

Appendix B – Aquatic Resources Draft Study Report

Bad Creek Pumped Storage Project

Oconee County, South Carolina
January 4, 2024

1 Project Introduction and Background

Duke Energy Carolinas, LLC (Duke Energy or Licensee) is the owner and operator of the 1,400-megawatt Bad Creek Pumped Storage Project (Project) (FERC Project No. 2740) located in Oconee County, South Carolina, approximately eight miles north of Salem. The Project utilizes the Bad Creek Reservoir as the upper reservoir and Lake Jocassee, which is licensed as part of the Keowee-Toxaway Hydroelectric Project (FERC Project No. 2503), as the lower reservoir.

The existing (original) license for the Project was issued by the Federal Energy Regulatory Commission (FERC or Commission) for a 50-year term, with an effective date of August 1, 1977, and expiration date of July 31, 2027. The license has been subsequently and substantively amended, with the most recent amendment on August 6, 2018 for authorization to upgrade and rehabilitate the four pump-turbines in the powerhouse and increase the Authorized Installed and Maximum Hydraulic capacities for the Project. Duke Energy is pursuing a new license for the Project pursuant to the Commission's Integrated Licensing Process, as described at 18 Code of Federal Regulations (CFR) Part 5.

In accordance with 18 CFR §5.11 of the Commission's regulations, Duke Energy developed a Revised Study Plan (RSP) for the Project and proposed six studies for Project relicensing. The RSP was filed with the Commission and made available to stakeholders on December 5, 2022. FERC issued the Study Plan Determination on January 4, 2023, which included modifications to one of the six proposed studies (Recreational Resources Study).

This report includes the findings for Task 1 (Entrainment Study), Task 2 (Effects of Bad Creek II Complex and Expanded Weir on Aquatic Habitat) and Task 3 (Impacts to Surface Waters and Associated Aquatic Fauna) of the Aquatic Resources Study. The Water Resources Study has been completed in support of preparing an application for a new license for the Project in accordance with 18 CFR §5.15, as provided in the RSP.

¹ Duke Energy Carolinas LLC, 164 FERC ¶ 62,066 (2018)

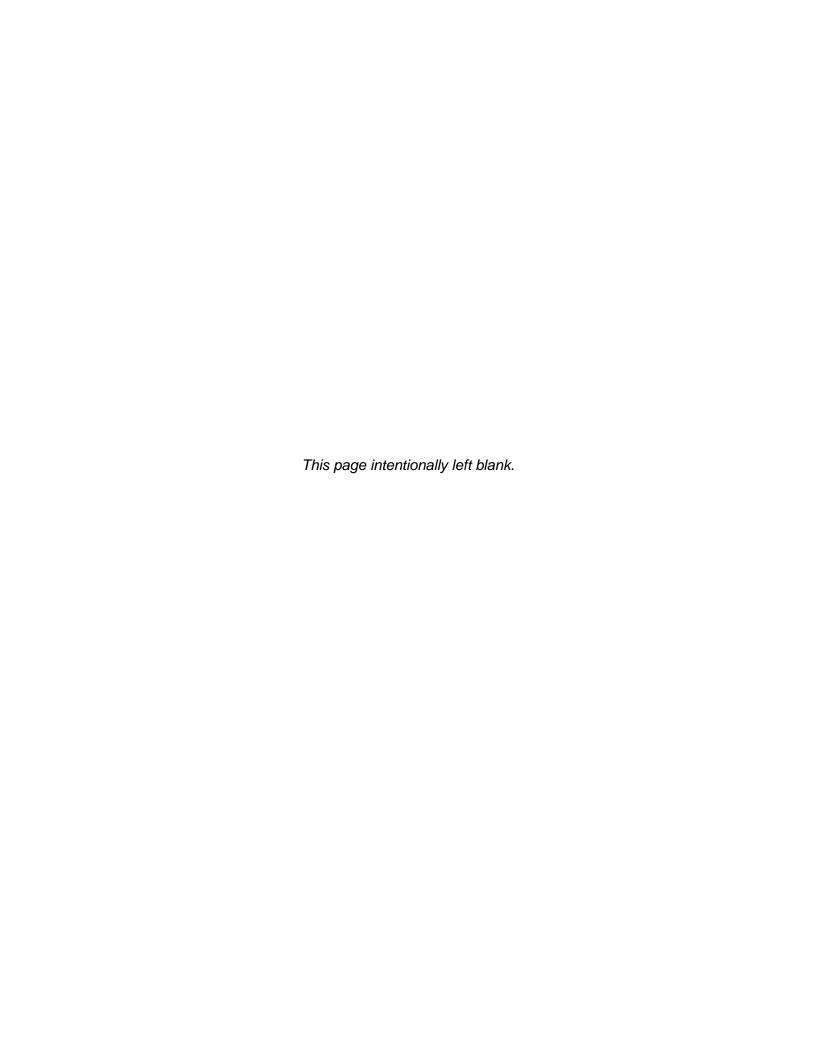
2 Aquatic Resources Study

The Commission issued Scoping Document 2 on August 5, 2022, which identified the following environmental resource issues to be analyzed in the National Environmental Policy Act document for the Project relicensing related to aquatic resources. These resource issues address the effects of continued Project operations under the Existing License as well as potential construction and operation of a second powerhouse during the New License term for the Bad Creek II Power Complex (Bad Creek II Complex):

- Effects of construction-related erosion, sedimentation, and spoils disposal on water quality, aquatic habitat, and aquatic biota in Lake Jocassee and streams in the Project vicinity.
- Effects of Project operation on water levels in Lake Jocassee.
- Effects of Project operation on water quality in Lake Jocassee, including water temperature, dissolved oxygen (DO) concentrations, and vertical mixing of DO.
- Effects of reservoir fluctuations associated with Project operation on aquatic habitat and biota in Lake Jocassee.
- Effects of vertical mixing of DO associated with Project operation on fish populations in Lake Jocassee.
- Effects of Project operation on aquatic habitat and biota in Howard Creek.
- Effects of Project-induced impingement, entrainment, and turbine mortality on fish populations in Lake Jocassee.
- Effects of Project recreation on aquatic resources.
- Effects of construction-related erosion, sedimentation, and spoils disposal in the Bad Creek reservoir on Lake Jocassee.

The Aquatic Resources Study evaluates impacts associated with construction and operation of the proposed Bad Creek II Complex on water quality and water resources as they relate to aquatic life and habitat, while the Water Resources Study (Appendix A) focuses on historical water quality data of Lake Jocassee, potential impacts to surface waters due to construction of the new Bad Creek II Power Complex (Bad Creek II Complex), and water resources affected by a second inlet/outlet structure in the Whitewater River cove of Lake Jocassee.

3 Study Goals and Objectives


Tasks carried out for the Bad Creek Water Resources Study employ standard methodologies that are consistent with the scope and level of effort described in the RSP filed with the Commission on December 5, 2022. The goal of the Aquatic Resources study is to evaluate potential impacts to fish and aquatic life populations, communities, and habitats, due to the construction and operation of the proposed Bad Creek II Complex. The main objectives of this study are:

- To evaluate the potential for increased fish entrainment due to the addition of Bad Creek II Complex and consult with agencies and other Project stakeholders regarding results of the recent desktop Entrainment Study (Kleinschmidt 2021).
- To assess changes to pelagic and littoral aquatic habitat in Lake Jocassee resulting from the expanded underwater weir and additional discharge, using models developed for the Water Resources Study and Keowee-Toxaway Hydroelectric Project relicensing.
- To evaluate potential direct impacts to aquatic habitat (including wetlands) related to Bad Creek II Complex construction activities and weir expansion by quantifying and characterizing surface waters, including resource quality. Presence/absence mussel surveys of streams located in upland areas where spoil deposition may occur will also be conducted. Note no aquatic biota sampling of the submerged weir will take place.

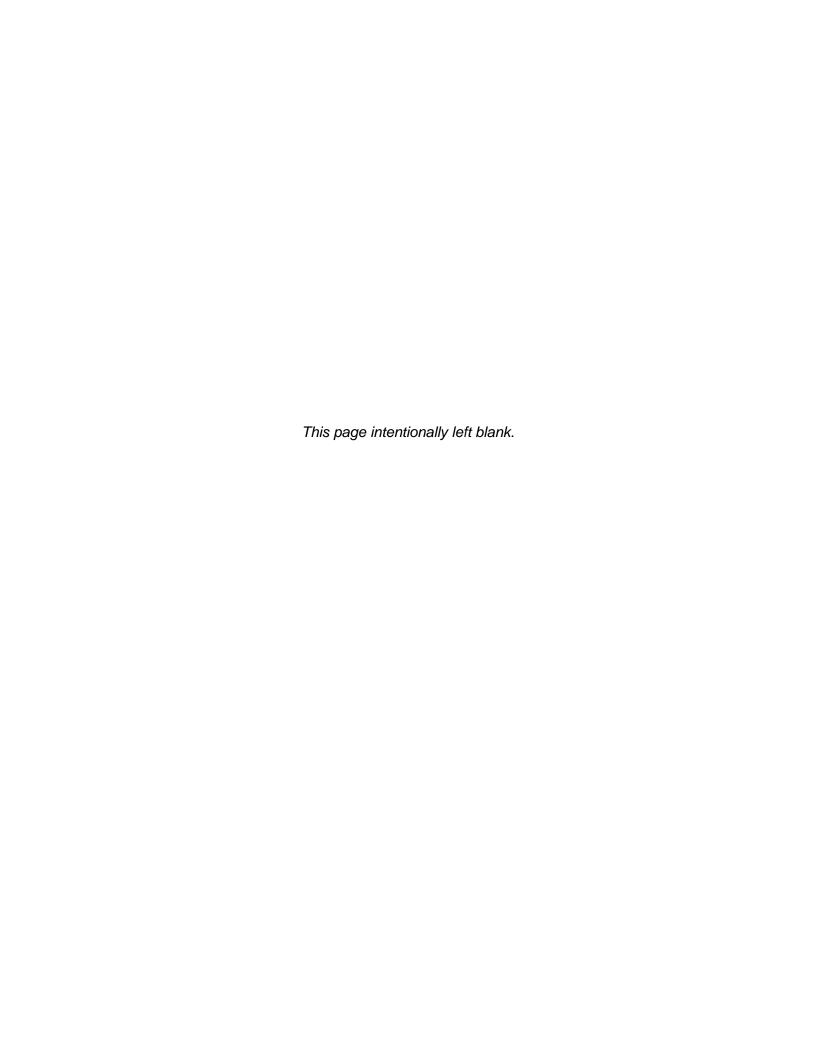

Objectives of the Aquatic Resources Study will be met through three study tasks. Task 1 (Consultation on Entrainment) is complete and the final study report is included as Attachment 1. Analyses and agency consultation for Task 3 (Impacts to Surface Waters and Associated Aquatic Fault) are ongoing and final results will be included in the Updated Study Report. Work for Task 2 will be carried out in 2024 and results will be provided in the Updated Study Report. Final and draft reports are included as attachments listed in Table 1 below. Additionally, consultation documentation relevant to the Aquatic Resources Study is included as Attachment 4.

Table 1. Aquatic Resources Study Attachments

Study Report Title	Attachment	Attachment Title		
	1	Entrainment Study Report (Final Report)		
Appendix B – Aquatic	2	Effects of Bad Creek II Complex and Expanded Weir on Aquatic Habitat (Placeholder – To be submitted with Updated Study Report)		
Resources Study Report	3	Impacts to Surface Waters and Associated Aquatic Fauna (Draft Report)		
	4	Consultation Documentation		

Attachment 1 **Entrainment Study Report**

DESKTOP ENTRAINMENT ANALYSES

BAD CREEK PUMPED STORAGE PROJECT (FERC No. P-2740)

Prepared for:

Duke Energy

Prepared by:

Kleinschmidt Associates

December 2021
Revised November 2023

TABLE OF CONTENTS

1.0	INTR	RODUCTION	1-1
	1.1	Background	1-2
2.0	MET	HODS	2-1
	2.1	Exploratory Analysis	2-1
	2.2	Selection of Target Species	2-2
	2.3	Entrainment Mortality Event Simulation	2-2
		2.3.1 Seasonal Entrainment Rate	2-2
		2.3.2 Scenario Development	2-3
	2.4	Vulnerability to Entrainment	
	2.5	Assigning Risk	
3.0	RESU	JLTS AND DISCUSSION	3-1
	3.1	Exploratory Data Analysis	3-1
		3.1.1 Analysis of Lake Jocassee Elevation	3-1
		3.1.2 Analysis of Entrainment Rates	3-3
		3.1.3 Analysis of Temperature Data	3-6
		3.1.4 Analysis of Hours Operated Per Unit	3-7
		3.1.5 Entrainment as a Function of Elevation	3-11
	3.2	Entrainment Impact	3-14
	3.3	Relative Vulnerability to Entrainment	
	3.4	Entrainment Risk	
4.0	CON	ICLUSION	4-1
5.0	REFE	ERENCES	5-1

Table of Contents (Cont'd)

LIST OF TABLES

Table 2.1	Monthly Sum of Entrainment at Bad Creek Project from 1991 to 1993	32-1
Table 2.2	Seasonal Entrainment Event Scenarios	2-4
Table 2.3	Bad Creek 1 Seasonal Unit Operations	2-4
Table 3.1	Statistical summary of forebay elevation data from 1990-1993(measu	ıred in
	ft)	3-1
Table 3.2	Statistical summary of daily entrainment data by year	3-4
Table 3.3	Statistical summary of entrainment rate by forebay elevation open	eration
	mode	3-4
Table 3.4	Statistical summary of temperature data	3-6
Table 3.5	Bad Creek Unit 1 Hours Operated Summary Statistics (2014–2018)	3-7
Table 3.6	Bad Creek Unit 2 Hours Operated Summary Statistics (2014–2018)	3-8
Table 3.7	Bad Creek Unit 3 Hours Operated Summary Statistics (2014–2018)	3-8
Table 3.8	Bad Creek Unit 4 Hours Operated Summary Statistics (2014–2018)	3-8
Table 3.9	Statistical Summary of data from all scenarios within simulation	3-15
Table 3.10	Entrainment impact and likelihoods by season	3-15
Table 3.11	Statistical summary of daily entrainment by season	3-15
Table 3.12	Population Growth Rates Used for Vulnerability Assessment	3-19
Table 3.13	Bad Creek Entrainment Risk	3-20

LIST OF FIGURES

Figure 1.1	Bad Creek Project Location Map	1-4
Figure 2.1	Estimated Local Population Size (Combined Species) 1989-2020, wit	h Local
	Regression Smoother Trend Estimate Overlaid	2-8
Figure 3.1	Jocassee Forebay local datum elevation observations from 1991-199	933-2
Figure 3.2	Jocassee Forebay local datum elevation observations in 1991	3-2
Figure 3.3	Jocassee Forebay local datum elevation observations in 1992	3-3
Figure 3.4	Jocassee Forebay local datum elevation observations in 1993	3-3
Figure 3.5	Daily entrainment at elevations less than 89 ft	3-5
Figure 3.6	Daily Entrainment Rates from 1991-1993	3-5
Figure 3.7	Daily entrainment at elevations greater than 89 ft	3-6
Figure 3.8	Lake Jocassee Mean daily temperature (C) from 1991-1993	3-7
Figure 3.9	Unit 1 Operation	
Figure 3.10	Unit 2 Operation	3-9
Figure 3.11	Unit 3 Operation	3-10
Figure 3.12	Unit 4 Operation	3-10
Figure 3.13	Instantaneous elevation and entrainments rate from 1991-1993,	green
	represents the entrainment observations and blue represents the f	orebay
	elevation observations	3-12
Figure 3.14	1991 Instantaneous elevation and entrainment rate, where green rep	resents
	the entrainment observations and blue represents the forebay el	evation
	observations.	3-12
Figure 3.15	1992 Instantaneous elevation and entrainments rate, where	_
	represents the entrainment observations and blue represents the f	-
	elevation observations	3-13
Figure 3.16	1993 Instantaneous elevation and entrainments rate, where	_
	represents the entrainment observations and blue represents the f	-
	elevation observations	
Figure 3.17	Comparison of elevation and temperature data from 1991-1993, with	_
	being temperature and blue being forebay elevation	
Figure 3.18	Winter Daily Entrainment Impact	
Figure 3.19	Spring Daily Entrainment Impact	3-16
Figure 3.20	Summer Entrainment Impact	
Figure 3.21	Fall Entrainment Impact-High Operating Level	
Figure 3.22	Fall Entrainment Impact-Low Operating Level	3-18

1.0 INTRODUCTION

The Bad Creek Pumped Storage Project (FERC No. 2740) (Bad Creek Project) (Figure 1.1) is a 1,400 megawatt¹ (MW) pumped-storage hydroelectric facility that has served the Duke Energy Carolinas' (Duke Energy) customer base for nearly 30 years. Duke Energy is currently conducting the Federal Energy Regulatory Commission (FERC) relicensing process to obtain a new federal operating license for the Bad Creek Project. This process involves the consideration of environmental, social, and developmental resources of the Bad Creek Project and the applicable surrounding area. To that end, the fisheries resources of Lake Jocassee, the Bad Creek Project's lower reservoir for pumped-storage operations, and the potential impacts of Bad Creek Project operations on these resources, are being analyzed during the relicensing process in consultation with state and federal resource agencies and other interested parties.

The Bad Creek Project's configuration and projected use of the waterways for power generation is also a subject of consideration during relicensing; specifically, when weighing the benefits of power and non-power resources. Recent developments in the regional power grid provide a strategic rationale for considering Bad Creek Project capacity increases. This was reviewed most recently when the original license for the Bad Creek Project was amended in 2018 to accommodate turbine upgrades. The resulting improved pump-turbine, motor-generator design will increase the Bad Creek Project's life expectancy and provide a cost-effective option for adding an additional 290 MW of generating capacity and 240 MW of pumping capacity to the Project at the historical average available gross head. Once complete, Bad Creek Project upgrades provide for an environmentally sound method for adding capacity to support intermittent renewable resources, such as regional sources of solar energy generation, as the upgrades only affect the rate at which water flows through the Bad Creek Project units. The upgrades will not affect the quantity of water pumped or discharged or impoundment levels or the ultimate magnitude of fluctuations of the upper and lower reservoirs.

Duke Energy is additionally considering the construction of a new powerhouse (Bad Creek II) equal in size and capacity to augment the existing powerhouse through the relicensing process. The storage capacity of the upper reservoir would not change. Thus, pumping capacity would increase from 3019 cubic feet per second (cfs) to 6038 cfs, meaning

¹ Upgraded capacity per 164 FERC ¶ 62,066.

pumping time would be reduced by half of existing to more efficiently support intermittent renewable energy sources and stability of the regional power grid.

The issue of fish entrainment at a hydroelectric facility is a subject typically analyzed during a FERC relicensing process. Fish entrainment at the existing Bad Creek Project has been a subject of extensive studies throughout the Bad Creek Project's history. Therefore, a significant baseline of entrainment information is currently available for review. This report was developed in support of the relicensing and proposed project expansion (i.e., the addition of a second powerhouse, identical in size and capacity to the existing powerhouse and adjacent to the existing powerhouse). More specifically, this report considers the potential for the entrainment of Lake Jocassee fishes through the Project under the proposed action (i.e., two powerhouses).

1.1 Background

Fish entrained through hydroelectric facilities like the Bad Creek Project (Figure 1.1) are exposed to turbine passage mortality stressors. While mortality and entrainment rates are well-documented separately, the cumulative effects on aquatic populations are not. Researchers often lack the necessary parameters to accurately model the fate of all impacted species (natural mortality, recruitment, etc.), yet they are routinely required to assess the cumulative population-level effects of those species impacted. Another approach to assess cumulative system-wide effects to the suite of species impacted by hydroelectric development is needed.

Risk analysis offers a potential solution to this need. An entrainment risk assessment (ERA) identifies and analyzes potential future entrainment mortality events while assessing the resiliency of the population (i.e., its ability to tolerate the expected level of mortality). Applying a risk assessment framework to evaluate impacts to fisheries is not new. Patrick et al. (2009) developed the expanded productivity and susceptibility assessment (ePSA) to understand data-poor fish stocks. The ePSA assesses the risk of a fish stock becoming overfished as a function of its productivity (replenish rate) and susceptibility to the fishery. The ePSA incorporates demographic parameters like the maximum age and size of a fish, individual growth rates, natural mortality, fecundity, breeding strategy, recruitment pattern, and age at maturity. The ePSA has been used to assess fishing risks for other species including elasmobranchs (Cortés et al. 2010; Furlong-Estrada, Galván-Magaña, and Tovar-Ávila 2017) and grouper (Pontón-Cevallos et al. 2020). The ePSA is one of a broad class of applications that assess anthropogenic sources of risk on fishery populations.

The ERA method is not new to assessing entrainment risk at hydropower projects. In 2021, van Treeck et al. developed the European Fish Hazard Index to assess entrainment risk at hydropower projects. This tool considered plant design and operation, the sensitivity and mortality of species due to entrainment, and overarching conservation goals for the river. It assessed entrainment mortality with empirically derived functions for Kaplan and Francis turbines. The United States has seen development of ERA methods as well. In 2012, Cada and Schweizer developed the qualitative traits-based assessment to evaluate the entrainment risk of data-poor species.

The rate at which fish are entrained through hydroelectric facilities is also a well-studied phenomenon. Entrainment rates for this assessment have been developed from observed entrainment via hydroacoustic monitoring at the Bad Creek Project intake. Entrainment rates are typically expressed in fish per million cubic feet of water (fish/Mft³). Because the number of hours the Bad Creek Project is expected to run each day and the total volume of water pumped in Mft³ is known, the number of fish expected to be entrained can be estimated. The analysis employed to assess entrainment risk at the Bad Creek Project is therefore quantitative.

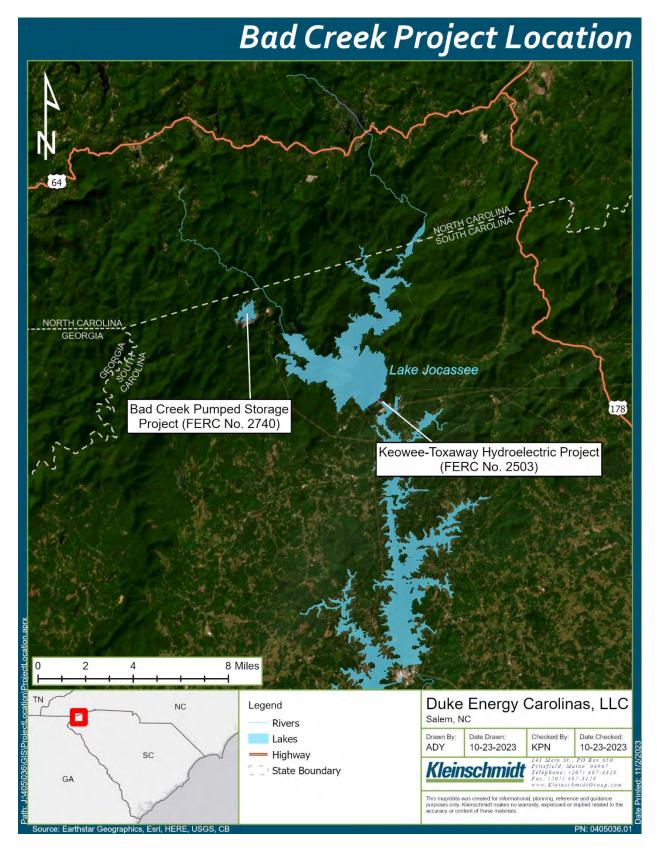


Figure 1.1 Bad Creek Project Location Map

2.0 METHODS

An ERA consists of two major components: (1) a Monte-Carlo simulation model that estimates the number of fish entrained and the number of expected mortalities; and (2) an objective method of ranking the relative vulnerability of those species subjected to entrainment. The methods section will start with a selection of target species, followed by an exploratory data analysis, the description of the simulation, and finally the assignment of risk.

2.1 Exploratory Analysis

Duke Energy provided Kleinschmidt Associates (Kleinschmidt) with numerous datasets describing Lake Jocassee forebay operating levels, water quality, entrainment, and current Bad Creek Project operations. The first dataset (Dataset A) titled "1990.1994 Jocassee Hydro plant log" included date, time, corresponding forebay elevations, and hourly rain totals. A second dataset (Dataset B) titled "historical" was created from individual daily hydroacoustic monitoring files, which included date, time and corresponding entrainment observations for each bay from 1991 to 1993. Duke Energy provided four datasets comprised of water quality data from 1973 to 2020, which included date, time, elevation, and depth of sample as well as the pH, dissolved oxygen, water temperature, and conductivity. After organizing the dataset, data were then queried to create a single temperature dataset (Dataset C). Forebay elevation and temperature data were assessed to determine the effects of Bad Creek Project operations on entrainment. Hourly operations data (Dataset D) representing operations that respond to the solar market were also provided by Duke Energy².

Forebay elevation and water temperature data were complete in that they comprised the entire time-period of the original impact study from 1991–1994. However, the timestamps were not standardized across datasets. Once these datasets were normalized, temperature and Lake Jocassee forebay elevation observations were imputed using piecewise linear interpolation. This effectively filled the gaps within the entrainment dataset so that there was a temperature and forebay elevation observation for every entrainment observation. Temperature values were collected once per month, while Lake Jocassee forebay elevation data were collected three times per day. A clustering algorithm called a Gaussian Mixture Model was used to separate elevation observations into low and high

² The Project is primarily operated to respond to the variable reliability of regional solar resources.

operation classes for every entrainment observation. This allowed classification of each entrainment observation as having occurred during low or high operating levels. Lake Jocassee full pond elevation is 100 ft, local datum (1,110 ftmsl), for this analysis, elevation levels below, or equal to, 89 ft local datum (1,099 ftmsl) are defined as "low" and elevation levels above 89 ft local datum (1,099 ftmsl) are defined as "high."

The final set of data analyzed were unit operations. This consisted of first identifying pumping or generating operations in the data. A value of 1 was used if a unit was pumping and a value of 0 was used if it was generating. This logic was applied to all units and then summed for the total number of 15-minute intervals per day. That number was then divided by four to get total hours pumping per day. The operating hours were then analyzed by month and season, as well as weekday versus weekend, to determine any irregularities or trends.

2.2 Selection of Target Species

The species assemblage for this analysis was determined from prior empirical entrainment studies conducted at the Bad Creek Project. From 1991-1993, full discharge netting was employed at the Bad Creek Project, where the relative abundance of entrained species were calculated (Table 2.1).

Table 2.1 Monthly Sum of Entrainment at Bad Creek Project from 1991 to 1993

Species	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sept.	Oct.	Nov.	Dec.
Black Crappie				18	73	1			_			4
Blackbanded Darter					134	9		5				
Blueback Herring	2086	2093	1267	2885	1753	5837	5955	1854	7836	7736	9170	5466
Bluegill	8		30	116	2537	796	6626	1388	3941	2399	68	80
Brown Trout	5			56	149	41						14
Channel Catfish			1		60	9		5				
Common Carp					277	54			11			
Flat Bullhead					55			98				
Golden Shiner			2	18	153	9		2				
Green Sunfish								3	111	181		
Hybrid Sunfish									37			
Largemouth Bass					37	17	97	5	97	410		
Quillback					18							
Rainbow Trout	27					6						
Redbreast Sunfish				18	220	15	1392	547	611	480	1	16
Redear Sunfish					18							
Redeye Bass							14	2	48	62		
Spottail Shiner					18							
Striped Jumprock												14
Threadfin Shad	3033	4072	5290	8656	2302	1588	3485	425	24365	41867	71009	134314
Warmouth				124	311	63	419	4	49	113		
White Bass					2	16			113		1	
White Catfish	3		6	207	2961	196	2723	1765	1679	1339	68	2
Whitefin Shiner					20				49			
Yellow Perch	140	64	54	177	385			55	75		1	7
Yellowfin Shiner					18							

2.3 Entrainment Mortality Event Simulation

Entrainment mortality events were simulated with the open-source software package Stryke³. Stryke is an individual based model (IBM), which follows the fate of a population of fish as they migrate past a hydroelectric project. Movement and survival are simulated with Monte Carlo methods. The software is written in Python 3.7.x and utilizes Networkx⁴ to simulate routes of passage and Numpy⁵ and Scipy⁶ for pseudo-random probability distribution draws.

The assessment at the Bad Creek Project was less complex than most entrainment analyses because there are only three states within the model: lower reservoir, Bad Creek Project powerhouses, and upper reservoir. It was also assumed that all fish simulated are routed through the Bad Creek Project powerhouses and that there is 100% mortality.

2.3.1 Seasonal Entrainment Rate

An investigation of the 1997 Electric Power Research Institute (EPRI) entrainment database (EPRI 1997) indicated that the overall pattern of entrainment rates (fish/Mft³) for different species across the eastern United States were similar. Similarly, this pattern was observed at the Bad Creek Project as noted during the initial hydroacoustic monitoring entrainment survey (1991-1993). Across species, regions, and watersheds of all sizes, a small proportion of entrainment events comprised most of the overall impact, while the majority of the events constituted only a limited number of individuals. What leads to these large entertainment events is of no concern for the model because it only needs to be able to simulate their relative magnitude and frequency of occurrence.

Historic hourly entrainment data were analyzed, collected from 1991- 1993 at the Bad Creek Project intake during normal operations. The original dataset provided fish per hour measurements by unit that were enumerated with hydroacoustic monitoring. Assuming a constant flow rate of 3,690 cfs, the number of fish and total cubic feet pumped was summed for every day and then converted into an entrainment rate of fish/Mft³. Also of note, there were days when the Bad Creek Project operated but no fish were entrained. The probability of entraining fish on a given day was described with a binomial distribution, thus simulating an entrainment event occurs in two steps: 1) draw from

³ https://github.com/knebiolo/stryke

⁴ https://networkx.github.io/

⁵ https://numpy.org/

⁶ https://scipy.org/

binomial distribution to simulate presence, and 2) draw from a distribution of entrainment rates.

2.3.2 Scenario Development

Kleinschmidt developed scenarios that describe entrainment across seasons and forebay operating levels. Seasonal entrainment rates fish/Mft³ (Table 2.2) were described with Log Normal distributions. Bad Creek Project, under the proposed action of adding an additional twin powerhouse, is intended to pump up to 6 hours per day on weekdays and 2 hours per day on weekends. Duke Energy provided operations data from 2014 to 2018 in 15-minute increments that would also be reflective of the new pumping operations. It was assumed that if a unit was pumping, it was pumping at max capacity for the entire 15-minute period. Therefore, the number of hours operated per day is the number of 15-minute intervals with pumping operations divided by 4.

Lake Jocassee full pond elevation is 100 feet local datum (1,110 ftmsl), for this analysis, elevation levels below, or equal to, 89 feet, local datum (1,099 ftmsl) are defined as "low" and elevation levels above 89 feet, local datum (1,099 ftmsl) are defined as "high." In accordance with the current 10-Year Work Plan, if Lake Jocassee pool elevation falls below 1,099 ft msl, Duke Energy will implement operational changes at the Bad Creek Project based on hydro unit availability and other operational considerations to minimize fish entrainment (FERC 2017). These protocols include turning lights off near the inlet/outlet structure so as not to attract fish to the area and implementing a unit startup and shutdown sequence that minimizes fish entrainment. It was assumed that when forebay elevations are below 89 feet local datum (1,099 feet ftmsl), per the Memorandum of Understanding (MOU⁷), that units (U) were operated in the order of U4, U2, U3, U1 and that operations were dependent. In other words, the number of hours unit 2 is run is conditional on the number of hours U4 is run. The number of hours operated per day was described with a log normal distribution (Table 2.3). It is assumed that Bad Creek II (new powerhouse) is identical to Bad Creek Project's existing powerhouse and the overall order of unit prioritization between the two powerhouses is: BC2-U4, BC2-U2, BC2-U3, BC2-U1, BC1-U4, BC1-U2, BC1-U3, BC1-U1 at elevation below 89 feet local datum (1,099ftsml). At

⁷ developed in collaboration w/ Duke Energy and SCDNR to establish framework to help maintain high-quality fisheries of lakes Jocassee and Keowee" in 1996. The MOU and first 10-Year Work Plan were approved pursuant to Article 32(b)(1) of the license for the Bad Creek Project on May 1, 1997.

elevations above 89 feet (1,099 ftmsl), operations of units are independent of one another and respond to market demand, with preference to operate Bad Creek II powerhouse first.

Stryke simulated a hydrograph, which was the station capacity (3,690 cfs * 8 units = 29,520 cfs) for 365 days. For every day, Stryke first simulates operations with a draw from a binomial distribution. If Bad Creek is operating, then the number of hours per unit for each unit was simulated with a draw from a log normal distribution that was conditional on the unit that came before it. Then, it simulates whether an entrainment event occurs with a sample from a binomial distribution. If fish are present, Stryke simulates a daily entrainment event (fish/Mft³), and then expands that to a daily entrainment estimate (fish) by multiplying the entrainment rate by the total volume of water pumped (Mft³) that day. After iterating through each scenario and species combination, Stryke then summarizes results.

Table 2.2 Seasonal Entrainment Event Scenarios

Season	Operating	Probability of	Log Normal Shape Parameters			
	Level	Occurrence	Shape	Location	Scale	
Winter	High	0.602	1.967	0.018	0.419	
Spring	High	0.552	1.561	0.007	0.225	
Summer	High	0.627	1.722	0.011	0.168	
Fall	High	0.597	0.671	0.012	0.852	
Fall ⁸	Low	0.966	18.477	5.19	15.88	

Table 2.3 Bad Creek 1 Seasonal Unit Operations

		Probability Not	Lo	Log Normal Shape Parameters			
Unit	Season	Operating	shape	location	scale	Months	
	Winter High	0.175	0.226	-9.037	15.014	12,1,2	
	Spring High	0.247	0.011	-249.468	255.914	3,4,5	
U1	Summer High	0.045	0.004	-610.193	618.06	6,7,8	
	Fall High	0.240	0.097	-20.237	27.214	9,10,11	
	Fall Low	0.240	0.097	-20.237	27.214	9,10,11	

⁸ The period of low elevation for this analysis only occurred in the Fall, as depicted in Table 2.3.

		Probability Not	Log	Log Normal Shape Parameters		
Unit	Season	Operating	shape	location	scale	Months
	Winter High	0.248	0.354	-3.728	9.652	12,1,2
	Spring High	0.368	0.031	-74.131	80.674	3,4,5
U2	Summer High	0.059	0.006	-347.383	355.431	6,7,8
	Fall High	0.217	0.442	-1.769	8.998	9,10,11
	Fall Low	0.217	0.442	-1.769	8.998	9,10,11
	Winter High	0.307	0.126	-17.456	23.149	12,1,2
	Spring High	0.449	0.010	-238.518	244.828	3,4,5
U3	Summer High	0.092	0.003	-751.043	758.749	6,7,8
	Fall High	0.146	0.039	-56.370	62.818	9,10,11
	Fall Low	0.146	0.039	-56.370	62.818	9,10,11
	Winter High	0.350	0.209	-9.370	15.605	12,1,2
	Spring High	0.438	0.052	-44.005	51.045	3,4,5
U4	Summer High	0.089	0.004	-469.695	477.749	6,7,8
	Fall High	0.209	0.066	-31.032	37.785	9,10,11
	Fall Low	0.209	0.066	-31.032	37.785	9,10,11

Note: It is assumed Bad Creek is operated the same under 'Normal' and 'Low' forebay elevation scenarios.

2.4 Vulnerability to Entrainment

The second component of an ERA is to objectively assess the vulnerability of those species subjected to entrainment. Large impacts to highly vulnerable species carry the most risk to population impacts. As such, an assessment of species vulnerability characteristics becomes an important component of this analysis. Cada and Schweizer (2012) developed a traits-based assessment (TBA) to estimate fish population sustainability for data poor fish populations. This qualitative assessment extended experimental results from tested fish species to predict passage survival of other untested species based on phylogenic relationships or ecological similarities. The concepts of the Cada and Schweizer (2012) TBA and the Patrick et al. (2009) ePSA were used as a framework for assessing vulnerability. However, a straightforward quantitative approach was used for assessing fish population sustainability. Specifically, fish population growth rates were used for each species to evaluate a population's ability to make up for turbine passage losses with compensatory mechanisms. If these compensatory mechanisms are not enough to overcome losses, the fish population sustainability is vulnerable to entrainment stressors.

The sustainability of fish populations is influenced by several demographic traits. These traits include natural life span, natural mortality rates, generation time or interval between reproductive events, the number of reproductive events per year, and the number of offspring per reproductive event (Cada and Schweizer 2012). Species that have a low natural mortality rate, short generation time, and produce a large number of eggs are less likely to experience population level effects. Patrick et. al. (2009) also incorporated the individual growth rate (von Bertanlaffy) and trophic level in their assessment of vulnerability. These traits all impact how quickly a population will increase in number when it is depleted, meaning when the population is not nearing the carrying capacity in the local environment.

Both the ePSA and TBA methods used a set of traits and combined them into a qualitative categorization of vulnerability. However, quantitative estimates of the combined impact of these population traits are available in the literature for many species in the form of population growth rates or doubling rates for depleted populations. By using these estimates directly, subjective selection of traits to include and subjective methodology for weighting the importance of each individual trait can be avoided. Rather, the traits have been incorporated into well-established population modeling techniques and the overall estimate has been objectively and quantitatively derived.

Population growth for a harvested (or in this case, potentially entrained) population of fish can be described on annual increments using the Schaeffer Model:

$$N_{t+1} = N_t + r \left(1 - \frac{N_t}{\kappa}\right) N_t - E_t,$$

where

 N_t = population size in year t;

K = carrying capacity of population;

 E_t = entrainment losses in year t; and

r = discrete population growth rate

If it is assumed the population is depleted relative to the carrying capacity, then this equation simplifies to:

$$N_{t+1} \approx N_t(1+r) - E_t$$
.

If entrainment loss as the fraction of the population lost (PL; $E_t = PL \times N_t$,) is reparametrized, then:

$$N_{t+1} \approx N_t(1+r-PL)$$
.

Thus, if the entrainment loss rate (PL) is greater than the discrete population growth rate (r), the local population may decline over time.

The discrete population growth rate (r) for each species of concern was derived from information on FishBase (Froese and Pauly 2021), from model-derived resilience factors for the exact or in some cases, a surrogate species. In the FishBase "Estimates based on models" section, the following was used:

1) "K", which is presumed to be the intrinsic population growth rate for depleted populations. The intrinsic growth rate (K) is related to the discrete growth rate as follows:

$$\exp(K) = (1+r).$$

K is not reported for all species; when not reported for a species of concern, surrogates were identified that were primarily based upon taxonomic linkages (Table 2.3).

2) "Population doubling time", which is reported as a categorical range for all species (i.e., three presumed ranges for low resilient, moderate resilient, and high resilient species)⁹. The population doubling time (D) is related to the discrete population growth rate as follows:

$$(1+r) = \exp\left(\frac{\ln(2)}{D}\right).$$

Both of these estimates are reported for (1+r) and the most conservative result from each range of values, the lower discrete population growth rate, was used as an estimate for species vulnerability.

2.5 Assigning Risk

With quantitative measures estimating the number of fish entrained and the expected number of mortalities, and a quantitative index expressing the relative vulnerability of those species impacted, it is possible to objectively assign risk categories and identify the species most at risk.

_

⁹ FishBase defines resilience as "the capacity of a system to tolerate impacts without irreversible changes in its outputs or structure. In species or populations, often understood as the capacity to withstand exploitation." (Froese and Pauly 2021). FishBase reports resiliency as very low, low medium, or high. Resiliency ranges for species analyzed within this report were sourced directly from FishBase.

In order to estimate the annual proportion of the population in Lake Jocassee lost to entrainment (PL), an estimate of the local population size of each species (i.e., the denominator of PL) is needed. An annual baseline population estimate of pelagic forage fish (i.e., Blueback Herring, Threadfin Shad) was sourced from pelagic hydroacoustic monitoring surveys conducted by Duke Energy from 1989 to 2020 (A. Stuart, personal communication, October 2021). With 30 years of observations, any evidence of long-term trends was assessed that may indicate Bad Creek Project having an effect on the population. From 2013 to 2015, Duke Energy also conducted complimentary purse seine sampling to characterize the pelagic population of fish and quantify the proportion of the pelagic population comprised of Blueback Herring vs Threadfin Shad.

The combined annual population size estimates are skewed with more variance apparent for higher estimates. On the log-scale, there appears to be an approximate 20-year population cycle within Lake Jocassee (Figure 2.1). The median population estimate over the past 20 years (2001-2020) was estimated to capture an expected population size for a random future year. Estimated PL for each species was the annual estimated entrainment mortality divided by this population size estimate.

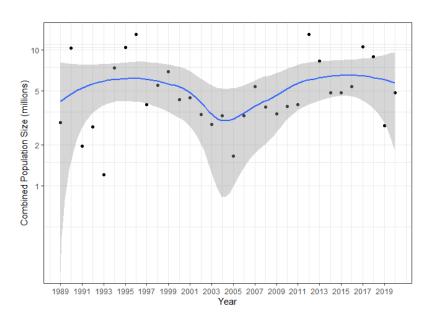


Figure 2.1 Estimated Local Population Size (Combined Species) 1989-2020, with Local Regression Smoother Trend Estimate Overlaid

A tabular form of (1+r-PL) is reported for each facility and flow scenario. Values of (1+r-PL) of exactly one would indicate steady population, greater than 1 indicates population growth, and less than 1 would indicate the population is being impacted by entrainment.

3.1 Exploratory Data Analysis

3.1.1 Analysis of Lake Jocassee Elevation

Elevations remained relatively consistent with an average level of 97.6 feet in 1991, 98.4 feet in 1992, and 92.4 feet in 1993 (Table 3.1). The average forebay elevation across all years was 96.3 feet, with a median of 98.0 feet. The forebay elevation did not exceed 100.0 feet and did not fall below 81.4 feet. The standard deviation of the entire dataset was 4.46, higher than the standard deviation of data from 1991 (0.988) and 1992 (0.771) suggesting 1993 was influential.

Table 3.1 Statistical summary of Lake Jocassee forebay elevation data from 1990-1993(measured in feet local datum)

Time	Minimum	Max	Mean	Standard Deviation	Median
1991-1993	81.40	99.80	96.32	4.46	97.95
1991	92.10	99.20	97.60	0.98	97.80
1992	95.00	99.80	98.51	0.77	98.60
1993	81.40	99.80	92.40	6.43	95.30

Histograms confirm the heavy skew of the data with two potential forebay elevation operating modes. Figure 3.1 represents the elevation data from 1991-1993, which was heavily skewed towards the higher elevations with a small cluster at the lower elevations. The cluster of low elevations occurred in 1993. Similar to Figure 3.1, the 1991 elevation data (Figure 3.2) also displays an uneven distribution. A multimodal distribution is evident with cluster of elevations around the 88.6-89.6 values and another cluster in the 97.6-98.6 values. Figure 3.3 contains forebay observations from 1992, and Figure 3.4 from 1993. In 1993, more so than any other year, there was a large proportion of lower elevation observations, suggesting two operational modes (low and high elevation).

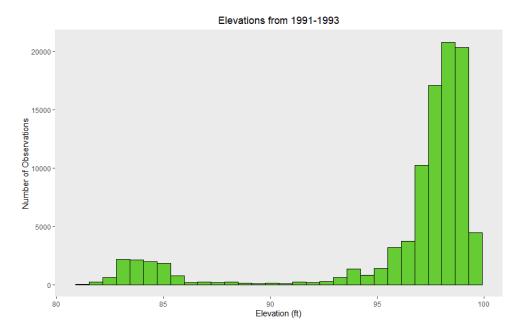


Figure 3.1 Jocassee Forebay local datum elevation observations from 1991-1993

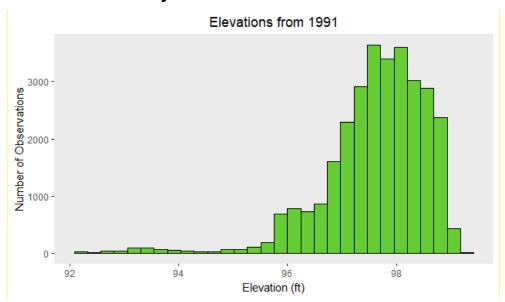


Figure 3.2 Jocassee Forebay local datum elevation observations in 1991

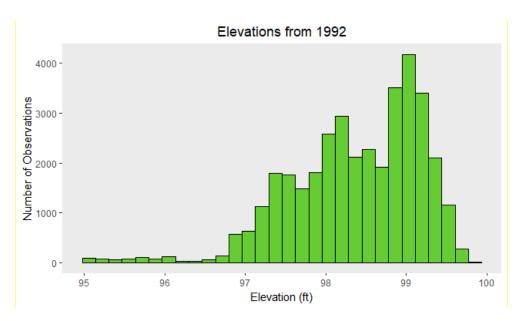


Figure 3.3 Jocassee Forebay local datum elevation observations in 1992

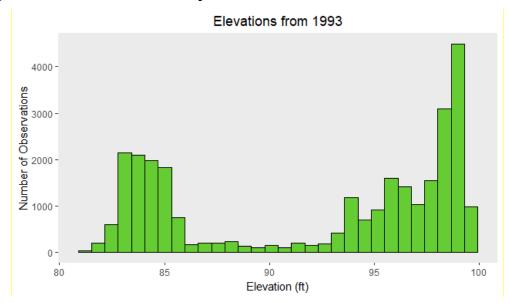


Figure 3.4 Jocassee Forebay local datum elevation observations in 1993

3.1.2 Analysis of Entrainment Rates

For the entrainment rate analysis, Kleinschmidt computed daily entrainment rates, and then separated the dataset into two categories: entrainment at elevations greater than 89 feet (1,099.0 ft msl) and entrainment at elevations less than or equal to 89 feet (1,099.0 ftmsl). The histogram (Figure 3.6) of the daily max entrainment at elevations below 89 feet (1,099.0 ftmsl) shows a heavy skew to the left, although most observations are greater than 0, indicating a higher entrainment rate than shown in Figure 3.5. This is supported

by the statistical summary in Table 3.3, where we see a large difference between the median of 7.5 and the mean of 18.4.

Figure 3.7 contains a histogram of daily entrainment rates at elevations greater than 89.0 feet. Like the trend in Figure 3.5, these data are also heavily skewed to the left, except most observations were 0 fish/Mft³, indicating less entrainment at higher elevations. The median value of 0.7 and mean of 3 (Table 3.3) are closer together than the other elevation group. The standard deviation of entrainment rates at elevations less than or equal to 89 feet was high at 34.6 (Table 3.3) as compared to the standard deviation of 5.73 at elevations greater than 89 feet indicating there were more observations closer together at the lower elevations.

Table 3.2 Statistical summary of daily entrainment data (fish/Mft³) by year

Time	Minimum	Maximum	Average	Standard Deviation	Median
1991-1993	0.02	250.30	5.39	15.34	1.10
1991	0.05	44.20	7.91	6.44	8.06
1992	0.04	13.20	0.90	1.46	0.45
1993	0.02	250.30	7.97	25.00	0.92

Table 3.3 Statistical summary of entrainment rate by forebay elevation operation mode.

