdrinc.com>

Subject: FW: [EXTERNAL] Re: Final Bad Creek II Power Complex Water Quality Monitoring Plan

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

From: Dale Wilde <dwilde@keoweefolks.org>

Sent: Friday, February 7, 2025 8:09 AM

To: Abney, Michael A < Michael. Abney@duke-energy.com> **Cc:** Stuart, Alan Witten < Alan. Stuart@duke-energy.com>

Subject: [EXTERNAL] Re: Final Bad Creek II Power Complex Water Quality Monitoring Plan

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

Thank you! Great job with this effort!

Ms. Dale Wilde President, FOLKS C: 207-604-6539

E: dwilde@keoweefolks.org

Friends of Lake Keowee Society is dedicated to the preservation and enhancement of Lake Keowee and its watershed through advocacy, conservation, and education.

On Feb 7, 2025, at 7:36 AM, Abney, Michael A < <u>Michael.Abney@dukeenergy.com</u>> wrote:

Dear Bad Creek Relicensing Aquatic and Water Resources Committees:

Duke Energy is pleased to distribute the final Bad Creek II Power Complex <u>Water</u> <u>Quality Monitoring Plan</u>. This report satisfies Task 5 of the Bad Creek Relicensing Water Resources Study and is accessible from the folder linked below. As always, Duke Energy appreciates your participation in the Bad Creek Relicensing.

If you have any questions, please contact Alan Stuart or me.

Regards,

Mike

Michael Abney

Water Strategy, Hydro Licensing & Lake Services Regulated & Renewable Energy Duke Energy 525 S. Tryon St, Mail Code DEP – 35B Charlotte, NC 28202 Office 980-373-0435 | Cell 704-975-4358

Michael.Abney@duke-energy.com