Operation Mode	Minimum	Maximum	Average	Standard Deviation	Median
>89 ft	0	44.17	3.10	5.73	0.72
≤ 89 ft	0	250.27	18.41	34.59	7.54

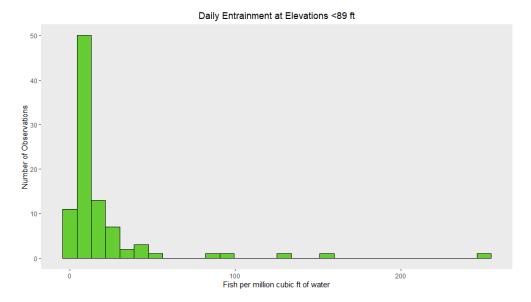


Figure 3.5 Daily entrainment at elevations less than 89 ft

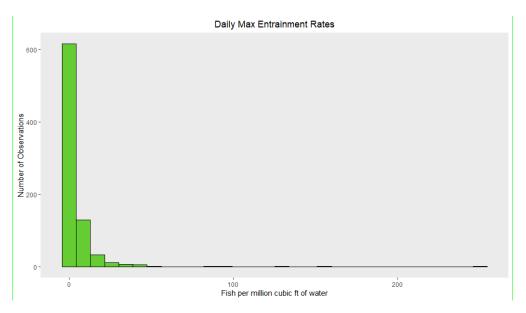


Figure 3.6 Daily Entrainment Rates from 1991-1993

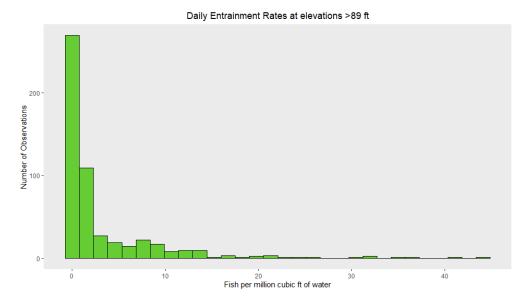


Figure 3.7 Daily entrainment at elevations greater than 89 ft

3.1.3 Analysis of Temperature Data

For the temperature analysis, the number of values was much lower than the other data sets. However, as seen in Table 3.4, the mean and median temperatures in degrees Celsius (C) were close, meaning there were few outliers, and the distribution of data is symmetrical. Further, temperature did not vary much within a day, meaning imputing temperature values for every entrainment observation proved highly accurate. The highest mean temperature was 24.7 degrees C, with the lowest being 9.1 degrees C. Typical seasonal variation is shown in Figure 3.8 where the highest temperatures are in the summer and lowest in the winter.

Table 3.4 Statistical summary of temperature data (C)

Time	Minimum	Maximum	Mean	Standard Deviation	Median
1991-1993	9.14	24.70	16.47	5.30	16.29
1991	9.14	24.70	16.80	5.53	16.64
1992	10.21	24.03	16.54	5.17	16.29
1993	9.15	24.67	16.06	5.62	15.32

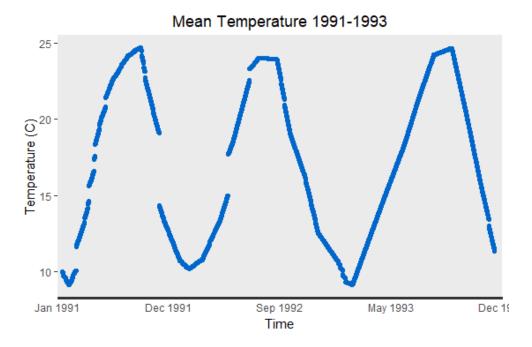


Figure 3.8 Lake Jocassee Mean daily temperature (C) from 1991-1993

3.1.4 Analysis of Hours Operated Per Unit

Duke Energy provided Bad Creek operations data that reflect the anticipated operations based on the solar market (2014 – 2018). It is assumed that Bad Creek I will continue to operate in this manner, and that operations between units are conditional. Bad Creek I operates on a 'first-on last-off' procedure, where U4 is first, followed by U2, then U3, and finally U1. When Bad Creek II is operational, it will be operated in the same manner as Bad Creek I, but Bad Creek II will run first to optimize use of variable speed pumps. It is assumed that BC2 U4 = BC1 U4, etc. A summary of statistics of hours operated by unit is included in Table 3.5.

Table 3.5 Bad Creek Unit 1 Hours Operated Summary Statistics (2014–2018)

Season	Minimum	Maximum	Mean	Standard Deviation	Median
Winter	0	19.00	5.34	4.09	5.25
Spring	0	16.80	4.41	3.89	5.25
Summer	0	13.00	7.65	2.95	8.25
Fall	0	17.80	5.13	4.12	5.75

Table 3.6 Bad Creek Unit 2 Hours Operated Summary Statistics (2014–2018)

Season	Minimum	Maximum	Mean	Standard Deviation	Median
Winter	0	17.50	4.58	3.67	5.00
Spring	0	16.80	3.91	3.87	5.00
Summer	0	13.00	7.65	2.99	8.25
Fall	0	18.00	4.91	3.65	5.75

Table 3.7 Bad Creek Unit 3 Hours Operated Summary Statistics (2014–2018)

Season	Minimum	Maximum	Mean	Standard Deviation	Median
Winter	0	16.80	4.41	3.68	4.75
Spring	0	14.20	3.79	3.67	4.50
Summer	0	12.50	7.39	2.75	8.00
Fall	0	16.50	5.85	3.16	6.25

Table 3.8 Bad Creek Unit 4 Hours Operated Summary Statistics (2014–2018)

Season	Minimum	Maximum	Mean	Standard Deviation	Median
Winter	0	24.00	4.83	4.20	5.00
Spring	0	16.50	3.89	4.30	0.75
Summer	0	13.00	7.86	2.83	8.25
Fall	0	17.20	6.18	3.23	6.25

To simulate hours pumping per day, each unit's observations were fit to a log normal distribution. It was assumed that Bad Creek was operating under the MOU scenario and that the hours a unit operates is conditional on the order of operations. Thus, if U4 is preferred, the number of hours U2 is operated is conditional on the number of hours U4 is operated. The simulation first draws from a log normal distribution fit to U4 hours. Then, U2 hours are filtered to less than or equal to the number of hours U4 is operated. The remaining U2 data are fit to a log normal distribution, and another draw simulates hours operated for U2. This process is repeated for U3 and U1, with the current unit always dependent upon the previous unit's operation. This type of simulation preserves the first-on last-off operations of preferred units. If the Jocassee Forebay elevation is above 1099 ft MSL, the units could be operated in any order.

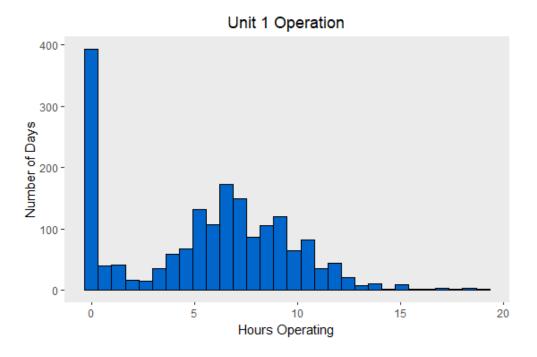


Figure 3.9 Unit 1 Operation

Note: the frequency of days with no operations (0 hours) was included in the histogram, but removed when fitting a log normal distribution. There are a considerable number of days (\sim 400) where Unit 1 did not run from 2014 – 2018.

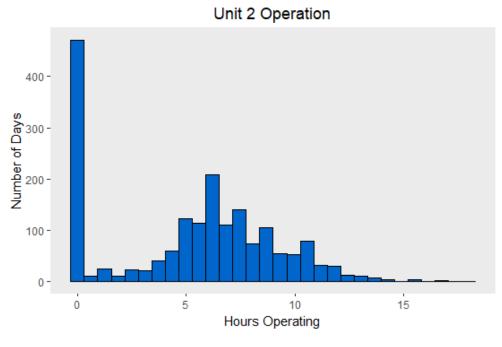


Figure 3.10 Unit 2 Operation

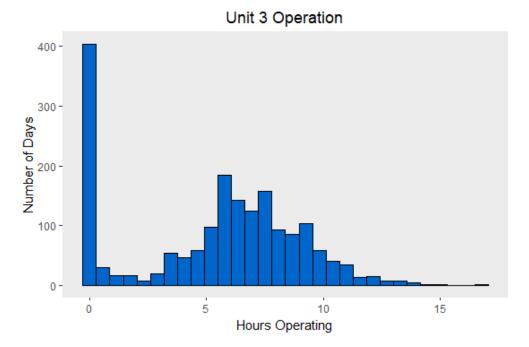


Figure 3.11 Unit 3 Operation

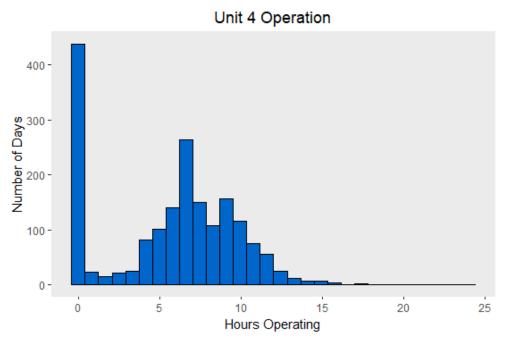


Figure 3.12 Unit 4 Operation

3.1.5 Entrainment as a Function of Elevation

Figure 3.13 shows the instantaneous forebay elevation and entrainment rate from 1991-1993. As shown, elevations remained relatively consistent with a mean elevation of 97.6 feet in 1991, 98.5 feet in 1992 and 92.4 feet in 1993. An increase in entrainment is expected as the forebay elevation drops. Overall, the data are highly skewed, with a large gap between the average daily max entrainment and the median values.

In 1991 (Figure 3.14) there was more variation in elevation, and a maximum instantaneous entrainment rate of 20.1 fish/Mft³. Entrainment was high for the first half of the year until July. In 1992, there was no apparent trend with elevation (Figure 3.15). The data from Figure 3.16 show the lowest entrainment values, lowest yearly maximum entrainment rate of 418 fish/Mft³ of water, and the lowest average entrainment at 1.57 fish/Mft³. These values could be attributed to rain because 1992 was the wettest year out of this data set with a yearly total of 28.6 inches of precipitation with an average forebay elevation of 98.5 feet (1108.5 ft msl). The highest daily maximum entrainment at 978 fish/Mft³ occurred in 1993 (Figure 3.16). When comparing elevation to temperature there was no clear trend as the same seasonal temperature pattern was observed regardless of elevation (Figure 3.17).

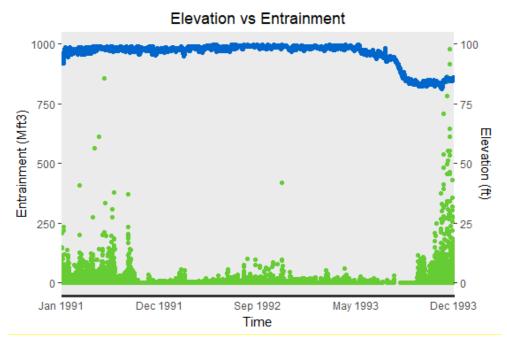


Figure 3.13 Instantaneous elevation and entrainments rate from 1991-1993, green represents the entrainment observations and blue represents the forebay elevation observations.

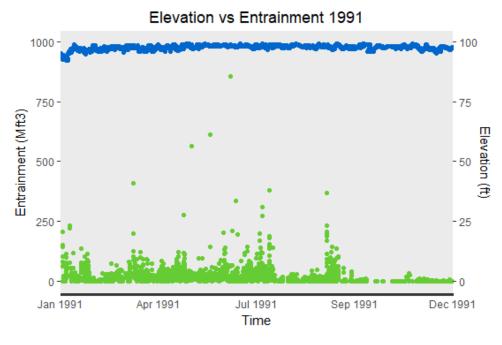


Figure 3.14 1991 Instantaneous elevation and entrainment rate, where green represents the entrainment observations and blue represents the forebay elevation observations.

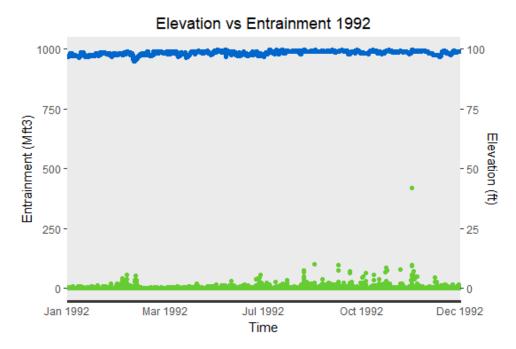


Figure 3.15 1992 Instantaneous elevation and entrainments rate, where green represents the entrainment observations and blue represents the forebay elevation observations.

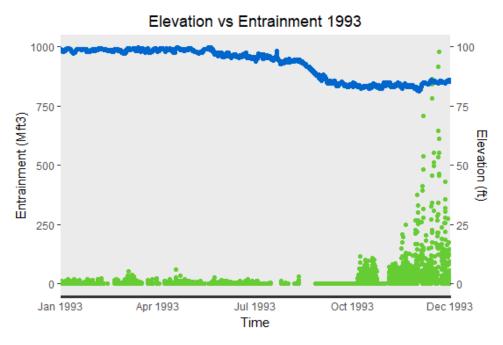


Figure 3.16 1993 Instantaneous elevation and entrainments rate, where green represents the entrainment observations and blue represents the forebay elevation observations.

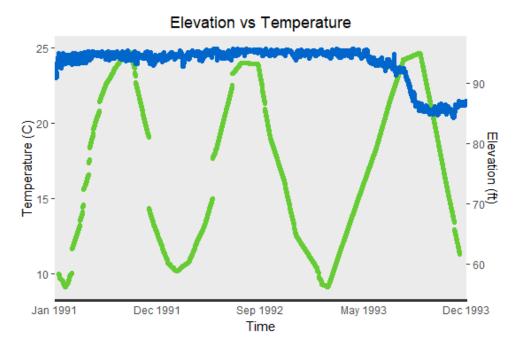


Figure 3.17 Comparison of elevation and temperature data from 1991-1993, with green being temperature and blue being forebay elevation.

3.2 Entrainment Impact

Simulations of operating scenarios were run at different forebay elevations in different seasons to assess entrainment impact at the Bad Creek Project. Table 3.9 shows the statistical summary of the number of fish entrained per day over the entire simulation dataset. Kleinschmidt began simulations with the forebay elevation at "high" level defined as forebay elevations greater than 89 feet. Then ran simulations when the forebay elevation was at a "low" level defined as forebay elevations less than 89 feet (1099 ftmsl). Table 3.10 contains statistics on the median number of organisms entrained and the likelihood of entraining 10, 100, or 1000 fish in any one event. The probability of 10 fish being entrained at once when elevations are low in the fall was 56.4%, probability of 100 being entrained was 50.6% and probability of 1000 fish being entrained was 44.8%. However, when compared to Fall at high level, when only 16,977 fish are entrained on average, the probabilities are similar. When entrainment is occurring at low elevations, the events are much larger than events at other seasons and high operating levels. The median entrainment of fish was nearly 3x as much during low forebay elevation as it was during high operating elevations in the Fall. The median entrainment in the Fall during normal pond levels was just under 17,000 fish, with a small increase in winter to 18,344 fish, another increase in spring to 23,389 fish, and then summer with 32,684 fish.

Table 3.9 Statistical Summary of data from all elevation and seasonal scenarios within simulation

Minimum	Minimum Maximum		Standard Deviation Media	
0	5111	149.484	316.143	27

Table 3.10 Entrainment impact and likelihoods by season.

Season	Forebay level	Median Entrained	Probability 10 entrained	Probability 100 entrained	Probability 1000 entrained
Winter	High	18,344	0.512	0.445	0.380
Spring	High	23,389	0.19	0.09	0.04
Summer	High	32,684	0.56	0.48	0.40
Fall	High	16,977.5	0.54	0.43	0.33
Fall	Low	46,052.5	0.56	0.51	0.45

Table 3.11 Statistical summary of daily entrainment by season

Season	Forebay	Minimum	Maximum	Mean	Standard Deviation	Median
Winter	High	0	4292	100.25	252.44	20
Spring	High	0	4013	127.07	294.92	22
Summer	High	0	5111	178.18	396.26	39
Fall	High	0	1840	91.98	171.43	29
Fall	Low	0	4480	250.30	381.35	0

As shown in Figure 3.18 through Figure 3.22, the highest probability of entraining fish was during the Fall at low forebay levels. Fall season operating at low levels had the highest average entrainment and second highest standard deviation, meaning that there were a higher number of elevated entrainment events during simulations as well as those events being highly variable.

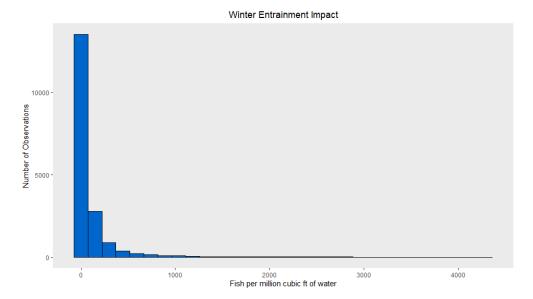


Figure 3.18 Winter Daily Entrainment Impact

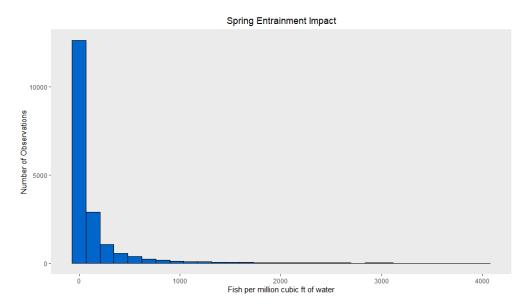
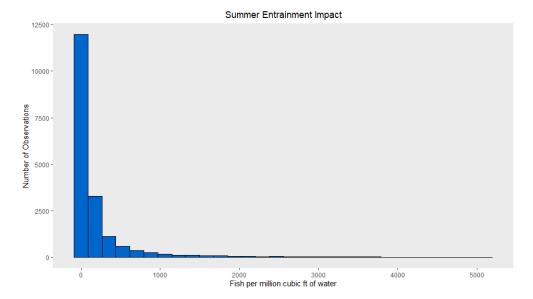



Figure 3.19 Spring Daily Entrainment Impact

Figure 3.20 Summer Entrainment Impact

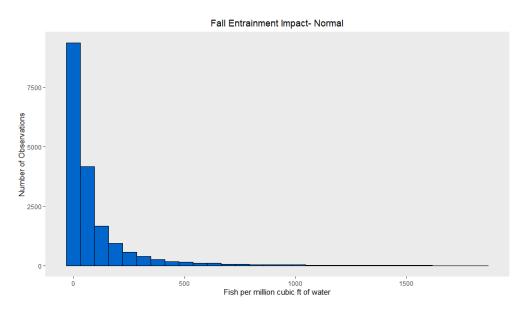


Figure 3.21 Fall Entrainment Impact-High Operating Level

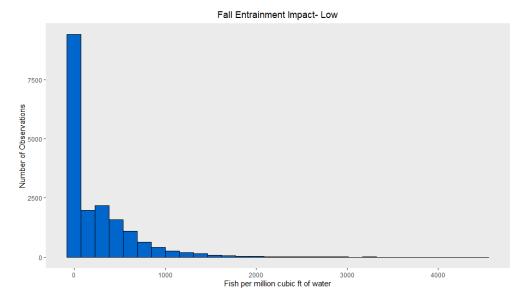


Figure 3.22 Fall Entrainment Impact-Low Operating Level

3.3 Relative Vulnerability to Entrainment

As there was no substantial increase between entrainment estimates, the previous assessment of vulnerability was used. A summary of FishBase parameters used for the entrainment vulnerability assessment are provided in Table 3.12. Both Blueback Herring and Threadfin Shad are considered moderately vulnerable species with population doubling times in the 1.4-4.4 year range. The intrinsic growth rate estimated for Blueback Herring indicates that this species is moderately vulnerable, with a discrete annual increase of about 20% per year. The intrinsic growth rate was not available for Threadfin Shad, but surrogate Alosines have estimated discrete annual increases of approximately 15-35% per year (Table 3.13).

Table 3.12 Population Growth Rates Used for Vulnerability Assessment

	Parameters from FishBase				Derived discrete growth rate (r)			
	Popu Growt	insic lation h Rate K)	Categorical population doubling time (D)		Species- specific		Categorical	
Species	Min	Max	Min	Max	Min	Max	Min	Max
Blueback Herring	0.18	0.18	1.40	4.40	1.20	1.20	1.17	1.64
Threadfin Shad*			1.40	4.40			1.17	1.64
American Shad	0.14	0.14			1.15	1.15		
Alewife	0.20	0.20			1.22	1.22		
Blueback Herring	0.18	0.18			1.20	1.20		
Hickory Shad	0.30	0.30			1.35	1.35		

^{*}Intrinsic rate was not available in FishBase for Threadfin Shad but was available for the four North American Freshwater Alosines listed here.

3.4 Entrainment Risk

The risk results for Bad Creek Project for Blueback Herring and Threadfin Shad are presented in Table 3.13. The losses to Blueback Herring are relatively small compared to the population numbers, and the risk estimate is low (i.e., discrete population annual growth is estimated to be 16-19% after accounting for entrainment). Threadfin Shad is more heavily impacted, with approximately 12% of the estimated population lost each year to entrainment. According to these estimates, the population should still be sustainable, with estimated discrete annual increases in population ranging from 3% (based on American Shad population growth estimates) to 23% (based on Hickory Shad population growth estimates). The low end of this range, a 3% population growth rate, is low and corresponds to a population doubling rate of more than 20 years.

Table 3.13 Bad Creek Entrainment Risk to populations of fish inhabiting Lake Jocassee

Species	Categorical discrete growth rate (min)	Species- specific discrete growth rate (min)	Estimated Population 2001-2020 (millions)	Annual Entrainment Loss Estimate	Proportion of Annual Population Lost to Entrainment (PL)	Annual population multiplier including entrainment (categorical)	Annual population multiplier including entrainment (species-specific)
Blueback							
Herring	1.17	1.20	3.7	0.03	0.00	1.16	1.19
Threadfin Shad	1.17		0.52	0.06	0.12	1.05	
American Shad		1.15					1.03
Alewife		1.22					1.10
Blueback							
Herring		1.20					1.08
Hickory Shad		1.35					1.23

4.0 CONCLUSION

Based on the exploratory analysis and simulation, if Lake Jocassee operates at a lower elevation there will be a risk of higher entrainment. Fluctuation in forebay elevations could increase risk of entrainment. Figure 3.17 depicts water temperature on the secondary y-axis. When water temperature and forebay elevation were high in the fall, entrainment was low, but when temperature was high and forebay elevation was low, entrainment was high.

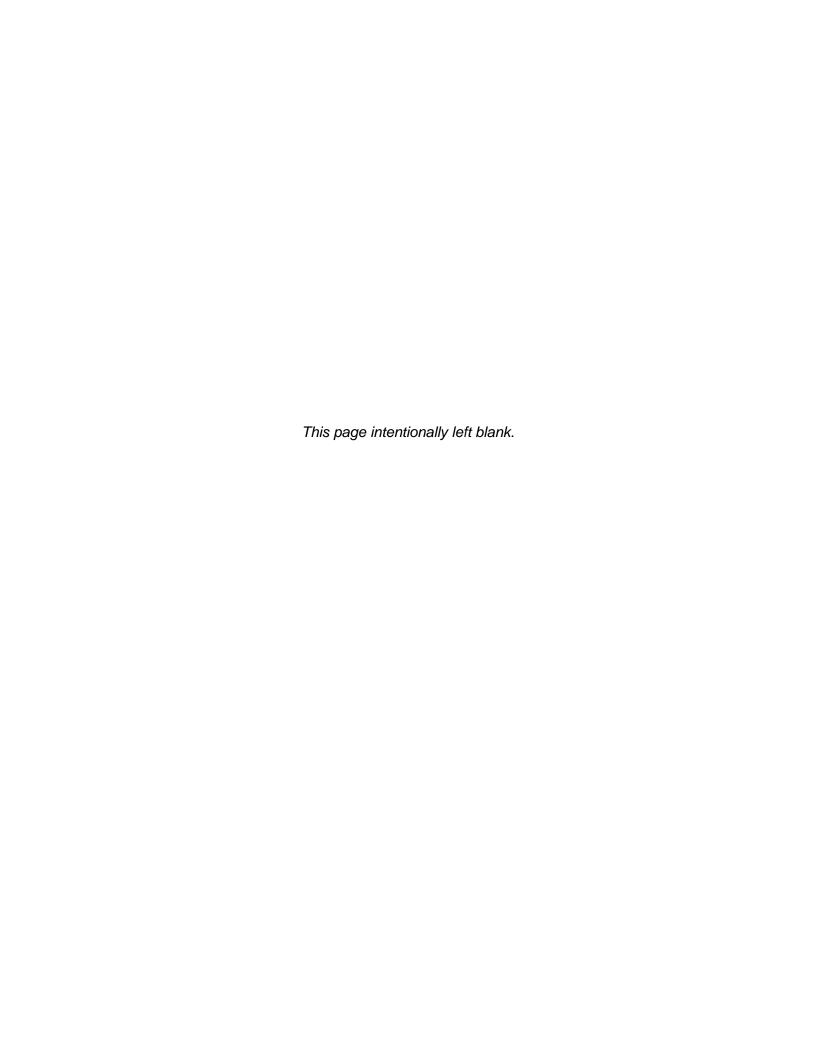
There were numerous differences between this analysis and the previous analysis that have affected the results. The previous analysis (Kleinschmidt 2021) listed annual entrainment at 87,324, while there were 91,394 fish entrained in this analysis during normal operating years and up to 120,469 individuals in years with low operating forebay elevations in the fall. The previous analysis used instantaneous entrainment rates, while the current analysis uses daily entrainment rates. Use of daily entrainment rates provides higher resolution because entrainment is episodic, and high entrainment rates are not expected to occur for an entire pumping cycle. Rather than running for six hours every day, this analysis simulated hours operating per day with a log normal distribution fit to operations data that reflect solar operations. Therefore, days with long duration of operations occur with the same relative frequency in the simulation and actual operations.

The estimated rates of entrainment mortality at the Bad Creek Project are not expected to affect the long-term sustainability of Lake Jocassee fish populations. The species with the largest impact, Blueback Herring and Threadfin Shad, have relatively high fecundity, meaning that population-level compensatory mechanisms would likely offset the entrainment losses in terms of effects on these fish populations. In addition, while some level of entrainment mortality will inevitably occur, many natural populations have excess reproductive capacity that will compensate for some losses of individuals (Sale et al. 1989).

Using a risk assessment framework allows for an objective evaluation of risks to fish populations from entrainment by combining two components, an estimate of entrainment loss and an estimate of population vulnerability to that expected loss for each species impacted. The risk estimate used was the expected population increase in each year after accounting for the entrainment losses. The population increases were based on minimum discrete population growth rates for each species sourced from FishBase.

No expected risk to Blueback Herring was indicated because the estimated entrainment rate of 0.7% per year is substantially below the expected recovery rate of the species. We anticipate a moderate potential risk to Threadfin Shad that is higher when forebay elevations are low with entrainment losses predicted to be approximately 12% of the median population estimate for the past 20 years. Threadfin Shad is considered to be a moderately vulnerable species with moderate population recovery, and this category of fish is expected to have discrete population growth rates of 17-64% per year. Although no species-specific growth rates were found for Threadfin Shad, the estimated rates for the surrogate species ranged from 15% per year for American Shad to 35% per year for Hickory Shad. The expected entrainment rate of 12% for Threadfin Shad is close to the expected annual increase for the slowest recovery surrogate, American Shad, indicating that entrainment mortality may keep the population from substantial increase, but is not likely to cause the population to decrease, unless combined with other impacts.

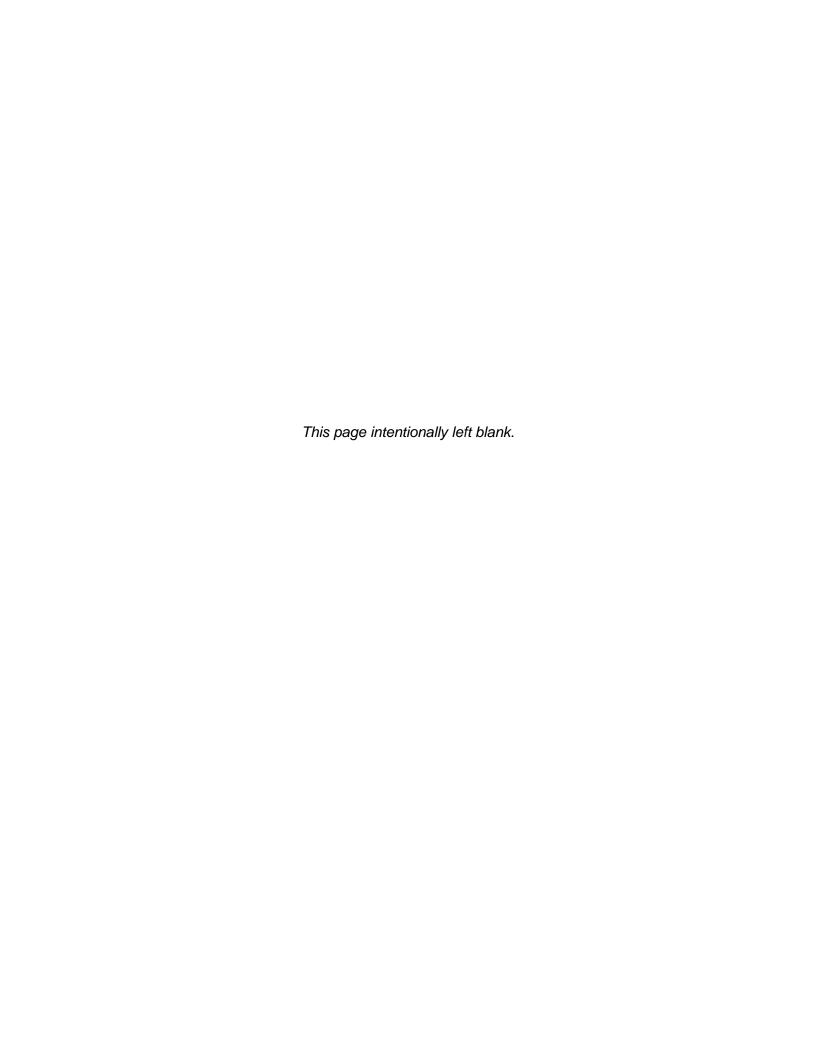
5.0 REFERENCES


- Cada G.F. and Schweizer P.E. 2012. The Application of Traits Based Assessment Approaches to Estimate the Effects of Hydroelectric Turbine Passage on Fish Populations. Oak Ridge, TN: Oak Ridge National Laboratory Technical Report. 36 pp.
- Cortés, Enric, Freddy Arocha, Lawrence Beerkircher, Felipe Carvalho, Andrés Domingo, Michelle Heupel, Hannes Holtzhausen, Miguel N. Santos, Marta Ribera, and Colin Simpfendorfer. 2010. Ecological risk assessment of pelagic sharks caught in Atlantic pelagic longline fisheries. Aquatic Living Resources (EDP Sciences) 23: 25-34.
- Electric Power Research Institute (EPRI). 1997. Turbine entrainment and survival database field tests. Prepared by Alden Research Laboratory, Inc., Holden, Massachusetts. EPRI Report No. TR-108630. October 1997.
- Froese, R. and D. Pauly (Editors). 2021. FishBase. World wide web publication. www.fishbase.org, version (06/2021).
- Furlong-Estrada, Emmanuel, Felipe Galván-Magaña, and Javier Tovar-Ávila. 2017. Use of the productivity and susceptibility analysis and a rapid management-risk assessment to evaluate the vulnerability of sharks caught off the west coast of Baja California Sur, Mexico. Fisheries Research 194: 197-208.
- Kleinschmidt Associates (Kleinschmidt). 2021. Desktop Entrainment Analysis: Bad Creek Pumped Storage Project (FERC No. P-2740). Prepared for Duke Energy. December 2021.
- Patrick, W.S., P. Spencer, O. Ormseth, J. Cope, J. Field, D. Kobayashi, T. Gedamke, E. Cortés, K. Bigelow, W. Overholtz, J. Link, and P. Lawson. 2009. Use of productivity and susceptibility indices to determine stock vulnerability, with example applications to six U.S. fisheries. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-F/SPO-101. 90 pp.
- Pontón-Cevallos, José F., Stijn Bruneel, Mar\in and José, R. Jarr\in, Jorge Ram\irez-González, Jorge R. Bermúdez-Monsalve, and Peter L. M. Goethals. 2020. Vulnerability and decision-making in multispecies fisheries: A risk assessment of bacalao (Mycteroperca olfax) and related species in the Galapagos' handline fishery. Sustainability 12: 6931.
- Ramos, Pedro L., Francisco Louzada, Eduardo Ramos, and Sanku Dey. 2020. The Fréchet distribution: Estimation and application-An overview. Journal of Statistics and Management Systems 23: 549-578.

- Sale, M.J., S.F. Railsback, S.Y Chang, C.C. Coutant, R.E. Spath, and G.H Taylor. 1989. Balancing hydropower development in the Ohio River basin. US Department of Energy. Report No. CONF-890876-1.
- van Treeck, Ruben, Johannes Radinger, Richard A. A. Noble, Franz Geiger, and Christian Wolter. 2021. "The European Fish Hazard Index An assessment tool for screening hazard of hydropower plants for fish." Sustainable Energy Technologies and Assessments. P. 43.

Attachment 2

Effects of Bad Creek II
Complex and Expanded Weir
on Aquatic Habitat

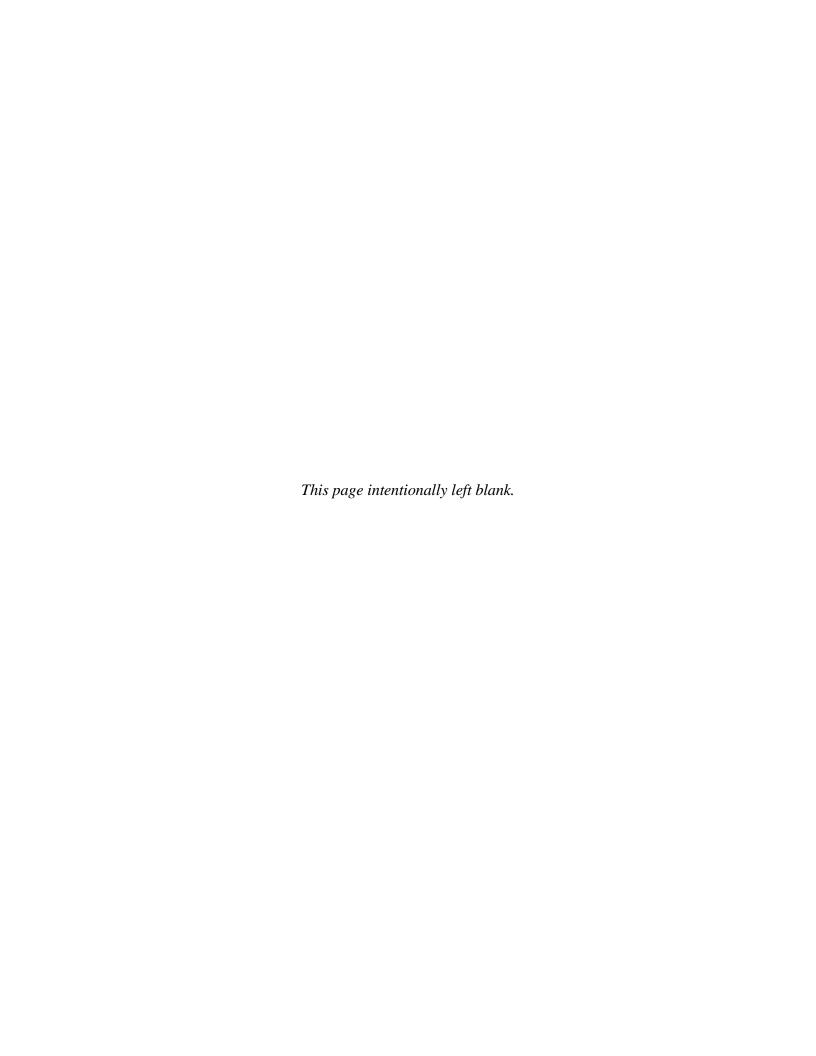

[To be Submitted with the Updated Study Report]

Attachment 3

Impacts to Surface Waters and Associated Aquatic Fauna

Draft Report

IMPACTS TO SURFACE WATERS AND ASSOCIATED AQUATIC FAUNA


DRAFT REPORT

AQUATIC RESOURCES STUDY

Bad Creek Pumped Storage Project FERC Project No. 2740

Oconee County, South Carolina

November 17, 2023

IMPACTS TO SURFACE WATERS AND ASSOCIATED AQUATIC FAUNA BAD CREEK PUMPED STORAGE PROJECT

FERC PROJECT No. 2740

TABLE OF CONTENTS

Section	Title	Page No.
-	ect Introduction and Background	
	s and Objectives	
	y Area	
	view	
_	nods	
	Natural Resources Assessments	
	Stream Habitat Quality Surveys	
5.2.1	1	
5.2.2		
5.2.3		
	Mussel Surveys	
	ılts	
	Natural Resource Assessments	
6.2	Stream Habitat Quality Surveys	14
6.2.1	110 1 2 1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2	
6.2.2		
6.2.3		
	Mussel Surveys	
	clusions	
	Impacts Assessment	
	ances from FERC-approved Study Plan	
	nane Correspondence and Consultation	
10 Refe	rences	33
	LIST OF TABLES	
Table 5-1	. Summary of Parameters and Metrics used in the Stream Quantification	n Tool 11
	. Summary of Surface Waters and Wetlands estimated ¹ within Potential	
	S	1
Table 6-2	2. Streams and Wetlands identified along the Temporary Access Road	14
	S. Summary of USEPA Rapid Bioassessment Protocol Stream Habitat A	
	Summary of NC Stream Assessment Method Ratings	
	5. Summary of Vegetation Plot Data	
	5. Stream Bioclassification Scores ¹ for Limber Pole Creek and Howard C	
	'. Water Quality Results Summary during Macroinvertebrate Sampling	
	S. SCDHEC Aquatic Biology Section Habitat Assessment Summary	
	. Summary of Stream Characteristics	
	-1. Summary of Germane Correspondence and Consultation related to Ta	
	Resources Study	

TABLE OF CONTENTS CONTINUED

Section Title Page No. **LIST OF FIGURES Attachments** Attachment A - Aquatic Resources Study Approach to Stream Surveys Attachment B - Natural Resources Assessment Figures Attachment C - U.S. Environmental Protection Agency Rapid Bioassessment Protocol Data **Forms** Attachment D - North Carolina Stream Assessment Method Data Forms Attachment E - Riparian Vegetation Survey Plot Data and Photolog Attachment F - Stream Quantification Tool Rapid Method Forms Attachment G - Streams Photolog Attachment H - Fish Community Sampling Data and Photo Vouchers Attachment I - Macroinvertebrate Sampling Data and Photolog Attachment J - SQT Catchment Assessment and Matrix Summaries

ACRONYMS AND ABBREVIATIONS

°C degrees Celsius

Bad Creek (or Project)
Bad Creek Pumped Storage Project
Bad Creek II Complex
BEHI
Bad Creek II Power Complex
bank erosion hazard index
CFR
Code of Federal Regulations

CPUE catch per unit effort

DBH diameter at breast height

Duke Energy or Licensee Duke Energy Carolinas, LLC

EPT Ephemeroptera, Plecoptera, and Trichoptera FERC or Commission Federal Energy Regulatory Commission KT Project Keowee-Toxaway Hydroelectric Project

mg/L milligrams per liter NBS near-bank stress

NCDWQ North Carolina Division of Water Quality NCSAM North Carolina Stream Assessment Method

RBP Rapid Bioassessment Protocol

RSP Revised Study Plan

SCDHEC South Carolina Department of Health and Environmental Control

SCDNR South Carolina Department of Natural Resources

SQT Stream Quantification Tool
USACE U.S. Army Corps of Engineers

USEPA U.S. Environmental Protection Agency

1 Project Introduction and Background

Duke Energy Carolinas, LLC (Duke Energy or Licensee) is the owner and operator of the 1,400-megawatt Bad Creek Pumped Storage Project (Project) (FERC Project No. 2740) located in Oconee County, South Carolina, approximately eight miles north of Salem. The Project utilizes the Bad Creek Reservoir as the upper reservoir (Upper Reservoir) and Lake Jocassee, which is licensed as part of the Keowee-Toxaway (KT) Hydroelectric Project (FERC Project No. 2503), as the lower reservoir.

The existing (original) license for the Project was issued by the Federal Energy Regulatory Commission (FERC or Commission) for a 50-year term, with an effective date of August 1, 1977 and expiration date of July 31, 2027. The license has been subsequently and substantively amended, with the most recent amendment on August 6, 2018, for authorization to upgrade and rehabilitate the four pump-turbines in the powerhouse and increase the Authorized Installed and Maximum Hydraulic capacities for the Project. Duke Energy is pursuing a new license for the Project pursuant to the Commission's Integrated Licensing Process, as described at 18 Code of Federal Regulations (CFR) Part 5.

In accordance with 18 CFR §5.11 of the Commission's regulations, Duke Energy developed a Revised Study Plan (RSP) for the Project and proposed six studies for Project relicensing. The RSP was filed with the Commission and made available to stakeholders on December 5, 2022. FERC issued the Study Plan Determination on January 4, 2023, which included modifications to one of the six proposed studies (Recreational Resources Study).

This report includes the methods and results of Task 3 (Impacts to Surface Waters and Associated Aquatic Fauna) of the Bad Creek Aquatic Resources Study. The Aquatic Resources Study was completed in support of preparing an application for a new license for the Project in accordance with 18 CFR §5.15, as provided in the RSP.

¹ Duke Energy Carolinas LLC, 164 FERC ¶ 62,066 (2018)

2 Goals and Objectives

Tasks carried out for the Bad Creek Aquatic Resources Study employed standard methodologies that are consistent with the scope and level of effort described in the RSP filed with the Commission on December 5, 2022 (Duke Energy 2022). The goal of the Aquatic Resources study was to evaluate potential impacts to aquatic life populations, communities, and habitats, due to the construction and operation of the proposed Bad Creek II Power Complex (Bad Creek II Complex).

This report was developed in support of Task 3 of the Aquatic Resources Study (Impacts to Surface Waters and Associated Aquatic Fauna). The main objective of this task is as follows:

Evaluating potential direct impacts to aquatic habitat (including wetlands) related to Bad
Creek II Complex construction activities and weir expansion by quantifying and
characterizing surface waters, including resource quality.

This objective was met through a combination of activities, including desktop description of impacted surface waters, previously conducted Natural Resource Assessments of areas of potential impact, and presence/absence of mussels and characterization of habitat quality through surveys of streams in the potential spoil deposition areas.

Duke Energy is proposing the development of a temporary access road (Fisher Knob access road) to provide an alternate route to the Fisher Knob community during Bad Creek II Complex construction. The proposed 3.7-mile-long predominantly gravel road is not presently included in the proposed expanded FERC Project Boundary and contemplated at the time of RSP filing. Therefore, in addition to assessing surface waters having the potential to be impacted by construction as described in the RSP, Duke Energy evaluated surface waters that would be crossed by the access road, with the same goals and objectives as those established in the RSP.

FD3

3 Study Area

The study area includes the shoreline of Lake Jocassee, streams within potential upload spoil locations, and streams and creeks that would be crossed by the potential temporary access road as described in the June 28, 2023 Relicensing Study Progress Report No. 2 filed with FERC (Figure 3-1).

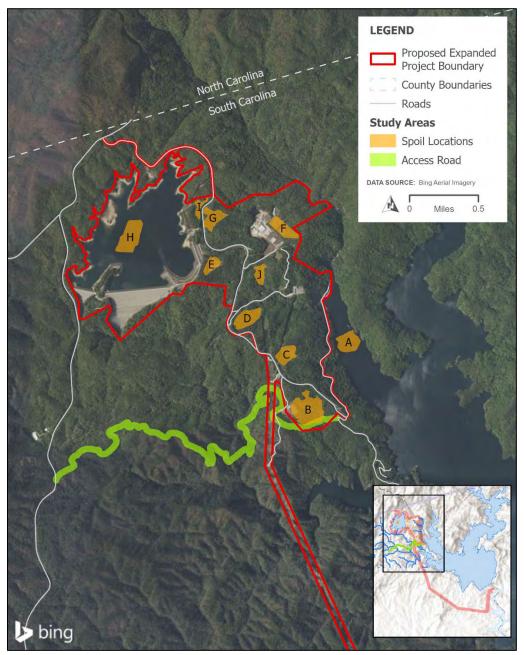


Figure 3-1. Potential Spoil Locations and Temporary Access Road Study Area

4 Overview

Construction of the Bad Creek II Complex would impact existing streams and waterbodies, including wetlands. Overburden (i.e., soil and rock) material from the construction activities are proposed to be deposited in spoil locations throughout the site. Siting for spoil location alternatives is ongoing by Duke Energy, with consideration of existing natural resources that are identified during site investigations, existing topography, and quantity of material used to expand the submerged weir in Lake Jocassee (if pursued). Although Duke Energy will avoid and minimize impacts to surface waters and wetlands to the extent practicable, it is likely that impacts to streams and wetlands will occur as a result of spoil placement.

Duke Energy is also proposing the development of a temporary access road to provide an alternate route to the Fisher Knob community and Project during the period of Bad Creek II Complex construction. The access road would be decommissioned following project construction.

Duke Energy proposed to evaluate the aquatic resources (streams, wetlands, and Lake Jocassee) that may experience direct impacts from spoil placement or other construction activities. This included a characterization of aquatic resources with respect to stream types as indicated from natural resources assessments, habitat quality, and potential fauna (mussels) presence. Field activities in support of this study task are outlined below.

5 Methods

General methods for stream habitat quality surveys and mussel surveys were provided in the Aquatic Resources RSP and are detailed further below. With the addition of the proposed temporary access road and through consultation with the South Carolina Department of Natural Resources (SCDNR), additional methodologies (described below) related to the South Carolina Stream Quantification Tool (SQT) were adapted by Duke Energy into the study. A memo developed as a summary of stream survey approach methods prepared in consultation with SCDNR and filed with the Commission with the September 28, 2023, Relicensing Study Progress Report No. 3 is provided as Attachment A (HDR 2023).

5.1 Natural Resources Assessments

Natural resources assessments of the potential upland spoil locations were conducted using a combination of desktop and field assessments while applying methodologies and guidance described in the U.S. Army Corps of Engineers (USACE) Wetland Delineation Manual (USACE 1987), the 2012 USACE Eastern Mountains and Piedmont Regional Supplement (Version 2.0) (USACE 2012), USACE Regulatory Guidance Letter 05-05 Ordinary High Water Mark Identification, and the North Carolina Division of Water Quality (NCDWQ) Methodology for Identification of Intermittent and Perennial Streams and Their Origins (Version 4.11) (NCDWQ 2010).

A delineation of surface waters and wetlands crossed by the temporary access road was completed following the same USACE and NCDWQ guidance, including flagging in the field and recording with a sub-meter accuracy GPS. The delineation was completed for a 100-foot buffer around the potential temporary access road.

5.2 Stream Habitat Quality Surveys

As stated in Section 4, the disposal of overburden material in upland locations would result in impacts to streams and wetlands and will require an individual permit from the USACE and water quality certification from South Carolina Department of Health and Environmental Control (SCDHEC) under the authorities of Sections 404 and 401 of the Clean Water Act. In preparation for these expected regulatory processes (if Bad Creek II Complex is pursued), stream habitat quality surveys were completed to provide a physical assessment of the existing conditions of streams that have the potential to be impacted.

5.2.1 Rapid Bioassessment Protocol

In accordance with the FERC-approved Aquatic Resources RSP, the stream habitat assessment portion of the U.S. Environmental Protection Agency (USEPA) Rapid Bioassessment Protocol (RBP) was completed for streams within potential spoil locations. Streams and creeks crossed by the temporary access road were also assessed, as described in the Relicensing Study Progress Report No. 3 filed with FERC on September 28, 2023, and the Aquatic Resources Study Approach to Stream Surveys technical memo, which has undergone stakeholder review. These assessments provide information regarding stream functionality and condition, which in turn can

indicate the value of aquatic habitat to aquatic and terrestrial life, and ecosystem services such as nutrient reduction and support of watershed health. The USEPA RBP includes an evaluation of the variety and quality of (1) stream substrate, (2) channel morphology, (3) bank structure, and (4) riparian vegetation (Barbour et al. 1999). Ten parameters across four condition categories (e.g., poor, marginal, suboptimal, or optimal) were rated on a numerical scale of zero to twenty for each sampled reach, with higher scores indicating supportive conditions. Total scores were then compared to reference reach conditions for an overall index. Reference reaches are stable segments of streams against which streams can be compared for optimal condition.

5.2.2 North Carolina Stream Assessment Method

The North Carolina Stream Assessment Method (NCSAM) was completed for streams within potential spoil locations and streams or creeks crossed by the temporary access road. The NCSAM rates streams for three Class 1 functions: hydrology, water quality, and habitat. Within each Class 1 function, streams are rated for up to eight Class 2 functions, which may include Class 3 and Class 4 functions. The functions provided by a stream are a product of the hydrologic, geologic, morphologic, and vegetational setting of the stream and its drainage area (Gordon et al. 1992 as cited by N.C. Stream Functional Assessment Team 2013). Alterations and/or stressors can contribute to the degradation of a stream, either naturally or anthropogenically, including storm damage, excessive vegetation, beaver impoundment, stream migration, and sedimentation, which can lead to lower stream function. Parameters evaluated with NCSAM protocol include flow restrictions; streambank erosion; buffer size and type; water quality stressors; substrate composition; in-stream habitat; visual and dip netting assessments for aquatic life; presence of wetlands; shade; and others.

The NCSAM utilizes a Boolean logic chain of reasoning to convert metric evaluation results into qualitative functional ratings for individual metrics, function classes, and an overall functional rating.

5.2.3 South Carolina Stream Quantification Tool

The SC SQT was developed in a collaborative effort between federal and state representatives to provide a tool for assessing and quantifying functional lift and loss of streams in South Carolina. In May 2023, the SCDNR requested that Duke Energy apply the SQT methods to streams within

potential spoil locations and streams crossed by the temporary access road. Duke Energy consulted with the SCDNR in May and June 2023 regarding the applicability and methodology of the SQT for stream assessments. In July 2023, Duke Energy and the SCDNR conducted a site visit to two potential spoil locations representative of conditions across the site. It was agreed among the SCDNR staff and Duke Energy personnel that streams within potential spoil locations are generally high functioning with limited (if any) anthropogenically caused degradation, and that field data collection to support SQT analysis for streams in these areas were not likely to produce significantly different results (i.e., lower functionality scores) than an assumption of fully functional. Therefore, Duke Energy proposed to field survey streams potentially crossed by the temporary access road, only. Documentation of all consultation for the Aquatic Resources study is included in Attachment 4 of Appendix B.

Reach lengths for SQT assessments were 100 linear feet upstream and downstream at each potential temporary access road stream crossing based on the results of the stream and wetland delineation completed in September 2023 (see Section 5.1). These surveys consisted of assessment of five functional categories including hydrology, hydraulics, geomorphology, physiochemical, and biology (South Carolina Steering Committee 2022). Depending on the anticipated type of impact or lift, physiochemical and biology categories are optional. Guidance from the SQT suggests physiochemical parameters be measured for stream projects with "goals or objectives related to physiochemical functions or where watershed conditions suggest that uplift is possible." Construction of the proposed Fisher Knob access road would be conducted from upland locations and no in-water work would occur. Best management practices to prevent sedimentation, such as silt fencing, would be installed to prevent water quality impacts at stream crossings. Given that impacts to water quality are not anticipated and appropriate stream protection measures will be taken, no physiochemical monitoring was conducted.

At prior meetings with Duke Energy, stakeholders expressed interest in the biological community of streams in the vicinity of the proposed Bad Creek II Complex; therefore, Duke Energy also completed fish and macroinvertebrate sampling in support of the SQT assessment.

5.2.3.1 Hydrology, Hydraulics, and Geomorphology

All streams crossed by the proposed access road were surveyed for the first three functional categories of the SQT (hydrology, hydraulics, and geomorphology). Stream geomorphic

measurements were made using tapes, stadia rod, and a line level per the Rapid Method approach described in the SQT Data Collection and Analysis Manual² (South Carolina Steering Committee 2022).

The field team identified bankfull indicators along the 100-foot reach and selected a stable riffle for the dimension survey. The channel was surveyed by stretching the tape between bankfull indicators on each bank and leveled via line level. The depth from bankfull was measured across the channel bottom and recorded. The field team used these data to compare to regional curves (SCDNR 2020) for bankfull verification.

Riffle and pool data (e.g., bankfull depth, bankfull width, low bank height, floodprone width, maximum pool depth, etc.) were collected at each feature along the reach. Due to difficulty in the field with dense vegetative cover, stream and valley slope was measured via GIS with 2-foot topography. Stream sinuosity was also measured via GIS using the stream boundaries delineated during the natural resources assessment.

Assessments of large woody debris and bank erosion/near bank stress were made for each stream reach. Large woody debris (defined as dead and fallen wood over 1 meter in length and at least 10 centimeters in diameter at its largest end, within the channel or touching the top of streambank) was noted for each stream reach. Bank erosion was documented where present and bank erosion hazard index (BEHI) and near-bank stress (NBS) calculated.

As part of the geomorphology assessment, one 10-meter-by-10-meter vegetation plot was established on either side of channel for each stream reach and the vegetation community observed was documented in accordance with the Carolina Vegetation Survey level 2 method (Lee et al. 2008). Diameter at breast height (DBH) was measured for all woody vegetation greater than 1.37 meters tall and the number of stems counted.

5.2.3.2 Fish Community Sampling

The SQT limits fish surveys to perennial streams with drainage areas between 1.5 and 63 square miles (mi²) (South Carolina Steering Committee 2022). As outlined by the SQT Data Collection and Analysis Manual, fish surveys followed Fish Collection Protocols for Streams as described

² https://www.dnr.sc.gov/sqt/docs/SC SQT Data Collection and Analysis Manual.pdf

in the SCDNR Fish Sampling Guidance (SCDNR 2022). Electrofishing reach lengths were determined based on the mean width of the reach with a minimum of 100 meters as per SQT protocol. Natural obstructions (e.g., riffles, log jams, or falls) were also utilized to define sampling reach boundaries when possible. A calibrated multiparameter water quality data sonde was used to record existing water quality conditions during sampling events, including temperature, dissolved oxygen, conductivity, pH, salinity, and turbidity.

The number of electrofishing units and netters varied based on stream width and followed SQT protocols. Electrofishing crews worked in an upstream direction, and all stunned fish were collected along with any reptiles or amphibians incidentally encountered. Immediately after capture, fish were placed in an aerated five-gallon bucket and processed at the mid-point and/or end of sampling depending on the reach length. All fish were identified to species and a subset of each species was measured for total length to the nearest millimeter.

Results from each electrofishing survey were entered into the SCDNR fish biotic index worksheet, and an average fish biotic index was calculated for each sampling reach. The average fish biotic index for a reach was then included in the SQT (see Section 5.2.3.4).

5.2.3.3 Macroinvertebrate Sampling

The SQT limits macroinvertebrate surveys to perennial streams with a minimum 3.0-mi² drainage area (South Carolina Steering Committee 2022). As outlined in the SQT Data Collection and Analysis Manual, macroinvertebrate surveys were completed following the SCDHEC Standard Operating and Quality Control Procedures for Macroinvertebrate Sampling (SCDHEC 2017). This method includes a timed-qualitative multiple habitat sampling protocol to collect macroinvertebrates, which allows for sampling representative macroinvertebrate taxa from the variety of natural habitats within a stream.

Procedures included sampling with kick nets, D-shaped dip nets, and sieves with the goal to collect as many different macroinvertebrate taxa as possible during a specified amount of time in multiple habitat types. More details on sampling methods are included in the following sections. Samples collected from all three sampling methods were combined into a sieve bucket. Organisms are separated or "picked" from the rest of the sample in the field using forceps and picking trays and preserved in glass vials containing 85 percent ethyl alcohol. Organisms were

picked in approximate proportion of their abundance and no attempt was made to remove all specimens encountered. Organisms collected and preserved in vials in the field were shipped to a certified taxonomist Pennington & Associates Inc, for identification to the lowest taxonomic level to calculate species taxa richness which is of the number of different kinds of organisms (taxa) in a collection and biotic index score for each site.

5.2.3.3.1 Kick Net Collection

A 1.0 meter-square (m²) 500-1000-micron mesh net attached between poles was used for kick net sampling in riffles. The kick net was placed downstream of the riffle area sampled and held in place on either side by two biologists to catch macroinvertebrates and debris that drift into the net. The third biologist perturbed the substrate from upstream, including dislodging cobble and small boulders, moving downstream towards the net. Contents collected in the kick net were rinsed into a sieve bucket.

5.2.3.3.2 *D-frame Dip Net Collection*

D-frame dip nets were used to sample root wad habitats, generally located along stream margins, as well as aquatic vegetation, if present. Root wads were sampled by repeatedly thrusting a 500-micron D-frame dip net upwardly into the roots along a stretch of bank until the net was approximately one-quarter full of detritus and root debris. Several randomly selected root wads were also washed down by hand into the dip net to remove firmly attached macroinvertebrates. Aquatic vegetation was sampled by sweeping the dip net through the vegetation. Contents of the dip net sampling were rinsed into the same sieve bucket with the kick net sample for a wholly representative sample of the stream.

5.2.3.3.3 Leaf Pack Collection

Mature leaf packs were collected at areas with swift moving water and placed in the sieve bucket and discarded after elutriation. The macroinvertebrates remaining in the sieve bucket were included with those from the kick net and D-frame dip net. Samples from the sieve bucket were transferred to picking trays and macroinvertebrates were removed using forceps and preserved in glass vials containing 85 percent ethyl alcohol.

5.2.3.3.4 Visual Collection

FDR

The intent of visual collections was to specifically target microhabitats that were not sampled using the aforementioned collection methods. Stream habitat components including large-grained substrate, recessed rock crevices, woody debris, mature leaf packs, roots, and other debris were searched for macroinvertebrates, which were collected directly with forceps and placed in the glass vials containing 85 percent ethyl alcohol.

5.2.3.4 Stream Quantification Tool Analysis

The SQT was implemented at each 100-foot stream reach. Index values (from 0.00 to 1.00) were calculated from the metrics entered for each of the functional categories described above. For parameters incorporating more than one metric, index values were averaged. Parameter scores were then averaged to calculate total functional category scores, and scores weighted and summed by the tool for an overall existing condition score.

Table 5-1. Summary of Parameters and Metrics used in the Stream Quantification Tool

Functional Category	Function-Based Parameters	Metrics				
Hydrology	Reach Runoff	Land Use Coefficient				
		Concentrated Flow Points (No./1,000 ft)				
Hydraulics	Floodplain	Bank Height Ratio (ft/ft)				
	Connectivity	Entrenchment Ratio (ft/ft)				
	Flow Dynamics	Width/Depth Ratio State (observed/expected)				
Geomorphology	Large Woody Debris (LWD)	LWD Piece Count (No./100 m)				
	Lateral Migration	Dominant BEHI/NBS				
		Percent Streambank Erosion (%)				
	Riparian Vegetation	Buffer Width (ft)				
		Average DBH (inches)				
		Tree Density (No./acre)				
	Bed Form Diversity	Pool Spacing Ratio (ft/ft)				
		Pool Depth Ratio (ft/ft)				
		Percent Riffle (ft/ft)				
Biology	Macroinvertebrates	Ephemeroptera, Plecoptera, and Trichoptera (EPT) Taxa Present (No.)				
	Fish	South Carolina Biotic Index				

Source: South Carolina Steering Committee 2022; ft= feet/foot; No.= number

5.3 Mussel Surveys

Mussel surveys consisted of an assessment for supportive habitat, followed by timed searches where suitable habitat was identified. Suitable habitat was defined as areas with appropriate substrate (sand and gravel), presence of fish hosts for glochidia, and potentially, evidence of live mussels or shells. Mussel habitat was evaluated for streams within potential spoil locations, streams and creeks crossed by the potential temporary access road, and along the portion of Lake Jocassee's shoreline included in the study area.

Mussel surveys followed methods adapted from the USEPA Technical Support Document for Conducting and Reviewing Freshwater Mussel Occurrence Surveys for the Development of Site-specific Water Quality Criteria for Ammonia (USEPA 2013). The survey consisted of timed visual and tactile searches for mussels in areas identified with suitable habitat. Timed searches were a minimum of four person-hours in Lake Jocassee and one person-hour in creeks. Habitat conditions at each sampling location were recorded including substrate conditions, shoreline composition, and basic water quality parameters (water temperature, dissolved oxygen).

6 Results

6.1 Natural Resource Assessments

The natural resources assessment to identify surface waters and wetlands within potential spoil locations was completed in September 2021 and along the proposed temporary access road in September 2023. The 2021 natural resources assessment was attached as Appendix E to the Pre-Application Document filed with FERC in February 2022 (HDR 2021). The surface waters and wetlands within the potential spoil locations are summarized in Table 6-1 and depicted on figures provided in Attachment B. Resources identified include nine streams, three wetlands, and one open waterbody.

Table 6-1. Summary of Surface Waters and Wetlands estimated¹ within Potential Spoil Locations

Name	Type	Spoil Location	Extent (linear feet or acres)							
Streams (linear feet)										
Stream 4	Intermittent	G	942							
Stream 4a	Perennial	G	542							
Stream 11	Unknown	J	148							
Stream 13	Intermittent	D	227							
Stream 14	Perennial	D	770							
Stream 17	Perennial	С	286							
Stream 19 (Devils Fork)	Perennial	В	1,129							
Stream 20	Perennial	В	577							
Stream 21	Unknown	В	172							
		Total	4,793							
	1	Wetlands (acres)								
Wetland 4 (isolated)	Emergent	F	0.37							
Wetland 7 (isolated)	Forested	F	1.15							
Wetland 10 (isolated)	Emergent	Е	2.96							
	Total 4.48									
	Open	Waterbodies (ac	eres)							
Lake Jocassee	Freshwater	A	12.7							

¹Extent of surface waters and wetlands was estimated using desktop resources and field investigations. A delineation of surface waters is planned to be completed in 2024.

The 2023 natural resources assessment identified six streams or creeks crossed by the access road if the Bad Creek II Complex is pursued and the Fisher Knob access road is constructed. Streams include Limber Pole Creek, Howard Creek, Devils Fork, and three unnamed tributaries. Additional unnamed tributaries and wetlands were identified and delineated within the 100-foot buffer of the potential temporary access road, however stream habitat quality surveys and mussel surveys completed for this study considered only those crossed by the potential temporary access road. Streams and wetlands estimated or delineated along the temporary access road route are summarized in Table 6-2 and depicted on figures provided in Attachment B.

²Spoil location J was added post-filing of the PAD, however the area was evaluated during the 2021 NRA.

FDS

Table 6-2. Streams and Wetlands identified along the Temporary Access Road

Name	Type	Extent (linear feet or acres)	Potentially Crossed by Access Road (Y/N)								
Streams (linear feet)											
Stream 01 (Limber Pole Creek)	Perennial	397	Y								
Stream 02	Perennial	273	N								
Stream 03	Perennial	62	N								
Stream 04	Intermittent	314	N								
Stream 05	Perennial	48	N								
Stream 06	Intermittent	621	N								
Stream 07 (Howard Creek)	Perennial	516	Y								
Stream 08	Intermittent	69	N								
Stream 09	Perennial	180	N								
Stream 10	Intermittent	95	N								
Stream 11	Perennial	166	N								
Stream 12	Intermittent	763	Y								
Stream 13	Intermittent	208	N								
Stream 15	Perennial	397	Y								
Stream 16	Perennial	717	Y								
Stream 17 (Devils Fork)	Perennial	295	Y								
Stream 18	Intermittent	87	N								
	Wetland	ls (acres)									
Wetland 1	Emergent	0.02	N								
Wetland 2	Emergent	0.01	N								
Wetland 3	Emergent	0.00	N								
Wetland 4	Emergent	0.02	N								
Wetland 5	Emergent	0.02	N								
Wetland 6	Forested	0.16	N								

6.2 Stream Habitat Quality Surveys

Stream habitat quality surveys were completed for streams within potential spoil areas and those potentially crossed by the temporary access road as identified during the Natural Resources Assessment (see Section 6.1); however, USEPA RPB and NCSAM forms were not completed for Stream 11 (spoil location J), Streams 13 and 14 (spoil location D), or 20 and 21 (spoil location B) due to inclement weather which presented a safety concern at the time staff was on site.

6.2.1 Rapid Bioassessment Protocol

USEPA RBP data forms were completed in September 2023 for streams within potential spoil locations and potentially crossed by the temporary access road. All streams scored above 100 in the "optimal" or "suboptimal" range (Table 6-3). Reference reaches used to compare to the total scores were selected based on stream size, stream type, and overall condition as indicated by USEPA RBP, NCSAM, and BEHI.

All streams assessed are in good condition, with the lowest reference reach index of 0.77 for Stream 15 along the temporary access road. Most indices were close to 1.00, indicating characteristics near reference condition. USEPA RBP data forms for the assessed streams are provided in Attachment C.

Table 6-3. Summary of USEPA Rapid Bioassessment Protocol Stream Habitat Assessments

Stream Name / Location	Stream Type	Selected Reference Reach	Total Score	Reference Reach Index							
Streams within Potential Spoil Locations											
Stream 4 - Spoil Location G	Intermittent	Stream 16	105	0.90							
Stream 4a - Spoil Location G	Perennial	Stream 19 (Devils Fork)	137	0.88							
Stream 17 - Spoil Location C	Perennial	Stream 19 (Devils Fork)	143	0.92							
Stream 19 (Devils Fork) - Spoil Location B	Perennial	Stream 19 (Devils Fork)	155	1.00							
Streams p	Streams potentially crossed by the Temporary Access Road										
Stream 1 (Limber Pole Creek)	Perennial	Howard Creek	170	0.93							
Stream 7 (Howard Creek)	Perennial		183	1.00							
Stream 12	Intermittent	Stream 16	112	0.96							
Stream 15	Perennial	Stream 19 (Devils Fork)	119	0.77							
Stream 16	Intermittent		117	1.00							
Stream 17 (Devils Fork)	Perennial	Stream 19 (Devils Fork)	140	0.90							

6.2.2 North Carolina Stream Assessment Method

NCSAM data forms were completed for streams within potential spoil locations and those potentially crossed by the temporary access road in September 2023. All streams were rated as high functioning with the exception of Streams 4 and 4a within spoil location G, and Stream 12 along the proposed temporary access road, which were rated as "medium" primarily due to limited baseflow conditions or, for Stream 4a, related to suboptimal streamside conditions. Complete data forms and rating sheets for each stream are included in Attachment D.

Table 6-4. Summary of NC Stream Assessment Method Ratings

Stream Name	Stream Type	NCSAM Overall Functional Rating								
Streams within Potential Spoil Locations										
Stream 4 - Spoil Location G	Intermittent	Medium								
Stream 4a - Spoil Location G	Perennial	Medium								
Stream 17 - Spoil Location C	Perennial	High								
Stream 19 (Devils Fork) - Spoil Location B	Perennial	High								
Streams Potentially Cros	ssed by Tempor	ary Access Road								
Stream 1 (Limber Pole Creek)	Perennial	High								
Stream 7 (Howard Creek)	Perennial	High								
Stream 12	Intermittent	Medium								
Stream 15	Perennial	High								
Stream 16	Intermittent	High								
Stream 17 (Devils Fork)	Perennial	High								

6.2.3 Stream Quantification Tool

6.2.3.1 Hydrology, Hydraulics, and Geomorphology

Stream surveys of hydrology, hydraulics, and geomorphology in support of the SQT were performed October 2-3, 2023. Streams appeared to be typical of those common to the Blue Ridge ecoregion, with limited hydraulic access to the floodplain (i.e., entrenched or moderately entrenched), low sinuosity, and moderate to high stream slopes. Streams were in good condition representative of those absent of anthropogenic influence. Riparian buffers were well vegetated with mature trees, however some areas also contained dense shrubs. Average DBH across reaches ranged from 8.2 to 18.6, with tree density up to 405 trees per acre (Table 6-5). Most streams contained coarse substrate (usually gravel), although bedrock cascades were present in one location. The smaller streams including Stream 12, Stream 16, and Devils Fork contained flow that went subsurface in several areas throughout upstream and/or downstream reaches. Areas where water re-emerged appeared to support relatively high abundance of salamanders. All streams were in stable condition throughout with limited streambank erosion. Vegetation data by plot and representative photographs are provided in Attachment E. Rapid Method forms completed for each stream reach are provided in Attachment F, and representative photographs of surveyed stream reaches are provided in Attachment F.

Table 6-5. Summary of Vegetation Plot Data

Stream/Creek	Reach	Average DBH (inches)	Average Tree Density (No. of trees per acre)
Stream 1	Upstream	9.5	405
(Limber Pole Creek)	Downstream	10.5	223
Stream 7	Upstream	12.3	142
(Howard Creek)	Downstream	8.5	121
Stream 12	Upstream	18.6	243
(UT to Howard Creek)	Downstream	14.7	162
Stream 15	Upstream	8.2	101
(UT to Devils Fork)	Downstream	9.6	223
Stream 16	Upstream	8.6	263
(UT to Devils Fork)	Downstream	10.3	142
Stream 17	Upstream	9.6	202
(Devils Fork)	Downstream	10.9	263

UT = unnamed tributary

6.2.3.2 Fish Community Sampling

The SQT limits fish surveys to perennial streams with drainage areas between 1.5 and 63 mi² (South Carolina Steering Committee 2022) which included Limber Pole Creek and Howard Creek (Figure 6-1 and Figure 6-2). One electrofishing unit and one netter was used for the upstream reach of Limber Pole Creek, and two electrofishing units and two netters were used at all other reaches. Surveys were completed upstream and downstream of the road crossings on July 25 and 26, September 5 and 6, and October 9 and 10, 2023. The four stream reaches maintained consistent species diversity over the three sampling events. No fish were collected in either reach of Limber Pole Creek during 2023. Two species of fish, Rainbow Trout (*Oncorhynchus mykiss*) and Western Blacknose Dace (*Rhinichthys obtusus*), were collected in both reaches of Howard Creek during all sampling events. Fish survey details including stream characteristics, sampling effort, water quality data, number of fish collected, catch rate, and fish density is provided in Attachment H.

Because no fish were captured in Limber Pole Creek, a fish biotic index score could not be calculated. For surveys of the two sample reaches for Howard Creek, the fish biotic index scores were zero.

In addition to the two species of fish collected, numerous aquatic salamanders from the genus *Desmognathus* were captured in both, Limber Pole Creek and Howard Creek. The salamanders were captured in every reach during each sampling event, ranging from two to 15 individuals.

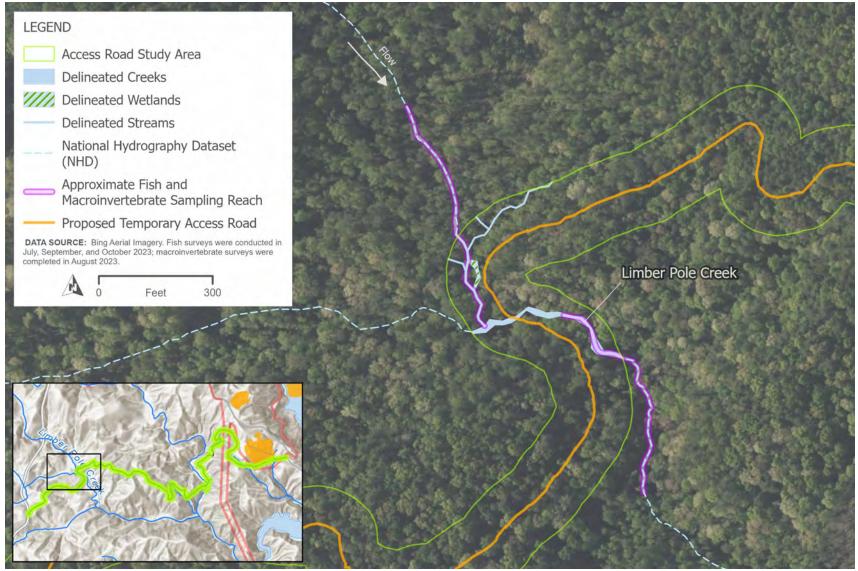


Figure 6-1. Fish and Macroinvertebrate Sampling Reaches on Limber Pole Creek

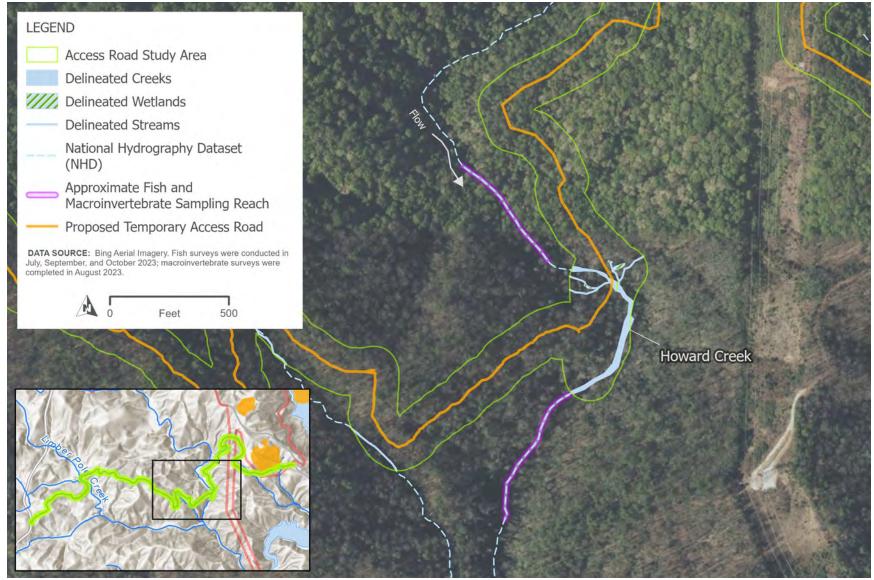


Figure 6-2. Fish and Macroinvertebrate Sampling Reaches on Howard Creek

6.2.3.3 Macroinvertebrate Sampling

The SQT limits macroinvertebrate surveys to perennial streams with a minimum 3.0-mi² drainage area (South Carolina Steering Committee 2022), which includes Limber Pole Creek and Howard Creek. One survey per stream reach was conducted on August 1 and 2, 2023, which is within the recommended index period (June 15, 2023 to September 15, 2023 for the Blue Ridge ecoregion). Stream reach lengths were the same as those sampled during fish community sampling conducted in July 2023 (see Figure 6-1, Figure 6-2, and Attachment H).

Biotic and EPT indices and scores were developed from the laboratory-identified taxa in accordance with the SCDHEC (2017) SOP. The biotic index (BI) for a sample is a weighted average of the tolerance values referenced in SCDHEC's SOP Appendix 5 for organisms collected in sample with respect to their relative abundance. The BI value is scaled from 0.0 to 10.0, with 10 representing relative tolerance to general stressors, with lower values representing more pristine conditions.

The EPT taxa are a subset of benthic macroinvertebrate species belonging to the insect orders Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies) which are highly sensitive and intolerant to pollution. The EPT index represents the total number of EPT taxa collected at a site with higher values indicating higher water quality.

The BI and EPT scores are weighted based on ecoregion. The BI and EPT scores are averaged to produce a combined score to determine the bioclassification of streams in South Carolina with the highest value equaling 5.0 and the lowest 1.0. The scores are rounded to show a single decimal and are rated as follows: 1 = Poor, 2 = Fair, 3 = Good-Fair, 4 = Good, and 5 = Excellent. Full taxonomic identification results are provided in Attachment I.

Table 6-6. Stream Bioclassification Scores¹ for Limber Pole Creek and Howard Creek

Metrics	Limber	Pole Creek	Howard Creek		
Wietrics	Upstream	Downstream	Upstream	Downstream	
Total No. of Organisms	163	161	319	246	
Total No. of Taxa	35	29	39	39	
EPT Index	27	21	30	28	
Biotic Index Assigned Values	1.68	2.04	2.98	2.25	
EPT Score	3.93	3.19	4.31	4.06	
Biotic Index Score	9.04	8.57	7.31	8.29	

Metrics	Limber	Pole Creek	Howard Creek						
Wietrics	Upstream	Downstream	Upstream Downstre						
South Carolina	6.49	6.49 5.88 5.81 6.17							
Bioclassification	Excellent/Fully Supporting								

¹See SCDHEC (2017) for details on EPT, Biotic Index, and Biotic Index Assigned Value scores for the Blue Ridge ecoregion.

Water quality parameters were collected in conjunction with the macroinvertebrate sampling. A water quality meter (YSI Sonde) was calibrated and used to record ambient stream temperature, pH, dissolved oxygen, and conductivity. Limber Pole and Howard Creek are classified by the SCDHEC as Natural Trout (TN) waters. The results recorded in the field met the SCDHEC's surface water quality standards for TN classification (SCDHEC 2023).

Table 6-7. Water Quality Results Summary during Macroinvertebrate Sampling

Water Orality Danamatan	Limber	Pole Creek	Howard Creek			
Water Quality Parameter	Upstream	Downstream	Upstream	Downstream		
Water Temperature (°C)	19.5	20.2	19.2	19.2		
Dissolved Oxygen (mg/L)	8.31	8.24	8.77	8.87		
Dissolved Oxygen (%)	N/A	91.0	94.9	96.0		
pH (SU)	6.10	6.89	7.42	7.44		
Conductivity (µmhos/cm)	94.9	92.4	99.5	100.7		

Habitat assessments were completed to evaluate aquatic habitats at each monitoring location. The SCDHEC SOP adopted the USEPA's Revisions to Rapid Bioassessment Protocols for Use in Streams and Rivers and also developed a simplified form to meet the specific needs of the SCDHEC's Aquatic Biology Section. Other species observed but not collected included fish, crayfish, and salamanders, were recorded on the Macroinvertebrate Habitat Assessment Forms. Completed habitat assessment forms are located in Appendix I and a summary of the Aquatic Biology Section Habitat Assessment results are presented in Table 6-8.

Table 6-8. SCDHEC Aquatic Biology Section Habitat Assessment Summary

Habitat Tyma	Limber	Pole Creek	Howard Creek			
Habitat Type	Upstream	Downstream	Upstream	Downstream		
Root Banks	Good	Good-Fair	Good-Fair	Good		
Logs, Sticks, Snags	Good	Good-Fair	Good-Fair	Good-Fair		
Rock/Gravel Riffle	Good	Excellent	Excellent	Excellent		
Mature Leaf Pack	Poor	Poor	Poor	Poor		

Habitat Type	Limber	Pole Creek	Howar	Howard Creek			
павиат туре	Upstream Downstream		Upstream	Downstream			
Aquatic Vegetation	Good-Fair	Nonexistent	Poor	Poor			
Braided Channel	Nonexistent	Nonexistent Nonexistent		Nonexistent			
Amount of Pine Needles in Stream	Nonexistent	Nonexistent	Nonexistent	Nonexistent			
Velocity/Flow	Good Good		Good	Good			
Sedimentation	Little or none	Moderate	Little or none	Little or none			

6.2.3.4 Stream Quantification Tool Analysis

Information gathered during stream surveys of hydrology, hydraulics, geomorphology (including riparian vegetation), fish community sampling, and macroinvertebrate sampling was used for Rosgen classification and input to the SC SQT to develop an overall Existing Condition Score for each stream reach. Limber Pole Creek and Howard Creek were evaluated for four of the five functional categories (hydrology, hydraulics, geomorphology, and biology), with a maximum potential Existing Condition Score of 0.8. The remaining streams (Streams 12, 15, 16, and 17 [Devils Fork]) were evaluated for three of the five functional categories (hydrology, hydraulics, and geomorphology) with a maximum potential Existing Condition Score of 0.6.

Most streams surveyed exhibited entrenched or moderately entrenched conditions, low sinuosity, and coarse bed material. Width-depth ratios and slope were variable. Rosgen classifications were generally A- and B-type streams, with G-type streams noted in areas exhibiting some streambank erosion. A-type streams are entrenched and confined, high-gradient streams with frequently spaced pools associated with step/pool morphology. B-type streams exhibit moderate gradient with moderate entrenchment and width/depth ratios, dominated by riffle features with infrequently spaced pools. Both A and B type streams have stable plan and profile, and stable banks. G-type streams are more unstable, entrenched streams exhibiting low width/depth ratio, moderate gradients, and high bank erosion rates.

All reaches were rated to have a "good" catchment assessment due to the limited development of the upstream drainage areas. Although typical of A, B, and G-type streams, entrenched and moderately entrenched streams were rated poorly by the SQT under the hydraulics functional category due to these streams' limited access to the floodplain. Other factors which reduced existing condition scores include streams with streambank erosion (such as the upstream reach of

Stream 15 or downstream reach of Stream 16) or a low amount of large woody debris present (such as the upstream reach of Stream 12, and upstream and downstream reaches of Stream 15).

Stream 15 was the only stream with bedrock cascades, classified as a Rosgen A1a+ type stream with high gradient, entrenchment, no large woody debris and no streambank erosion noted. Riffles were uncommon, though small pools at the base of cascades were present. Although this reach would be considered stable, its limited access to the floodplain, constrained floodplain extent (i.e., floodprone width), lack of large woody debris, and low bedform diversity resulted in a low and moderate score for hydraulics and geomorphology functional categories.

Overall, the streams surveyed along the temporary access road generally exhibited stable, high-quality, potential reference reach-type conditions. The SQT catchment assessments and existing condition matrix summaries for each stream reach are provided in Attachment J.

Table 6-9. Summary of Stream Characteristics

Stream/Creek	Reach	Entrenchment Ratio	Width/ Depth Ratio	Sinuosity	Slope	Bed Material (D50)	Rosgen Classification	Catchment Assessment	SQT Existing Condition Score	Maximum SQT Existing Condition Score	Percent Stream Functionality	Reach Description
Stream 1 (Limber Pole	Upstream	Moderately entrenched to entrenched	Moderate	Low	Low	11.30 (medium gravel)	B4c	Good	0.58	0.i8	73%	The upstream reach of Limber Pole Creek was densely covered with mountain laurel along the riparian zone. A small amount of active streambank erosion was present comprising approximately 6% of the reach. A small (low-discharge) tributary entered the creek at station 50.
Creek)	Downstream	Moderately entrenched to entrenched	High	Low	Low	14.55 (medium gravel)	B4c	Good	0.53	0.8	66%	The downstream reach of Limber Pole Creek was similar to the upstream reach and also densely vegetated with mountain laurel. All streambanks were stable.
Stream 7 (Howard	Upstream	Moderately entrenched to entrenched	Moderate	Low	Low	34.60 (very coarse gravel)	B4c	Good	0.60	0.8	75%	The upstream reach of Howard Creek exhibited conditions typical of B-type streams in the Blue Ridge ecoregion. Some bank erosion was noted comprising 16.5% of the reach, primarily attributable to lateral drainage (i.e., a swale input) or in-channel woody debris influences.
Creek)	Downstream	Moderately entrenched to entrenched	High	Low	Moderate to high	56.69 (very coarse gravel)	B4a	Good	0.58	0.8	73%	The downstream reach of Howard Creek exhibited entrenchment and moderate width-to-depth ratio typical of B-type streams in the Blue Ridge ecoregion. A cascade approximately 20 inches high was present at station 96.5.
	Upstream	Entrenched	Moderate	Low	High	14.29 (medium gravel)	A4	Good	0.39	0.6	65%	Stream 12 was an intermittent stream covered in many areas with dense in vegetation, primarily mountain laurel. Some water was present at the time of survey. The channel had high gradient with step-pools. No streambank erosion was noted.
Stream 12 (UT to Howard Creek)	Downstream	Moderately entrenched	Moderate	Moderate	Moderate	3.13 (very fine gravel)	B4a	Good	0.47	0.6	78%	The downstream reach of Stream 12 contained a small amount water at the time of survey. Step-pool features were observed for the most upstream portion of the stream before the flow went subsurface between station 49 and 54.2. A small amount of streambank erosion was present on an outside meander (5% of channel).
Stream 15 (UT to Devils	Upstream	Entrenched	Low	Low	Moderate	1.36 (very coarse sand)	G5	Good	0.36	0.6	60%	The upstream reach of Stream 15 was adjacent to a 0.16-acre forested wetland area. The stream contained limited flow at the time of survey, however a moderate amount of streambank erosion was present (approximately 26.5 percent). The stream diverged around a "forested island" in the upstream end of the reach.
Fork)	Downstream	Entrenched	Low	Low	Very High	(bedrock)	Ala+	Good	0.35	0.6	58%	The downstream reach of Stream 15 exhibited very high gradient with bedrock cascades. Limited stream flow resulted in sheetflow across the bedrock. Small pools were present at the base of cascades. No bank eroding in this reach was noted.
Stream 16	Upstream	Entrenched	Low	Low	Moderate	10.20 (medium gravel)	A4	Good	0.40	0.6	67%	The upstream reach of Stream 16 exhibited a riffle-pool pattern with stable banks and a moderate to high gradient. The stream originated at station 3.5 (subsurface from 0.0 to 3.5).
(UT to Devils Fork)	Downstream	Entrenched	Low	Low	Moderate	20.13 (coarse gravel)	G4	Good	0.37	0.6	62%	The downstream reach of Stream 16 exhibited a moderate to high gradient and a moderate amount of streambank erosion comprising 23.5% of the reach. The lower 17 feet of the reach (station 83 to 100) was subsurface.
Stream 17 (Devils Fork)	Upstream	Entrenched	Low	Low	Moderate to high	9.32 mm (medium gravel)	A4	Good	0.38	0.6	63%	The upstream reach of Devils Fork was a perennial feature that flowed subsurface periodically throughout the reach; approximately 27.5% of the stream channel was dry due to the disappearance of flow underground. The upstream reach

Stream/Creek	Reach	Entrenchment Ratio	Width/ Depth Ratio	Sinuosity	Slope	Bed Material (D50)	Rosgen Classification	Catchment Assessment	SQT Existing Condition Score	Maximum SQT Existing Condition Score	Percent Stream Functionality	Reach Description
												exhibited high grade with step-pool features and little bank erosion present.
	Downstream	Moderately entrenched	High	Low- Moderate	Moderate to high	0.45 (medium sand)	B5a	Good	0.43	0.6	72%	The downstream reach of Devils Fork was similar to the upstream reach in that approximately 20% of the surface water flow would disappear underground periodically through the reach. No areas of bank erosion were identified.

¹Rosgen classification was based on an overall stream reach metrics with consideration of the "continuum of physical variables" (Rosgen 1994, 1996) and best professional judgement of Rosgen-trained scientists.

6.3 Mussel Surveys

Freshwater mussel habitat assessments were conducted in July and August, 2023. Consistent with the RSP, Duke Energy biologists surveyed potential upland spoil locations for mussel habitat and determined that no supportive habitat is present for mussel assemblages due to an absence of fish hosts necessary for mussel reproduction. SCDNR concurred with this assessment during the July 12, 2023 site visit to two potential spoil locations with streams representative of those in the area. With this conclusion, no mussel searches were completed at these locations.

Limber Pole Creek and Howard Creek contained suitable habitat for mussels consisting of diverse substrates and creek shoreline complexity, although no fish were captured during electrofishing in Limber Pole Creek. Searches in these two streams totaling one person-hour each yielded no freshwater mussels or shells. Mussel searches were again conducted during electrofishing surveys in September and October, yielding no direct mussel observations or evidence of past or present mussel presence (shells). During the three searches in each of these two creeks, water temperature ranged from 11.6°Celsius (°C) to 20.8°C, and dissolved oxygen ranged from 7.9 milligrams per liter (mg/L) to 9.9 mg/L.

A length of approximately 600 meters of shoreline along the western shore of the Whitewater River arm of Lake Jocassee near the Bad Creek inlet/outlet structure and proposed location of the Bad Creek II Complex inlet/outlet structure was surveyed for suitable freshwater mussel habitat. This survey found a band of suitable sand habitat which stretched approximately 200 meters from the base of Whitewater Falls to the proposed location of the Bad Creek II Complex inlet/outlet structure (Figure 6-3). Three other small coves in the Whitewater River arm also exhibited suitable sand habitat to support freshwater mussels. Four total person-hours of searching these areas in Lake Jocassee yielded no freshwater mussels or shells. Non-native Asian clams (*Corbicula fluminea*) were identified, although their distribution was uncommon and patchy. During the survey, the water temperature was 27.5°C with 7.9 mg/L dissolved oxygen.



Figure 6-3. Mussel Habitat Survey Areas along Lake Jocassee Shoreline

7 Conclusions

The USEPA RBP and NCSAM methods of stream habitat quality assessments indicate that the streams within potential spoil locations and those potentially crossed by the proposed temporary access road are in fully functioning condition. Although the SQT rated streams along the temporary access road relatively low, the streams are generally in stable, functioning condition for the stream classification and characteristics which they exhibit (e.g., entrenchment). While field crews were unable to complete USEPA RBP and NCSAM forms for streams 13, 14, 20, or 21 (within potential spoil locations B and D), consistent with SCDNR determination during the July 2023 site visit (see Section 6.2.3), it is likely that these streams also present fully functioning conditions.

Macroinvertebrate surveys of Limber Pole Creek and Howard Creek found abundant EPT taxa and habitat conditions, resulting in a high bioclassification score indicating a fully supporting system. While fish community sampling resulted in limited fish species collected from Howard Creek and none from Limber Pole Creek, this is typical of streams high in the watershed where flow may be limited in areas and high gradient sections of stream may include natural barriers to upstream movement.

No mussel habitat was identified in streams within potential spoil locations. Although suitable mussel habitat was present in Limber Pole Creek, Howard Creek, and areas of shoreline in Lake Jocassee, no native mussels were observed during any of the surveys.

7.1 Impacts Assessment

Impacts to streams and wetlands within potential spoil areas would consist of fill due to the placement of French drains, followed by placement of overburden (rock) generated by the construction of the Bad Creek II Complex. French drains would be used to maintain connection of flow to downstream waters, however the surface waters and wetlands within the potential spoil locations would no longer be available as habitat to the organisms currently utilizing them. Additional evaluations are currently underway to determine natural resource impacts for the different potential spoil areas, and these evaluations are expected to inform eventual spoil site selection.

If the Bad Creek II Complex is pursued and the temporary access road is constructed, limited, if any impacts to streams crossed by the access road are expected. Streams would be spanned by bridges to avoid direct impact to streams, and best management practices, such as silt fencing, would be installed to prevent any incidental water quality impacts caused by temporary land disturbance. The road would be decommissioned following the construction of the Bad Creek II Complex and bridges removed.

No impacts to mussels are expected, as no native mussels were observed in the vicinity of the current or future inlet/outlet structure, or in the vicinity of the expanded underwater weir. A minor portion of suitable mussel habitat located immediately upstream of the proposed inlet/outlet structure for the Bad Creek II Complex could be impacted due to construction activities, however, as stated, no mussels were identified in this area during surveys. Aquatic organisms in Lake Jocassee would experience short-term water quality effects due to expansion of the weir (i.e., placement of rock/overburden on and in the vicinity of the existing weir) and construction of the Bad Creek II Complex inlet/outlet structure. Per the Water Resources Revised Study Plan, a Water Quality Monitoring Plan will be developed in consultation with stakeholders and focused on the pre-construction, construction, and post-construction of the Bad Creek II Complex, with key components including 1) the construction of the inlet/outlet structure and expansion of the submerged weir; 2) construction in upland areas; and 3) potential upland spoil disposal.

Compensatory mitigation will be required for unavoidable impacts to surface waters (including wetlands) that are regulated under Section 404 of the Clean Water Act to ensure that impacts to aquatic resources are avoided or minimized to the greatest extent possible. Mitigation options may include on-site restoration and/or purchase credits from an approved in-lieu fee mitigation bank to offset unavoidable adverse impacts.

8 Variances from FERC-approved Study Plan

The USEPA RBP and NCSAM forms for five streams within potential spoil locations B, D, and J were not completed as required by the RSP due to safety concerns related to inclement weather. As with other streams within potential spoil locations or observed along the proposed temporary

FDS

access road, and consistent with SCDNR determination during the July 2023 site visit (see Section 6.2.3), it is likely that these streams also present fully functioning conditions.

Additional acreage was included in the study area originally presented in the RSP to assess potential impacts to natural resources associated with construction of a temporary access road to the south of the Project. The temporary access road would provide ingress and egress to homeowners of Fisher Knob community during construction, which requires closure of Bad Creek Road. Additionally, methods for determining stream quality were expanded to include the SQT methodology, which was completed in collaboration with the SCDNR.

9 Germane Correspondence and Consultation

Germane correspondence and consultation documentation related to Task 3 of the Aquatic Resources Study is summarized in Table 10-1 and included in Attachment 4 of the Aquatic Resources Draft Study Report.

Table 10-1. Summary of Germane Correspondence and Consultation related to Task 3 of the Aquatic Resources Study

Date	Correspondents	Торіс
April 19, 2023	Duke Energy to	Transmittal of April 6, 2023 entrainment meeting summary
(e-mail)	Aquatic Resources RC	and proposal to use the NCSAM (request for comment)
May 8, 2023	SCDNR to Duke	Request to use the SC SQT to evaluate streams to be assessed
(e-mail)	Energy	under Task 3 of the Aquatic Resources Study
May 9, 2023	Duke Energy to	Acknowledgement of request receipt
(e-mail)	SCDNR	
May 24, 2023	Duke Energy and	Virtual meeting with SCDNR to discuss methodology and
(virtual	SCDNR	applicability of the SQT to streams within spoil locations and
meeting)		along the proposed temporary access road
June 9, 2023	Duke Energy to	Transmittal of meeting minutes summary from May 24, 2023
(e-mail)	SCDNR	discussion and Stream Survey Approach Memo with request
		for comment
June 16, 2023	SCDNR to Duke	Comments on Stream Survey Approach Memo
(e-mail)	Energy	
June 21, 2023	Duke Energy and	Virtual meeting with SCDRN to discuss SQT methodology
(virtual	SCDNR	and applicability to streams within spoil locations and along
meeting)		the proposed temporary access road, as well as the SQT debit
<u> </u>		calculator
June 23, 2023	Duke Energy to	Transmittal of meeting minutes summary from May 24, 2023
(e-mail)	SCDNR	discussion
June 23, 2023	SCDNR to Duke	Comments on May 24, 2023 meeting summary
(e-mail)	Energy	

Date	Correspondents	Торіс
July 12, 2023	Duke Energy and	Site visit to Spoil Locations B and G on the Bad Creek II
(in-person)	SCDNR	Complex project site
August 3, 2023	Duke Energy to the	Transmittal of the revised Stream Survey Approach Memo
(e-mail)	Aquatic Resources RC	
September 18,	Duke Energy to	Question regarding number of riparian vegetation survey
2023	SCDNR	plots required for survey in support of the SQT
(e-mail)		
September 23,	SCDNR to Duke	Response to question regarding the number of riparian
2023	Energy	vegetation survey plots required
(e-mail)		

10 References

- Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C.
- Duke Energy Carolinas, LLC (Duke Energy). 2022. Appendix D Aquatic Resources Revised Study Plan, Bad Creek Pumped Storage Project FERC Project No. 2740. Prepared by HDR Engineering, Inc. December 2022.
- Gordon, N.D., T.A. McMahon, and B.L. Finlayson. 1992. Stream Hydrology: An Introduction for Ecologists. John Wiley & Sons, New York. 526 pp.
- HDR Engineering of the Carolinas, Inc. (HDR). _____. 2021. Bad Creek II Power Complex Project Natural Resources Assessment. Prepared for Duke Energy Carolinas, LLC. November 2021.
- . 2023. Aquatic Resources Study Approach to Stream Surveys Revised Post-Consultation. Memo provided to South Carolina Department of Natural Resources on behalf of Duke Energy Carolinas, LLC. July 2023.
- Lee, M.T., Peet, R.K., Roberts, S.D., & Wentworth, T.R. 2008. CVS-EEP Protocol for Recording Vegetation All Levels of Plot Sampling, Version 4.2.
- North Carolina Division of Water Quality (NCDWQ). 2010. Methodology for Identification of Intermittent and Perennial Streams and Their Origins (Version 4.11).
- North Carolina Stream Functional Assessment Team. 2013. N.C. Stream Assessment Method (NCSAM) Draft User Manual. March 2013.
- Rosgen, D.L. 1994. A classification of natural rivers. Catena 22(3): 169-199.
- Rosgen, D.L.1996. Applied River Morphology, 2nd Edition. Wildland Hydrology, October 1, 1996. 378 pp.
- South Carolina Department of Health and Environmental Control (SCDHEC). 2017. Standard Operating and Quality Control Procedures for Macroinvertebrate Sampling. Technical Report No. 0914-17. Bureau of Water. Columbia, South Carolina.
- ______. 2023. Regulations 61-68 Water Classifications and Standards. S.C. Code Sections 48-1-10 et seq. Available at: https://scdhec.gov/sites/default/files/Library/Regulations/R.61-68.pdf#page=30.

- South Carolina Department of Natural Resources (SCDNR). 2020. Stream Geomorphology Data Collection and Analysis South Carolina Ecoregions 66, 45, 65, 63. Prepared by Jennings Environmental, PLLC.
- . 2022. Fish Sampling Guidance Fish Collection Protocols for Streams. Dated August 11, 2022.
- South Carolina Steering Committee. 2022. South Carolina Stream Quantification Tool: Data Collection and Analysis Manual, SC SQT v1.1. South Carolina Department of Natural Resources, Columbia, SC.
- U.S. Army Corps of Engineers (USACE). 1987. Corps of Engineers Wetlands Delineation Manual. Wetlands Research Program Technical Report Y-87-1. January 1987.
- _____. 2012. Regional Supplement of the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region (Version 2.0). U.S. Vicksburg, Mississippi. April 2012.

Attachment A

Attachment A - Aquatic Resources Study Approach to Stream Surveys

Memo

Date:	Wednesday, July 26, 2023	
Project:	Bad Creek Pumped Storage Project Relicensing	
To:	South Carolina Department of Natural Resources	
From:	HDR Engineering of the Carolinas, Inc.	
Subject:	t: Aquatic Resources Study Approach to Stream Surveys – Revised Post-Consultation	

Project Understanding

Duke Energy Carolinas, LLC (Duke Energy or Licensee) is the owner and operator of the 1,400-megawatt Bad Creek Pumped Storage Project (Project) (Federal Energy Regulatory Commission [FERC] Project No. 2740) located in Oconee County, South Carolina. Duke Energy is pursuing a new license for the Project and in accordance with 18 Code of Federal Regulations §5.11, developed a Revised Study Plan (RSP) which proposed six studies for Project relicensing, including an Aquatic Resources Study. The goal of the Aquatic Resources Study is to evaluate potential impacts to fish and aquatic life populations, communities, and habitats due to the potential construction and operation of an additional power complex (Bad Creek II Power Complex [Bad Creek II Complex]) adjacent to the existing Project. The Aquatic Resources Study is ongoing.

As additional information, Duke Energy is proposing the development of an access road to provide an alternate route to the Fisher Knob community, for use during Bad Creek II construction. The access road is not presently included in the proposed expanded FERC Project Boundary and was not yet planned at the time of preparation of the RSP. Consistent with the objective of the Aquatic Resources Study to "evaluate the aquatic resources (streams, wetlands, and Lake Jocassee) that may experience direct impacts from spoil placement or other construction activities", Duke Energy plans to evaluate surface waters that may be crossed by the access road in addition to waters within potential spoil locations as described in the RSP.

Approach to Streams within Potential Spoil Locations

According to preliminary studies and estimates for proposed material removed from underground excavations for the Bad Creek II Complex, approximately 4 million cubic yards of overburden material for the project infrastructure will need to be deposited at upland spoil locations or along the submerged weir in Lake Jocassee (Attachment 1). An additional spoil area related to the construction of a proposed transformer yard, potential spoil location J, adds an approximately 0.4 million cubic yards to the overburden amount, for a total of 4.4 million cubic yards. Nine potential streams are present within the proposed on-site spoil locations (see Table 1 and Attachment 1). Surface waters (including wetlands) in these locations were evaluated in the field during the Natural Resources Assessment completed by HDR in September 2021 (HDR 2021; Appendix E of the Pre-Application Document filed with FERC on February 23, 2022).

Consistent with the RSP, Duke Energy will complete U.S. Environmental Protection Agency (USEPA) Rapid Bioassessment Protocol (USEPA RBP; Barbour et al. 1999) stream habitat assessments for all streams within potential spoil locations. During the Joint Resource

Committee Meeting on February 22, 2023, and the Aquatic Resources Study Resource Committee Meeting held on April 6, 2023, committee members expressed interest in biological assessments. In follow-up correspondence with the Aquatic Resources Committee, Duke Energy proposed to complete stream assessments using the North Carolina Stream Assessment Method (NCSAM; N.C. Stream Functional Assessment Team 2013) in addition to the USEPA RBP.

The South Carolina Department of Natural Resources (SCDNR) also requested that Duke Energy use the SCDNR Stream Quantification Tool (SQT)¹ (South Carolina Steering Committee 2022) for stream assessments. Duke Energy consulted with the SCDNR on May 24 and June 21, 2023, to discuss the applicability and methodology of the SQT. Duke Energy, HDR, and SCDNR also participated in a site visit to Bad Creek on July 12, 2023. The site visit included Alan Stuart (Duke Energy), Allan Boggs (Duke Energy), Nick Wahl (Duke Energy), Eric Mularski (HDR), Erin Settevendemio (HDR), and Lorianne Riggin (SCDNR). The group visited spoil locations B and D (see figures in Attachment 1), which were considered locations with representative conditions of stream and riparian habitat. During the site visit, SCDNR and Duke Energy agreed that the streams within spoil locations are generally high functioning with limited (if any) anthropogenically caused degradation, and that field data collection to support SQT analysis for streams within spoil locations was not likely to produce significantly different results (i.e., lower functionality scores) than an assumption of fully functional. Therefore, field surveys of the streams within potential spoil locations applying the SQT methodology are not required.

Approach to Streams Crossed by the Access Road to the Fisher Knob Community

The potential access road would require crossings at three named streams (Limber Pole Creek, Howard Creek, and Devils Fork) and potentially other unidentified streams (see figures provided in Attachment 2). Currently, two access road routes are being considered, however only one would be developed. The routes diverge just west of Howard Creek, where Option 1 crosses Howard Creek and heads north across a ridge. Option 2 crosses Howard Creek and heads south along the left bank of Howard Creek before directing northeast. The road options converge east of the transmission line corridor west of Devils Fork. It is anticipated that Option 1 would result in fewer riparian buffer impacts and therefore this is the preferred route.

Based on review of two-foot topography contour maps, an additional three streams may be present along the access road, though the flow of these streams is currently unknown. A surface waters delineation is scheduled for mid-late August to identify stream conditions/flow of these unnamed features. If Duke Energy develops the access road, streams and creeks along the alignment will likely be spanned by [temporary] bridges. Duke Energy will conduct field assessments using the SCDNR SQT to evaluate stream function as a baseline prior to construction activities to document any changes that may occur, though none are anticipated.

Streams crossed by the access road will be assessed with the USEPA RBP and NCSAM. Stream assessments will be conducted upstream and downstream of each road crossing. The intent is to document a baseline, existing condition of the stream before the construction of the access road. When and if the road is decommissioned, the streams would be re-assessed to compare to the baseline condition. Additionally, evaluating the streams at upstream and downstream locations

¹ SCDNR Stream Quantification Tool

allows an opportunity to document changes that may have happened elsewhere (i.e., upstream) in the watershed or as a result of other factors, such as storm events.

Proposed Field Methods

Numerous methods for stream habitat and biological assessments will be used for evaluating streams in the vicinity of the Project. Field methods to be implemented at each stream are based on consultation with the Aquatic Resources Study Resource Committee (RC) and SCDNR, as discussed above. The following summary provides an overview of planned field methods for streams within spoil locations and those crossed by the potential access road.

USEPA Rapid Bioassessment Protocol

In accordance with the RSP, the USEPA RBP stream habitat assessment will be completed at all streams within spoil locations. Barbour et al. (1999) states, "an evaluation of habitat quality is critical to any assessment of ecological integrity". Stream habitat assessments are defined as the "evaluation of the structure of the surrounding physical habitat that influences the quality of the water resource and the condition of the resident aquatic community" (Barbour et al. 1999). These assessments provide information regarding stream functionality and condition, which in turn can indicate the value of aquatic habitat to aquatic and terrestrial life, and ecosystem services such as nutrient reduction and support of watershed health. The USEPA RBP includes an evaluation of the variety and quality of (1) stream substrate, (2) channel morphology, (3) bank structure, and (4) riparian vegetation. Ten parameters within the four categories are rated on a numerical scale for each sampled reach.

NC Stream Assessment Method

The NCSAM provides "an accurate, reproducible, rapid, observational, and science-based field method to determine the level of stream function relative to a reference condition" (N.C. Stream Functional Assessment Team 2013). While the NCSAM was developed for use in North Carolina, the Project is just a few miles from the North-South Carolina border and stream categories identified for the method include those in the Blue Ridge ecoregion, where the Project is located. Similarities between topography and streams in the Carolinas allow this method to provide valuable information regarding the overall function of streams with a simple and efficient tool.

The NCSAM rates streams for three Class 1 functions: hydrology, water quality, and habitat. Within each Class 1 function, streams are rated for up to eight Class 2 functions, which may include Class 3 and Class 4 functions. The functions provided by a stream are a product of the hydrologic, geologic, morphologic, and vegetational setting of the stream and its drainage area (Gordon et al. 1992 as cited by N.C. Stream Functional Assessment Team 2013). Alterations and/or stressors can contribute to the degradation of a stream, either naturally or anthropogenically, including storm damage, excessive vegetation, beaver impoundment, stream migration, and sedimentation, which can lead to lower stream function. Parameters evaluated with NCSAM protocol include flow restrictions; streambank erosion; buffer size and type; water quality stressors; substrate composition; in-stream habitat; visual and dip netting assessments for aquatic life; presence of wetlands; shade; and others.

SCDNR Stream Quantification Tool Approach

As stated above, six or more streams could be crossed by the access road and Duke Energy proposes to use the SQT field methodology for stream assessments in this area. The SCDNR SQT was developed in a collaborative effort between federal and state representatives to provide a tool for assessing and quantifying functional lift and loss of streams in South Carolina. The SQT can be used to determine the functional condition of a stream, with the SQT Debit Calculator as a means of calculating credits or debits resulting from reach-scale activities typically encountered in the Clean Water Act 404 program.

The SQT requires the assessment of five functional categories: hydrology, hydraulics, geomorphology, physiochemical, and biology (South Carolina Steering Committee 2022). Depending on the anticipated type of impacts or lift, physiochemical and biology categories are optional. Guidance from the SQT suggests physiochemical parameters be measured for stream projects with "goals or objectives related to physiochemical functions or where watershed conditions suggest that uplift is possible." Work would be conducted from upland locations and no in-water work would occur. Best management practices to prevent sedimentation such as silt fencing would be installed to prevent water quality impacts at stream crossings. The future Water Quality Management Plan (developed under the Water Resources Study) will also consider water quality in the areas of the new access road. Given that impacts to water quality are not anticipated and appropriate protection measures will be taken, Duke Energy is not proposing physiochemical monitoring.

At prior meetings with Duke Energy, Aquatic Resources RC members have expressed interest in the biological community of streams in the vicinity of the proposed Bad Creek II Complex. Duke Energy therefore proposes to conduct fish and macroinvertebrate sampling supporting the SQT assessment.

Hydrology, Hydraulics, and Geomorphology

Duke Energy will survey all streams crossed by both access road options using the first three functional categories of the SQT, which comprise hydrology, hydraulics, and geomorphology, using the Rapid Method outlined in the SQT Data Collection and Analysis Manual (South Carolina Steering Committee 2022). Parameters evaluated under these categories include reach runoff, floodplain connectivity, flow dynamics, large woody debris, lateral migration, riparian vegetation, and bed form diversity. Up to 17 metrics will be taken for the parameters evaluated; metrics selection, instruction, and applicability is provided in the SQT Data Collection and Analysis Manual (South Carolina Steering Committee 2022).

Fish Surveys

Fish surveys for use with the SQT are only applicable to perennial streams with drainage areas between 1.5 and 63 square miles (South Carolina Steering Committee 2022), which includes Limber Pole Creek and Howard Creek. As outlined by the SQT Data Collection and Analysis Manual, fish surveys will follow Fish Collection Protocols for Streams as described in the SCDNR Fish Sampling Guidance² (SCDNR 2022). For streams in the Blue Ridge ecoregion, sample reaches will be 30 times the average wetted width, or a minimum 100 meters with one electrofishing pass. Surveys will be completed upstream and downstream of the road crossings

² SCDNR Fish Sampling Guidance

three times between July and October 2023. A calibrated multiparameter water quality data sonde will be used to record existing water quality conditions during sampling events, including temperature, dissolved oxygen, conductivity, pH, salinity, and turbidity.

Macroinvertebrate Surveys

Macroinvertebrate surveys under the SQT are limited to perennial streams with a minimum three-square mile drainage area (South Carolina Steering Committee 2022), which includes Limber Pole Creek and Howard Creek. As outlined in the SQT Data Collection and Analysis Manual, macroinvertebrate surveys will be completed following the Standard Operating and Quality Control Procedures for Macroinvertebrate Sampling³ (SCDHEC 2017). This method uses a qualitative multiple habitat sampling protocol with kick nets, D-shaped dip nets, and sieves to collect as many different macroinvertebrate taxa as possible during a specified amount of time. One survey per stream reach will be conducted during the recommended index period (June 15, 2023 to September 15, 2023 for the Blue Ridge ecoregion). Stream reach lengths will be determined on a site-by-site basis consistent with guidance provided in SCDHEC (2017), which is typically 100 meters of stream. Water quality conditions at the time of sampling will be recorded with a multiparameter data sonde. Collected samples will be preserved in 85 percent ethanol and labeled with the station number and collection date. Samples will be transported to a qualified laboratory for identification and analysis under chain-of-custody. Identified taxa and relative abundance will be used to calculate biotic indices to assess stream conditions.

Mussel Surveys

Consistent with the RSP, Duke Energy biologists surveyed upland spoil locations for mussel habitat and determined that no supportive habitat is present for mussel assemblages. SCDNR concurred with this assessment during the July 12, 2023 site visit to two representative spoil locations with streams characteristics of those throughout the Aquatic Resources study area.

Mussel surveys of Limber Pole Creek and Howard Creek will be conducted in late July 2023 following methods adapted from the USEPA Technical Support Document for Conducting and Reviewing Freshwater Mussel Occurrence Surveys for the Development of Site-specific Water Quality Criteria for Ammonia (USEPA 2013). The survey will include visual and tactile collection of mussels, identification to species, and enumeration. Habitat conditions will be documented, including substrate and water quality, through stream habitat assessments and fish surveys.

Summary of Proposed Field Methods

Field surveys of streams within spoil locations were proposed in the RSP. Since the proposed access road was not planned at the time of the filing of the RSP, the stream crossings were not included in Aquatic Resources Study; however, for completeness, field surveys will also be performed at potential stream crossing locations. The field methods proposed for each stream were developed in consultation with the Aquatic Resources RC and SCDNR. A summary of the proposed field methods is provided in Table 1, with brief descriptions of methods provided in Table 2.

³ SCDHEC Standard Operating and Quality Control Procedures for Macroinvertebrate Sampling

Results and Conclusions

An overview of results of field studies will be discussed in a future meeting to be scheduled for late October or early November 2023. Results and conclusions of the stream habitat assessments and SQT will be summarized in a draft report, which will be provided to the Aquatic Resources RC in November 2023 for comment and in the Initial Study Report (to be filed with FERC by January 4, 2024).

FDS

Table 1. Proposed Field Survey Approach for Streams within Potential Spoil Locations and Road Crossings

Potential Impact	Stream Name/No.	Flow	Drainage Area (sq. mi)	Stream Habitat Assessment	Fish Survey	Macroinvertebrate Survey	Mussel Survey ¹
	- , , , - , , , , ,		(~)	Potential Sp	oil Locations		
В	20	Perennial	0.05	USEPA RBP & NCSAM	NCSAM visual/dipnet assessment	NCSAM presence/absence assessment	USEPA qualitative presence survey
В	21	Perennial	0.05	USEPA RBP & NCSAM	NCSAM visual/dipnet assessment	NCSAM presence/absence assessment	USEPA qualitative presence survey
C	17	Perennial	0.05	USEPA RBP & NCSAM	NCSAM visual/dipnet assessment	NCSAM presence/absence assessment	USEPA qualitative presence survey
D	13	Intermittent	0.04	USEPA RBP & NCSAM	NCSAM visual/dipnet assessment	NCSAM presence/absence assessment	N/A
D	14	Perennial	0.04	USEPA RBP & NCSAM	NCSAM visual/dipnet assessment	NCSAM presence/absence assessment	USEPA qualitative presence survey
G	4	Intermittent	0.06	USEPA RBP & NCSAM	NCSAM visual/dipnet assessment	NCSAM presence/absence assessment	N/A
G	4a	Perennial	0.06	USEPA RBP & NCSAM	NCSAM visual/dipnet assessment	NCSAM presence/absence assessment	USEPA qualitative presence survey
J	11	Perennial	0.11	USEPA RBP & NCSAM	NCSAM visual/dipnet assessment	NCSAM presence/absence assessment	USEPA qualitative presence survey
				Potential Access	Road Crossings		
1	Limber Pole Creek	Perennial	1.8	USEPA RBP, NCSAM, & SCDNR SQT	SCDNR Fish Collection Protocol	SCDHEC Standard Operating and Quality Control Procedures	USEPA qualitative presence survey
2	UT Howard Creek	Unknown ²	0.03	USEPA RBP & NCSAM	Unknown ²	Unknown ²	Unknown ²
3a/b	Howard Creek	Perennial	4.16	USEPA RBP, NCSAM, & SCDNR SQT	SCDNR Fish Collection Protocol	SCDHEC Standard Operating and Quality Control Procedures	USEPA qualitative presence survey
4	UT Howard Creek	Unknown ²	0.01	USEPA RBP & NCSAM	Unknown ²	Unknown ²	Unknown ²
5	UT Devils Fork	Unknown ²	0.03	USEPA RBP & NCSAM	Unknown ²	$Unknown^2$	Unknown ²
6	Devils Fork (Stream 19)	Perennial	0.09	USEPA RBP, NCSAM, & SCDNR SQT	NCSAM visual/dipnet assessment	NCSAM presence/absence assessment	USEPA qualitative presence survey

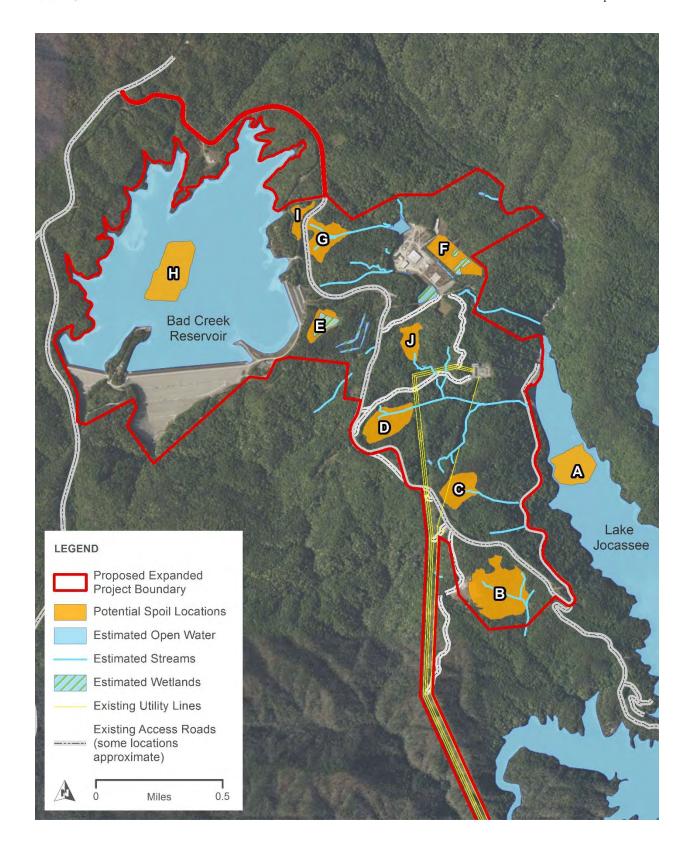
UT: unnamed tributary

¹Mussel surveys will only be completed in waters determined to provide supportive mussel habitat.

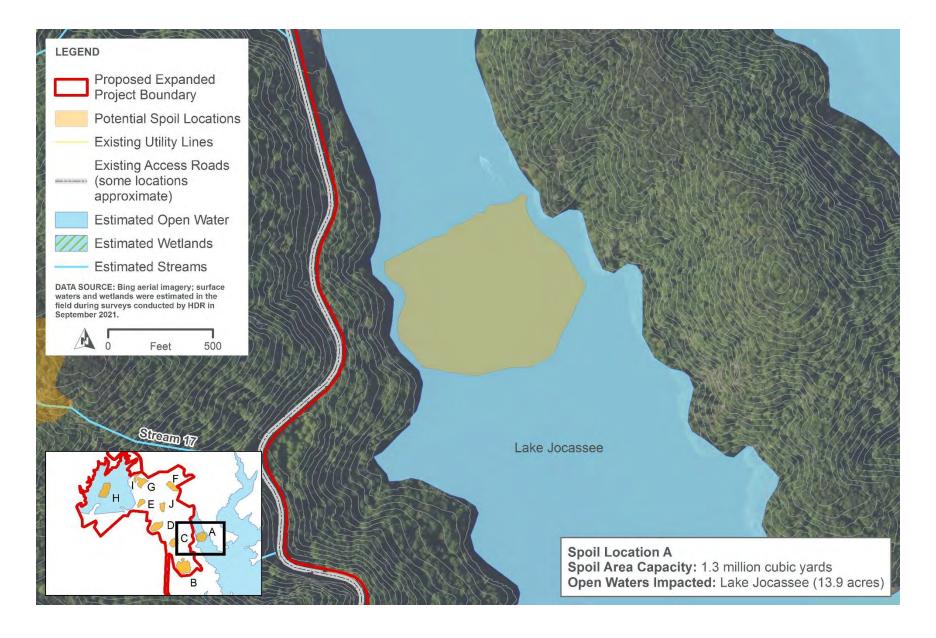
²Aquatic life surveys would only be conducted in intermittent or perennial streams.

Table 2. Descriptions of Field Survey Protocols

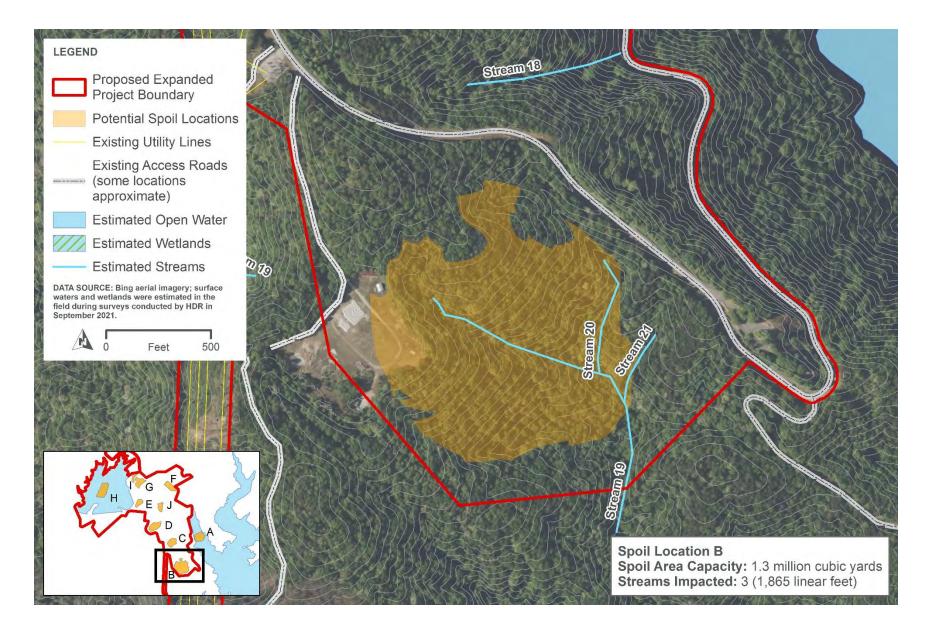
Survey Type	Survey Method	Brief Summary of Methods
Stream Habitat Assessment	USEPA Rapid Bioassessment Protocol Stream Assessment	Scored condition parameters including epifaunal substrate/available cover, substrate embeddedness, velocity/depth regime, sediment deposition, channel flow status, channel alteration, frequency of riffles or bends, bank stability, vegetative protection, and riparian vegetative zone width.
	NC Stream Assessment Method (NCSAM)	Documentation of in-stream habitat types including aquatic macrophytes and mosses; sticks, leaf packs, or emergent vegetation; snags and logs; undercut banks and root mats; and bedform and substrate types. Observations of stream instability or stressors.
	SCDNR Stream Quantification Tool (SQT)	Hydrology, hydraulics, and geomorphology will be assessed across seven functional parameters, including reach runoff, floodplain connectivity, flow dynamics, large woody debris, lateral migration, riparian vegetation, and bed form diversity. Metrics will be taken applying the Rapid Method, using tapes and stadia rods.
Fish Surveys	NC Stream Assessment Method (NCSAM)	Visual assessment for fish and semi-aquatic life such as reptiles and amphibians.
	SCDNR Stream Quantification Tool (SQT)/ SCDNR Fish Collection Protocols for Streams	Fish surveys completed for the SCDNR SQT will follow the SCDNR Fish Collection Protocols for Streams. For streams in the Blue Ridge Ecoregion, the survey reach will encompass 30 times the average wetted width of the stream or a minimum of 100 meters with one survey pass. Two to three electrofishers, two netters, and one to two buckets will be used. Water quality parameters and photo vouchers will be taken.
Macroinvertebrate Surveys	NC Stream Assessment Method (NCSAM)	Presence/absence survey of macroinvertebrates in all available habitats, including riffles, pools, snags and logs, leaf packs, macrophytes, root mats, hard substrates, and banks. Macroinvertebrates sampled via dipnet with mesh size between 0.5-0.8 mm.
	SCDNR Stream Quantification Tool (SQT)/ SCDHEC Standard Operating and Quality Control Procedures	Macroinvertebrate surveys completed for the SCDNR SQT will follow the SCDHEC Standard Operating and Quality Control Procedures. This includes a qualitative, multiple habitat sampling protocol with kick nets, D-shaped dip nets, and sieves to collect as many different macroinvertebrate taxa as possible during a specified amount of time. Stream reach lengths are typically 100 meters. Collected samples will be preserved in 85 percent ethanol and labeled with the station number and collection date. Samples will be transported to a qualified laboratory for identification and analysis under chain-of-custody. Macroinvertebrate surveys under the SQT are limited to waters with a minimum 3-square-mile drainage area.
Mussel Surveys	Adapted from USEPA Technical Support Document for Conducting and Reviewing Freshwater Mussel Occurrence Surveys	Visual sampling approach to determine mussel presence, richness, and relative density. Mussels collected visually and tactilely (grubbing) during timed searches within well-defined areas.

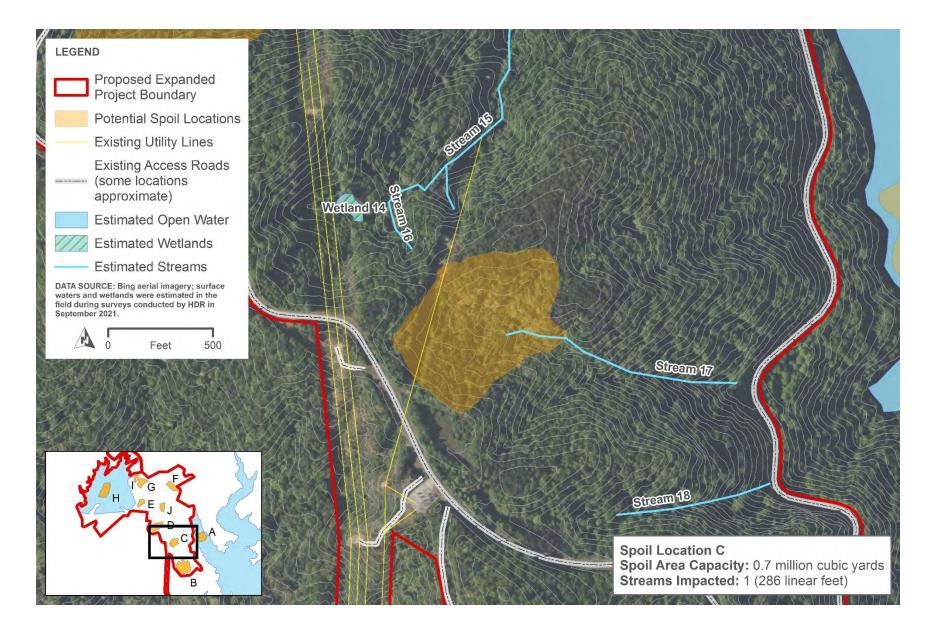

References

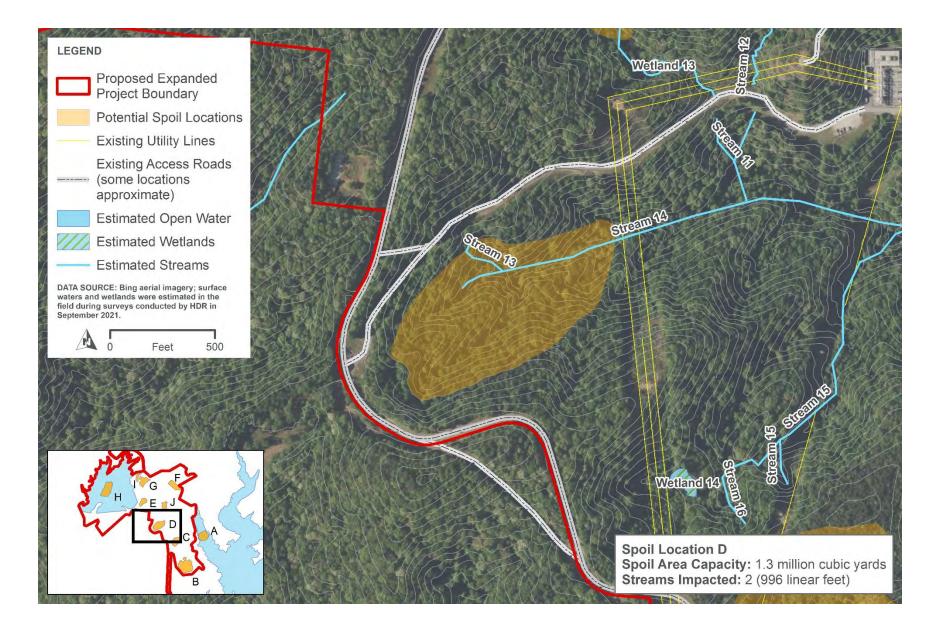
- Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C.
- North Carolina Stream Functional Assessment Team. 2013. N.C. Stream Assessment Method (NC SAM) Draft User Manual. Accessed June 2023. [URL]: https://www.saw.usace.army.mil/Portals/59/docs/regulatory/publicnotices/2013/NCSAM _Draft_User_Manual_130318.pdf
- South Carolina Department of Health and Environmental Control. 2017. Standard Operating and Quality Control Procedures for Macroinvertebrate Sampling. Technical Report No. 0914-17. Bureau of Water. Columbia, South Carolina.
- South Carolina Department of Natural Resources. 2022. Fish Sampling Guidance: Fish Collection Protocols for Streams. Accessed July 2023. [URL]: https://www.dnr.sc.gov/environmental/SCDNRSamplingProcedureFishes.pdf.
- South Carolina Steering Committee. 2022. South Carolina Stream Quantification Tool: Data Collection and Analysis Manual, SC SQT v1.1. South Carolina Department of Natural Resources, Columbia, SC.
- U.S. Environmental Protection Agency (USEPA). 2013. Technical Support Document for Conducting and Reviewing Freshwater Mussel Occurrence Surveys for the Development of Site-specific Water Quality Criteria for Ammonia. EPA 800-R-13-003. Office of Water. Washington, DC. Accessed June 2023. [URL]: https://www.epa.gov/sites/default/files/2015-08/documents/tsd_for_conducting_and_reviewing_freshwater_mussel_occurrence_surveys for the development of site-specific wqc for ammonia.pdf.

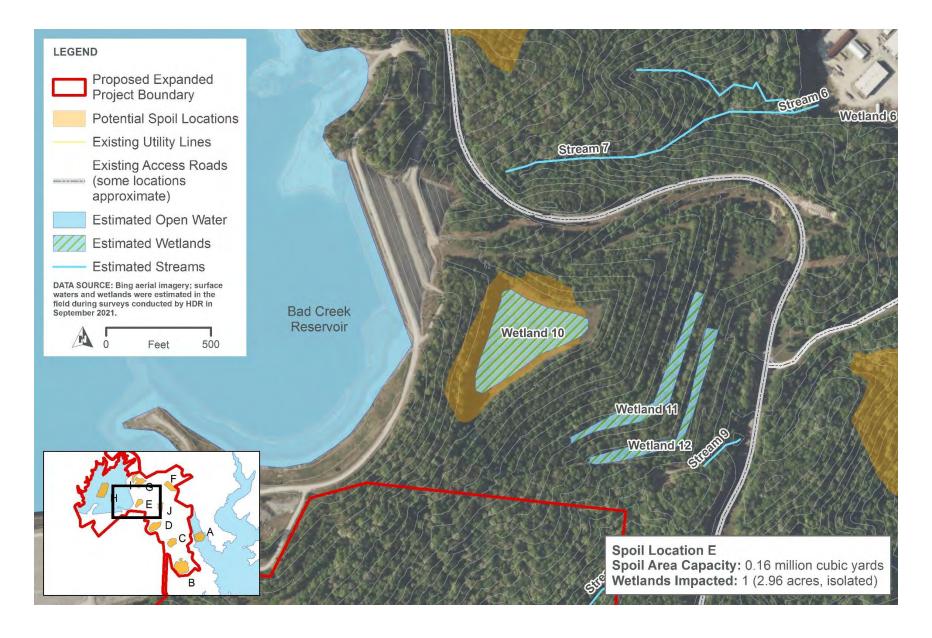

Attachment 1

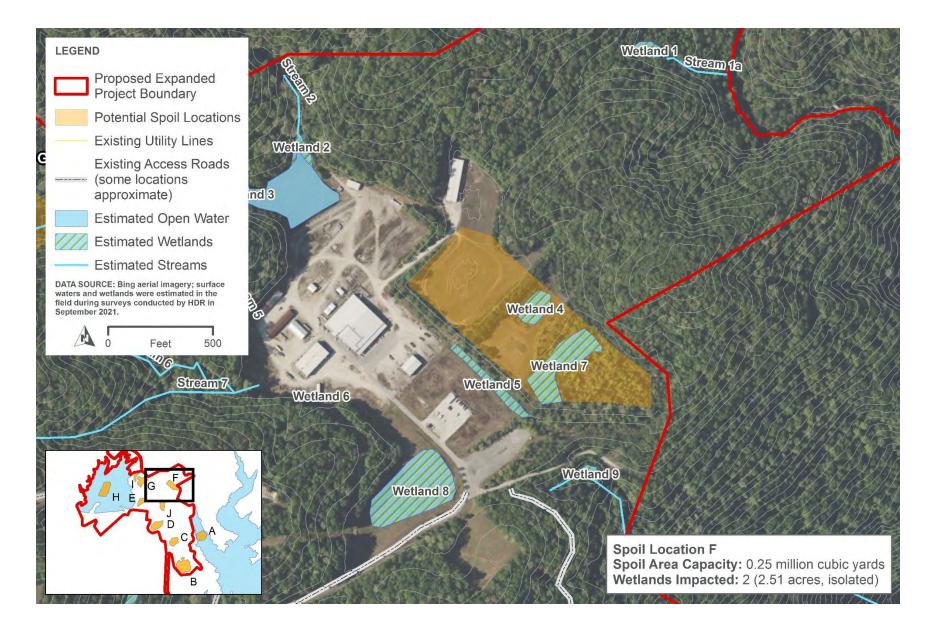
Attachment 1 – Streams and Wetlands within Potential Spoil Locations

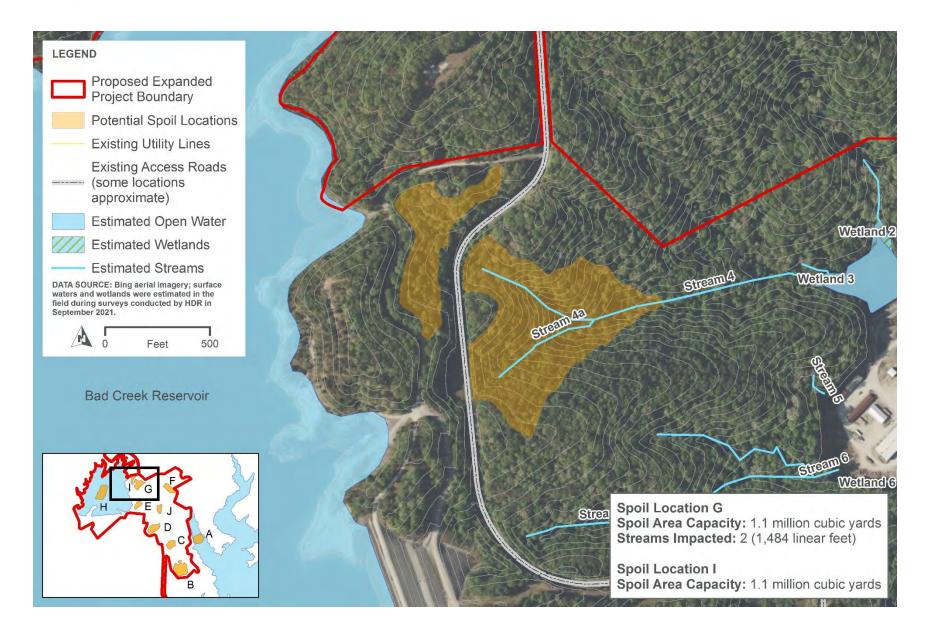


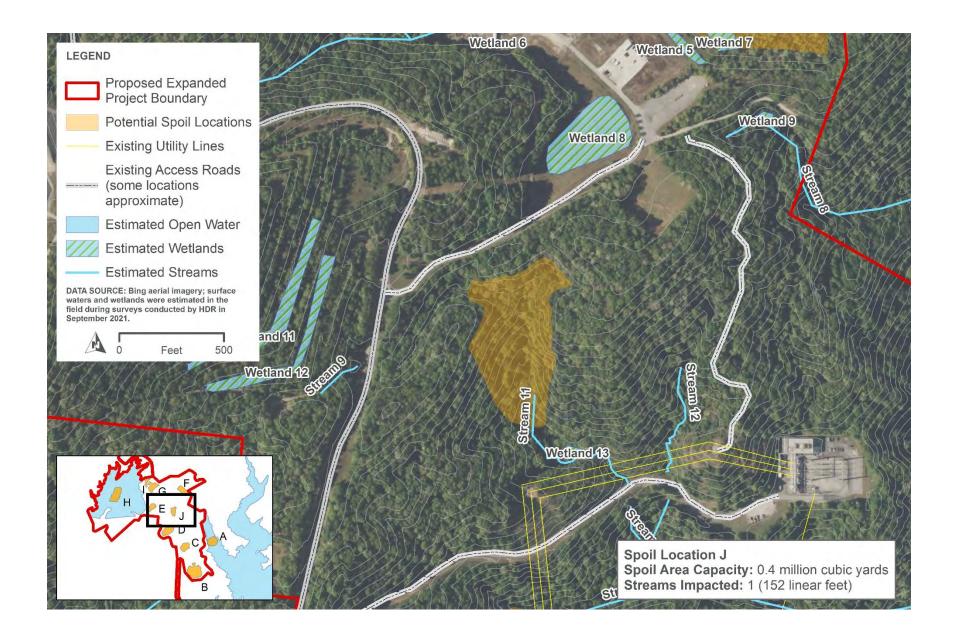


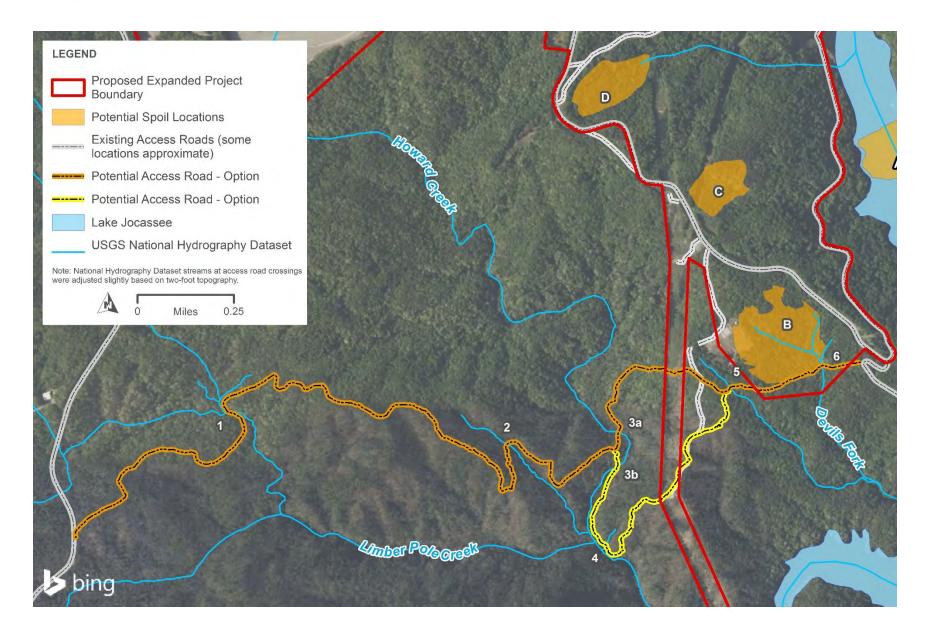


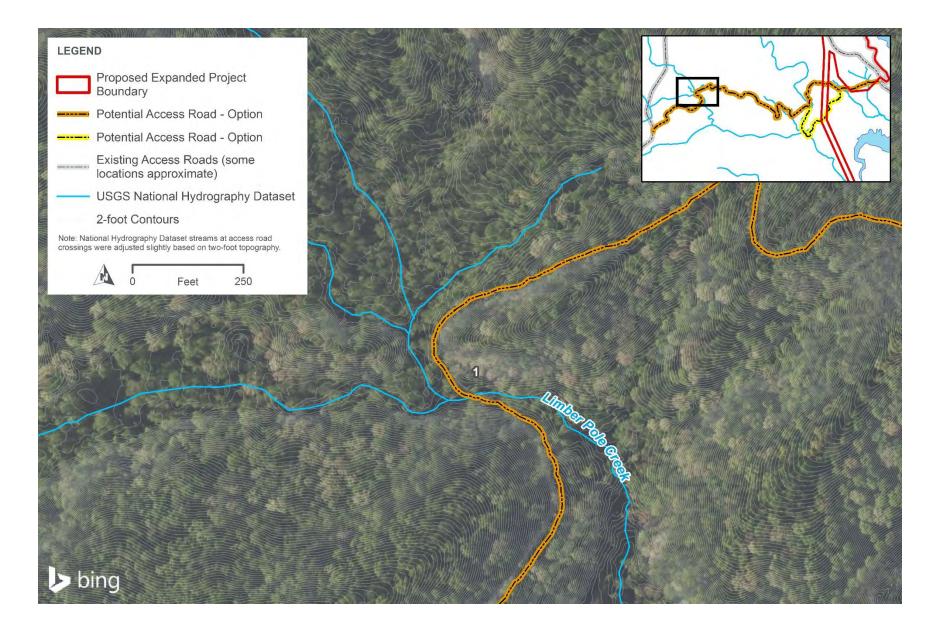




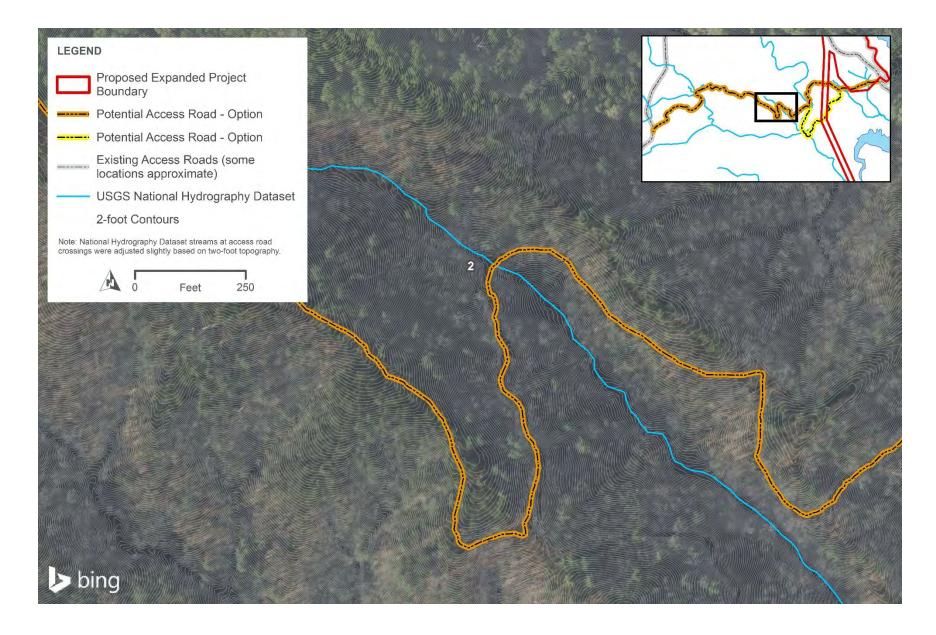


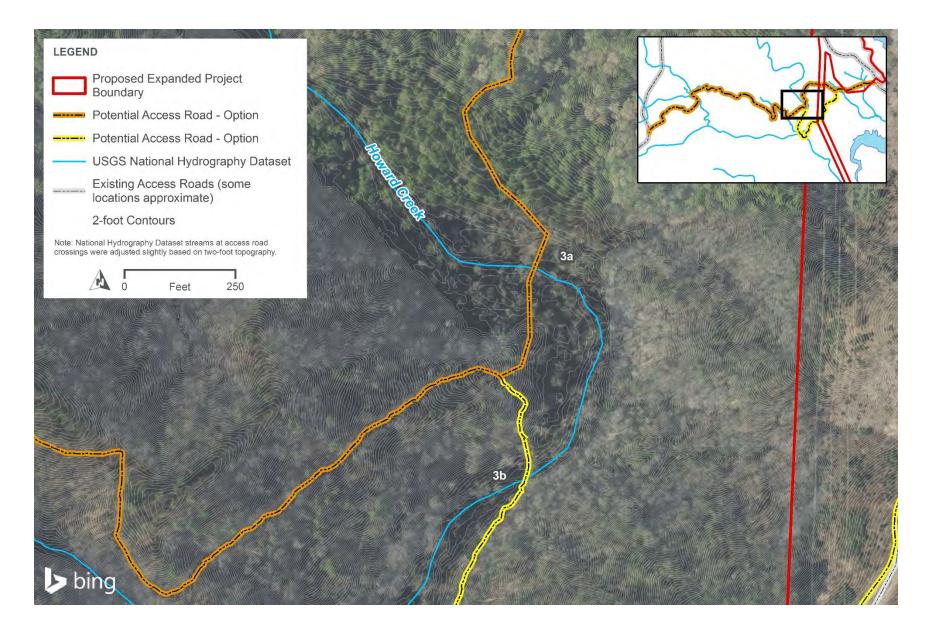


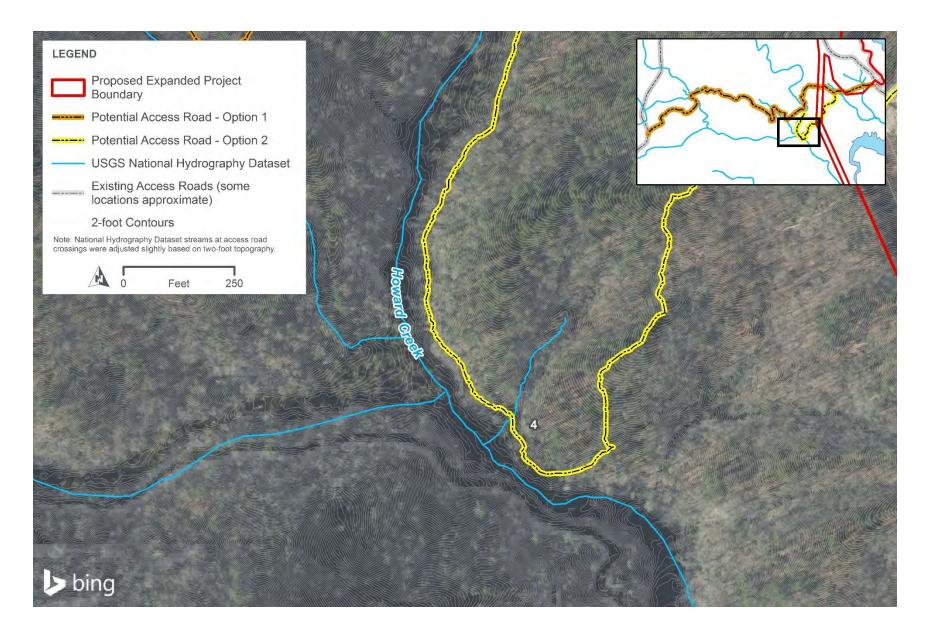


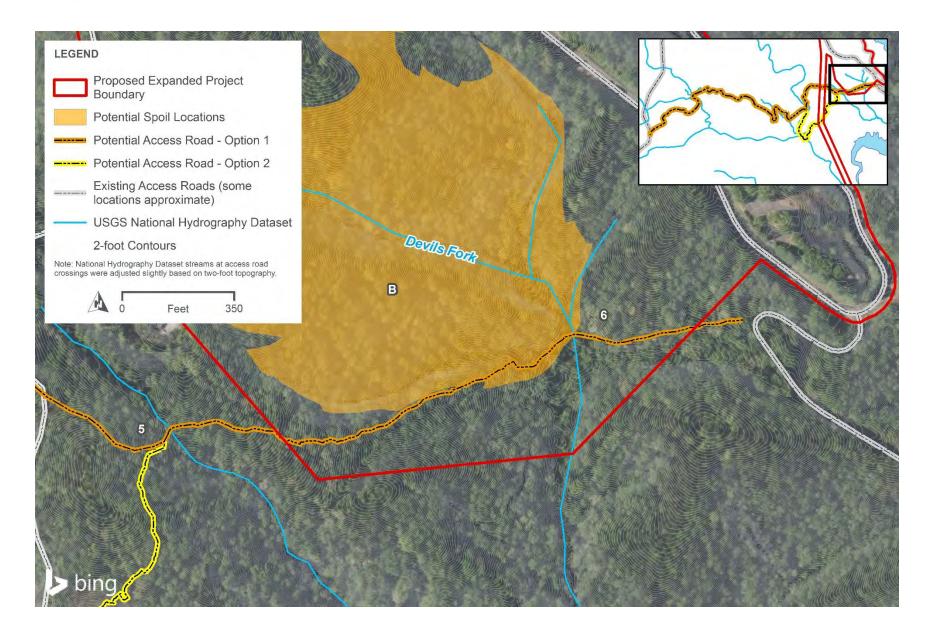

Attachment 2

Attachment 2 – Potential Access Road Stream Crossings









Attachment B

Attachment B - Natural Resources Assessment Figures

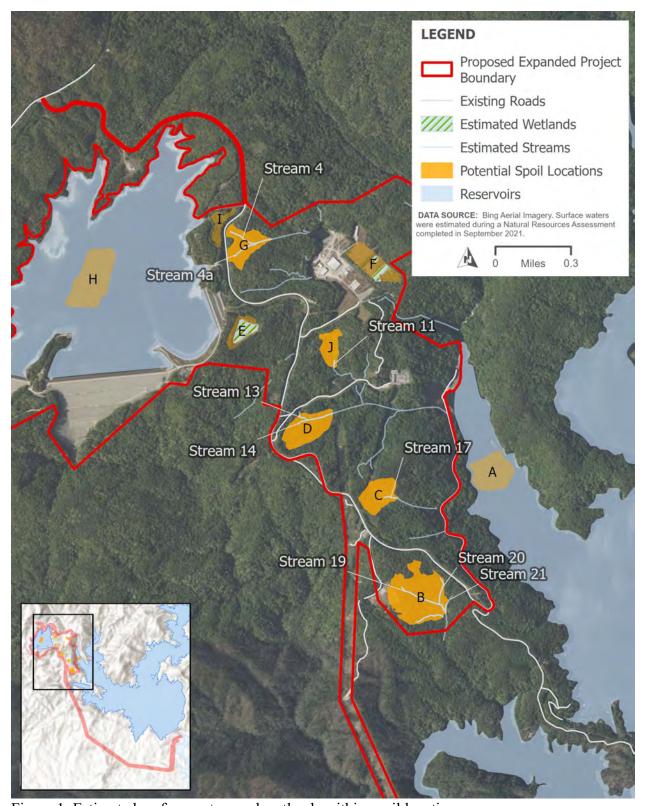


Figure 1. Estimated surface waters and wetlands within spoil locations

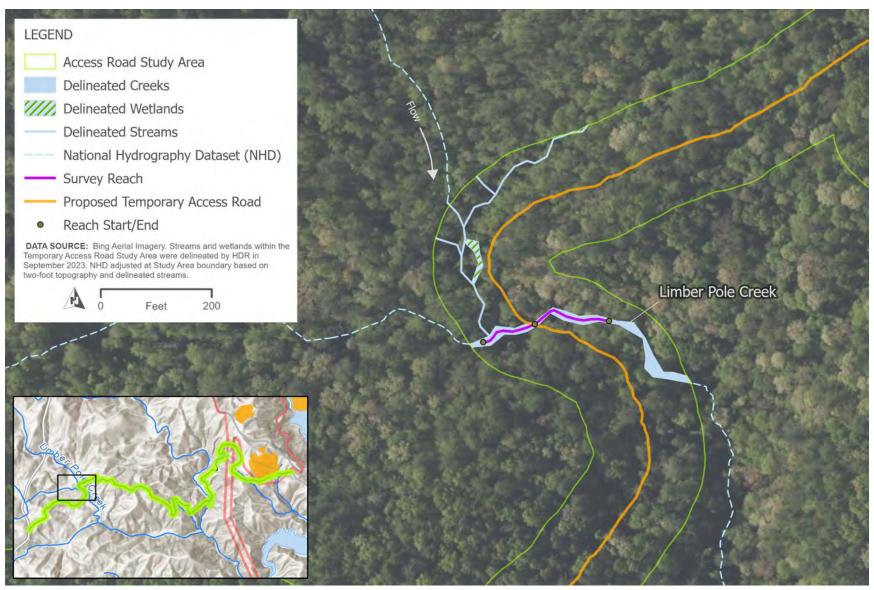


Figure 2. Stream 1 (Limber Pole Creek) survey area and crossing of the proposed temporary access road

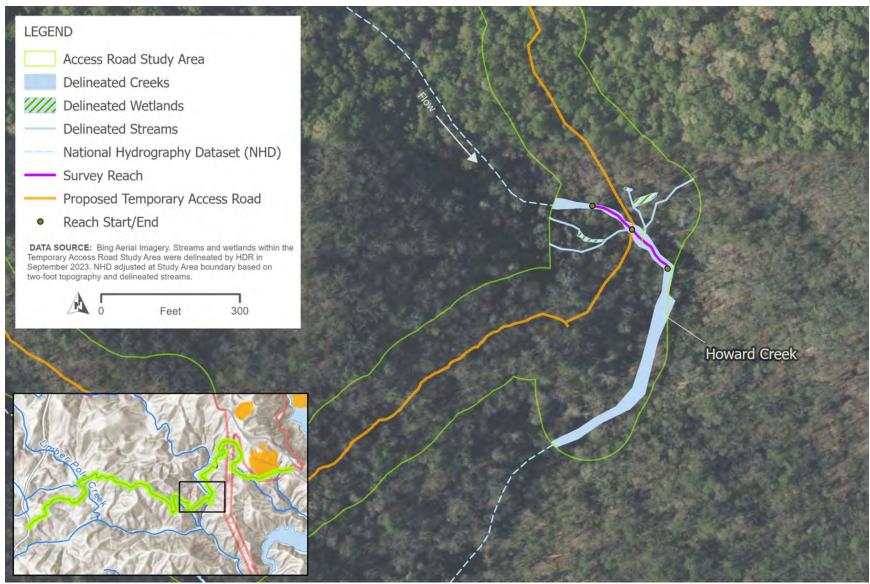


Figure 3. Stream 7 (Howard Creek) survey area and crossing of the proposed temporary access road

Figure 4. Stream 12 survey area and crossing of the proposed temporary access road

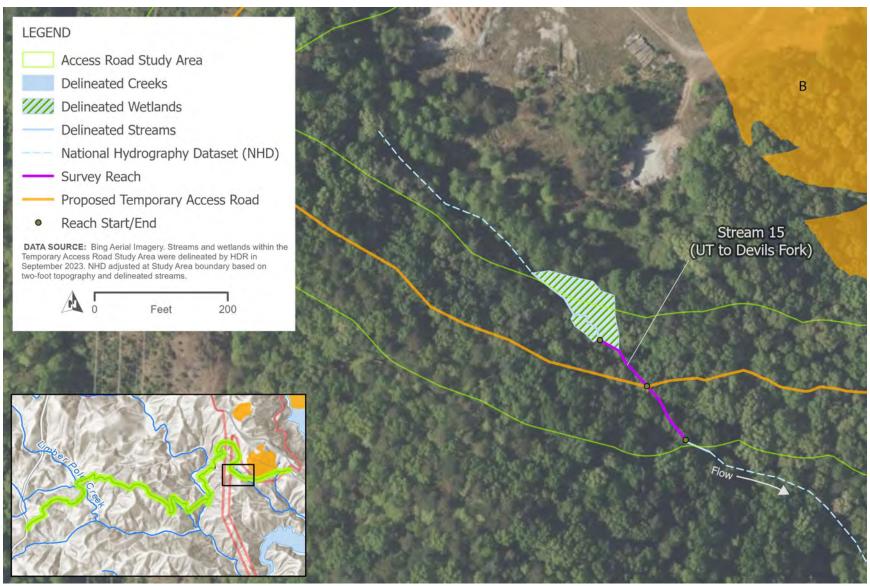


Figure 5. Stream 15 survey area and crossing of the proposed temporary access road

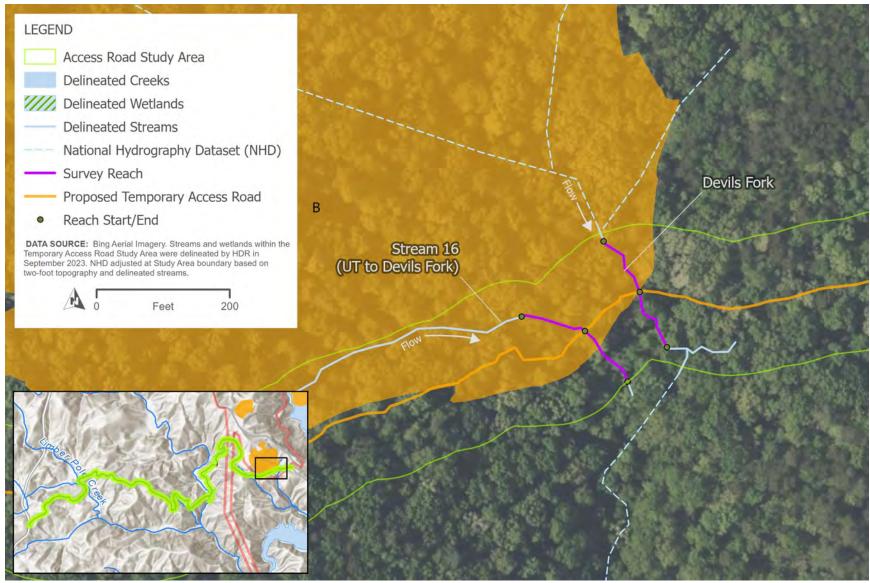


Figure 6. Stream 16 and Stream 17 (Devils Fork) survey area and crossing of the proposed temporary access road

Attachment C

Attachment C - U.S.
Environmental Protection
Agency Rapid Bioassessment
Protocol Data Forms

STREAM NAME Limber Pole	LOCATION Bad Creek Pumped Storage Project		
STATION # RIVERMILE	STREAM CLASS Perennial		
LAT LONG	RIVER BASIN Savannah		
STORET#	AGENCY		
INVESTIGATORS EBS			
FORM COMPLETED BY	DATE 10/2/2023 TIME AM PM	REASON FOR SURVEY	

	Habitat		Condition	ı Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	SCORE 18	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
ted ir	SCORE 18	20 19 (18) 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).
aram	SCORE 20	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Par	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE 13	20 19 18 17 16	15 14 (13) 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE	20 19 18 17 16	15 (14) 13 12 11	10 9 8 7 6	5 4 3 2 1 0

	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
g reach	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE 20	20) 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
ampl	SCORE 19	20 (19) 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
eva	SCORE $\frac{8}{}$ (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
to be	SCORE 10 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
Parameters to 1	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE 10 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 10 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	SCORE 10 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 10 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0

Total Score 170

A-8

STREAM NAME S7 / Howard Creek	LOCATION	Oconee County, South Carolina
STATION # RIVERMILE	STREAM CLASS	Perennial
LAT34.990481LONG83.00247	RIVER BASIN	Savannah
STORET#	AGENCY	
INVESTIGATORS Paul Bright / Brett Boor	ne	
FORM COMPLETED BY Paul Bright	DATE 10/18/23 TIME 9:00	AM PM REASON FOR SURVEY Environmental survey

	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	SCORE 19	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
ted in	_{SCORE} 18	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).
ıram	_{SCORE} 19	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Par	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE 17	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE 19	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE 19	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
oling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
samp	SCORE 18	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
eva	SCORE 9 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
to b	SCORE 9 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE 10 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 10 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	SCORE 9 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 7 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0

Total Score ____183

STREAM NAME \$12	LOCATION	Oconee County, South Carolina	onee County, South	
STATION # RIVERMILE	STREAM CLASS	Intermittent	ntermittent	
LAT <u>34.995451</u> LONG <u>-83.001330</u>	RIVER BASIN	Savannah	avannah	
STORET#	AGENCY			
INVESTIGATORS Paul Bright / Brett Boone	•			
FORM COMPLETED BY Paul Bright	DATE 10/18/23 TIME 4:00	REASON FOR SURVEY Environmental surve	_	survey

	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	SCORE 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
ted ir	SCORE 11	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).
aram	score 8	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Par	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE 13	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	score 6	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

	Habitat		Condition	Category	
	Parameter Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE 13	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
ling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
samp	SCORE 13	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
e eva	score <u>8</u> (lb)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
to b	SCORE 8 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
Parameters to	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE 6 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 6 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	SCORE 5 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	$SCORE _{(RB)}$	Right Bank 10 9	8 7 6	5 4 3	2 1 0

Total Score 112

STREAM NAME	S15	LOCATION	Ocone	e County, South Carolina
STATION #	RIVERMILE	STREAM CLASS	Perenn	ial
LAT _ 34.993024	LONG <u>-82.997765</u>	RIVER BASIN	Savann	ah
STORET#	AGENCY			
INVESTIGATORS	Paul Bright / Brett Boon	е		
FORM COMPLETED Paul Bright) BY	DATE 10/19/23 TIME 10:00	AM PM	REASON FOR SURVEY Environmental survey

	Habitat		Condition Category			
	Parameter	Optimal	Suboptimal	Marginal	Poor	
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.	
	SCORE 8	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.	
ed ir	SCORE 11	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).	
ıram	SCORE 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
Par	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.	
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.	
	SCORE 11	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	

	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE 17	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
ling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
samp	SCORE 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
e eva	SCORE 7 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
to b	SCORE 7 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
Parameter	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE 6 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE <u>6</u> (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	$\frac{5}{5}$ (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 5 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0

Total Score ___119

STREAM NAME	S16	LOCATION	Oconee C	ounty, South Carolina
STATION #	RIVERMILE	STREAM CLASS	Perenr	nial
LAT <u>34.993518</u>	LONG <u>-82.994454</u>	RIVER BASIN	Savann	ah
STORET#		AGENCY		
INVESTIGATORS	Э			
FORM COMPLETED Paul Bright	ВУ	DATE 10/19/23 TIME 3:00	АМ РМ	REASON FOR SURVEY Environmental survey

	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	SCORE 11	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
ı sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
ted in	SCORE 11	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).
ıram	score 8	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Pa	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	_{SCORE} 6	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE 18	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
ling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
sampl	SCORE 11	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
e eva	SCORE 8 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
to b	SCORE 8 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE 7 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 7 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	$\frac{6}{1}$ (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 6 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0

	117
TC 4 1 C	
Total Score	

STREAM NAME S17 / Devil's Fork	LOCATION Oconee County, South Carolina				
STATION # RIVERMILE	STREAM CLASS Perennial				
LAT <u>34.993745</u> LONG <u>-82.993409</u>	RIVER BASIN Savannah				
STORET#	AGENCY				
INVESTIGATORS Paul Bright / Brett Boone	INVESTIGATORS Paul Bright / Brett Boone				
FORM COMPLETED BY Paul Bright	DATE <u>10/19/23</u> TIME <u>12:00</u>	AM PM REASON FOR SURVEY Environmental survey			

	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	SCORE 16	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
Parameters to be evaluated in sampling reach	SCORE 12	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).
ıram	score 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Pa	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

	Habitat		Condition	Category	
	Habitat Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
sampli	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
eva	SCORE 8 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
to be	SCORE 8 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE 8 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 8 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	SCORE 8 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 8 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0

Total Score 140

STREAM NAME \$4	LOCATION Bad Creek Pumped Storage Project - Spoil Location G		
STATION # RIVERMILE	STREAM CLASS Intermittent		
LAT LONG	RIVER BASIN Savannah		
STORET#	AGENCY		
INVESTIGATORS JK, MI			
FORM COMPLETED BY	DATE <u>09/12/2</u> 03 TIME AM PM	REASON FOR SURVEY	

	Habitat	Condition Category			
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
	SCORE 12	20 19 18 17 16	15 14 13 (12)11	10 9 8 7 6	5 4 3 2 1 0
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
ted in	SCORE 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/ depth regime (usually slow-deep).
ıram	SCORE 8	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Par	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE 13	20 19 18 17 16	15 14 (13) 12 11	10 9 8 7 6	5 4 3 2 1 0
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE	20 19 18 17 16	15 14 13 12 (1)	10 9 8 7 6	5 4 3 2 1 0

	Habitat		Condition	ı Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE 19	20 (19) 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
ding reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
ampl	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
e eva	SCORE 7 (LB)	Left Bank 10 9	8 (7) 6	5 4 3	2 1 0
to b	SCORE (RB)	Right Bank 10 9	8 (7) 6	5 4 3	2 1 0
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE 9 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 9 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	SCORE 10 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 10 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0

Total Score 137

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (FRONT)

STREAM NAME \$4	LOCATION Bad Creek Pumped Storage Project - Spoil Location G				
STATION # RIVERMILE	STREAM CLASS Perennial				
LAT LONG	RIVER BASIN Savannah				
STORET #	AGENCY				
INVESTIGATORS JK, MI					
FORM COMPLETED BY	DATE <u>09/12/203</u> TIME AM PM	REASON FOR SURVEY			

	Habitat		Condition	ı Category		
	Parameter	Optimal	Suboptimal	Marginal	Poor	
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	desirable; substrate unstable or lacking. frequently disturbed or removed.		
	SCORE 8	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.	
ted in	SCORE 15	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/depth regime (usually slow-deep).	
aram	SCORE 6	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
Par	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.	
	SCORE 9	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.	
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Condition	ı Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE 16	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
ling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.
amp	SCORE 3	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 (3) 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
eva	SCORE 9 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
to be	SCORE 9 (RB)	Right Bank 10 (9)	8 7 6	5 4 3	2 1 0
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE 3 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 3 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	SCORE 10 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0
	SCORE 10 (RB)	Right Bank (10) 9	8 7 6	5 4 3	2 1 0

Total Score 105

A-8

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (FRONT)

STREAM NAME Stream 17	LOCATION Bad Creek Pumped Storage Project - Spoil Location C		
STATION # RIVERMILE	STREAM CLASS Perennial		
LAT LONG	RIVER BASIN Savannah		
STORET#	AGENCY		
INVESTIGATORS JK, MI			
FORM COMPLETED BY	DATE 09/12/203 REASON FOR SURVEY TIME AM PM		

	Habitat		Condition	ı Category	Condition Category								
	Parameter	Optimal	Suboptimal	Marginal	Poor								
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.								
	SCORE 14	20 19 18 17 16	15 (4) 13 12 11	10 9 8 7 6	5 4 3 2 1 0								
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.								
ted in	SCORE 11	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0								
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow-shallow are missing, score low).	Dominated by 1 velocity/depth regime (usually slow-deep).								
aram	SCORE 9	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0								
Par	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.								
	SCORE 13	20 19 18 17 16	15 14 (13) 12 11	10 9 8 7 6	5 4 3 2 1 0								
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.								
	SCORE	20 19 18 17 16	15 14 13 (12) 11	10 9 8 7 6	5 4 3 2 1 0								

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Condition	ı Category		
	Parameter	Optimal	Suboptimal	Marginal	Poor	
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.	
	SCORE 20	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
ling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.	
amp	SCORE 12	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.	
eva	SCORE 7 (LB)	Left Bank 10 9	8 (7) 6	5 4 3	2 1 0	
to be	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0	
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.	
	SCORE 9 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0	
	SCORE 9 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0	
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.	
	SCORE 10 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0	
	SCORE 10 (RB)	Right Bank (10) 9	8 7 6	5 4 3	2 1 0	

Total Score 143

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (FRONT)

STREAM NAME Devils Fork	LOCATION Bad Creek Pumped Storage Project - Spoil Location B			
STATION # RIVERMILE	STREAM CLASS Perennial			
LAT LONG	RIVER BASIN Savannah			
STORET #	AGENCY			
INVESTIGATORS JK, MI				
FORM COMPLETED BY	DATE 09/12/203 REASON FOR SURVEY TIME AM PM			

	Habitat		Condition	ı Category			
	Parameter	Optimal	Poor				
	1. Epifaunal Substrate/ Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).	40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed. Less than 20% stable habitat; lack of habitat obvious; substrate unstable or lacking.			
	score 15	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
n sampling reach	2. Embeddedness	Gravel, cobble, and boulder particles are 0- 25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25- 50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50- 75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.		
ted i	SCORE 16	20 19 18 17 16	5 4 3 2 1 0				
Parameters to be evaluated in sampling reach	3. Velocity/Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low). Dominated by 1 velod depth regime (usually slow-deep).			
ıram	SCORE 14	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
Par	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.		
	SCORE 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.		
	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		

HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK)

	Habitat		Condition	ı Category			
	Parameter	Optimal	Suboptimal	Marginal	Poor		
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.		
	SCORE 20	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
ling reach	7. Frequency of Riffles (or bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25.		
amp	SCORE 17	20 19 18 (17) 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	ed areas of erosion; high frequent along sections and ber			
e eva	SCORE $\frac{8}{}$ (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
to b	SCORE (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0		
Parameters	9. Vegetative Protection (score each bank)	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one- half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.		
	SCORE 9 (LB)	Left Bank 10 (9)	8 7 6	5 4 3	2 1 0		
	SCORE 9 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0		
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	nan 12 meters; human meters: little or riparian vegeta			
	SCORE 10 (LB)	Left Bank 10 9	8 7 6	5 4 3	2 1 0		
	SCORE 10 (RB)	Right Bank 10 9	8 7 6	5 4 3	2 1 0		

Total Score 155

Attachment D

Attachment D - North Carolina Stream Assessment Method Data Forms

	7 to companies soon manaar verer	O., 2.,	
USACE AID #:	NCDW		
	sketch of the assessment area and photographs. Attach		
	stream reach under evaluation. If multiple stream reach		
	tached map, and include a separate form for each reach.		
	ed information. Record in the "Notes/Sketch" section if s amples of additional measurements that may be relevan		irements were performed. See the
	SSORS AFFECTING THE ASSESSMENT AREA (do n		the assessment area).
PROJECT/SITE INFORMAT	·		
1. Project name (if any):	Bad Creek Pumped Storage Project 2. Date of ev	aluation: 9/12/20	23
3. Applicant/owner name:	Duke Energy 4. Assessor	name/organization:	JK, MI (HDR)
5. County:		amed water body	
7. River basin:		7.5-minute quad:	Whitewater River
,		0578, -83.0064250	
9. Site number (show on atta	depth and width can be approximations) ached map): Stream 4 10. Length of ass	essment reach evalua	ated (feet): 100
l ·	(in riffle, if present) to top of bank (feet): 1.5		nable to assess channel depth.
12. Channel width at top of b	· · · · · · · · · · · · · · · · · · ·	each a swamp steam	·
	ial flow 🖄 Intermittent flow 🔲 Tidal Marsh Stream	·	
STREAM CATEGORY INFO			
15. NC SAM Zone:	Mountains (M) □ Piedmont (P) □ Inne	er Coastal Plain (I)	Outer Coastal Plain (O)
		1	
16. Estimated geomorphic		\boxtimes B	
valley shape (skip for Tidal Marsh Stream):	(more sinuous stream, flatter valley slope)		eam, steeper valley slope)
,	Size 1 (< 0.1 mi²) ☐Size 2 (0.1 to < 0.5 mi²)	☐Size 3 (0.5 to <	
17. Watershed size: (skip for Tidal Marsh Stream)	, , , , , , , , , , , , , , , , , , , ,	□Size 3 (0.5 to <	5 mi²)
ADDITIONAL INFORMATIO			
	rations evaluated?	pply to the assessme	nt area.
☐Section 10 water			shed (I II III IV V)
☐Essential Fish Habitat	_ , ,	•	/Outstanding Resource Waters
☐Publicly owned proper☐Anadromous fish]Nutrient Sensitive W]CAMA Area of Envir	onmental Concern (AEC)
	e of a federal and/or state listed protected species within		
List species:			
☐Designated Critical Ha			
19. Are additional stream info	ormation/supplementary measurements included in "Note	es/Sketch" section or	attached? ☐Yes ⊠No
1. Channel Water – assess	sment reach metric (skip for Size 1 streams and Tida	l Marsh Streams)	
✓A Water throughout		i maron otroamo,	
□B No flow, water in	n pools only.		
☐C No water in ass	essment reach.		
2. Evidence of Flow Restri	iction – assessment reach metric		
☐A At least 10% of	assessment reach in-stream habitat or riffle-pool seque	ence is severely affect	cted by a flow restriction or fill to the
	ting flow <u>or</u> a channel choked with aquatic macrophytes t reach (examples: undersized or perched culverts, caus		
beaver dams).	treach (examples: undersized or perched curverts, caus	seways that constitct	tile chamiler, tidal gates, deblis jams,
⊠B Not A			
3. Feature Pattern – asses	sment reach metric		
☐A A majority of the	e assessment reach has altered pattern (examples: straiç	ghtening, modificatior	n above or below culvert).
⊠B Not A		-	·
4. Feature Longitudinal Pr	rofile – assessment reach metric		
☐A Majority of asse	essment reach has a substantially altered stream profile (
	e aggradation, dredging, and excavation where appropr	riate channel profile	has not reformed from any of these
disturbances). ⊠B Not A			
_	ity – assessment reach metric	as currently receive	rad Evamples of instability include
	instability, not past events from which the stream he channel down-cutting (head-cut), active widening, and a		
⊠A < 10% of chann	nel unstable		, 3,/.
□B 10 to 25% of ch			
□C > 25% of chann	iei unstable		

ь.				Bank (LB)								
	LB	RB		` ,		•	` ,					
	⊠a □B	⊠A □B	Mo refe	derate evid erence inter	ence of caction (ex	onditions amples:	limited strea	bern msid	ns, leve e area a	es, down ccess, di	teraction -cutting, aggradation, dredging) that adv sruption of flood flows through streamside ninor ditching [including mosquito ditching	e area, leaky
	□c	□c	[example of fluid in the control of	amples: ca lood flows t	useways v hrough str ning]) <u>or</u> fl	with flood reamside	lplain and ch area] <u>or</u> too	anne much	l constri	ction, bul ain/interti	teraction (little to no floodplain/intertidal z kheads, retaining walls, fill, stream incisio dal zone access [examples: impoundmen or assessment reach is a man-made fe	n, disruption its, intensive
7.				ors – asse	ssment re	each/inte	ertidal zone	metr	ic			
	Chec A B C	Exce	olored w <u>ssive</u> se	dimentatio	n (burying	of strear	m features o	r inter	rtidal zo	ne)	ter discoloration, oil sheen, stream foam) and causing a water quality problem	
	□D □E	Odor	(not inc	luding natu	ıral sulfide	odors)	_				e assessment reach. Cite source in "No	otes/Sketch"
	□F □G □H □I	Exce	ssive alg aded ma	h access to gae in strea arsh vegeta	am or inter ation in the	rtidal zon e intertida	e al zone (remo				nowing, destruction, etc)	
	⊠J		to no st	ressors		(explair	n in "Notes/S	Kelcii	Section	11)		
8.		Drought conditions and rainfall exceeding 1 inch within the last 48 hours										
9.	Larg □Ye		•	Stream – a stream is to				? If \	∕es, skiţ	o to Metri	c 13 (Streamside Area Ground Surface C	Condition).
10.		ral In-stre	eam Hal ⊠No	Degrade sedimen	ed in-strea itation, mi	am habita ining, exc	cavation, in-	strea	m harde	ening [for	ent reach (examples of stressors includ r example, rip-rap], recent dredging, an to Metric 12)	
	10b.	Check a □A	Multiple		nacrophyte	es and a	quatic mosse			skip for \$	Size 4 Coastal Plain streams) 5% oysters or other natural hard botto Submerged aquatic vegetation	ms
		⊠B		e sticks and			d/or emerge	nt	k for T h Stree Only	H	Low-tide refugia (pools) Sand bottom	
		⊠C ⊠D	Multiple 5% und	e snags and dercut bank	ks and/or	root mat	p trees) s and/or roo d perimeter	ts	Check for Tidal Marsh Streams Only	∐j □K	5% vertical bank along the marsh Little or no habitat	
		□E	Little o	r no habitat								
****	*****	*****	******	**REMAIN	ING QUE	STIONS	ARE NOT A	PPLI	CABLE	FOR TIE	OAL MARSH STREAMS**************	*****
11.	Bedf	orm and	Substra	ate – asses	sment re	ach met	ric (skip for	Size	4 Coas	tal Plain	streams and Tidal Marsh Streams)	
	11a.	□Yes	⊠No	ls assess	ment read	ch in a na	itural sand-b	ed str	ream? (skip for (Coastal Plain streams)	
	11b.	Bedform ⊠A ⊠B □C	Riffle-re Pool-gl	ed. Check un section (lide section I bedform a	(evaluate (evaluate	11c) e 11d)	box(es). tric 12, Aqu	atic L	_ife)			
	11c.	In riffle so	ections, one box	check all th	nat occur b ow (skip f	oelow the or Size 4	normal wett Coastal Pla	ed pe	rimeter treams	and Tida	sessment reach – whether or not submer I l Marsh Streams) . Not Present (NP) = a Predominant (P) = > 70%. Cumulative	absent, Rare
				ed 100% for C				dant	(71) – 7	40-7070,	Troublimant (1) = 7 70%. Cumulative	Jeroemages
			\boxtimes	Ĕ	Ĥ		Bedrock/sa Boulder (2			m)		
					Ħ	Ħ	Cobble (64 Gravel (2 -	4 – 25	6 mm)	,		
		Ħ				Ħ	Sand (.062 Silt/clay (<	2 – 2	mm)			
				Ħ		Ħ	Detritus Artificial (ri		-	ete, etc.)		
	11d.	□Yes	⊠No	Are pools	filled with	— n sedimer	,			,	streams and Tidal Marsh Streams)	

-		sessment reach metric (skip for Tidal Marsh Streams)
		No Was an in-stream aquatic life assessment performed as described in the User Manual? one of the following reasons and skip to Metric 13. □No Water □Other:
12b. ⊠	Yes	No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
1		Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. Adult frogs Aquatic reptiles
Ħ		Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)
		Beetles Caddisfly larvae (T)
		Asian clam (<i>Corbicula</i>) Crustacean (isopod/amphipod/crayfish/shrimp)
Ħ		Damselfly and dragonfly larvae
블		Dipterans Mayfly larvae (E)
H		Megaloptera (alderfly, fishfly, dobsonfly larvae) Midges/mosquito larvae
		Mosquito fish (<i>Gambusia</i>) or mud minnows (<i>Umbra pygmaea</i>)
\vdash		Mussels/Clams (not <i>Corbicula</i>) Other fish
\square		Salamanders/tadpoles Snails
Ē		Stonefly larvae (P) Tipulid larvae
		Worms/leeches
Conside	r for the	Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types) Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runof
\boxtimes A	\boxtimes A	Little or no alteration to water storage capacity over a majority of the streamside area
□C □R	□C □R	Moderate alteration to water storage capacity over a majority of the streamside area Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction livestock disturbance, buildings, man-made levees, drainage pipes)
		Water Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Left Bank (LB) and the Right Bank (RB) of the streamside area.
□a □B ⊠C	□A □B ⊠C	Majority of streamside area with depressions able to pond water ≥ 6 inches deep Majority of streamside area with depressions able to pond water 3 to 6 inches deep Majority of streamside area with depressions able to pond water < 3 inches deep
Conside	r for the	e – streamside area metric (skip for Tidal Marsh Streams) Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the norma of assessment reach
LB '	RB	
⊠n	⊠N	Are wetlands present in the streamside area?
		outors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)
Check a ☐A		utors within the assessment reach or within view of <u>and</u> draining to the assessment reach. and/or springs (jurisdictional discharges)
□B □C		nclude wet detention basins; do not include sediment basins or dry detention basins) ion passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir
\Box D	Evidenc	e of bank seepage or sweating (iron in water indicates seepage)
∐⊑ ⊠F		ped or bank soil reduced (dig through deposited sediment if present) the above
		tors – assessment area metric (skip for Tidal Marsh Streams)
\square A	Evidenc	e of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation)
		ion not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) ream (≥ 24% impervious surface for watershed)
		e that the streamside area has been modified resulting in accelerated drainage into the assessment reach nent reach relocated to valley edge
□F		the above
_		sment reach metric (skip for Tidal Marsh Streams)
\boxtimes A	Stream	shading is appropriate for stream category (may include gaps associated with natural processes)
∐B □C		d (example: scattered trees) shading is gone or largely absent
	12a. If N 12b. If N 12b. If N 12c. If N	12a. Yes If No, select 12b. Yes

19.	Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out to the first break. Vegetated Wooded
	Vocation
20.	Buffer Structure – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width).
	LB RB □ A Mature forest □ B □ B Non-mature woody vegetation or modified vegetation structure □ C □ C Herbaceous vegetation with or without a strip of trees < 10 feet wide □ D □ D Maintained shrubs □ E □ Little or no vegetation
	Buffer Stressors – streamside area metric (skip for Tidal Marsh Streams) Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). If none of the following stressors occurs on either bank, check here and skip to Metric 22: Abuts < 30 feet 30-50 feet
	LB RB LB RB A DA DA DA DA Row crops B B B B B B Maintained turf C C C C C C Pasture (no livestock)/commercial horticulture D D D D D D Pasture (active livestock use)
	Stem Density – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width).
	LB RB ☑A ☑A Medium to high stem density ☐B ☐B Low stem density ☐C ☐C No wooded riparian buffer <u>or</u> predominantly herbaceous species <u>or</u> bare ground
23.	Continuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams) Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide.
	LB RB ⊠A
24.	Vegetative Composition – streamside area metric (skip for Tidal Marsh Streams) Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to assessment reach habitat. LB RB
	 ✓A Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse.
	B Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or
	communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent or communities with non-native invasive species dominant over a large portion of expected strata or communities composed of planted stands of non-characteristic species or communities inappropriately composed of a single species or no vegetation.
25.	Conductivity – assessment reach metric (skip for all Coastal Plain streams) 25a.
	25b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter). □A < 46 □B 46 to < 67 □C 67 to < 79 □D 79 to < 230 □E ≥ 230
Note	rs/Sketch:

Stream Site Name	Project	Date of Assessment	9/12/2023	
Stream Category	JK, MI (HDR)			
Additional stream inf	ssment Form (Y/N) ory considerations (Y/N) formation/supplementary measu e (perennial, intermittent, Tidal N	` ,	NO NO NO Intermittent	

(perennial, intermittent, Tidal Marsh Stream)	Intermitter	<u></u>
Function Class Rating Summary	USACE/ All Streams	NCDWR Intermittent
(1) Hydrology	MEDIUM	MEDIUM
(2) Baseflow	LOW	LOW
(2) Flood Flow	HIGH	HIGH
(3) Streamside Area Attenuation	HIGH	HIGH
(4) Floodplain Access	HIGH	HIGH
(4) Wooded Riparian Buffer	HIGH	HIGH
(4) Microtopography	NA	NA
(3) Stream Stability	HIGH	HIGH
(4) Channel Stability	HIGH	HIGH
(4) Sediment Transport	HIGH	HIGH
(4) Stream Geomorphology	HIGH	HIGH
(2) Stream/Intertidal Zone Interaction	NA	NA
(2) Longitudinal Tidal Flow	NA	NA
(2) Tidal Marsh Stream Stability	NA	NA
(3) Tidal Marsh Channel Stability	NA	NA
(3) Tidal Marsh Stream Geomorphology	NA	NA
(1) Water Quality	LOW	LOW
(2) Baseflow	LOW	LOW
(2) Streamside Area Vegetation	HIGH	HIGH
(3) Upland Pollutant Filtration	HIGH	HIGH
(3) Thermoregulation	HIGH	HIGH
(2) Indicators of Stressors	NO	NO
(2) Aquatic Life Tolerance	LOW	NA
(2) Intertidal Zone Filtration	NA	NA
(1) Habitat	MEDIUM	MEDIUM
(2) In-stream Habitat	LOW	LOW
(3) Baseflow	LOW	LOW
(3) Substrate	LOW	LOW
(3) Stream Stability	HIGH	HIGH
(3) In-stream Habitat	HIGH	HIGH
(2) Stream-side Habitat	HIGH	HIGH
(3) Stream-side Habitat	HIGH	HIGH
(3) Thermoregulation	HIGH	HIGH
(2) Tidal Marsh In-stream Habitat	NA	NA
(3) Flow Restriction	NA	NA
(3) Tidal Marsh Stream Stability	NA NA	NA NA
(4) Tidal Marsh Channel Stability	NA NA	NA
(4) Tidal Marsh Stream Geomorphology	NA NA	NA
(3) Tidal Marsh In-stream Habitat	NA NA	NA
(2) Intertidal Zone	NA NA	NA
(2) IIILEI IIUAI ZOITE		

	· · · · · · · · · · · · · · · · · · ·
USACE AID #:	NCDWR #:
	S: Attach a sketch of the assessment area and photographs. Attach a copy of the USGS 7.5-minute topographic quadrangle,
	ocation of the stream reach under evaluation. If multiple stream reaches will be evaluated on the same property, identify and when the same property, identify and when the stream reaches will be evaluated on the same property, identify and when the stream reaches will be evaluated on the same property, identify and when the stream reaches will be evaluated on the same property, identify and when the stream reaches will be evaluated on the same property, identify and when the stream reaches will be evaluated on the same property, identify and when the stream reaches will be evaluated on the same property, identify and when the stream reaches will be evaluated on the same property, identify and when the stream reaches will be evaluated on the same property, identify and when the stream reaches will be evaluated on the same property.
	nes of requested information. Record in the "Notes/Sketch" section if supplementary measurements were performed. See the
	Manual for examples of additional measurements that may be relevant.
	CE OF STRESSORS AFFECTING THE ASSESSMENT AREA (do not need to be within the assessment area).
PROJECT/SITE	E INFORMATION:
1. Project name	e (if any): Bad Creek Pumped Storage Project 2. Date of evaluation: 9/12/2023
Applicant/owr	
5. County:	6. Nearest named water body
7. River basin:	Savannah on USGS 7.5-minute quad: Lake Jocassee
	ttes (decimal degrees, at lower end of assessment reach): 35.0145516, -83.0080285 RMATION: (depth and width can be approximations)
3 I KLAWI INI O	Stream 4a - spoil
9. Site number ((show on attached map): G 10. Length of assessment reach evaluated (feet): 100
	pth from bed (in riffle, if present) to top of bank (feet): 4 Unable to assess channel depth.
	dth at top of bank (feet): 8 13. Is assessment reach a swamp steam? Yes No
	e: Perennial flow Intermittent flow Tidal Marsh Stream
_	EGORY INFORMATION:
15. NC SAM Zo	one: Mountains (M) Piedmont (P) Inner Coastal Plain (I) Outer Coastal Plain (O)
40 5-4	
16. Estimated government	
Tidal Marsh	
17. Watershed	size: (skip Size 1 (< 0.1 mi²)
for Tidal Ma	arsh Stream)
_	NFORMATION:
	atory considerations evaluated? Yes No If Yes, check all that apply to the assessment area.
Section 1	10 water □Classified Trout Waters □Water Supply Watershed (□I □II □II □IV □V) I Fish Habitat □Primary Nursery Area □ High Quality Waters/Outstanding Resource Waters
	bwned property
☐Anadrom	
	nted presence of a federal and/or state listed protected species within the assessment area.
List speci	
	ed Critical Habitat (list species) nal stream information/supplementary measurements included in "Notes/Sketch" section or attached? Yes No
19. Are addition	ial stream information/supplementary measurements included in Motes/Sketch Section of attached? Thes MNO
1. Channel Wa	ater – assessment reach metric (skip for Size 1 streams and Tidal Marsh Streams)
	ater throughout assessment reach.
	o flow, water in pools only. O water in assessment reach.
	f Flow Restriction – assessment reach metric
	least 10% of assessment reach in-stream habitat or riffle-pool sequence is severely affected by a flow restriction or fill to the int of obstructing flow or a channel choked with aquatic macrophytes or ponded water or impoundment on flood or ebb within
	e assessment reach (examples: undersized or perched culverts, causeways that constrict the channel, tidal gates, debris jams,
	aver dams).
□B No	ot A
	ttern – assessment reach metric
	majority of the assessment reach has altered pattern (examples: straightening, modification above or below culvert). ot A
	ngitudinal Profile – assessment reach metric
	ajority of assessment reach has a substantially altered stream profile (examples: channel down-cutting, existing damming, over dening, active aggradation, dredging, and excavation where appropriate channel profile has not reformed from any of these
	sturbances).
□B No	ot A
5. Signs of Ac	ctive Instability – assessment reach metric
Consider or	nly current instability, not past events from which the stream has currently recovered. Examples of instability include
	failure, active channel down-cutting (head-cut), active widening, and artificial hardening (such as concrete, gabion, rip-rap).
	10% of channel unstable to 25% of channel unstable
	25% of channel unstable

6.			nteraction – streamside area metric	
	LB	RB	eft Bank (LB) and the Right Bank (RB).	
	∏A ⊠B	∏A ⊠B	Little or no evidence of conditions that adversely affect reference interaction Moderate evidence of conditions (examples: berms, levees, down-cutting, aggradation, dredging) that adverse reference interaction (examples: limited streamside area access, disruption of flood flows through streamside are or intermittent bulkheads, causeways with floodplain constriction, minor ditching [including mosquito ditching])	
	□c	□c	Extensive evidence of conditions that adversely affect reference interaction (little to no floodplain/intertidal zone [examples: causeways with floodplain and channel constriction, bulkheads, retaining walls, fill, stream incision, di of flood flows through streamside area] or too much floodplain/intertidal zone access [examples: impoundments, in mosquito ditching]) or floodplain/intertidal zone unnaturally absent or assessment reach is a man-made featur interstream divide	sruption ntensive
7.		•	essors – assessment reach/intertidal zone metric	
	Chec A B C D	Excess Noticea	ly. d water in stream or intertidal zone (milky white, blue, unnatural water discoloration, oil sheen, stream foam) e sedimentation (burying of stream features or intertidal zone) e evidence of pollutant discharges entering the assessment reach and causing a water quality problem including natural sulfide odors)	
	□E	Curren section	ublished or collected data indicating degraded water quality in the assessment reach. Cite source in "Notes,	'Sketch"
	□F □G □H □I	Livesto Excess	with access to stream or intertidal zone e algae in stream or intertidal zone I marsh vegetation in the intertidal zone (removal, burning, regular mowing, destruction, etc) (explain in "Notes/Sketch" section)	
	⊠J		o stressors	
8.		Size 1 or 2 s Drough Drough	watershed metric (skip for Tidal Marsh Streams) ams, D1 drought or higher is considered a drought; for Size 3 or 4 streams, D2 drought or higher is considered a conditions and no rainfall or rainfall not exceeding 1 inch within the last 48 hours conditions and rainfall exceeding 1 inch within the last 48 hours not conditions	drought.
9.	Larg □Ye		us Stream – assessment reach metric Is stream is too large or dangerous to assess? If Yes, skip to Metric 13 (Streamside Area Ground Surface Cond	ition).
10.		ral In-strea ⊠Yes [Habitat Types – assessment reach metric No Degraded in-stream habitat over majority of the assessment reach (examples of stressors include exsedimentation, mining, excavation, in-stream hardening [for example, rip-rap], recent dredging, and sr (evaluate for Size 4 Coastal Plain streams only, then skip to Metric 12)	
	10b.	⊠A M ((⊠B M WC M ⊠D 5	at occur (occurs if > 5% coverage of assessment reach) (skip for Size 4 Coastal Plain streams) tiple aquatic macrophytes and aquatic mosses lude liverworts, lichens, and algal mats) tiple sticks and/or leaf packs and/or emergent etation tiple snags and logs (including lap trees) undercut banks and/or root mats and/or roots anks extend to the normal wetted perimeter Skip for Size 4 Coastal Plain streams) Swoysters or other natural hard bottoms Submerged aquatic vegetation Low-tide refugia (pools) Sand bottom Swoysters or other natural hard bottoms Submerged aquatic vegetation Low-tide refugia (pools) Sand bottom Swoysters or other natural hard bottoms Low-tide refugia (pools) Swoysters or other natural hard bottoms Low-tide refugia (pools) Swoysters or other natural hard bottoms Low-tide refugia (pools) Swoysters or other natural hard bottoms Low-tide refugia (pools) Swoysters or other natural hard bottoms Low-tide refugia (pools) Swoysters or other natural hard bottoms Low-tide refugia (pools) Swoysters or other natural hard bottoms Low-tide refugia (pools) Swoysters or other natural hard bottoms Low-tide refugia (pools) Swoysters or other natural hard bottoms Low-tide refugia (pools) Swoysters or other natural hard bottoms Low-tide refugia (pools) Swoysters or other natural hard bottoms	
		∏E L	e or no habitat	
****	*****	******	******REMAINING QUESTIONS ARE NOT APPLICABLE FOR TIDAL MARSH STREAMS************************************	****
11.	Bedf	orm and S	strate – assessment reach metric (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)	
	11a.	□Yes	lo Is assessment reach in a natural sand-bed stream? (skip for Coastal Plain streams)	
	11b.	⊠A F ⊠B F	uated. Check the appropriate box(es). le-run section (evaluate 11c) bl-glide section (evaluate 11d) ural bedform absent (skip to Metric 12, Aquatic Life)	
	11c.	In riffle sec at least or (R) = prese	ns, check all that occur below the normal wetted perimeter of the assessment reach – whether or not submerged. box in each row (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams). Not Present (NP) = abse to but ≤ 10%, Common (C) = > 10-40%, Abundant (A) = > 40-70%, Predominant (P) = > 70%. Cumulative perconceed 100% for each assessment reach. C A Bedrock/saprolite Boulder (256 – 4096 mm) Cobble (64 – 256 mm) Gravel (2 – 64 mm) Sand (.062 – 2 mm) Silt/clay (< 0.062 mm) Detritus	nt, Rare
	114	□ □ □ Yes □	Artificial (rip-rap, concrete, etc.) Are pools filled with sediment? (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)	
	ııu.		lo Are pools filled with sediment? (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)	

12.			sessment reach metric (skip for Tidal Marsh Streams)
	12a. ⊠` If N		No Was an in-stream aquatic life assessment performed as described in the User Manual? one of the following reasons and skip to Metric 13. □No Water □Other:
	12b. 🔯	Yes	No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all tha apply. If No, skip to Metric 13.
	1		Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. Adult frogs Aquatic reptiles
			Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)
	片		Beetles Caddisfly larvae (T)
			Asian clam (<i>Corbicula</i>) Crustacean (isopod/amphipod/crayfish/shrimp)
	Ħ		Damselfly and dragonfly larvae
	ᆸ		Dipterans Mayfly larvae (E)
			Megaloptera (alderfly, fishfly, dobsonfly larvae) Midges/mosquito larvae
			Mosquito fish (<i>Gambusia</i>) or mud minnows (<i>Umbra pygmaea</i>)
	\exists		Mussels/Clams (not <i>Corbicula</i>) Other fish
	R		Salamanders/tadpoles Snails
	Ħ	\boxtimes	Stonefly larvae (P)
			Tipulid larvae Worms/leeches
13.			Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types) Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff
	\square A	\square A	Little or no alteration to water storage capacity over a majority of the streamside area
	⊠B □C	⊠B □C	Moderate alteration to water storage capacity over a majority of the streamside area Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction livestock disturbance, buildings, man-made levees, drainage pipes)
14.		r for the RB	Water Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Left Bank (LB) and the Right Bank (RB) of the streamside area.
	□a □B ⊠C	□a ⊠b □C	Majority of streamside area with depressions able to pond water ≥ 6 inches deep Majority of streamside area with depressions able to pond water 3 to 6 inches deep Majority of streamside area with depressions able to pond water < 3 inches deep
15.	Conside wetted pe	r for the erimeter	 e – streamside area metric (skip for Tidal Marsh Streams) Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the norma of assessment reach.
	LB □Y	RB □Y	Are wetlands present in the streamside area?
	⊠N	⊠N	·
16.			outors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams) utors within the assessment reach or within view of and draining to the assessment reach.
	\square A	Streams	and/or springs (jurisdictional discharges)
	□B □C	Obstruc	nclude wet detention basins; do not include sediment basins or dry detention basins) ion passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir)
	□D □E		e of bank seepage or sweating (iron in water indicates seepage) bed or bank soil reduced (dig through deposited sediment if present)
	⊠F	None of	the above
17.	Baseflov Check a		tors – assessment area metric (skip for Tidal Marsh Streams)
	□A ⊠B	Evidenc	e of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation) ion not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit)
	□C	Urban s	ream (≥ 24% impervious surface for watershed)
	□D □E		e that the streamside area has been modified resulting in accelerated drainage into the assessment reach nent reach relocated to valley edge
	□F	None of	the above
18.	_		sment reach metric (skip for Tidal Marsh Streams) Consider "leaf-on" condition.
	⊠A □B	Stream	shading is appropriate for stream category (may include gaps associated with natural processes) d (example: scattered trees)
	□C		shading is gone or largely absent

19.	Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out to the first break.
	Vegetated Wooded LB RB LB RB □A □A<
20.	Buffer Structure – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width).
	LB RB
21.	Buffer Stressors – streamside area metric (skip for Tidal Marsh Streams) Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). If none of the following stressors occurs on either bank, check here and skip to Metric 22: Abuts < 30 feet 30-50 feet
	LB RB LB RB A A A A A A A A A A A A A A A A A A A
22.	Stem Density – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width).
	LB RB ⊠A
23.	Continuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams) Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide.
	LB RB ⊠A
24.	Vegetative Composition – streamside area metric (skip for Tidal Marsh Streams) Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to assessment reach habitat. LB RB
	🖂 A Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse.
	B Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or
	communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent or communities with non-native invasive species dominant over a large portion of expected strata or communities composed of planted stands of non-characteristic species or communities inappropriately composed of a single species or no vegetation.
25.	Conductivity – assessment reach metric (skip for all Coastal Plain streams) 25a.
	25b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter). □A < 46 □B 46 to < 67 □C 67 to < 79 □D 79 to < 230 □E ≥ 230
Note	es/Sketch:

Stream 4a

Stream Site Name	Project	Date of Assessment	9/12/2023				
Stream Category	Mb1	JK / HDR					
Notes of Field Assessment Form (Y/N) NO							
	NO NO						
Presence of regulatory considerations (Y/N) Additional stream information/supplementary measurements included (Y/N) NO NO							
	Perennial						
NC SAM feature type (perennial, intermittent, Tidal Marsh Stream) Perennial Perennial							

(1		
Function Class Rating Summary	USACE/ All Streams	NCDWR Intermittent
(1) Hydrology	LOW	
(2) Baseflow	LOW	
(2) Flood Flow	MEDIUM	
(3) Streamside Area Attenuation	MEDIUM	
(4) Floodplain Access	MEDIUM	
(4) Wooded Riparian Buffer	HIGH	
(4) Microtopography	NA NA	
(3) Stream Stability	MEDIUM	
(4) Channel Stability	HIGH	
(4) Sediment Transport	HIGH	
(4) Stream Geomorphology	LOW	
(2) Stream/Intertidal Zone Interaction	NA NA	
(2) Longitudinal Tidal Flow	NA NA	
(2) Tidal Marsh Stream Stability	NA	
(3) Tidal Marsh Channel Stability	NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	MEDIUM	
(2) Baseflow	LOW	
(2) Streamside Area Vegetation	MEDIUM	
(3) Upland Pollutant Filtration	LOW	
(3) Thermoregulation	HIGH	
(2) Indicators of Stressors	NO	
(2) Aquatic Life Tolerance	MEDIUM	
(2) Intertidal Zone Filtration	NA NA	
(1) Habitat	HIGH	
(2) In-stream Habitat	MEDIUM	
(3) Baseflow	LOW	
(3) Substrate	HIGH	
(3) Stream Stability	MEDIUM	
(3) In-stream Habitat	MEDIUM	
(2) Stream-side Habitat	HIGH	
(3) Stream-side Habitat	HIGH	
(3) Thermoregulation	HIGH	
(2) Tidal Marsh In-stream Habitat	NA NA	
(3) Flow Restriction	NA NA	
(3) Tidal Marsh Stream Stability	NA NA	
(3) Tidal Marsh Channel Stability	NA NA	
(4) Tidal Marsh Stream Geomorphology	NA NA	
(3) Tidal Marsh In-stream Habitat	NA NA	
(2) Intertidal Zone	NA NA	
Overall	MEDIUM	

	7.000mpamot	o occi manaar vereren zir	
USACE AID #:		NCDWR #:	
		photographs. Attach a copy of the USGS	
		multiple stream reaches will be evaluated	
		e form for each reach. See the NC SAM U	
	amples of additional measurements	es/Sketch" section if supplementary meas	urements were performed. See the
		SSMENT AREA (do not need to be within	the assessment area).
PROJECT/SITE INFORMATI		•	,
1. Project name (if any):	Bad Creek Pumped Storage Pro	pject 2. Date of evaluation: 9/12/20	
3. Applicant/owner name:	Duke Energy	4. Assessor name/organization:	JK, MI (HDR)
5. County:		6. Nearest named water body	
7. River basin:	Savannah	on USGS 7.5-minute quad:	Howard Creek
,	legrees, at lower end of assessme lepth and width can be approxim	· -	
9. Site number (show on attack			ated (feet): 100
	in riffle, if present) to top of bank (f		Inable to assess channel depth.
12. Channel width at top of ba		13. Is assessment reach a swamp steam	? ∐Yes ∐No
	al flow □Intermittent flow □Tidal	Marsh Stream	
STREAM CATEGORY INFO			
15. NC SAM Zone:	Mountains (M) ☐ Pied	dmont (P)	Outer Coastal Plain (O)
40 = "		,	
16. Estimated geomorphic valley shape (skip for			<i></i>
Tidal Marsh Stream):	(more sinuous stream, flatter v	valley slope) (less sinuous sti	ream, steeper valley slope)
17. Watershed size: (skip	Size 1 (< 0.1 mi²) ☐Size	• • • •	
for Tidal Marsh Stream)	2-12-1 (311-1111)		
ADDITIONAL INFORMATION			
		f Yes, check all that apply to the assessme	
☐Section 10 water ☐Essential Fish Habitat	☐Classified Trout Wate ☐Primary Nursery Area	<u> </u>	shed (I II III IIV IV) s/Outstanding Resource Waters
☐Publicly owned propert			_
☐Anadromous fish	☐303(d) List		onmental Concern (AEC)
☐Documented presence	of a federal and/or state listed pro-	tected species within the assessment area	a.
List species:			
Designated Critical Hal		nents included in "Notes/Sketch" section or	attached? DVas MNs
19. Are additional stream into	mation/supplementary measurem	lents included in Notes/Sketch section of	attached? Tes No
1. Channel Water - assess	ment reach metric (skip for Size	1 streams and Tidal Marsh Streams)	
☐B No flow, water in ☐C No water in asse	, ,		
	ction - assessment reach metric		ated by a flow restriction or fill to the
	ing flow or a channel choked with	tat or riffle-pool sequence is severely affe aquatic macrophytes <u>or</u> ponded water <u>or</u>	impoundment on flood or ebb within
the assessment		perched culverts, causeways that constrict	
beaver dams). Not ∧			
⊠B Not A			
3. Feature Pattern – assess			
□ A	assessment reach has aftered par	ttern (examples: straightening, modification	n above or below culvert).
	-file		
	ofile - assessment reach metric	ultered stream profile (examples: channel	down-cutting existing damming over
		vation where appropriate channel profile	
disturbances).	, 5 5,		ŕ
⊠B Not A			
5. Signs of Active Instability	ty – assessment reach metric		
		which the stream has currently recove	
active bank failure, active ⊠A < 10% of channe		active widening, and artificial hardening (s	ucn as concrete, gabion, rip-rap).
☐B 10 to 25% of cha			
☐C > 25% of channe			

ь.				raction – s Bank (LB)								
	LB	RB		` ,		•	` ,					
	⊠a □B	⊠A □B	Moo refe	derate evid erence inter	ence of co action (ex	onditions amples:	limited strea	bern amside	ns, leve e area a	es, down ccess, di	teraction -cutting, aggradation, dredgin sruption of flood flows through ninor ditching [including mosqi	streamside area, leaky
	□c	□c	[exa of fl mos	amples: ca ood flows t	useways v hrough str ning]) <u>or</u> flo	with flood eamside	lplain and ch area] <u>or</u> too	annel much	l constric	ction, bull ain/interti	teraction (little to no floodplain kheads, retaining walls, fill, str dal zone access [examples: in or assessment reach is a m	eam incision, disruption npoundments, intensive
7.				ors – asse	ssment re	each/inte	ertidal zone	metri	ic			
	Chec	Exce	olored w ssive se	dimentatio	n (burying	of strear	m features o	r inter	tidal zoı	ne)	ter discoloration, oil sheen, sti and causing a water quality pr	,
	□D □E	Odor	not ince) ent publi	luding natu	ıral sulfide	odors)	_				e assessment reach. Cite so	
	□F □G	Exce	ssive al	h access to gae in strea	am or inter	tidal zon	е	aval h				
	□H □I ⊠J	Othe					in "Notes/S				mowing, destruction, etc)	
8.		Size 1 or 2 Droug Droug	streams ght cond ght cond	s, D1 droug litions <u>and</u>	ht or highe no rainfall	er is cons or rainfa	al Marsh Str sidered a dro all not exceed 1 inch within	ought; ding 1	for Size	thin the la	reams, D2 drought or higher i ast 48 hours	s considered a drought.
9.	Larg □Ye		•	Stream – a tream is to				? If Y	∕es, skip	to Metri	c 13 (Streamside Area Groun	d Surface Condition).
10.		ral In-stre □Yes	eam Hal ⊠No	Degrade sedimen	ed in-strea tation, mi	ım habita ning, exc	cavation, in-	strear	m harde	ening [for	ent reach (examples of stres example, rip-rap], recent dr to Metric 12)	
	10b.	Check a □A ⊠B	Multiple (include	e aquatic me e liverworts e sticks and	nacrophyte , lichens,	es and ac and alga	quatic mosse		Check for Tidal ab Marsh Streams up Only	skip for \$	Size 4 Coastal Plain streams 5% oysters or other natural Submerged aquatic vegeta Low-tide refugia (pools) Sand bottom	hard bottoms
		⊠c ⊠d	Multiple 5% und in bank	e snags and dercut bank	s and/or the norm	root mats	p trees) s and/or roo d perimeter	ts	Check Marsh	∐'j □K	5% vertical bank along the Little or no habitat	marsh
****	*****	******	******	**REMAIN	ING QUES	STIONS A	ARE NOT A	PPLI	CABLE	FOR TIE	OAL MARSH STREAMS*****	******
11.	Bedf	orm and	Substra	ite – asses	sment re	ach met	ric (skip for	Size	4 Coas	tal Plain	streams and Tidal Marsh S	treams)
		□Yes	⊠No					ed str	eam? (s	skip for (Coastal Plain streams)	
	11b.	Bedform ⊠A ⊠B □C	Riffle-ri Pool-gl	ed. Check un section (ide section l bedform a	(evaluate (evaluate	11c) 11d)	box(es). tric 12, Aqu	atic L	.ife)			
	11c.	at least (R) = pre	one box esent bu	in each ro	ow (skip foo	or Size 4 C) = > 10	l Coastal Pl a 0-40%, Abun	ain st idant i aproli	t reams (A) = > (te te 4096 mr	and Tida 40-70%,	sessment reach – whether or I Marsh Streams) . Not Prese Predominant (P) = > 70%. C	ent (NP) = absent, Rare
							Gravel (2 - Sand (.062 Silt/clay (< Detritus Artificial (ri	– 64 r 2 – 2 i < 0.062	nm) mm) 2 mm)	ete, etc.)		
	11d.	□Yes	⊠No	Are pools	filled with	sedimer	nt? (skip for	Size	4 Coas	tal Plain	streams and Tidal Marsh S	treams)

12.	-		sessment reach metric (skip for Tidal Marsh Streams)
	12a. ⊠ If N		No Was an in-stream aquatic life assessment performed as described in the User Manual? one of the following reasons and skip to Metric 13. □No Water □Other:
	12b. 🔯	Yes	No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all tha apply. If No, skip to Metric 13.
	1		Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. Adult frogs Aquatic reptiles
			Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)
			Beetles Caddisfly larvae (T)
	R		Asian clam (<i>Corbicula</i>) Crustacean (isopod/amphipod/crayfish/shrimp)
	Ħ		Damselfly and dragonfly larvae
	블		Dipterans Mayfly larvae (E)
	H		Megaloptera (alderfly, fishfly, dobsonfly larvae) Midges/mosquito larvae
			Mosquito fish (<i>Gambusia</i>) or mud minnows (<i>Umbra pygmaea</i>)
	\vdash		Mussels/Clams (not <i>Corbicula</i>) Other fish
	R		Salamanders/tadpoles Snails
	Ē		Stonefly larvae (P) Tipulid larvae
			Worms/leeches
13.			Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types) Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff
	\boxtimes A	⊠A	Little or no alteration to water storage capacity over a majority of the streamside area
	□B □C	□B □C	Moderate alteration to water storage capacity over a majority of the streamside area Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction livestock disturbance, buildings, man-made levees, drainage pipes)
14.			Water Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Left Bank (LB) and the Right Bank (RB) of the streamside area.
	□A □B ⊠C	□a □b ⊠c	Majority of streamside area with depressions able to pond water ≥ 6 inches deep Majority of streamside area with depressions able to pond water 3 to 6 inches deep Majority of streamside area with depressions able to pond water < 3 inches deep
15.	Conside	r for the	e – streamside area metric (skip for Tidal Marsh Streams) Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the norma of assessment reach.
		RB	
	⊠n	∐Y ⊠N	Are wetlands present in the streamside area?
16.			outors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)
	\square A		utors within the assessment reach or within view of <u>and</u> draining to the assessment reach. and/or springs (jurisdictional discharges)
	□B □C		nclude wet detention basins; do not include sediment basins or dry detention basins) ion passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir)
	□D □E	Evidenc	e of bank seepage or sweating (iron in water indicates seepage)
	⊠F		ped or bank soil reduced (dig through deposited sediment if present) the above
17.			ors – assessment area metric (skip for Tidal Marsh Streams)
	Check a □A	Evidenc	e of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation)
	□B □C		ion not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) ream (≥ 24% impervious surface for watershed)
	□D □E		e that the streamside area has been modified resulting in accelerated drainage into the assessment reach nent reach relocated to valley edge
	⊠F		the above
18.	_		sment reach metric (skip for Tidal Marsh Streams) Consider "leaf-on" condition.
	\boxtimes A	Stream	shading is appropriate for stream category (may include gaps associated with natural processes)
	□B □C		d (example: scattered trees) shading is gone or largely absent

19.	Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out to the first break. Vegetated Wooded
	Vocation
20.	Buffer Structure – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width).
	LB RB □ A Mature forest □ B □ B Non-mature woody vegetation or modified vegetation structure □ C □ C Herbaceous vegetation with or without a strip of trees < 10 feet wide □ D □ D Maintained shrubs □ E □ Little or no vegetation
	Buffer Stressors – streamside area metric (skip for Tidal Marsh Streams) Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). If none of the following stressors occurs on either bank, check here and skip to Metric 22: Abuts < 30 feet 30-50 feet
	LB RB LB RB A DA DA DA DA Row crops B B B B B B Maintained turf C C C C C C Pasture (no livestock)/commercial horticulture D D D D D D Pasture (active livestock use)
	Stem Density – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width).
	LB RB ☑A ☑A Medium to high stem density ☐B ☐B Low stem density ☐C ☐C No wooded riparian buffer <u>or</u> predominantly herbaceous species <u>or</u> bare ground
23.	Continuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams) Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide.
	LB RB ⊠A
24.	Vegetative Composition – streamside area metric (skip for Tidal Marsh Streams) Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to assessment reach habitat. LB RB
	 ✓A Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse.
	B Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or
	communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent or communities with non-native invasive species dominant over a large portion of expected strata or communities composed of planted stands of non-characteristic species or communities inappropriately composed of a single species or no vegetation.
25.	Conductivity – assessment reach metric (skip for all Coastal Plain streams) 25a.
	25b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter). □A < 46 □B 46 to < 67 □C 67 to < 79 □D 79 to < 230 □E ≥ 230
Note	rs/Sketch:

Stream Site Name	Bad Creek Pumped Storage Project	Date of Assessment	9/12/2023	
Stream Category	Mb1	JK, MI (HDR)		
Notes of Field Asses	NO			
Presence of regulato	NO			
Additional stream inf	NO			
NC SAM feature type	Perennial			

e (perennial, intermittent, Tidal Marsh Stream)	Perennia	<u> </u>
Function Class Rating Summary	USACE/ All Streams	NCDWR Intermittent
(1) Hydrology	HIGH	
(2) Baseflow	HIGH	
(2) Flood Flow	HIGH	
(3) Streamside Area Attenuation	HIGH	
(4) Floodplain Access	HIGH	
(4) Wooded Riparian Buffer	HIGH	
(4) Microtopography	NA	
(3) Stream Stability	HIGH	
(4) Channel Stability	HIGH	
(4) Sediment Transport	MEDIUM	
(4) Stream Geomorphology	HIGH	
(2) Stream/Intertidal Zone Interaction	NA	
(2) Longitudinal Tidal Flow	NA NA	
(2) Tidal Marsh Stream Stability	NA	
(3) Tidal Marsh Channel Stability	NA NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	MEDIUM	
(2) Baseflow	HIGH	
(2) Streamside Area Vegetation	HIGH	
(3) Upland Pollutant Filtration	HIGH	
(3) Thermoregulation	HIGH	
(2) Indicators of Stressors	NO	
(2) Aquatic Life Tolerance	LOW	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	HIGH	
(2) In-stream Habitat	HIGH	
(3) Baseflow	HIGH	
(3) Substrate	MEDIUM	
(3) Stream Stability	HIGH	
(3) In-stream Habitat	HIGH	
(2) Stream-side Habitat	HIGH	
(3) Stream-side Habitat	HIGH	
(3) Thermoregulation	HIGH	
(2) Tidal Marsh In-stream Habitat	NA NA	
(3) Flow Restriction	NA NA	
(3) Tidal Marsh Stream Stability (4) Tidal Marsh Channel Stability	NA NA	
•	NA NA	
(4) Tidal Marsh Stream Geomorphology	NA NA	
(3) Tidal Marsh In-stream Habitat	NA NA	
(2) Intertidal Zone	NA	
Overall	HIGH	

	SACE AID #:			NCDWR #:	
					7.5-minute topographic quadrangle,
					on the same property, identify and
					ser Manual for detailed descriptions
					urements were performed. See the
	SAM User Manual for ex			REA (do not need to be withir	the assessment area)
	OJECT/SITE INFORMAT		L AGGEGGMENT AN	LEA (do not need to be within	The assessment area).
	Project name (if any):	Bad Creek Pumped Sto	orage Project 2. I	Date of evaluation: 9/12/20	23
3. /	Applicant/owner name:	Duke Energy	4. /	Assessor name/organization:	JK, MI
5. (County:			Nearest named water body	
	River basin:	Savannah		on USGS 7.5-minute quad:	Howard Creek
	Site coordinates (decimal	•	•	34.9945859, -82.9951158	
	REAM INFORMATION: (c			with of accomment would be available	atad (faat): 100
l	Site number (show on atta . Channel depth from bed			gth of assessment reach evalu	ated (feet): 100 Inable to assess channel depth.
	. Channel width at top of b	-		 essment reach a swamp steam	·
	. Feature type: ⊠Perenni				
	REAM CATEGORY INFO				
15.	. NC SAM Zone:	☑ Mountains (M)	☐ Piedmont (P)	☐ Inner Coastal Plain (I)	☐ Outer Coastal Plain (O)
				\	,
16	. Estimated geomorphic			⊠B	
	valley shape (skip for	⊔A			
	Tidal Marsh Stream):	(more sinuous strear		•	ream, steeper valley slope)
17.	. Watershed size: (skip	\boxtimes Size 1 (< 0.1 mi ²)	☐Size 2 (0.1 to <	0.5 mi ²) \square Size 3 (0.5 to <	5 mi ²)
۸,	for Tidal Marsh Stream) DITIONAL INFORMATIO				
l			∷⊠No If Yes check	all that apply to the assessme	ent area
	Section 10 water	☐Classified Tr			shed (I II III IV V)
	☐Essential Fish Habitat	☐Primary Nur			s/Outstanding Resource Waters
	Publicly owned proper		oarian buffer rule in e		
	☐Anadromous fish	□303(d) List	Pata Laurata da Laura		onmental Concern (AEC)
	List species:	of a federal and/or state	listea protectea spec	ies within the assessment area	A.
	☐Designated Critical Ha	hitat (list species)			
19			neasurements include	ed in "Notes/Sketch" section or	attached? ☐Yes ⊠No
_					
1.			for Size 1 streams	and Tidal Marsh Streams)	
	☑A Water throughout☑B No flow, water in				
	C No water in ass	. ,			
2.	Evidence of Flow Restri	ction = assessment read	ch metric		
- .	_			ool sequence is severely affect	cted by a flow restriction or fill to the
	point of obstruc	ting flow <u>or</u> a channel cho	oked with aquatic ma	crophytes or ponded water or	impoundment on flood or ebb within
		reach (examples: unders	sized or perched culv	erts, causeways that constrict	the channel, tidal gates, debris jams,
	beaver dams). ⊠B Not A				
•					
3.	Feature Pattern – asses		Itarad nattarn (avam	alon: atraightening modification	a above or below sulvert)
	□A A majority of the☑B Not A	assessment reach has a	illered pallern (exam	oles: straightening, modification	Tabove of below curvert).
		-611	ls		
4.	Feature Longitudinal Pr ☐A Majority of asse			m profile (evamples: channel d	down-cutting, existing damming, over
					has not reformed from any of these
	disturbances).			o appropriate chainse prome	
	⊠B Not A				
5.	Signs of Active Instabili	ty – assessment reach r	netric		
	Consider only current i	nstability, not past ever	nts from which the		red. Examples of instability include
			ead-cut), active wider	ing, and artificial hardening (su	uch as concrete, gabion, rip-rap).
	☑A < 10% of chann☑B 10 to 25% of ch				
	☐C > 25% of chann				

ь.				Bank (LB								
	LB	RB		•	,	•	` ,					
	⊠A □B	⊠A □B	Moo refe or i	derate evic erence inte ntermittent	dence of c raction (ex bulkhead	onditions amples: s, causev	limited strea ways with floo	berms mside a odplain	, levee area a const	es, down ccess, di riction, m	-cutting, aggradation, dredging) that adve sruption of flood flows through streamside ninor ditching [including mosquito ditching]	area, leaky
	□с	□c	[exa of fl mos	amples: ca lood flows t	auseways through str hing]) <u>or</u> fl	with flood reamside	lplain and cha area] <u>or</u> too ı	annel co much flo	onstric oodpla	ction, bull ain/interti	teraction (little to no floodplain/intertidal zo kheads, retaining walls, fill, stream incision dal zone access [examples: impoundment or assessment reach is a man-made fea	i, disruption s, intensive
7.	Wate	er Quality	Stress	ors – asse	ssment re	each/inte	ertidal zone	metric				
	Chec ☐A	ck all that Disco		ater in stre	am or inte	ertidal zor	ne (milky whi	e blue	unna	atural wat	ter discoloration, oil sheen, stream foam)	
	В	Exce	<u>ssive</u> se	dimentatio	n (burying	of strear	m features or	intertic	lal zor	ne)	and causing a water quality problem	
	\Box D	Odor	(not inc	luding natu	ural sulfide	odors)	_					
	□E	Curre section		ished or co	ollected da	ata indica	iting degrade	ed wate	er qua	lity in the	e assessment reach. Cite source in "No	tes/Sketch"
	□F □G			h access to gae in strea								
	H	Degra	aded ma		ation in the	e intertida	al zone (remo				nowing, destruction, etc)	
	⊠J	Othe Little	to no st	ressors		(explair	n in "Notes/SI	keich s	ection	1)		
8.							al Marsh Str		- C:	0 4 -4		
	\square A	Drou	ght cond	ditions <u>and</u>	no rainfall	l or rainfa	all not exceed	ling 1 ir	ich wi	thin the la	reams, D2 drought or higher is considered ast 48 hours	i a drought.
	□в ⊠с			ditions <u>and</u> onditions	rainfall ex	ceeding	1 inch within	the last	: 48 h	ours		
9.	Larg ∘		•	Stream – a stream is to				? If Ye	s, skip	to Metri	c 13 (Streamside Area Ground Surface Co	ondition).
10.							each metric					
	10a.	∐Yes	⊠No	sedimer	ntation, mi	ining, ex	cavation, in-	stream	harde	ening [for	ent reach (examples of stressors include example, rip-rap], recent dredging, and to Metric 12)	
	10b.	Check a □A					e of assessm quatic mosse			kip for S	Size 4 Coastal Plain streams) 5% oysters or other natural hard botton	ne
			(include	e liverworts	s, lichens,	and alga	i mats)	Tidal	Marsh Streams Only	□G	Submerged aquatic vegetation	13
		□В По	vegeta	tion	•		d/or emerger	ı, İş	sh Stre Only		Low-tide refugia (pools) Sand bottom	
		⊠c ⊠d	5% und		ks and/or	root mat	s and/or root	s ^e	Mar	∐K □J	5% vertical bank along the marsh Little or no habitat	
		□E		ks extend to r no habita		nal wetted	d perimeter					

											OAL MARSH STREAMS************************************	*****
11.		Yes □Yes	Substra ⊠No				• •				streams and Tidal Marsh Streams) Coastal Plain streams)	
				ed. Check				su su ca	: (3	skip ioi (Joastal Flain Streams)	
		⊠A ⊠B	Riffle-r	un section lide section	(evaluate	11c)						
		□c					tric 12, Aqua	atic Life))			
	11c.	at least (R) = pre	one box esent bu	t in each r t ≤ 10%, C	ow (skip f Common (0	for Size 4 C) = > 10	1 Coastal Pla 0-40%, Abund	ain stre	ams a	and Tida	sessment reach – whether or not submerg I Marsh Streams). Not Present (NP) = ab Predominant (P) = > 70%. Cumulative p	osent, Rare
		should no	R	ed 100% fo C	or each ass A	sessment P	i reach.					
			\boxtimes				Bedrock/sa Boulder (2		96 mr	n)		
							Cobble (64 Gravel (2 -	- 256	mm)	•		
		Ħ	Ħ		Ħ	Ħ	Sand (.062	2 – 2 mr	n)			
							Silt/clay (< Detritus		•			
	44 '						Artificial (ri			,	African and Tital March Co.	
	TID.	□Yes	⊠No	Are pools	s illiea with	ı seaimer	n? (skip for	SIZE 4	Coas	ıaı Piain	streams and Tidal Marsh Streams)	

12.	-		sessment reach metric (skip for Tidal Marsh Streams)
	12a. ⊠ If N		No Was an in-stream aquatic life assessment performed as described in the User Manual? one of the following reasons and skip to Metric 13. ☐No Water ☐Other:
	12b.	Yes 🛚	No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
	1		Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. Adult frogs Aquatic reptiles
			Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)
	\exists		Beetles Caddisfly larvae (T)
			Asian clam (<i>Corbicula</i>) Crustacean (isopod/amphipod/crayfish/shrimp)
	Ä		Damselfly and dragonfly larvae
	\vdash		Dipterans Mayfly larvae (E)
			Megaloptera (alderfly, fishfly, dobsonfly larvae) Midges/mosquito larvae
			Mosquito fish (<i>Gambusia</i>) or mud minnows (<i>Umbra pygmaea</i>)
	\exists		Mussels/Clams (not <i>Corbicula</i>) Other fish
	R		Salamanders/tadpoles Snails
	Ħ		Stonefly larvae (P)
			Tipulid larvae Worms/leeches
13.			Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types) Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff.
	\boxtimes A	⊠A	Little or no alteration to water storage capacity over a majority of the streamside area
	□B □C	□B □C	Moderate alteration to water storage capacity over a majority of the streamside area Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction, livestock disturbance, buildings, man-made levees, drainage pipes)
14.			Water Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Left Bank (LB) and the Right Bank (RB) of the streamside area.
	□a □B ⊠C	□A □B ⊠C	Majority of streamside area with depressions able to pond water ≥ 6 inches deep Majority of streamside area with depressions able to pond water 3 to 6 inches deep Majority of streamside area with depressions able to pond water < 3 inches deep
15.	Conside	r for the	e – streamside area metric (skip for Tidal Marsh Streams) Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the normal of assessment reach.
	LB '	RB	
	□Y ⊠N	∐Y ⊠N	Are wetlands present in the streamside area?
16.			outors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)
	Check a ☐A		utors within the assessment reach or within view of <u>and</u> draining to the assessment reach. and/or springs (jurisdictional discharges)
	□B □C		nclude wet detention basins; do not include sediment basins or dry detention basins) ion passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir)
	\Box D	Evidenc	e of bank seepage or sweating (iron in water indicates seepage)
	□E ⊠F		oed or bank soil reduced (dig through deposited sediment if present) the above
17.			ors – assessment area metric (skip for Tidal Marsh Streams)
	Check a ☐A	Evidenc	e of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation)
	□B □C		ion not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) ream (≥ 24% impervious surface for watershed)
	□D □E	Evidenc	e that the streamside area has been modified resulting in accelerated drainage into the assessment reach nent reach relocated to valley edge
	⊠F		the above
18.	_		sment reach metric (skip for Tidal Marsh Streams)
	\boxtimes A	Stream	Consider "leaf-on" condition. shading is appropriate for stream category (may include gaps associated with natural processes)
	□B □C		d (example: scattered trees) shading is gone or largely absent

19.	Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out to the first break. Vegetated Wooded
	Vocation
20.	Buffer Structure – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width).
	LB RB □ A Mature forest □ B □ B Non-mature woody vegetation or modified vegetation structure □ C □ C Herbaceous vegetation with or without a strip of trees < 10 feet wide □ D □ D Maintained shrubs □ E □ Little or no vegetation
	Buffer Stressors – streamside area metric (skip for Tidal Marsh Streams) Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). If none of the following stressors occurs on either bank, check here and skip to Metric 22: Abuts < 30 feet 30-50 feet
	LB RB LB RB A DA DA DA DA Row crops B B B B B B Maintained turf C C C C C C Pasture (no livestock)/commercial horticulture D D D D D D Pasture (active livestock use)
	Stem Density – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width).
	LB RB ☑A ☑A Medium to high stem density ☐B ☐B Low stem density ☐C ☐C No wooded riparian buffer <u>or</u> predominantly herbaceous species <u>or</u> bare ground
23.	Continuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams) Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide.
	LB RB ⊠A
24.	Vegetative Composition – streamside area metric (skip for Tidal Marsh Streams) Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to assessment reach habitat. LB RB
	 ✓A Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse.
	B Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or
	communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent or communities with non-native invasive species dominant over a large portion of expected strata or communities composed of planted stands of non-characteristic species or communities inappropriately composed of a single species or no vegetation.
25.	Conductivity – assessment reach metric (skip for all Coastal Plain streams) 25a.
	25b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter). □A < 46 □B 46 to < 67 □C 67 to < 79 □D 79 to < 230 □E ≥ 230
Note	rs/Sketch:

Stream Site Name	Bad Creek Pumped Storage Project	Date of Assessment	9/12/2023	
Stream Category	JK, MI			
Notes of Field Asses	NO			
Presence of regulator	NO			
Additional stream inf	NO			
NC SAM feature type	Perennial			

e (perennial, intermittent, Tidal Marsh Stream)	Perennia	<u> </u>
Function Class Rating Summary	USACE/ All Streams	NCDWR Intermittent
(1) Hydrology	HIGH	
(2) Baseflow	HIGH	
(2) Flood Flow	HIGH	
(3) Streamside Area Attenuation	HIGH	
(4) Floodplain Access	HIGH	
(4) Wooded Riparian Buffer	HIGH	
(4) Microtopography	NA	
(3) Stream Stability	HIGH	
(4) Channel Stability	HIGH	
(4) Sediment Transport	MEDIUM	
(4) Stream Geomorphology	HIGH	
(2) Stream/Intertidal Zone Interaction	NA	
(2) Longitudinal Tidal Flow	NA	
(2) Tidal Marsh Stream Stability	NA NA	
(3) Tidal Marsh Channel Stability	NA NA	
(3) Tidal Marsh Stream Geomorphology	NA NA	
(1) Water Quality	MEDIUM	
(2) Baseflow	HIGH	
(2) Streamside Area Vegetation	HIGH	
(3) Upland Pollutant Filtration	HIGH	
(3) Thermoregulation	HIGH	
(2) Indicators of Stressors	NO	
(2) Aquatic Life Tolerance	LOW	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	HIGH	
	MEDIUM	
(2) In-stream Habitat (3) Baseflow	HIGH	
• •	MEDIUM	
(3) Substrate	HIGH	
(3) Stream Stability		
(3) In-stream Habitat	MEDIUM	
(2) Stream-side Habitat	HIGH	
(3) Stream-side Habitat	HIGH	
(3) Thermoregulation	HIGH	
(2) Tidal Marsh In-stream Habitat	NA	
(3) Flow Restriction	NA NA	
(3) Tidal Marsh Stream Stability	NA	
(4) Tidal Marsh Channel Stability	NA NA	
(4) Tidal Marsh Stream Geomorphology	NA	
(3) Tidal Marsh In-stream Habitat	NA	
(2) Intertidal Zone	NA	
Overall	HIGH	

	/ tooompanios cost mariaa. Votolon z.:	
USACE AID #:	NCDWR #:	
	sketch of the assessment area and photographs. Attach a copy of the USGS 7.5-minute	
	stream reach under evaluation. If multiple stream reaches will be evaluated on the sai	
	tached map, and include a separate form for each reach. See the NC SAM User Manua	
	ed information. Record in the "Notes/Sketch" section if supplementary measurements warmples of additional measurements that may be relevant.	rere performed. See the
	ESSORS AFFECTING THE ASSESSMENT AREA (do not need to be within the asset	ssment area).
PROJECT/SITE INFORMATI	•	,
1. Project name (if any):	Bad Creek Pumped Storage Project 2. Date of evaluation: 10/2/2023	
3. Applicant/owner name:	Duke Energy 4. Assessor name/organization: EBS / H	IDR
5. County:	6. Nearest named water body	
7. River basin:	Savannah on USGS 7.5-minute quad: Howard	Creek
,	degrees, at lower end of assessment reach): 34.991628, -83.0200869	
9. Site number (show on attack	depth and width can be approximations) ached map): Limber Pole 10. Length of assessment reach evaluated (feet):	200
		ssess channel depth.
12. Channel width at top of ba		· ·
14. Feature type: ⊠Perennia	ial flow	
STREAM CATEGORY INFO		
15. NC SAM Zone:	Mountains (M) □ Piedmont (P) □ Inner Coastal Plain (I) □ Outer	Coastal Plain (O)
		/
16. Estimated geomorphic valley shape (skip for	\square A \boxtimes B	
Tidal Marsh Stream):	(more sinuous stream, flatter valley slope) (less sinuous stream, steep	per valley slope)
17. Watershed size: (skip		☐Size 4 (≥ 5 mi²)
for Tidal Marsh Stream)		
ADDITIONAL INFORMATION	, DN:	
	rations evaluated? Yes No If Yes, check all that apply to the assessment area.	
Section 10 water	☐ Classified Trout Waters ☐ Water Supply Watershed (☐ ☐	, i
☐Essential Fish Habitat ☐Publicly owned propert	_ , , , _ ,	ng Resource waters
☐Anadromous fish	□ 303(d) List □ CAMA Area of Environmental C	Concern (AEC)
Documented presence	e of a federal and/or state listed protected species within the assessment area.	, ,
List species:		
☐Designated Critical Hat		
19. Are additional stream into	ormation/supplementary measurements included in "Notes/Sketch" section or attached?	∐Yes ⊠No
1. Channel Water - assess	sment reach metric (skip for Size 1 streams and Tidal Marsh Streams)	
☑A Water throughou		
☐B No flow, water in ☐C No water in asse	1 ,	
	iction – assessment reach metric	
☐A At least 10% of a	f assessment reach in-stream habitat or riffle-pool sequence is severely affected by a f sting flow <u>or</u> a channel choked with aquatic macrophytes <u>or</u> ponded water <u>or</u> impoundm	low restriction or till to the
	t reach (examples: undersized or perched culverts, causeways that constrict the channel	
beaver dams).		
⊠B Not A		
3. Feature Pattern – assess		
	e assessment reach has altered pattern (examples: straightening, modification above or	below culvert).
	rofile – assessment reach metric	
	essment reach has a substantially altered stream profile (examples: channel down-cutting aggradation, dredging, and excavation where appropriate channel profile has not re	
disturbances).	e aggradation, dredging, and excavation where appropriate chains profile has not re	ionned from any or these
⊠B Not A		
5. Signs of Active Instabilit	ity – assessment reach metric	
Consider only current in	instability, not past events from which the stream has currently recovered. Exar	
	e channel down-cutting (head-cut), active widening, and artificial hardening (such as con-	crete, gabion, rip-rap).
⊠A < 10% of channe □B 10 to 25% of channe		
☐C > 25% of channe		

ь.				ion – streamsi ik (LB) and the						
	LB	RB	ie Leit Dai	ik (LB) aliu tile	Rigiil Ba	IIK (KD).				
	⊠A □B	⊠A □B □C	Modera referen or interi	ite evidence of o ce interaction (e mittent bulkhead	conditions xamples: ds, causew	limited streams ways with floodp	erms, levee ide area a olain const	es, down- ccess, dis riction, mi	eraction cutting, aggradation, dredgi ruption of flood flows throug nor ditching [including mose eraction (little to no floodpla	h streamside area, leaky quito ditching])
			[examp of flood mosqui	les: causeways flows through st	with flood treamside	lplain and chanr area] <u>or</u> too mu	nel constric ch floodpla	tion, bulk in/intertic	heads, retaining walls, fill, s lal zone access [examples: or assessment reach is a r	tream incision, disruption impoundments, intensive
7.	Wate	er Quality	Stressors -	- assessment ı	each/inte	ertidal zone me	tric			
	Chec A B C	Exces	lored water sive sedim	entation (burying	g of strean	m features or in	tertidal zor	ne)	er discoloration, oil sheen, s nd causing a water quality p	,
	□E □E		nt publishe	ng natural sulfid d or collected d		ating degraded	water qua	lity in the	assessment reach. Cite s	source in "Notes/Sketch"
	□F □G	Livest	ock with ac	cess to stream or inte						
	□I □I	Other				al zone (remova n in "Notes/Sket			nowing, destruction, etc)	
8.	Rece	ecent Weather – watershed metric (skip for Tidal Marsh Streams) or Size 1 or 2 streams, D1 drought or higher is considered a drought; for Size 3 or 4 streams, D2 drought or higher is considered a drought. Drought conditions and no rainfall or rainfall not exceeding 1 inch within the last 48 hours Drought conditions and rainfall exceeding 1 inch within the last 48 hours								
9.	Larg □Ye			am – assessm o m is too large o			f Yes, skip	to Metric	: 13 (Streamside Area Grou	nd Surface Condition).
10.	Natu	ral In-stre	am Habitat	Types – asses	sment re	ach metric				
	10a.	∐Yes	S	edimentation, m	nining, exc		eam harde	ning [for	nt reach (examples of stre example, rip-rap], recent of to Metric 12)	
	10b.	□A —	Multiple aq (include live	r (occurs if > 5% uatic macrophyl erworts, lichens cks and/or leaf	tes and aq , and algal	quatic mosses I mats)	Fidal	kip for S □F □G □H	ize 4 Coastal Plain stream 5% oysters or other natur. Submerged aquatic veget Low-tide refugia (pools)	al hard bottoms
		_	vegetation	ags and logs (in		_	neck for arsh Stre		Sand bottom 5% vertical bank along the	e marsh
		⊠D	5% underc	ut banks and/or stend to the norr	root mats	s and/or roots	טֿ צֿ	□κ	Little or no habitat	
									AL MARSH STREAMS**** streams and Tidal Marsh \$	
• • •			_						oastal Plain streams)	otroums)
	11b.		evaluated.	Check the app	ropriate b		,	•	•	
		⊠B	Pool-glide :	ection (evaluate section (evalua t dform absent (sl	te 11d)	tric 12, Aquatio	: Life)			
	11c.	at least o (R) = pres should no	ne box in one box in o	each row (skip 10%, Common (00% for each as	for Size 4 (C) = > 10	1 Coastal Plain)-40%, Abundar	streams ant (A) = > 4	and Tidal	essment reach – whether o Marsh Streams) . Not Pre: Predominant (P) = > 70%.	sent (NP) = absent, Rare
						Boulder (256 Cobble (64 –	– 4096 mr 256 mm)	n)		
			\sqcap			Gravel (2 – 64 Sand (.062 –	2 mm)			
						Silt/clay (< 0.0	•			
	11d		∐ L ⊠No Are	」	∐ h sedimer	Artificial (rip-rant? (skip for Siz	• •	,	streams and Tidal Marsh S	Streams)
						,				,

12.			seessment reach metric (skip for Tidal Marsh Streams)	
	12a. ⊠` If N		No Was an in-stream aquatic life assessment performed as described in the User Manual? t one of the following reasons and skip to Metric 13. ☐No Water ☐Other:	
	12b. 🔯	Yes	No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all tapply. If No, skip to Metric 13.	hat
	1		Adult frogs	
			Aquatic reptiles Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)	
	H		Beetles Caddisfly larvae (T)	
			Asian clam (<i>Corbicula</i>)	
			Crustacean (isopod/amphipod/crayfish/shrimp) Damselfly and dragonfly larvae	
			Dipterans Mayfly larvae (E)	
			Megaloptera (alderfly, fishfly, dobsonfly larvae)	
]Midges/mosquito larvae]Mosquito fish (<i>Gambusia</i>) or mud minnows (<i>Umbra pygmaea)</i>	
			Mussels/Clams (not <i>Corbicula</i>) Other fish	
	Ë	\boxtimes	Salamanders/tadpoles	
	\exists]Snails]Stonefly larvae (P)	
			Tipulid larvae	
13.	Streams Conside	ide Area	n Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types) Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland run	off.
	LB ⊠A	RB <u>⊠</u> A	Little or no alteration to water storage capacity over a majority of the streamside area	
	□B □C	∐B □C	Moderate alteration to water storage capacity over a majority of the streamside area Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compacti livestock disturbance, buildings, man-made levees, drainage pipes)	on,
14.			Water Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Left Bank (LB) and the Right Bank (RB) of the streamside area.	
	⊠a ⊟B ⊟C	⊠a □B □C	Majority of streamside area with depressions able to pond water ≥ 6 inches deep Majority of streamside area with depressions able to pond water 3 to 6 inches deep Majority of streamside area with depressions able to pond water < 3 inches deep	
15.	Conside wetted pe	r for the erimeter	ce – streamside area metric (skip for Tidal Marsh Streams) Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the norm of assessment reach.	nal
	LB □Y ⊠N	RB ∐Y ⊠N	Are wetlands present in the streamside area?	
16.	Baseflov	w Contril	butors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)	
	Check a ⊠A		putors within the assessment reach or within view of <u>and</u> draining to the assessment reach. s and/or springs (jurisdictional discharges)	
	□В	Ponds (include wet detention basins; do not include sediment basins or dry detention basins)	.:\
	□C □D	Evidenc	tion passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, we e of bank seepage or sweating (iron in water indicates seepage)	;II <i>)</i>
	⊠E □F		bed or bank soil reduced (dig through deposited sediment if present) the above	
17.			tors – assessment area metric (skip for Tidal Marsh Streams)	
	Check a ☐A		oply. e of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation)	
	□B □C	Obstruc	tion not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) tream (≥ 24% impervious surface for watershed)	
	\Box D	Evidenc	e that the streamside area has been modified resulting in accelerated drainage into the assessment reach	
	□E ⊠F		nent reach relocated to valley edge the above	
18.	_		sment reach metric (skip for Tidal Marsh Streams)	
	Consider ⊠A		Consider "leaf-on" condition. shading is appropriate for stream category (may include gaps associated with natural processes)	
	□B □C	Degrade	ed (example: scattered trees) shading is gone or largely absent	

19.	Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out to the first break. Vegetated Wooded
	LB RB LB RB △A △A △A ≥ 100 feet wide or extends to the edge of the watershed □B □B □B □B □B From 50 to < 100 feet wide □C □C □C □C From 30 to < 50 feet wide □D □D □D □D From 10 to < 30 feet wide □E □E □E □E < 10 feet wide or no trees
20.	Buffer Structure – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width).
	LB RB □ A Mature forest □ B □ B Non-mature woody vegetation or modified vegetation structure □ C □ C Herbaceous vegetation with or without a strip of trees < 10 feet wide □ D □ D Maintained shrubs □ E □ Little or no vegetation
21.	Buffer Stressors – streamside area metric (skip for Tidal Marsh Streams) Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). If none of the following stressors occurs on either bank, check here and skip to Metric 22: Abuts < 30 feet 30-50 feet
	LB RB LB RB A A A A A A A A A A A A A A A A A A A
22.	Stem Density – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width).
	LB RB ⊠A
23.	Continuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams) Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide.
	LB RB ⊠A
24.	Vegetative Composition – streamside area metric (skip for Tidal Marsh Streams) Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to assessment reach habitat. LB RB
	 ✓A Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse.
	B Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or
	communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent or communities with non-native invasive species dominant over a large portion of expected strata or communities composed of planted stands of non-characteristic species or communities inappropriately composed of a single species or no vegetation.
25.	Conductivity – assessment reach metric (skip for all Coastal Plain streams) 25a.
	25b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter). □A < 46 □B 46 to < 67 □C 67 to < 79 □D 79 to < 230 □E ≥ 230
Note	es/Sketch:

Limber Pole

Stream Site Name	Bad Creek Pumped Storage Project	Date of Assessment	10/2/2023	
Stream Category	Mb3	Assessor Name/Organization	EBS / HDR	
Notes of Field Asses	NO			
Presence of regulator	NO			
Additional stream inf	NO			
NC SAM feature type	Perennial			

e (perennial, intermittent, Tidal Marsh Stream)	Perennial			
Function Class Rating Summary	USACE/ All Streams	NCDWR Intermittent		
(1) Hydrology	HIGH			
(2) Baseflow	HIGH			
(2) Flood Flow	HIGH			
(3) Streamside Area Attenuation	HIGH			
(4) Floodplain Access	HIGH			
(4) Wooded Riparian Buffer	HIGH			
(4) Microtopography	NA			
(3) Stream Stability	HIGH			
(4) Channel Stability	HIGH			
(4) Sediment Transport	HIGH			
(4) Stream Geomorphology	HIGH			
(2) Stream/Intertidal Zone Interaction	NA			
(2) Longitudinal Tidal Flow	NA			
(2) Tidal Marsh Stream Stability	NA NA			
(3) Tidal Marsh Channel Stability	NA NA			
(3) Tidal Marsh Stream Geomorphology	NA NA			
(1) Water Quality	HIGH			
(2) Baseflow	HIGH			
• •	HIGH			
(2) Streamside Area Vegetation				
(3) Upland Pollutant Filtration	HIGH			
(3) Thermoregulation	HIGH			
(2) Indicators of Stressors	NO			
(2) Aquatic Life Tolerance	HIGH			
(2) Intertidal Zone Filtration	NA			
(1) Habitat	HIGH			
(2) In-stream Habitat	HIGH			
(3) Baseflow	HIGH			
(3) Substrate	HIGH			
(3) Stream Stability	HIGH			
(3) In-stream Habitat	HIGH			
(2) Stream-side Habitat	HIGH			
(3) Stream-side Habitat	HIGH			
(3) Thermoregulation	HIGH			
(2) Tidal Marsh In-stream Habitat	NA			
(3) Flow Restriction	NA			
(3) Tidal Marsh Stream Stability	NA			
(4) Tidal Marsh Channel Stability	NA			
(4) Tidal Marsh Stream Geomorphology	NA			
(3) Tidal Marsh In-stream Habitat	NA			
(2) Intertidal Zone	NA			
Overall	HIGH			

		ACC	ompanies Oser W	ialiuai velsioli 2. i	
USACE AI				NCDWR #:	
					7.5-minute topographic quadrangle,
					d on the same property, identify and
					ser Manual for detailed descriptions
					urements were performed. See the
		amples of additional meas			
NOTE EVI	DENCE OF STRE	SSORS AFFECTING TH	E ASSESSMENT	AREA (do not need to be within	n the assessment area).
	SITE INFORMAT	_			
-	ame (if any):	Bad Creek Pumped Sto		2. Date of evaluation: 10/2/20	
	t/owner name:	Duke Energy		4. Assessor name/organization:	EBS / HDR
5. County:			_	6. Nearest named water body	
7. River ba		Savannah		on USGS 7.5-minute quad:	Howard Creek
	•	degrees, at lower end of a	•	34.991628, -83.0200869	
		lepth and width can be			
	ber (show on atta			ength of assessment reach evalu	
		in riffle, if present) to top			Jnable to assess channel depth.
	el width at top of ba			ssessment reach a swamp steam	1? ∐Yes ∐No
		al flow Intermittent flow	v ∐Tidai Maish s	sueam	
_	CATEGORY INFO		Diadmant (D)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Outer Coastal Blain (O)
15. NC SAI	vi Zone:	⊠ Mountains (M)	☐ Piedmont (P)) Inner Coastal Plain (I)	Outer Coastal Plain (O)
	ed geomorphic	\Box A \frown	$\overline{}$	⊠B	
	hape (skip for larsh Stream):	(more sinuous strear	m flatter valley slo	ne) (less sinuous st	ream, steeper valley slope)
	,	·	-		
	hed size: (skip al Marsh Stream)	☐Size 1 (< 0.1 mi²)	☐Size 2 (0.1 to	$0 < 0.5 \text{ mi}^2$) Size 3 (0.5 to <	5 mi²)
	AL INFORMATIO				
_			: ⊠No If Yes ch	eck all that apply to the assessme	ent area
	ion 10 water	Classified T			rshed (I I II III IV V
	ential Fish Habitat	□Primary Nur			s/Outstanding Resource Waters
	icly owned propert		parian buffer rule i	•	
	dromous fish	303(d) List			ronmental Concern (AEC)
□Docu	umented presence	of a federal and/or state	listed protected sp	pecies within the assessment are	a.
List	species:				
	gnated Critical Ha	· · · · · —			
19. Are add	ditional stream info	rmation/supplementary m	neasurements incl	uded in "Notes/Sketch" section o	rattached?
4 Channa	.l.Water access	want was he wastrie (alsim	for Cina 4 atreas	no and Tidal March Streams)	
 Channe ⊠A 		ment reach metric (skip ut assessment reach.	o for Size 1 Stream	ns and Tidal Marsh Streams)	
□B	No flow, water in				
□c	No water in asse				
			ah matria		
Z. Evideni A		ction – assessment reach in stre		a pool seguence is severely affe	cted by a flow restriction or fill to the
	point of obstruct	ing flow or a channel cho	oked with aquatic	macrophytes or ponded water or	impoundment on flood or ebb within
	the assessment	reach (examples: unders	sized or perched o	culverts, causeways that constrict	the channel, tidal gates, debris jams,
	beaver dams).		'	•	, 6 , ,
⊠в	Not A				
3. Feature	Pattern – asses	sment reach metric			
□A	A majority of the	assessment reach has a	ıltered pattern (exa	amples: straightening, modificatio	n above or below culvert).
⊠в	Not A		, ,	1 3 3	,
4. Feature	I ongitudinal Pro	ofile – assessment reac	h metric		
	-			eam profile (examples: channel	down-cutting, existing damming, over
ш,					has not reformed from any of these
	disturbances).	55 .,		i i i i i i i i i i i i i i i i i i i	, ,
⊠B	Not A				
5. Signs o	of Active Instabili	ty – assessment reach r	metric		
				ne stream has currently recove	ered. Examples of instability include
					uch as concrete, gabion, rip-rap).
⊠A	< 10% of channe			•	
□в	10 to 25% of cha				
ПС	> 25% of channe	ei unstable			

0.				action – si Bank (LB)									
	LB	RB	io Loit i	bank (LB)	una mon	agiit Da	m (11 5).						
	⊠a □B	⊠A ∏B	Mod refe	rence intera	ence of co action (exa	nditions amples:	(examples limited stre	s: beri eamsid	ms, leve le area a	es, down access, di	-cutting, aggradation,	dredging) that adversely a through streamside area, I	
	□c	□с	Exte [exa of flo mos	ensive evide mples: cau ood flows th	ence of co seways w rough stre ng]) <u>or</u> flo	onditions vith flood eamside	that adver plain and c area] <u>or</u> too	sely a hanne o mucl	ffect ref el constri n floodpl	erence in ction, bul ain/interti	teraction (little to no f kheads, retaining wall dal zone access [exar	g mosquito diterinigj) loodplain/intertidal zone ac s, fill, stream incision, disru nples: impoundments, inter n is a man-made feature o	ption nsive
7.	Wate	r Quality	Stresso	rs – asses	sment re	ach/inte	rtidal zon	e metı	ric				
	Chec ☐A	k all that		tor in atrac	m or intor	tidal zan	o (milla m	hita h	ممال میا	otural wa	tor discolaration, sil al	acon atroom foom)	
	□В			dimentation							ter discoloration, oil sl	ieen, siream loam)	
				idence of p uding natur			s entering	the as	sessme	nt reach <u>a</u>	and causing a water q	uality problem	
	ΠE	Curre	nt publis				ting degra	ded w	ater qua	ality in the	e assessment reach.	Cite source in "Notes/Ske	etch"
	□F	sectio Livest		access to	stream or	intertida	al zone						
	□G		_	ae in strea					h			.+-\	
	H			rsn vegeta							mowing, destruction, e	:tC)	
	⊠J		to no str										
8.		Size 1 or 2 Droug Droug	streams ght condi ght condi		nt or highe no rainfall	er is cons or rainfa	sidered a di Il not excee	rought eding	; for Size	ithin the I	treams, D2 drought or ast 48 hours	higher is considered a dro	ught.
9.	Larg e			stream – as ream is too				ss? If	Yes, ski	p to Metri	c 13 (Streamside Are	a Ground Surface Conditio	n).
10.				itat Types									
	10a.	∐Yes	⊠No	sediment	ation, mir	ning, exc	cavation, ir	n-strea	ım hard	ening [fo		of stressors include excessecent dredging, and snage	
	10b.			ccur (occur						skip for \$ □F	Size 4 Coastal Plain		
		_	(include	liverworts,	lichens, a	and algal	l mats)		Check for Tidal Marsh Streams Only	□G	Submerged aquation		
			Multiple vegetati	sticks and	or leaf pa	acks and	l/or emerg	ent	k for a	□H □I	Low-tide refugia (p	ools)	
		⊠c	Multiple	snags and				oto	Chec	□l □l	5% vertical bank al	ong the marsh	
				ercut bank s extend to					ļ	⊔ĸ	Little or no habitat		
		□E	Little or	no habitat									
****	*****	*****	******	*REMAINI	NG QUES	TIONS	ARE NOT	APPL	CABLE	FOR TIE	OAL MARSH STREA	MS********	*
11.	Bedf	orm and S	Substrat	te – asses:	sment rea	ach meti	ric (skip fo	or Size	4 Coas	stal Plain	streams and Tidal N	larsh Streams)	
	11a.	□Yes	⊠No	Is assessr	nent reach	n in a na	tural sand-	bed st	ream? (skip for (Coastal Plain stream	s)	
	11b.			ed. Check in section (ox(es).						
		⊠в	Pool-gli	de section	(evaluate	11d)							
		_		bedform al	•				•	• •			
	11c.	at least of (R) = pres	ne box sent but	in each ro	w (skip fo ommon (C	or Size 4 (5) = > 10	Coastal P -40%, Abu	Plain s	treams	and Tida	ıl Marsh Streams). N	ether or not submerged. CI lot Present (NP) = absent, 70%. Cumulative percent	Rare
			R	С	A	P		oonrol	ito				
					旹		Bedrock/ Boulder ((256 –	4096 m	m)			
		H		\square			Cobble (6 Gravel (2		,				
		Ħ				Ħ	Sand (.06	62 – 2	mm)				
				\exists	\exists		Silt/clay (Detritus	(< 0.06	oż mm)				
							Artificial ((rip-ra	o, concre	ete, etc.)			
	11d.	□Yes	⊠No	Are pools	filled with	sedimer	ıt? (skip fc	r Size	4 Coas	tal Plain	streams and Tidal N	larsh Streams)	

12.			sessment reach metric (skip for Tidal Marsh Streams)
	12a. ⊠' If N		No Was an in-stream aquatic life assessment performed as described in the User Manual? one of the following reasons and skip to Metric 13. No Water Other:
	12b. 🔯	Yes	No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
	1		Adult frogs
			Aquatic reptiles Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)
	\exists		Beetles Caddisfly larvae (T)
			Asian clam (<i>Corbicula</i>) Crustacean (isopod/amphipod/crayfish/shrimp)
	Ĭ	\boxtimes	Damselfly and dragonfly larvae
	\vdash		Dipterans Mayfly larvae (E)
			Megaloptera (alderfly, fishfly, dobsonfly larvae) Midges/mosquito larvae
			Mosquito fish (Gambusia) or mud minnows (Umbra pygmaea)
	R		Mussels/Clams (not <i>Corbicula</i>) Other fish
	Ē	\boxtimes	Salamanders/tadpoles
	블	$\overline{\boxtimes}$	Snails Stonefly larvae (P)
			Tipulid larvae Worms/leeches
13.		r for the	Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types) Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runof
	\boxtimes A	RB ⊠A	Little or no alteration to water storage capacity over a majority of the streamside area
	□B □C	∐B ∐C	Moderate alteration to water storage capacity over a majority of the streamside area Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction livestock disturbance, buildings, man-made levees, drainage pipes)
14.			Water Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Left Bank (LB) and the Right Bank (RB) of the streamside area.
	⊠a ⊟B ⊟C	⊠a □B □C	Majority of streamside area with depressions able to pond water ≥ 6 inches deep Majority of streamside area with depressions able to pond water 3 to 6 inches deep Majority of streamside area with depressions able to pond water < 3 inches deep
15.	Conside	r for the	te – streamside area metric (skip for Tidal Marsh Streams) Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the norma of assessment reach.
	LB ⊠Y	RB ⊠Y	Are wetlands present in the streamside area?
	□N	□N	The wellands present in the streamside area.
16.			outors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)
	\boxtimes A	Streams	outors within the assessment reach or within view of <u>and</u> draining to the assessment reach. and/or springs (jurisdictional discharges)
	□B □C		nclude wet detention basins; do not include sediment basins or dry detention basins) iion passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir
	□D ⊠E	Evidenc	e of bank seepage or sweating (iron in water indicates seepage)
	□F		ped or bank soil reduced (dig through deposited sediment if present) the above
17.			tors – assessment area metric (skip for Tidal Marsh Streams)
	Check a ☐A		pry. e of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation)
	□B □C		tion not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) tream (≥ 24% impervious surface for watershed)
	\Box D	Evidenc	e that the streamside area has been modified resulting in accelerated drainage into the assessment reach
	□E ⊠F		nent reach relocated to valley edge the above
18.	_		sment reach metric (skip for Tidal Marsh Streams)
	Consider ⊠A		Consider "leaf-on" condition. shading is appropriate for stream category (may include gaps associated with natural processes)
	□B □C	Degrade	ed (example: scattered trees) shading is gone or largely absent
	_	-	

19.	Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out to the first break. Vegetated Wooded
	LB RB LB RB △A △A △A ≥ 100 feet wide or extends to the edge of the watershed □B □B □B □B □B From 50 to < 100 feet wide □C □C □C □C From 30 to < 50 feet wide □D □D □D □D From 10 to < 30 feet wide □E □E □E □E < 10 feet wide or no trees
20.	Buffer Structure – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width).
	LB RB □ A Mature forest □ B □ B Non-mature woody vegetation or modified vegetation structure □ C □ C Herbaceous vegetation with or without a strip of trees < 10 feet wide □ D □ D Maintained shrubs □ E □ Little or no vegetation
21.	Buffer Stressors – streamside area metric (skip for Tidal Marsh Streams) Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). If none of the following stressors occurs on either bank, check here and skip to Metric 22: Abuts < 30 feet 30-50 feet
	LB RB LB RB A A A A A A A A A A A A A A A A A A A
22.	Stem Density – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width).
	LB RB ⊠A
23.	Continuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams) Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide.
	LB RB ⊠A
24.	Vegetative Composition – streamside area metric (skip for Tidal Marsh Streams) Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to assessment reach habitat. LB RB
	 ✓A Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse.
	B Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or
	communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent or communities with non-native invasive species dominant over a large portion of expected strata or communities composed of planted stands of non-characteristic species or communities inappropriately composed of a single species or no vegetation.
25.	Conductivity – assessment reach metric (skip for all Coastal Plain streams) 25a.
	25b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter). □A < 46 □B 46 to < 67 □C 67 to < 79 □D 79 to < 230 □E ≥ 230
Note	es/Sketch:

Howard Creek

Stream Site Name	Bad Creek Pumped Storage Project	Date of Assessment	10/2/2023			
Stream Category	Mb3	Assessor Name/Organization	EBS / HDR			
Notes of Field Assessment Form (Y/N) NO						
Presence of regulator	NO					
Additional stream inf	NO					
NC SAM feature type	Perennial					

(perennial, intermittent, ridal warsh offeatin)	Toronnia	<u>'</u>
Function Class Rating Summary	USACE/ All Streams	NCDWR Intermittent
(1) Hydrology	HIGH	
(2) Baseflow	HIGH	
(2) Flood Flow	HIGH	
(3) Streamside Area Attenuation	HIGH	
(4) Floodplain Access	HIGH	
(4) Wooded Riparian Buffer	HIGH	
(4) Microtopography	NA NA	
(3) Stream Stability	HIGH	
(4) Channel Stability	HIGH	
(4) Sediment Transport	HIGH	
(4) Stream Geomorphology	HIGH	
(2) Stream/Intertidal Zone Interaction	NA	
(2) Longitudinal Tidal Flow	NA NA	
· · · · · ·	NA NA	
(2) Tidal Marsh Stream Stability (3) Tidal Marsh Channel Stability		
	NA NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	HIGH	
(2) Baseflow	HIGH	
(2) Streamside Area Vegetation	HIGH	
(3) Upland Pollutant Filtration	HIGH	
(3) Thermoregulation	HIGH	
(2) Indicators of Stressors	NO	
(2) Aquatic Life Tolerance	HIGH	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	HIGH	
(2) In-stream Habitat	HIGH	
(3) Baseflow	HIGH	
(3) Substrate	HIGH	
(3) Stream Stability	HIGH	
(3) In-stream Habitat	HIGH	
(2) Stream-side Habitat	HIGH	
(3) Stream-side Habitat	HIGH	
(3) Thermoregulation	HIGH	
(2) Tidal Marsh In-stream Habitat	NA	
(3) Flow Restriction	NA	
(3) Tidal Marsh Stream Stability	NA	
(4) Tidal Marsh Channel Stability	NA	
(4) Tidal Marsh Stream Geomorphology	NA	
(3) Tidal Marsh In-stream Habitat	NA	
(2) Intertidal Zone	NA	
Overall	HIGH	

NC SAM FIELD ASSESSMENT FORM Accompanies User Manual Version 2.1

	7,000		indui voioion zii	
USACE AID #:			NCDWR #:	
INSTRUCTIONS: Attach a sk	etch of the assessment a	area and photograp	hs. Attach a copy of the USGS	7.5-minute topographic quadrangle,
and circle the location of the s	stream reach under evalu	uation. If multiple s	tream reaches will be evaluated	I on the same property, identify and
number all reaches on the atta	ached map, and include a	a separate form for e	each reach. See the NC SAM U	ser Manual for detailed descriptions
and explanations of requested	d information. Record in	the "Notes/Sketch"	section if supplementary meas	urements were performed. See the
NC SAM User Manual for exa	mples of additional meas	surements that may	be relevant.	
NOTE EVIDENCE OF STRES	SSORS AFFECTING TH	E ASSESSMENT A	REA (do not need to be within	n the assessment area).
PROJECT/SITE INFORMATI				
1. Project name (if any):	Bad Creek II Power Co		Date of evaluation: 10/18/2	
Applicant/owner name:	Duke Energy		Assessor name/organization:	Paul Bright / HDR
5. County:	Oconee	6	. Nearest named water body	
7. River basin:	Savannah		on USGS 7.5-minute quad:	Howard Creek
8. Site coordinates (decimal d	legrees, at lower end of a	assessment reach):	34.995706, -83.000461	
STREAM INFORMATION: (d 9. Site number (show on attack			ngth of assessment reach evalu	ated (feet): 300
11. Channel depth from bed (i	in riffle, if present) to top	of bank (feet):	1 - 3 □U	Inable to assess channel depth.
12. Channel width at top of ba	ank (feet): 5 - 8	13. Is as:	sessment reach a swamp steam	i? ∐Yes ∐No
14. Feature type: ☐Perennia	al flow Intermittent flow	w □Tidal Marsh St	ream	
STREAM CATEGORY INFO	RMATION:			
15. NC SAM Zone:	Mountains (M)	☐ Piedmont (P)	☐ Inner Coastal Plain (I)	☐ Outer Coastal Plain (O)
			V	,
16. Estimated geomorphic			Mr.	
valley shape (skip for	∐A		⊠B	
Tidal Marsh Stream):	(more sinuous strear	m, f l atter valley slop	e) (less sinuous st	ream, steeper valley slope)
17. Watershed size: (skip	☐Size 1 (< 0.1 mi ²)	☐Size 2 (0.1 to	< 0.5 mi ²) Size 3 (0.5 to <	5 mi ²)
for Tidal Marsh Stream)				
ADDITIONAL INFORMATION				
			ck all that apply to the assessme	
☐Section 10 water	⊠Classified Ti			shed (I II III IV V)
☐Essential Fish Habitat	☐Primary Nur		•	s/Outstanding Resource Waters
☐Publicly owned property		parian buffer rule in		
☐Anadromous fish	□303(d) List	listed protected and		ronmental Concern (AEC)
List species:	oi a lederal and/or state	listea protectea spe	ecies within the assessment area	d.
☐Designated Critical Hab	oitat (liet enociae)			
_		neasuraments inclu	ded in "Notes/Sketch" section or	attached? MVas IINo
19. Are additional stream into	imation/supplementary in	neasurements mou	ded iii 140tes/Sketcii sectioii oi	attached: Miles III0
1. Channel Water – assessi	ment reach metric (skip	o for Size 1 stream	s and Tidal Marsh Streams)	
	it assessment reach.			
⊠B No flow, water in ■ No flow, w	•			
☐C No water in asse	ssment reach.			
2. Evidence of Flow Restric	ction – assessment read	ch metric		
☑A At least 10% of a	assessment reach in-stre	eam habitat or riffle	-pool sequence is severely affe	cted by a flow restriction or fill to the
				impoundment on flood or ebb within
	reach (examples: unders	sized or perched cu	lverts, causeways that constrict	the channel, tidal gates, debris jams,
beaver dams).				
☐B Not A				
3. Feature Pattern – assess				
	assessment reach has a	altered pattern (exar	nples: straightening, modificatio	n above or below culvert).
⊠B Not A				
4. Feature Longitudinal Pro	ofile – assessment reac	h metric		
☐A Majority of asses	ssment reach has a subst	tantially altered stre	am profile (examples: channel	down-cutting, existing damming, over
	aggradation, dredging, a	and excavation who	ere appropriate channel profile	has not reformed from any of these
disturbances).				
⊠B Not A				
5. Signs of Active Instabilit		motric		
	y – assessment reach r	meuro		
			e stream has currently recove	ered. Examples of instability include
	nstability, not past ever channel down-cutting (he	nts from which the		ered. Examples of instability include uch as concrete, gabion, rip-rap).
SA < 10% of channe □B 10 to 25% of cha	nstability, not past ever channel down-cutting (he el unstable	nts from which the		

6.	Streamside Area Interaction – streamside area metric Consider for the Left Bank (LB) and the Right Bank (RB).									
	Cons LB	sider for t RB	he Left	Bank (LE	3) and the	Right Ba	ink (RB).			
	□a ⊠B	□A ⊠B	Mod	derate evi	idence of c	conditions		rms, leve	es, down -	eraction cutting, aggradation, dredging) that adversely affect cruption of flood flows through streamside area, leaky
	□с	□c	or in Extended [exa of fl mos	ntermitten ensive ev amples: o lood flows	it bulkhead idence of d auseways through st ching]) <u>or</u> f	ls, causev conditions with flood reamside	ways with floodpl s that adversely a dplain and chann aarea] <u>or</u> too mud	lain const affect refe el constric ch floodpla	riction, mi erence inte ction, bulk ain/intertid	nor ditching [including mosquito ditching]) eraction (little to no floodplain/intertidal zone access heads, retaining walls, fill, stream incision, disruption lal zone access [examples: impoundments, intensive or assessment reach is a man-made feature on an
7.		-		ors – ass	essment r	each/inte	ertidal zone met	tric		
		k all that Disco		ater in str	eam or inte	ertidal zor	ne (milkv white, ł	olue, unna	atural wate	er discoloration, oil sheen, stream foam)
	□в	<u>Exce</u>	<u>ssive</u> se	dimentati	on (burying	g of strear	m features or inte	ertidal zor	ne)	
					f pollutant (tural sulfide		s entering the as	ssessmer	it reach <u>ai</u>	nd causing a water quality problem
	E E						ating degraded v	vater qua	lity in the	assessment reach. Cite source in "Notes/Sketch"
		section		h 000000	to otroom .	ar intartid	al zana			
	□F □G				to stream o eam or inte					
	ПН	Degra	aded ma	arsh vege	tation in the	e intertida	al zone (removal			nowing, destruction, etc)
	⊠I □J		r: to no sti			_ (explain	n in "Notes/Sketo	n section	1)	
8.	Rece	nt Weath	er – wa	tershed r	netric (ski	ip for Tid	lal Marsh Strear	ns)		
										eams, D2 drought or higher is considered a drought.
	□А		_				all not exceeding 1 inch within the			st 48 hours
	⊠c			onditions	<u>.</u> rannan 07	.cocanig	T IIIOTT WILLIIIT LITO	1001	ouro	
9.	Larg e		-		assessme			Yes, skip	to Metric	: 13 (Streamside Area Ground Surface Condition).
10.	Natu	ral In-stre	eam Hal	bitat Type	es – asses	sment re	each metric			
	10a.	⊠Yes	□No	sedime	entation, m	iining, exc		am harde	ening [for	nt reach (examples of stressors include excessive example, rip-rap], recent dredging, and snagging) to Metric 12)
	10b.									ize 4 Coastal Plain streams)
		□A			macropnyt ts, lichens,		quatic mosses al mats)	Check for Tidal Marsh Streams Only	□F □G	5% oysters or other natural hard bottoms Submerged aquatic vegetation
		⊠в	Multiple	e sticks a			d/or emergent	k for ⊺ h Strei Only	⊟.H	Low-tide refugia (pools)
		⊠c	vegetat Multiple		nd logs (in	cluding la	ıp trees)	arsh	□l	Sand bottom 5% vertical bank along the marsh
		⊠D	5% und	dercut baı	nks and/or	root mat	s and/or roots	Ď ≌	□κ	Little or no habitat
		□E		s extend r no habita		nal wetted	d perimeter			
		_								
****	*****	******	******	**REMAI	ING QUE	STIONS	ARE NOT APPL	ICABLE	FOR TID	AL MARSH STREAMS************************************
11.	Bedf	orm and	Substra	ite – asse	ssment re	each met	ric (skip for Siz	e 4 Coas	tal Plain s	streams and Tidal Marsh Streams)
	11a.	⊠Yes	□No	Is asses	sment read	ch in a na	atural sand-bed s	stream? (s	skip for C	oastal Plain streams)
	11b.	Bedform ⊠A			k the app		box(es).			
		⊠в	Pool-gl	ide sectio	n (evaluat	e 11d)				
		□с	Natural	bedform	absent (sk	kip to Met	tric 12, Aquatic	Life)		
	11c.									essment reach – whether or not submerged. Check Marsh Streams). Not Present (NP) = absent, Rare
		(R) = pre	esent bu	t <u><</u> 10%,	Common ((C) = > 10	0-40%, Abundan			Predominant (P) = > 70%. Cumulative percentages
		should no	ot excee R	ed 100% f C	or each as A	sessment P	t reach.			
						<u> </u>	Bedrock/sapro	lite		
		\boxtimes					Boulder (256 -		m)	
		H		\boxtimes		H	Cobble (64 – 2 Gravel (2 – 64			
							Sand (.062 – 2	2 mm)		
				H	H	H	Silt/clay (< 0.0 Detritus	lo2 mm)		
		$\overline{\boxtimes}$					Artificial (rip-ra	ap, concre	ete, etc.)	
	11d.	∐Yes	⊠No	Are pool	ls filled with	h sedimer	nt? (skip for Siz	e 4 Coas	tal Plain s	streams and Tidal Marsh Streams)

12.	-		sessment reach metric (skip for Tidal Marsh Streams)
	12a. ⊠` If N		No Was an in-stream aquatic life assessment performed as described in the User Manual? one of the following reasons and skip to Metric 13. ☐No Water ☐Other:
	12b. □	Yes 🛚	No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
	1		Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. Adult frogs Aquatic reptiles
			Aquatic replies Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats) Beetles
	Ë		Caddisfly larvae (T)
			Asian clam (<i>Corbicula</i>) Crustacean (isopod/amphipod/crayfish/shrimp)
	R		Damselfly and dragonfly larvae Dipterans
	Ē		Mayfly larvae (E) Megaloptera (alderfly, fishfly, dobsonfly larvae)
	H		Midges/mosquito larvae
			Mosquito fish (<i>Gambusia</i>) or mud minnows (<i>Umbra pygmaea)</i> Mussels/Clams (not <i>Corbicula</i>)
			Other fish Salamanders/tadpoles
	Ä		Snails Stonefly larvae (P)
	Ë		Tipulid larvae
13.		ide Area	Worms/leeches Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types)
	LB	RB	_eft Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff.
	□a □B	□a □B	Little or no alteration to water storage capacity over a majority of the streamside area Moderate alteration to water storage capacity over a majority of the streamside area
	□с	□с	Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction livestock disturbance, buildings, man-made levees, drainage pipes)
14.			Water Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Left Bank (LB) and the Right Bank (RB) of the streamside area.
	□A □B □C	□A □B □C	Majority of streamside area with depressions able to pond water ≥ 6 inches deep Majority of streamside area with depressions able to pond water 3 to 6 inches deep Majority of streamside area with depressions able to pond water < 3 inches deep
15.	Conside wetted pe	r for the erimeter o	e – streamside area metric (skip for Tidal Marsh Streams) Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the norma f assessment reach.
	LB □Y	RB □Y	Are wetlands present in the streamside area?
16	⊠N Basefloy	⊠N w Contrib	utors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)
	Check a	II contrib	utors within the assessment reach or within view of <u>and</u> draining to the assessment reach.
	⊠A □B	Ponds (ii	and/or springs (jurisdictional discharges) nclude wet detention basins; do not include sediment basins or dry detention basins)
	□c □d		on passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir) of bank seepage or sweating (iron in water indicates seepage)
	□E □F		ed or bank soil reduced (dig through deposited sediment if present) the above
17.			ors – assessment area metric (skip for Tidal Marsh Streams)
	\square A		of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation)
	□B □C		on not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) ream (≥ 24% impervious surface for watershed)
	□D □E		that the streamside area has been modified resulting in accelerated drainage into the assessment reach ent reach relocated to valley edge
	⊠F		he above
18.	_		ment reach metric (skip for Tidal Marsh Streams) Consider "leaf-on" condition.
	□A □B □C	Stream s Degrade	hading is appropriate for stream category (may include gaps associated with natural processes) d (example: scattered trees) hading is gone or largely absent

19.	Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out to the first break. Vegetated Wooded LB RB LB RB □ A □ A □ A □ A □ A ≥ 100 feet wide or extends to the edge of the watershed □ B □ B □ B □ B From 50 to < 100 feet wide □ C □ C □ C □ C □ C From 30 to < 50 feet wide □ D □ D □ D □ D □ D From 10 to < 30 feet wide □ E □ E □ E □ E □ E < 10 feet wide or no trees
20.	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
21.	Buffer Stressors – streamside area metric (skip for Tidal Marsh Streams) Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). If none of the following stressors occurs on either bank, check here and skip to Metric 22: Abuts < 30 feet 30-50 feet LB RB LB RB LB RB □ A □ A □ A □ A □ A □ A □ A Row crops □ B □ B □ B □ B □ B □ B □ B Maintained turf □ C □ C □ C □ C □ C □ C □ C Pasture (no livestock)/commercial horticulture □ D □ D □ D □ D □ D □ D □ D □ Pasture (active livestock use)
22.	Stem Density – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width). LB RB A Medium to high stem density B B Low stem density C C No wooded riparian buffer or predominantly herbaceous species or bare ground
23.	Continuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams) Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. LB RB A The total length of buffer breaks is < 25 percent. B B The total length of buffer breaks is between 25 and 50 percent. C C The total length of buffer breaks is > 50 percent.
24.	Vegetative Composition – streamside area metric (skip for Tidal Marsh Streams) Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to assessment reach habitat. LB RB □ A Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse. □ B □ B Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or communities missing understory but retaining canopy trees. □ C □ C □ C Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent or communities with non-native invasive species dominant over a large portion of expected strata or communities composed of planted stands of non-characteristic species or communities inappropriately composed of a single species or no vegetation.
25.	Conductivity – assessment reach metric (skip for all Coastal Plain streams) 25a. □Yes □No Was conductivity measurement recorded? If No, select one of the following reasons. □No Water □Other: 25b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter). □A < 46 □B 46 to < 67 □C 67 to < 79 □D 79 to < 230 □E ≥ 230
	s/Sketch: ring of vegetation and ATV trail crossing was observed.

Stream 12

MEDIUM

	Addon	pames osci manaai veisi	011 2.1	
Stream Site Name	Bad Creek II Power	Date of Assessmen	t 10/18/23	
	Complex Project	_		
Stream Category	Mb3	Assessor Name/Organization	n Paul Brigh	t / HDR
Notes of Field Asses	ssment Form (Y/N)		YES	
	ory considerations (Y/N)		YES	
	formation/supplementary measu	rements included (Y/N)	YES	
	e (perennial, intermittent, Tidal		Intermitter	nt .
•		·		_
			USACE/	NCDWR
	Function Class Rating Sum	mary .	All Streams	Intermittent
	(1) Hydrology		MEDIUM	
	(2) Baseflow	_	LOW	
	(2) Flood Flow	<u> </u>	HIGH	
	(3) Streamside A		MEDIUM	
	, , , ,	ain Access	MEDIUM	
	, ,	d Riparian Buffer	HIGH	
	(4) Microto		NA	NA
	(3) Stream Stabil	· -	HIGH	
	(4) Channe		HIGH	
	, ,	nt Transport	HIGH	
	(4) Stream	Geomorphology	HIGH	
	(2) Stream/Interti	dal Zone Interaction	NA	NA
	(2) Longitudinal Ti	dal Flow	NA	NA
	(2) Tidal Marsh St	ream Stability	NA	NA
	(3) Tidal Ma	arsh Channel Stability	NA	NA
	(3) Tidal Ma	arsh Stream Geomorphology	NA	NA
	(1) Water Quality		LOW	
	(2) Baseflow		LOW	
	(2) Streamside Area Ve	getation	HIGH	_
	(3) Upland Pollut	ant Filtration	HIGH	_
	(3) Thermoregula	tion	MEDIUM	_
	(2) Indicators of Stresso	ors	NO	
	(2) Aquatic Life Toleran	ce	LOW	
	(2) Intertidal Zone Filtrati	on	NA	NA
	(1) Habitat		HIGH	
	(2) In-stream Habitat		MEDIUM	
	(3) Baseflow		LOW	
	(3) Substrate		HIGH	
	(3) Stream Stabil	ity	HIGH	
	(3) In-stream Hab	 pitat	MEDIUM	
	(2) Stream-side Habitat		HIGH	
	(3) Stream-side H		HIGH	
	(3) Thermoregula		HIGH	-
	(2) Tidal Marsh In-stream		NA	NA
	(3) Flow Restrictio		NA	NA
	(3) Tidal Marsh St		NA	NA
	• ,	arsh Channel Stability	NA	NA
		arsh Stream Geomorphology	NA	NA
	(3) Tidal Marsh In-		NA	NA
	(2) Intertidal Zone	_	NA	NA NA
	. ,			

Overall

NC SAM FIELD ASSESSMENT FORM Accompanies User Manual Version 2.1

		oompamoo ooor ma	ilaai voioioii zii	
USACE AID #:			NCDWR #:	
INSTRUCTIONS	: Attach a sketch of the assessment	t area and photograph	ns. Attach a copy of the USGS	7.5-minute topographic quadrangle,
and circle the loc	ation of the stream reach under eva	aluation. If multiple st	tream reaches will be evaluated	on the same property, identify and
number all reach	es on the attached map, and include	a separate form for e	each reach. See the NC SAM U	ser Manual for detailed descriptions
and explanations	of requested information. Record in	n the "Notes/Sketch"	section if supplementary measu	urements were performed. See the
NC SAM User M	anual for examples of additional mea	asurements that may	be relevant.	
NOTE EVIDENC	E OF STRESSORS AFFECTING TH	HE ASSESSMENT A	REA (do not need to be withir	n the assessment area).
PROJECT/SITE			D (
1 Project name (Date of evaluation: 10/18/2	
3. Applicant/own			Assessor name/organization:	Paul Bright / HDR
5. County:	Oconee	6.	Nearest named water body	
7. River basin:	Savannah		on USGS 7.5-minute quad:	Howard Creek
8. Site coordinate	es (decimal degrees, at lower end of	assessment reach):	34.993024, -82.997765	
	MATION: (depth and width can be how on attached map): S15		ngth of assessment reach evalu	ated (feet): 175
11. Channel dept	th from bed (in riffle, if present) to top	o of bank (feet):	I-2 □U	Inable to assess channel depth.
12. Channel widt	h at top of bank (feet): 12-15	13. Is ass	sessment reach a swamp steam	? ∐Yes ∐No
	⊠Perennial flow ☐Intermittent flo			
1	GORY INFORMATION:	_		
15. NC SAM Zon	e: Mountains (M)	☐ Piedmont (P)	☐ Inner Coastal Plain (I)	☐ Outer Coastal Plain (O)
	_	_		
40 5 " , ,	V			
16. Estimated ge valley shape	Ι ΙΔ	\sim	⊠в	
Tidal Marsh		am, flatter valley slope	e) (less sinuous str	eam, steeper valley slope)
İ	, <u> </u>) Size 2 (0.1 to	·	
17. Watershed si			< 0.5 mi ⁻) \(\text{\tin}\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\text{\tin}\tinit}\\ \tint{\text{\text{\text{\text{\text{\tinit}\tint{\text{\text{\text{\tinit}\tint{\text{\text{\text{\tinit}\tint{\text{\text{\text{\text{\tinit}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex	
ADDITIONAL IN	•			
i	ory considerations evaluated? ⊠Ye	s Mo If Yes chec	rk all that annly to the assessme	ent area
Section 10				shed (□I □II □III □IV □V)
☐Essential F				s/Outstanding Resource Waters
_		liparian buffer rule in		
☐Anadromo				onmental Concern (AEC)
Document	ed presence of a federal and/or state			
List specie	s:			
☐Designate	d Critical Habitat (list species)			
19. Are additiona	I stream information/supplementary	measurements includ	ded in "Notes/Sketch" section or	attached? ⊠Yes □No
	er – assessment reach metric (ski	ip for Size 1 streams	s and Tidal Marsh Streams)	
	er throughout assessment reach.			
	low, water in pools only.			
☐C No v	vater in assessment reach.			
2. Evidence of	Flow Restriction – assessment rea	ach metric		
□A At le	ast 10% of assessment reach in-str	ream habitat or riffle-	-pool sequence is severely affe	cted by a flow restriction or fill to the
				impoundment on flood or ebb within
		ersized or perched cul	verts, causeways that constrict	the channel, tidal gates, debris jams,
	ver dams).			
⊠B Not	А			
3. Feature Patte	ern – assessment reach metric			
	ajority of the assessment reach has	altered pattern (exan	nples: straightening, modification	n above or below culvert).
⊠B Not	A			
4. Feature Long	gitudinal Profile – assessment reac	ch metric		
			am profile (examples: channel o	down-cutting, existing damming, over
				has not reformed from any of these
	urbances).		and appropriate entermor prome	
⊠B Not	,			
	ve Instability – assessment reach	metric		
_	<u> </u>		stream has currently recove	ered. Examples of instability include
	illure, active channel down-cutting (h			
	1% of channel unstable	.saa saa, asaro wac	g, and armout naturaling (30	zo ao concrete, gabieri, rip rap).
	25% of channel unstable			
	5% of channel unstable			

6.			Interaction – streamside area metric	
	Cons LB	RB	Left Bank (LB) and the Right Bank (RB).	
	□a ⊠B	∏A ⊠B	Little or no evidence of conditions that adversely affect reference interaction Moderate evidence of conditions (examples: berms, levees, down-cutting, aggradation, dredging) that adversely afference interaction (examples: limited streamside area access, disruption of flood flows through streamside area, lead or intermittent bulkheads, causeways with floodplain constriction, minor ditching [including mosquito ditching])	
	□c	□с	Extensive evidence of conditions that adversely affect reference interaction (little to no floodplain/intertidal zone acce [examples: causeways with floodplain and channel constriction, bulkheads, retaining walls, fill, stream incision, disrupti of flood flows through streamside area] or too much floodplain/intertidal zone access [examples: impoundments, intensi mosquito ditching]) or floodplain/intertidal zone unnaturally absent or assessment reach is a man-made feature on interstream divide	ion ive
7.			ressors – assessment reach/intertidal zone metric	
	Chec □A	k all that ap Discolo	oply. red water in stream or intertidal zone (milky white, blue, unnatural water discoloration, oil sheen, stream foam)	
	В	Excess	ve sedimentation (burying of stream features or intertidal zone)	
	\Box D	Odor (n	ble evidence of pollutant discharges entering the assessment reach <u>and</u> causing a water quality problem ot including natural sulfide odors)	
	□E	Current section.	published or collected data indicating degraded water quality in the assessment reach. Cite source in "Notes/Sketo	ch"
	□F □G		ck with access to stream or intertidal zone ve algae in stream or intertidal zone	
	□I □I	Degrad Other:	ed marsh vegetation in the intertidal zone (removal, burning, regular mowing, destruction, etc) (explain in "Notes/Sketch" section) no stressors	
8.			– watershed metric (skip for Tidal Marsh Streams)	
.		ize 1 or 2 st Drough Drough	reams, D1 drought or higher is considered a drought; for Size 3 or 4 streams, D2 drought or higher is considered a droug conditions <u>and</u> no rainfall or rainfall not exceeding 1 inch within the last 48 hours conditions <u>and</u> rainfall exceeding 1 inch within the last 48 hours ght conditions	ht.
9.	Large □Ye	e or Dangei	ous Stream – assessment reach metric Is stream is too large or dangerous to assess? If Yes, skip to Metric 13 (Streamside Area Ground Surface Condition).	
10.			n Habitat Types – assessment reach metric	
	10a.	∐Yes ∑	No Degraded in-stream habitat over majority of the assessment reach (examples of stressors include excessi sedimentation, mining, excavation, in-stream hardening [for example, rip-rap], recent dredging, and snaggir (evaluate for Size 4 Coastal Plain streams only, then skip to Metric 12)	
	10b.		hat occur (occurs if > 5% coverage of assessment reach) (skip for Size 4 Coastal Plain streams) ultiple aquatic macrophytes and aquatic mosses = ω □F 5% oysters or other natural hard bottoms	
		(ii	ultiple aquatic macrophytes and aquatic mosses nclude liverworts, lichens, and algal mats) ultiple sticks and/or leaf packs and/or emergent egetation ultiple snags and logs (including lap trees) undercut banks and/or root mats and/or roots 5% oysters or other natural hard bottoms Submerged aquatic vegetation Low-tide refugia (pools) Sand bottom 5% vertical bank along the marsh Little or no habitat	
			egetation 성 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등 등	
		□D 5		
			banks extend to the normal wetted perimeter ttle or no habitat	
****	*****	******	********REMAINING QUESTIONS ARE NOT APPLICABLE FOR TIDAL MARSH STREAMS************************************	
11.	Bedf	orm and Su	bstrate – assessment reach metric (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)	
			No Is assessment reach in a natural sand-bed stream? (skip for Coastal Plain streams)	
	11b.	⊠A R ⊠B P	aluated. Check the appropriate box(es). iffle-run section (evaluate 11c) pol-glide section (evaluate 11d) atural bedform absent (skip to Metric 12, Aquatic Life)	
	11c.	_	ions, check all that occur below the normal wetted perimeter of the assessment reach – whether or not submerged. Che	ck
		(R) = prese should not	e box in each row (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams). Not Present (NP) = absent, Rant but ≤ 10%, Common (C) = > 10-40%, Abundant (A) = > 40-70%, Predominant (P) = > 70%. Cumulative percentage exceed 100% for each assessment reach. C A P	
			□ □ ⊠ Bedrock/saprolite	
			□ □ □ Boulder (256 – 4096 mm) □ □ □ □ Cobble (64 – 256 mm)	
			Gravel (2 – 64 mm) Sand (.062 – 2 mm)	
] ⊠ □ □ Silt/clay (< 0.062 mm)	
			Artificial (rip-rap, concrete, etc.)	
	11d.	☐Yes ▷	No Are pools filled with sediment? (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)	

-		sessment reach metric (skip for Tidal Marsh Streams)
		No Was an in-stream aquatic life assessment performed as described in the User Manual? one of the following reasons and skip to Metric 13. ☐No Water ☐Other:
12b. □	Yes 🏻	No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
1 		Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. Adult frogs Aquatic reptiles
Ä		Aquatic replices Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats) Beetles
Ë		Caddisfly larvae (T)
\exists		Asian clam (<i>Corbicula</i>) Crustacean (isopod/amphipod/crayfish/shrimp)
R		Damselfly and dragonfly larvae Dipterans
Ē		Mayfly larvae (E) Megaloptera (alderfly, fishfly, dobsonfly larvae)
H		Midges/mosquito larvae
		Mosquito fish (<i>Gambusia</i>) or mud minnows (<i>Umbra pygmaea)</i> Mussels/Clams (not <i>Corbicula</i>)
		Other fish Salamanders/tadpoles
Ä		Snails Snails Snails Snails Snails Snails Snails Snails Snails Snails Snails Snails Snails Snails Snails Snails
Ë		Stonefly larvae (P) Tipulid larvae
	· 	Worms/leeches
Conside	r for the	Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types) Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff.
□A	□A □B	Little or no alteration to water storage capacity over a majority of the streamside area
	□B □C	Moderate alteration to water storage capacity over a majority of the streamside area Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction.
		livestock disturbance, buildings, man-made levees, drainage pipes)
Conside LB	r for the RB	Water Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Left Bank (LB) and the Right Bank (RB) of the streamside area.
∐A □B □C	∐A □B □C	Majority of streamside area with depressions able to pond water ≥ 6 inches deep Majority of streamside area with depressions able to pond water 3 to 6 inches deep Majority of streamside area with depressions able to pond water < 3 inches deep
Conside	r for the	e – streamside area metric (skip for Tidal Marsh Streams) Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the norma If assessment reach
LB .	RB	
□N	□N	Are wetlands present in the streamside area?
		utors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams) utors within the assessment reach or within view of and draining to the assessment reach.
\boxtimes A	Streams	and/or springs (jurisdictional discharges)
□c	Obstruct	nclude wet detention basins; do not include sediment basins or dry detention basins) on passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir)
		e of bank seepage or sweating (iron in water indicates seepage) sed or bank soil reduced (dig through deposited sediment if present)
		the above
Check a	ll that ap	
∐A □B		of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation) on not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit)
□C □D		ream (≥ 24% impervious surface for watershed) • that the streamside area has been modified resulting in accelerated drainage into the assessment reach
□E	Assessm	ent reach relocated to valley edge
		sment reach metric (skip for Tidal Marsh Streams)
Consider	aspect.	Consider "leaf-on" condition. hading is appropriate for stream category (may include gaps associated with natural processes)
□B □C	Degrade	d (example: scattered trees) hading is gone or largely absent
	12a. Sift 1 12b. Streams Conside Conside Wetland Conside Wetland Conside Wetland Conside Streams Conside B Check a 12a.	

19.	Consider "veget to the first break	
	LB RB LB ⊠A ⊠A ⊠A □B □B □	A ⊠A ≥ 100 feet wide <u>or</u> extends to the edge of the watershed B □B From 50 to < 100 feet wide C □C From 30 to < 50 feet wide D □D From 10 to < 30 feet wide
20.	Consider for left LB RB	- streamside area metric (skip for Tidal Marsh Streams) bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width).
	 ⋈ A ⋈ B ⋈ C ⋈ D ⋈ E 	Mature forest Non-mature woody vegetation or modified vegetation structure Herbaceous vegetation with or without a strip of trees < 10 feet wide Maintained shrubs Little or no vegetation
21.	Check all approprime within 30 feet of some of the following states of the following states of the control of the following states of the control of the con	A □A □A Row crops B □B □B Maintained turf
00		D D D Pasture (active livestock use)
22.	-	streamside area metric (skip for Tidal Marsh Streams) bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width).
	⊠A ⊠A □B □B □C □C	Medium to high stem density Low stem density No wooded riparian buffer <u>or</u> predominantly herbaceous species <u>or</u> bare ground
23.	-	getated Buffer – streamside area metric (skip for Tidal Marsh Streams) vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide.
	□A □A ⊠B ⊠B □C □C	The total length of buffer breaks is < 25 percent. The total length of buffer breaks is between 25 and 50 percent. The total length of buffer breaks is > 50 percent.
24.		position – streamside area metric (skip for Tidal Marsh Streams) inant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to n habitat.
	LB RB ⊠A ⊠A	Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species,
	□в □в	with non-native invasive species absent or sparse. Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or
	□c □c	communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent <u>or</u> communities with non-native invasive species dominant over a large portion of expected strata <u>or</u> communities composed of planted stands of non-characteristic species <u>or</u> communities inappropriately composed of a single species <u>or</u> no vegetation.
25.	25a. □Yes 🗵	ssessment reach metric (skip for all Coastal Plain streams) No Was conductivity measurement recorded? t one of the following reasons. No Water Other:
	25b. Check the t □A < 46	pox corresponding to the conductivity measurement (units of microsiemens per centimeter). ☐ B 46 to < 67 ☐ C 67 to < 79 ☐ D 79 to < 230 ☐ E ≥ 230
	es/Sketch:	
One	e A I V trail crossing	was observed at Stream 15. Small areas of vegetation along the stream have been removed.

Stream 15

Stream Site Name	Bad Creek II Power Complex Project	Date of Assessment	10/18/23		
Stream Category	Paul Bright / F	IDR			
Notes of Field Assessment Form (Y/N) Presence of regulatory considerations (Y/N) YES YES					
Additional stream inf	YES YES				
NC SAM feature type (perennial, intermittent, Tidal Marsh Stream) Perennial					

(1		<u> </u>
	USACE/	NCDWR
Function Class Rating Summary	All Streams	Intermittent
(1) Hydrology	HIGH	
(2) Baseflow	MEDIUM	
(2) Flood Flow	HIGH	
(3) Streamside Area Attenuation	MEDIUM	
(4) Floodplain Access	MEDIUM	
(4) Wooded Riparian Buffer	HIGH	
(4) Microtopography	NA	
(3) Stream Stability	HIGH	
(4) Channel Stability	HIGH	
(4) Sediment Transport	LOW	
(4) Stream Geomorphology	HIGH	
(2) Stream/Intertidal Zone Interaction	NA	
(2) Longitudinal Tidal Flow	NA	
(2) Tidal Marsh Stream Stability	NA	
(3) Tidal Marsh Channel Stability	NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	LOW	
(2) Baseflow	MEDIUM	
(2) Streamside Area Vegetation	MEDIUM	
(3) Upland Pollutant Filtration	MEDIUM	
(3) Thermoregulation	HIGH	
(2) Indicators of Stressors	NO	
(2) Aquatic Life Tolerance	LOW	
(2) Intertidal Zone Filtration	NA NA	
(1) Habitat	HIGH	
(2) In-stream Habitat	MEDIUM	
(3) Baseflow	MEDIUM	
(3) Substrate	LOW	
(3) Stream Stability	HIGH	
(3) In-stream Habitat	HIGH	
(2) Stream-side Habitat	HIGH	
(3) Stream-side Habitat	HIGH	
(3) Thermoregulation	HIGH	
(3) Thermoregulation (2) Tidal Marsh In-stream Habitat	NA	
` '	NA NA	
(3) Flow Restriction		
(3) Tidal Marsh Stream Stability	NA NA	
(4) Tidal Marsh Channel Stability	NA NA	
(4) Tidal Marsh Stream Geomorphology	NA NA	
(3) Tidal Marsh In-stream Habitat	NA NA	
(2) Intertidal Zone Overall	NA HIGH	

NC SAM FIELD ASSESSMENT FORM Accompanies User Manual Version 2.1

		ACC	ilipallies Usei	Wallual VEISIO	11 2.1	
USACE AID				NCDWF		
						7.5-minute topographic quadrangle,
						I on the same property, identify and
and explanati	ons of requested	d information. Record in	the "Notes/Sketo	ch" section if su	ipplementary measi	ser Manual for detailed descriptions urements were performed. See the
		mples of additional meas SORS AFFECTING THI				n the assessment area).
PROJECT/SI 1. Project nar	TE INFORMATION Te (if any):	ON: Bad Creek Pumped Sto	rage Project	2. Date of eva	luation: 10/18/2	023
3. Applicant/c		Duke Energy	nago i rojout		ame/organization:	Paul Bright / HDR
5. County:					med water body	
7. River basin	n:	Savannah			7.5-minute quad:	Devils Fork
8. Site coordi	nates (decimal d	egrees, at lower end of a	ssessment reacl	n): 34.9935	19, -82.994454	
	FORMATION: (deer (show on attack	epth and width can be a shed map): Stream 1			ssment reach evalu	ated (feet): 100
11. Channel of	depth from bed (i	n riffle, if present) to top	of bank (feet):	2-4		Inable to assess channel depth.
	width at top of ba	nk (feet):6-12 I flow ⊠Intermittent flow			ach a swamp steam	i? □Yes □No
-	TEGORY INFO			Stream		
15. NC SAM		Mountains (M)	☐ Piedmont (F	P) 🗌 Inner	Coastal Plain (I)	☐ Outer Coastal Plain (O)
16. Estimated	d geomorphic			,	⊠B \	
	ape (skip for rsh Stream):	(more sinuous stream	n flatter valley sl	one)		ream, steeper valley slope)
17. Watershe	,	Size 1 (< 0.1 mi²)	Size 2 (0.1		☐Size 3 (0.5 to <	
for Tidal	Marsh Stream)	,		10 (0.0 1111)		
_				hlll 4h -4		
	ulatory considera n 10 water	ations evaluated? ⊠Yes ⊠Classified Tr				ent area. shed (I II III IV IV IV
	ial Fish Habitat	□ Primary Nurs				s/Outstanding Resource Waters
	y owned property		parian buffer rule		Nutrient Sensitive W	
	mous fish	☐303(d) List		_		ronmental Concern (AEC)
□Docum	ented presence	of a federal and/or state	listed protected s	species within the	he assessment area	a. , , ,
List sp						
		itat (list species)		-lll : ((N -4	-/Ol-atala"	
19. Are additi	onai stream infoi	mation/supplementary m	leasurements ind	ciuded in "Notes	s/Sketch" section or	attached? ☐Yes ☒No
		ment reach metric (skip	for Size 1 stream	ms and Tidal	Marsh Streams)	
	Water throughou No flow, water in	t assessment reach. pools only.				
_	No water in asse					
		tion – assessment read				
						cted by a flow restriction or fill to the
						impoundment on flood or ebb within the channel, tidal gates, debris jams,
	beaver dams).	cacii (cxairipics: dilacis	sized of percifica	curverts, cause	ways that constitut	the charmer, treat gates, debris jams,
⊠B I	Not A					
		ment reach metric				
□A /		assessment reach has a	ltered pattern (ex	kamples: straigl	htening, modification	n above or below culvert).
	Not A	CII.				
	_	file – assessment reacl		tream profile (e	vamnles: channel (down-cutting, existing damming, over
						has not reformed from any of these
(disturbances).	, , ,			,	,
	Not A					
		y – assessment reach r		41 4		
						ered. Examples of instability include uch as concrete, gabion, rip-rap).
	< 10% of channe	3 \	au-ourj, aonve w	idening, and al	anciai riai ueriiriy (St	aon ao conorete, gabion, np-iapj.
	10 to 25% of cha					
	> 25% of channe	l unstable				

		ne Lett B	sank (LB) ai	na the Right	t Bank (RB).			
□A ⊠B	∏A ⊠B	Mode refer	erate eviden ence interac	nce of conditi ction (example	ions (examples: les: limited strear	berms, levenside area	ees, down- access, dis	-cutting, aggradation, dredging) that adversely affect sruption of flood flows through streamside area, leaky
□c	□c	Exter [exar of flo- mosc	nsive evider mples: caus od flows thro quito ditchin	nce of conditi seways with fl ough streams ig]) <u>or</u> floodpl	ions that adverse loodplain and cha side area] <u>or</u> too r	ely affect re annel constr nuch floodp	ference int riction, bulk lain/intertion	teraction (little to no floodplain/intertidal zone access wheads, retaining walls, fill, stream incision, disruption dal zone access [examples: impoundments, intensive
Water	Quality	Stressor	rs – assess	ment reach/	/intertidal zone i	metric		
			0 00000	mont rodon,	intertidal zone i			
ΠA								er discoloration, oil sheen, stream foam)
								nd causing a water quality problem
\Box D	Odor	(not inclu	uding natura	ıl sulfide odor	rs)			
□E			hed or colle	ected data in	dicating degrade	d water qu	ality in the	e assessment reach. Cite source in "Notes/Sketch"
□F			access to s	tream or inte	ertidal zone			
□G								
								nowing, destruction, etc)
⊠J				(***)			,	
	ze 1 or 2	streams,	D1 drought	or higher is o	considered a dro	ught; for Siz	e 3 or 4 stu	reams, D2 drought or higher is considered a drought.
⊟В								ast 46 nours
⊠c					3			
						P If Yes, sk	ip to Metric	c 13 (Streamside Area Ground Surface Condition).
Natura								
10a.	∐Yes	⊠No	sedimentat	tion, mining,	, excavation, in-s	tream hard	lening [for	example, rip-rap], recent dredging, and snagging)
						idal ams		5% oysters or other natural hard bottoms Submerged aquatic vegetation
	⊠B	Multiple	sticks and/c			t for T		Low-tide refugia (pools)
				oas (includin	ng lap trees)	neck arsh O		Sand bottom 5% vertical bank along the marsh
	\boxtimes D	5% unde	ercut banks	and/or root r	mats and/or root	s ပဲ≌	□κ	Little or no habitat
				ne normal we	etted perimeter			
		Little of 1	no nabitat					
*****	*****	******	REMAININ	G QUESTIO	NS ARE NOT A	PPLICABLE	FOR TID	AL MARSH STREAMS************************************
		_			• •			·
		_				ed stream?	(skip for C	Coastal Plain streams)
	⊠в	Pool-glid	de section (e	evaluate 11d	i)			
	∐С	Natural b	bedform abs	sent (skip to	Metric 12, Aqua	tic Life)		
;	at least o	ne box i	in each row	(skip for Size	ize 4 Coastal Pla	in streams	and Tidal	I Marsh Streams). Not Present (NP) = absent, Rare
:	should no	t exceed	100% for e	each assessm		()	,	3.1
		R □	C A	A P	Bedrock/sa	nrolite		
	IXI							
	\square				Boulder (25	56 – 4096 n	nm)	
					Cobble (64	- 256 mm)		
					Cobble (64 Gravel (2 –	– 256 mm) 64 mm)		
					Cobble (64 Gravel (2 – Sand (.062 Silt/clay (<	– 256 mm) 64 mm) – 2 mm)		
					Cobble (64 Gravel (2 – Sand (.062	– 256 mm) 64 mm) – 2 mm) 0.062 mm)	, '	
	Consile A B B B B C Check	Consider for the LB RB	Consider for the Left E LB RB A A B B Mode refer or interest of floe Water Quality Stresson Check all that apply. A Discolored wa B Excessive sed C Noticeable evi D Odor (not include E Current publist section. F Livestock with G Excessive algoes and D Other: J Little to no street Recent Weather — water For Size 1 or 2 streams, A Drought condition B Drought condition C No drought c	Consider for the Left Bank (LB) a LB RB A A A Little or no evide B B Moderate evider reference interact or intermittent but Extensive evider [examples: caus of flood flows thre mosquito ditchin interstream divid Water Quality Stressors – assess Check all that apply. A Discolored water in stream B Excessive sedimentation (C Noticeable evidence of po D Odor (not including natura E Current published or colle section. F Livestock with access to s G Excessive algae in stream H Degraded marsh vegetation Other: J Little to no stressors Recent Weather – watershed met For Size 1 or 2 streams, D1 drought A Drought conditions and no B Drought conditions and ra C No drought conditions Large or Dangerous Stream – ass Yes No Is stream is too I Natural In-stream Habitat Types – 10a. Yes No Degraded sedimenta (evaluate 10b. Check all that occur (occurs A Multiple aquatic mac (include liverworts, li B Multiple sticks and/o vegetation C Multiple snags and I D 5% undercut banks in banks extend to the Little or no habitat THE LITTLE STEPP STEPP 11a. Yes No Is assessment 11b. Bedform evaluated. Check the A Riffle-run section (examples) 11c. In riffle sections, check all that at least one box in each row (R) = present but ≤ 10%, Cor	Consider for the Left Bank (LB) and the Right LB RB RB A A A Little or no evidence of conditions and no rainfall or respectively and prought conditions and no rainfall or respectively and prought conditions and no rainfall exceed No drought conditions and rainfall exceed No drought conditions and rainfall exceed No drought conditions and no rainfall exceed No drought conditions and rainfall exceed No drought conditions and no rainfall or respectively and the section and prought conditions and rainfall exceed No drought conditions and no rainfall or respectively and the section and the sect	□	Consider for the Left Bank (LB) and the Right Bank (RB). B	Consider for the Left Bank (LB) and the Right Bank (RB). □ RB □ A □ A

12.	-		sessment reach metric (skip for Tidal Marsh Streams)
	12a. ⊠ If N		No Was an in-stream aquatic life assessment performed as described in the User Manual? one of the following reasons and skip to Metric 13. ☐No Water ☐Other:
	12b. 🛛	Yes	No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
	1		Adult frogs
			Aquatic reptiles Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats)
			Beetles Caddisfly larvae (T)
	Ē		Asian clam (<i>Corbicula</i>)
			Crustacean (isopod/amphipod/crayfish/shrimp) Damselfly and dragonfly larvae
			Dipterans Mayfly larvae (E)
	Ä		Megaloptera (alderfly, fishfly, dobsonfly larvae)
			Midges/mosquito larvae Mosquito fish (<i>Gambusia</i>) or mud minnows (<i>Umbra pygmaea</i>)
			Mussels/Clams (not <i>Corbicula</i>) Other fish
		\boxtimes	Salamanders/tadpoles
			Snails Stonefly larvae (P)
			Tipulid larvae Worms/leeches
13.	Streams Conside	ide Area	Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types) Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff.
	LB ⊠A	RB ⊠A	Little or no alteration to water storage capacity over a majority of the streamside area
	⊟B □C	⊟в □C	Moderate alteration to water storage capacity over a majority of the streamside area Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction,
	ПС	ПС	livestock disturbance, buildings, man-made levees, drainage pipes)
14.			Water Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Left Bank (LB) and the Right Bank (RB) of the streamside area.
	□A □B ⊠C	□A □B ⊠C	Majority of streamside area with depressions able to pond water ≥ 6 inches deep Majority of streamside area with depressions able to pond water 3 to 6 inches deep Majority of streamside area with depressions able to pond water < 3 inches deep
15.	Conside wetted p	r for the	e – streamside area metric (skip for Tidal Marsh Streams) Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the normal of assessment reach.
	□Y ⊠N	∐Y ⊠N	Are wetlands present in the streamside area?
16.			outors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)
		II contrib	utors within the assessment reach or within view of and draining to the assessment reach.
	□в	Ponds (i	and/or springs (jurisdictional discharges) nclude wet detention basins; do not include sediment basins or dry detention basins)
	□C □D		ion passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir) e of bank seepage or sweating (iron in water indicates seepage)
	□E □F	Stream	ped or bank soil reduced (dig through deposited sediment if present) the above
17.			tors – assessment area metric (skip for Tidal Marsh Streams)
	Check a □A		ply. e of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation)
	□В	Obstruc	ion not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit)
	□C □D		ream (≥ 24% impervious surface for watershed) ethat the streamside area has been modified resulting in accelerated drainage into the assessment reach
	□E ⊠F		nent reach relocated to valley edge the above
18.	Shading	– asses	sment reach metric (skip for Tidal Marsh Streams)
	Consider ⊠A		Consider "leaf-on" condition. shading is appropriate for stream category (may include gaps associated with natural processes)
	□B □C	Degrade	chading is appropriate for stream category (may include gaps associated with natural processes) shading is gone or largely absent

19.	Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out to the first break. Vegetated Wooded
	LB RB LB RB $△$ A $△$ A $△$ A $△$ A $△$ A $△$ A $△$ A $△$ A
20.	Buffer Structure – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width).
	LB RB □ A Mature forest □ B □ B Non-mature woody vegetation or modified vegetation structure □ C □ C Herbaceous vegetation with or without a strip of trees < 10 feet wide □ D □ D Maintained shrubs □ E □ E Little or no vegetation
21.	Buffer Stressors – streamside area metric (skip for Tidal Marsh Streams) Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). If none of the following stressors occurs on either bank, check here and skip to Metric 22: Abuts < 30 feet 30-50 feet
	LB RB LB RB A A A A A A A A A A A A A A A A A A A
22.	Stem Density – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width).
	LB RB ⊠A
23.	Continuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams) Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. LB RB
	 □ A □ B □ B □ C □ C □ C □ D /ul>
24.	Vegetative Composition – streamside area metric (skip for Tidal Marsh Streams) Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to assessment reach habitat. LB RB
	🖾 A Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse.
	B Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or
	communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent or communities with non-native invasive species dominant over a large portion of expected strata or communities composed of planted stands of non-characteristic species or communities inappropriately composed of a single species or no vegetation.
25.	Conductivity – assessment reach metric (skip for all Coastal Plain streams) 25a. Yes No Was conductivity measurement recorded? If No, select one of the following reasons. No Water Other:
	25b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter). $\Box A < 46 \Box B 46 \text{ to } < 67 \Box C 67 \text{ to } < 79 \Box D 79 \text{ to } < 230 \Box E ≥ 230$
Note	es/Sketch:

Stream Site Name	Bad Creek Pumped Storage Project	Date of Assessmer	nt 10/18/2023	3
Stream Category	Mb1	Assessor Name/Organizatio	n Paul Brigh	t / HDR
Additional stream in	ssment Form (Y/N) ory considerations (Y/N) formation/supplementary measu e (perennial, intermittent, Tidal I		NO YES NO Intermitter	
	Function Class Rating Sumr	mary	USACE/ All Streams	NCDWR Intermittent
	(1) Hydrology		HIGH	HIGH
	(2) Baseflow		HIGH	HIGH
	(2) Flood Flow		HIGH	HIGH
	(3) Streamside Ar	rea Attenuation	MEDIUM	MEDIUM
	(4) Floodpla	ain Access	MEDIUM	MEDIUM
	(4) Wooded	d Riparian Buffer	HIGH	HIGH
	(4) Microto	pography	NA	NA
	(3) Stream Stabili	ty	HIGH	HIGH
	(4) Channe	el Stability	HIGH	HIGH
	(4) Sedime	nt Transport	HIGH	HIGH
	(4) Stream	Geomorphology	HIGH	HIGH
	(2) Stream/Intertion	dal Zone Interaction	NA	NA
	(2) Longitudinal Tid	dal Flow	NA	NA
	(2) Tidal Marsh Str	eam Stability	NA	NA
		rsh Channel Stability	NA	NA
	(3) Tidal Ma	rsh Stream Geomorphology	NA	NA
	(1) Water Quality		MEDIUM	MEDIUM
	(2) Baseflow	_	HIGH	HIGH
	(2) Streamside Area Ve	getation	HIGH	HIGH
	(3) Upland Polluta	· —	HIGH	HIGH
	(3) Thermoregula	-	HIGH	HIGH
	(2) Indicators of Stresso	-	NO	NO
	(2) Aquatic Life Toleran		LOW	NA
	(2) Intertidal Zone Filtration		NA	NA
	(1) Habitat		HIGH	HIGH
	(2) In-stream Habitat	_	HIGH	HIGH
	(3) Baseflow	_	HIGH	HIGH
	(3) Substrate	_	HIGH	HIGH
	(3) Stream Stabili	ty	HIGH	HIGH
	(3) In-stream Hab	-	HIGH	HIGH
	(2) Stream-side Habitat		HIGH	HIGH
	(3) Stream-side H	_	HIGH	HIGH
	(3) Thermoregula	_	HIGH	HIGH
	(2) Tidal Marsh In-stream	-	NA	NA
	(3) Flow Restriction	_	NA	NA
	(3) Tidal Marsh Str	_	NA	NA
		rsh Channel Stability	NA	NA
		rsh Stream Geomorphology	NA	NA
	(3) Tidal Marsh In-	· · · · · · · · · · · · · · · · · · ·	NA	NA
	(2) Intertidal Zone	_	NA	NA NA
	Overell		HOLL	111011

Overall

HIGH

HIGH

NC SAM FIELD ASSESSMENT FORM Accompanies User Manual Version 2.1

	7 to companies o	COT III GIT GIOTO I ZIT	
USACE AID #:		NCDWR #:	
INSTRUCTIONS: Attach	a sketch of the assessment area and pho	tographs. Attach a copy of the USGS	7.5-minute topographic quadrangle,
and circle the location of t	he stream reach under evaluation. If mu	ıltiple stream reaches will be evaluated	d on the same property, identify and
number all reaches on the	attached map, and include a separate fo	rm for each reach. See the NC SAM U	ser Manual for detailed descriptions
and explanations of reque	sted information. Record in the "Notes/\$	Sketch" section if supplementary meas	urements were performed. See the
NC SAM User Manual for	examples of additional measurements th	at may be relevant.	
NOTE EVIDENCE OF ST	RESSORS AFFECTING THE ASSESSIN	IENT AREA (do not need to be within	n the assessment area).
PROJECT/SITE INFORM			
1. Project name (if any):	Bad Creek II Power Complex Project		
Applicant/owner name:	Duke Energy	4. Assessor name/organization:	Paul Bright / HDR
5. County:	Oconee	6. Nearest named water body	
7. River basin:	Savannah	on USGS 7.5-minute quad:	Devil's Fork
8. Site coordinates (decim	al degrees, at lower end of assessment r	reach): 34.993745, -82.993409	
	: (depth and width can be approximati		
9. Site number (show on a		10. Length of assessment reach evalu	
•	ed (in riffle, if present) to top of bank (feet	•	Jnable to assess channel depth.
12. Channel width at top o		Is assessment reach a swamp steam	ı? ∐Yes ∐No
	nnial flow □Intermittent flow □Tidal Ma	arsh Stream	
STREAM CATEGORY IN		_	_
15. NC SAM Zone:	Mountains (M) ☐ Piedmonth	ont (P)	☐ Outer Coastal Plain (O)
			/
16. Estimated geomorphic			
valley shape (skip for		⊠ B	
Tidal Marsh Stream):	(more sinuous stream, flatter valle	ey slope) (less sinuous st	ream, steeper valley slope)
17. Watershed size: (skip	\square Size 1 (< 0.1 mi ²) \square Size 2	$(0.1 \text{ to } < 0.5 \text{ mi}^2)$ Size 3 $(0.5 \text{ to } <$	5 mi²)
for Tidal Marsh Strea	m)		
ADDITIONAL INFORMAT			
	derations evaluated? $oxtimes$ Yes $oxtimes$ No If Ye		
☐Section 10 water	☑Classified Trout Waters		rshed (□I □II □III □IV □V) │
☐Essential Fish Habi	_ , ,		s/Outstanding Resource Waters
Publicly owned prop			i
☐Anadromous fish	□303(d) List		ronmental Concern (AEC)
	nce of a federal and/or state listed protec	ted species within the assessment area	a.
List species:	Lighitat (light appaign)		
Designated Critical	nabitat (list species) nformation/supplementary measurement	rs included in "Netes/Sketch" section of	rattached? Myos DNo
19. Are additional stream	mormation/supplementary measurement	s included in Notes/Sketch section of	allached? Ares Lino
1. Channel Water – asse	essment reach metric (skip for Size 1 s	streams and Tidal Marsh Streams)	
	hout assessment reach.	,	
☐B No flow, wate	er in pools only.		
□C No water in a	ssessment reach.		
2. Evidence of Flow Res	striction – assessment reach metric		
	of assessment reach in-stream habitat	or riffle-pool sequence is severely affe	cted by a flow restriction or fill to the
	ucting flow <u>or</u> a channel choked with aq		
the assessme	ent reach (examples: undersized or perc	hed culverts, causeways that constrict	the channel, tidal gates, debris jams,
beaver dams).		
☐B Not A			
3. Feature Pattern - ass	essment reach metric		
	the assessment reach has altered patter	n (examples: straightening, modificatio	n above or below culvert).
⊠B Not A			
4. Feature Longitudinal	Profile – assessment reach metric		
	sessment reach has a substantially alter	ed stream profile (examples: channel	down-cutting, existing damming, over
	ive aggradation, dredging, and excavat		
disturbances			, , , , , , , , , , , , , , , , , , ,
⊠B Not A			
5. Signs of Active Instal	oility – assessment reach metric		
J	it instability, not past events from wh	ich the stream has currently recove	ered. Examples of instability include
	ve channel down-cutting (head-cut), acti		
·	nnel unstable	J,	, 3,
☐B 10 to 25% of	channel unstable		
□C > 25% of cha	nnel unstable		

6.					streamsio					
	Cons LB	ider for t RB	he Left	Bank (LE	3) and the	Right Ba	ink (RB).			
	□A ⊠B	∏A ⊠B	Мо	derate ev	idence of o	conditions		rms, leve	es, down-	cutting, aggradation, dredging) that adversely affect
	□с	□c	or i	ntermitter	nt bulkhead	ls, causev	ways with floodp	lain const	riction, mi	ruption of flood flows through streamside area, leaky inor ditching [including mosquito ditching]) eraction (little to no floodplain/intertidal zone access
			of f mo	lood flows	through st ching]) <u>or</u> f	reamside	area] <u>or</u> too mud	ch floodpla	ain/intertic	cheads, retaining walls, fill, stream incision, disruption lal zone access [examples: impoundments, intensive or assessment reach is a man-made feature on an
7.	Wato	r Quality				each/inte	ertidal zone met	tric		
		k all that		013 — a33	essillelli i	cacimine	sitidal zone me	uic		
	ΠA									er discoloration, oil sheen, stream foam)
	□B □C						m features or intest or intesting the acceptance in the second contract the second contract in the second contract			nd causing a water quality problem
	\Box D	Odor	(not inc	cluding na	tural sulfide	e odors)	_		_	
	□E	Curre		ished or d	collected d	ata indica	ating degraded v	water qua	ility in the	assessment reach. Cite source in "Notes/Sketch"
	□F	Lives	tock wit		to stream o					
	□G □H				eam or inte tation in th			. burnina.	regular m	nowing, destruction, etc)
	□J	Othe	r:				n in "Notes/Sketo			
8.					matria (ski	in for Tid	lal Marsh Strear	ne)		
0.	For S	ize 1 or 2	streams	s, D1 drou	ught or high	ner is cons	sidered a drough	nt; for Size		reams, D2 drought or higher is considered a drought.
	□A □B		_				all not exceeding 1 inch within the			est 48 hours
	⊠c			conditions	<u>a</u> rairiiaii c	NOCCUITING	1 mon within the	last 40 m	ouis	
9.	Large □Ye		-		assessme oo large or			f Yes, skip	to Metric	: 13 (Streamside Area Ground Surface Condition).
10.							each metric	<i>.</i>		
	10a.	∐Yes	⊠No	sedime	entation, m	nining, ex		am harde	ening [for	nt reach (examples of stressors include excessive example, rip-rap], recent dredging, and snagging) to Metric 12)
	10b.									ize 4 Coastal Plain streams)
		□A			macropnyt ts, lichens,		quatic mosses ıl mats)	Check for Tidal Marsh Streams Only	□F □G	5% oysters or other natural hard bottoms Submerged aquatic vegetation
		□в			nd/or leaf	packs and	d/or emergent	k for J h Stre Only	□ □	Low-tide refugia (pools) Sand bottom
		⊠c	vegeta Multiple		nd logs (in	cluding la	ıp trees)	heck arsh	∐'j	5% vertical bank along the marsh
		⊠D					s and/or roots d perimeter	ი ≥	□ĸ	Little or no habitat
		□E		r no habita		nai wellet	ı perimeter			
****	*****	*****	*****	**RFMAII	NING QUE	STIONS	ARF NOT APPI	ICABI F	FOR TID	AL MARSH STREAMS************************************
										streams and Tidal Marsh Streams)
	11a.	∐Yes	⊠No	Is asses	sment rea	ch in a na	atural sand-bed s	stream? (s	skip for C	coastal Plain streams)
	11b.	_			ck the app		box(es).			
		⊠a ⊠b	Riffle-r	un sectior lide sectio	n (evaluate on (evaluat	e 11c) e 11d\				
		□c					tric 12, Aquatic	Life)		
	11c.									essment reach – whether or not submerged. Check
		(R) = pre	esent bu	ıt <u><</u> 10%,	Common ((C) = > 10	0 <mark>-</mark> 40%, Abundan			Marsh Streams). Not Present (NP) = absent, Rare Predominant (P) = > 70%. Cumulative percentages
		should no	ot excee	ed 100% f C	for each as A	sessment P	t reach.			
			\boxtimes		î	<u> </u>	Bedrock/sapro	olite		
							Boulder (256 - Cobble (64 – 2		m)	
						Ħ	Gravel (2 – 64			
					R	\Box	Sand (.062 – 2 Silt/clay (< 0.0			
					≝	Ĭ	Detritus			
							Artificial (rip-ra	•		
	11d.	□Yes	⊠No	Are poo	Is filled with	h sedimer	nt? (skip for Siz	e 4 Coas	tal Plain s	streams and Tidal Marsh Streams)

12.	-		sessment reach metric (skip for Tidal Marsh Streams)
	12a. ⊠` If N		No Was an in-stream aquatic life assessment performed as described in the User Manual? one of the following reasons and skip to Metric 13. ☐No Water ☐Other:
	12b. □	Yes 🛚	No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
	1		Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. Adult frogs Aquatic reptiles
			Aquatic replies Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats) Beetles
	Ë		Caddisfly larvae (T)
			Asian clam (<i>Corbicula</i>) Crustacean (isopod/amphipod/crayfish/shrimp)
	R		Damselfly and dragonfly larvae Dipterans
	Ē		Mayfly larvae (E) Megaloptera (alderfly, fishfly, dobsonfly larvae)
	H		Midges/mosquito larvae
			Mosquito fish (<i>Gambusia</i>) or mud minnows (<i>Umbra pygmaea)</i> Mussels/Clams (not <i>Corbicula</i>)
			Other fish Salamanders/tadpoles
	Ä		Snails Stonefly larvae (P)
	Ë		Tipulid larvae
13.		ide Area	Worms/leeches Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types)
	LB	RB	_eft Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff.
	□a □B	□a □B	Little or no alteration to water storage capacity over a majority of the streamside area Moderate alteration to water storage capacity over a majority of the streamside area
	□с	□с	Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction livestock disturbance, buildings, man-made levees, drainage pipes)
14.			Water Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Left Bank (LB) and the Right Bank (RB) of the streamside area.
	□A □B □C	□A □B □C	Majority of streamside area with depressions able to pond water ≥ 6 inches deep Majority of streamside area with depressions able to pond water 3 to 6 inches deep Majority of streamside area with depressions able to pond water < 3 inches deep
15.	Conside wetted pe	r for the erimeter o	e – streamside area metric (skip for Tidal Marsh Streams) Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the norma f assessment reach.
	LB □Y	RB □Y	Are wetlands present in the streamside area?
16	⊠N Basefloy	⊠N w Contrib	utors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams)
	Check a	II contrib	utors within the assessment reach or within view of <u>and</u> draining to the assessment reach.
	⊠A □B	Ponds (ii	and/or springs (jurisdictional discharges) nclude wet detention basins; do not include sediment basins or dry detention basins)
	□c □d		on passing flow during low-flow periods within the assessment area (beaver dam, leaky dam, bottom-release dam, weir) of bank seepage or sweating (iron in water indicates seepage)
	□E □F		ed or bank soil reduced (dig through deposited sediment if present) the above
17.			ors – assessment area metric (skip for Tidal Marsh Streams)
	\square A		of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation)
	□B □C		on not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) ream (≥ 24% impervious surface for watershed)
	□D □E		that the streamside area has been modified resulting in accelerated drainage into the assessment reach ent reach relocated to valley edge
	⊠F		he above
18.	_		ment reach metric (skip for Tidal Marsh Streams) Consider "leaf-on" condition.
	□A □B □C	Stream s Degrade	hading is appropriate for stream category (may include gaps associated with natural processes) d (example: scattered trees) hading is gone or largely absent

19.	Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out to the first break. Vegetated Wooded LB RB LB RB △A △A △A △A ≥ 100 feet wide or extends to the edge of the watershed □B □B □B □B From 50 to < 100 feet wide □C □C □C □C □C From 30 to < 50 feet wide □D □D □D □D □D □ From 10 to < 30 feet wide
	□E □E □E < 10 feet wide or no trees
20.	Buffer Structure – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width).
	LB RB
21.	Buffer Stressors – streamside area metric (skip for Tidal Marsh Streams) Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). If none of the following stressors occurs on either bank, check here and skip to Metric 22: Abuts < 30 feet 30-50 feet LB RB LB RB LB RB A A A A A A A A A A A A A A A A A A A
22.	Stem Density – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width).
	LB RB A Medium to high stem density B B Low stem density C C No wooded riparian buffer or predominantly herbaceous species or bare ground
23.	Continuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams) Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. LB RB A The total length of buffer breaks is < 25 percent. B B B The total length of buffer breaks is between 25 and 50 percent. C C The total length of buffer breaks is > 50 percent.
24.	Vegetative Composition – streamside area metric (skip for Tidal Marsh Streams) Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to assessment reach habitat. LB RB □A Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse. □B □B Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or
	communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or communities missing understory but retaining canopy trees. C C Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent or communities with non-native invasive species dominant over a large portion of expected strata or communities composed of planted stands of non-characteristic species or communities inappropriately composed of a single species or no vegetation.
25.	Conductivity – assessment reach metric (skip for all Coastal Plain streams) 25a.
	25b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter). □A < 46 □B 46 to < 67 □C 67 to < 79 □D 79 to < 230 □E ≥ 230
Note	es/Sketch:

One ATV access road has been constructed across Stream 17 and has two, 6-inch plastic culverts. Areas of streambank vegetation has been removed near the confluence of Stream 16.

Stream 17

Stream Site Name	Bad Creek II Power Complex Project	Date of Assessment	10/19/23	
Stream Category	Mb3	Assessor Name/Organization	Paul Bright / HDR	
Notes of Field Asses	YES			
Presence of regulator	ory considerations (Y/N)		YES	
Additional stream inf	ormation/supplementary measu	rements included (Y/N)	YES	
NC SAM feature type			Perennial	

(personnelly		<u>-</u>
	USACE/	NCDWR
Function Class Rating Summary	All Streams	Intermittent
(1) Hydrology	HIGH	
(2) Baseflow	MEDIUM	
(2) Flood Flow	HIGH	
(3) Streamside Area Attenuation	MEDIUM	
(4) Floodplain Access	MEDIUM	
(4) Wooded Riparian Buffer	HIGH	
(4) Microtopography	NA	
(3) Stream Stability	HIGH	
(4) Channel Stability	HIGH	
(4) Sediment Transport	HIGH	
(4) Stream Geomorphology	HIGH	
(2) Stream/Intertidal Zone Interaction	NA	
(2) Longitudinal Tidal Flow	NA	
(2) Tidal Marsh Stream Stability	NA	
(3) Tidal Marsh Channel Stability	NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	LOW	
(2) Baseflow	MEDIUM	
(2) Streamside Area Vegetation	MEDIUM	
(3) Upland Pollutant Filtration	MEDIUM	
(3) Thermoregulation	MEDIUM	
(2) Indicators of Stressors	NO	
(2) Aquatic Life Tolerance	LOW	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	HIGH	
(2) In-stream Habitat	HIGH	
(3) Baseflow	MEDIUM	
(3) Substrate	HIGH	
(3) Stream Stability	HIGH	
(3) In-stream Habitat	MEDIUM	
(2) Stream-side Habitat	HIGH	
(3) Stream-side Habitat	HIGH	
(3) Thermoregulation	MEDIUM	
(2) Tidal Marsh In-stream Habitat	NA NA	
(3) Flow Restriction	NA	
(3) Tidal Marsh Stream Stability	NA NA	
(4) Tidal Marsh Channel Stability	NA	
(4) Tidal Marsh Stream Geomorphology	NA	
(3) Tidal Marsh In-stream Habitat	NA	
(2) Intertidal Zone	NA	
Overall	HIGH	

Attachment E

Attachment E - Riparian Vegetation Survey Plot Data and Photolog

Stream 1 (Limber Pole Creek) – Upstream

Left Bank	DBH (cm)	Right Bank	DBH (cm)
Ilex opaca	7.6	Rhododendron	9.5
Rhododendron	5.1	Betula lenta	28.3
Rhododendron	7.6	Oxydendrum arboreum	12.7
Acer rubrum	26.7	Acer saccharum	14.0
Rhododendron	3.0	Rhododendron	10.5
Rhododendron	2.5	Liquidambar styraciflua	45.7
Rhododendron	7.6	Betula lenta	18.5
Rhododendron	7.6	Rhododendron	8.8
Rhododendron	5.1	Pinus strobus	94.9
Rhododendron	11.4	Rhododendron	9.8
Rhododendron	12.7	Betula lenta	21.3
Nyssa sylvatica	16.5	Rhododendron	13.6
Liquidambar styraciflua	33.0	Liquidambar styraciflua	21.4
Pinus strobus	42.4	Acer saccharum	10.4
Rhododendron	5.4	Betula lenta	13.1
Rhododendron	10.2	Oxydendrum arboreum	26.3
		Average DBH - trees >10 cm (cm)	24.2
		Average DBH - trees >10 cm (in)	9.5
		Average tree density (No. trees/acre)	405

Stream 1 (Limber Pole Creek) – Downstream

Left Bank	DBH (cm)	Right Bank	DBH (cm)
Rhododendron	7.0	Rhododendron	7.4
Rhododendron	14.9	Rhododendron	6.9
Sourwood	27.4	Acer rubrum	42.0
Rhododendron	12.0	Acer rubrum	29.9
Rhododendron	3.9	Acer rubrum	30.5
Nyssa sylvatica	13.6	Rhododendron	8.9
Rhododendron	9.5	Rhododendron	8.9
Rhododendron	7.0	Betula papyrifera	48.6
Rhododendron	3.5	Liriodendron tulipifera	43.0
		Rhododendron	8.5
		Rhododendron	17.0
		Rhododendron	14.0
		Average DBH - trees >10 cm (cm)	26.6
		Average DBH - trees >10 cm (in)	10.5
		Average tree density (No. trees/acre)	223

Stream 7 (Howard Creek) – Upstream

Left Bank	DBH (cm)	Right Bank	DBH (cm)
Carpinus caroliniana	22.0	Fagus grandifolia	17.4
Tsuga canadensis	9.7	Betula lenta	28.3
Liriodendron tulipifera	45.9	Liriodendron tulipifera	27.5
		Rhododendron	7.5
		Rhododendron	9.6
		Rhododendron	6.1
		Carpinus caroliniana	7.0
		Liriodendron tulipifera	43.5
		Acer rubrum	6.4
		Fagus grandifolia	34.1
		Average DBH - trees >10 cm (cm)	31.2
		Average DBH - trees >10 cm (in)	12.3
		Average tree density (No. trees/acre)	142

Stream 7 (Howard Creek) – Downstream

()	DBH		DBH		
Left Bank	(cm)	Right Bank	(cm)	DBH (cm)	
Tsuga canadensis	3.9	Acer rubrum Liriodendron	21.7	Tsuga canadensis	4
Tsuga canadensis	4.2	tulipifera	42.2	Tsuga canadensis	3
Fagus grandifolia	15.2	Ilex opaca	10.4	Carpinus caroliniana	2.5
Tsuga canadensis	3.5	Tsuga canadensis	7.6	Tsuga canadensis	3.5
Tsuga canadensis	3.5	Tsuga canadensis	2.5	Kalmia latifolia	4.2
Tsuga canadensis	3.5	Tsuga canadensis	4.2	Tsuga canadensis	3.5
Tsuga canadensis	4.1	Tsuga canadensis	4.0	Tsuga canadensis	2.8
Tsuga canadensis	4.0	Tsuga canadensis	3.5	Liquidambar styraciflua	4.5
Tsuga canadensis	3.5	Tsuga canadensis	5.4	Liriodendron tulipifera	20.3
Tsuga canadensis	4.0	Tsuga canadensis	3.5	Liquidambar styraciflua	2.8
Ilex opaca	2.1	Tsuga canadensis	3.5	Liquidambar styraciflua	2.8
Halesia carolina	19.5	Tsuga canadensis	3.5	Tsuga canadensis	8
Rhododendron	7.5	Tsuga canadensis	3.5	Tsuga canadensis	4
		Tsuga canadensis	2.9	Tsuga canadensis	4
		Tsuga canadensis	2.9	Tsuga canadensis	4
			Average D	OBH - trees >10 cm (cm)	21.6
			Average D	OBH - trees >10 cm (in)	8.5
			Average to	ree density (No. trees/acre)	121

162

Left Bank	DBI	H (cm)	Right Bank	DBH (cm)
Liriodendron tulipifera		28.0	Liquidambar styraciflua	76.0
Nyssa sylvatica		3.5	Tsuga canadensis	12.0
Nyssa sylvatica		5.4	Tsuga canadensis	22.0
Liriodendron tulipifera		12.8	Tsuga canadensis	8.0
Acer rubrum		8.9	Nyssa sylvatica	20.5
Carya tomentosa		27.5	Ilex opaca	19.0
Nyssa sylvatica		3.5	Kalmia latifolia	14.0
Liriodendron tulipifera		56.5	Quercus falcata	68.0
			Carya tomentosa	210.0
			Fraxinus pennsylvanica	8.0
			Average DBH - trees >10 cm (cm)	47.2
			Average DBH - trees >10 cm (in)	18.6
			Average tree density (No. trees/acre)	243
Stream 12 – Downstream				
Left Bank	DBH (cm)	Right	Bank	DBH (cm)
Liriodendron tulipifera	15.1	Liriod	endron tulipifera	70.6
Nyssa sylvatica	1.9	Ilex or	paca	4.7
Marana andreadina				
Nyssa sylvatica	1.9	Cornu	s amomum	7.0
Liriodendron tulipifera	1.9 45.9		s amomum us alba	
•		Querci		4.9
Liriodendron tulipifera	45.9	Querco Liriodo	us alba	4.9 48.4
Liriodendron tulipifera Liquidambar styraciflua	45.9 12.0	Querco Liriodo Tsuga	us alba endron tulipifera	4.9 48.4 12.4
Liriodendron tulipifera Liquidambar styraciflua Liriodendron tulipifera	45.9 12.0 24.5	Querco Liriodo Tsuga	us alba endron tulipifera canadensis canadensis	4.9 48.4 12.4 7.3
Liriodendron tulipifera Liquidambar styraciflua Liriodendron tulipifera Liquidambar styraciflua	45.9 12.0 24.5 7.9	Querci Liriodo Tsuga Tsuga	us alba endron tulipifera canadensis canadensis	4.9 48.4 12.4 7.3
Liriodendron tulipifera Liquidambar styraciflua Liriodendron tulipifera Liquidambar styraciflua Acer rubrum	45.9 12.0 24.5 7.9 4.4	Querci Liriodo Tsuga Tsuga	us alba endron tulipifera canadensis canadensis	4.9 48.4 12.4 7.3
Liriodendron tulipifera Liquidambar styraciflua Liriodendron tulipifera Liquidambar styraciflua Acer rubrum Liriodendron tulipifera	45.9 12.0 24.5 7.9 4.4 7.6	Querci Liriodo Tsuga Tsuga	us alba endron tulipifera canadensis canadensis	7.0 4.9 48.4 12.4 7.3 48.0
Liriodendron tulipifera Liquidambar styraciflua Liriodendron tulipifera Liquidambar styraciflua Acer rubrum Liriodendron tulipifera Liquidambar styraciflua	45.9 12.0 24.5 7.9 4.4 7.6 9.8	Querci Liriodo Tsuga Tsuga Acer r	us alba endron tulipifera canadensis canadensis	4.9 48.4 12.4 7.3

Average tree density (No. trees/acre)

Left Bank	DBH (cm)	Right Bank	DBH (cm)
Liriodendron tulipifera	12.2	Quercus montana	29.0
Acer rubrum	3.2	Kalmia latifolia	4.0
		Pinus strobus	21.8
		Nyssa sylvatica	4.5
		Nyssa sylvatica	28.6
		Kalmia latifolia	6.6
		Oxydendrum arboreum	12.4
		Nyssa sylvatica	5.5
		Nyssa sylvatica	3.8
		Average DBH - trees >10 cm (cm)	20.8
		Average DBH - trees >10 cm (in)	8.2
		Average tree density (No. trees/acre)	101

Stream 15 – Downstream

Left Bank	DBH (cm)	Right Bank	DBH (cm)
Acer rubrum	10.7	Quercus alba	28.3
Kalmia latifolia	6.7	Kalmia latifolia	7.0
Acer rubrum	12.0	Kalmia latifolia	4.7
Oxydendrum arboreum	28.4	Acer rubrum	23.7
Acer rubrum	20.0	Quercus alba	37.2
Quercus montana	31.0	Oxydendrum arboreum	18.0
Kalmia latifolia	5.0	Kalmia latifolia	7.6
		Acer rubrum	9.3
		Acer rubrum	17.5
		Pinus strobus	3.0
		Acer rubrum	7.4
		Quercus alba	41.5
		Average DBH - trees >10 cm (cm)	24.4
		Average DBH - trees >10 cm (in)	9.6
		Average tree density (No. trees/acre)	223

Stream 16 – Upstream				
Right Bank		DBH (cm)	Left Bank	DBH (cm)
Acer rubrum		11.1	Liriodendron tulipifera	44.3
Liriodendron tulipifera		15.4	Liriodendron tulipifera	16.9
Liriodendron tulipifera		27.5	Nyssa sylvatica	3.8
Acer rubrum		16.5	Acer rubrum	12.2
Oxydendrum arboreum		12.1	Liriodendron tulipifera	13.3
Acer rubrum		5.6	Liriodendron tulipifera	34.8
Magnolia tripetala		5	Oxydendrum arboreum	6
Quercus alba		46	Liriodendron tulipifera	12.4
Pinus strobus		1	Robinia pseudoacacia	21.4
Kalmia latifolia		5.6		
			Average DBH - trees >10 cm (cm)	21.8
			Average DBH - trees >10 cm (in)	8.6
			Average tree density (No. trees/acre)	263
Stream 16 – Downstrea	ım			
Right Bank	DBH (cm)	Left Bank		DBH (cm)
Acer rubrum	55		folia	2.1
Tilia americana	11.6	Liriodendron	ı tulipifera	19.4
		Liriodendron	-	25.5
		Liriodendron	-	15
		Liriodendron	ı tulipifera	19
		Oxydendrum	arboreum	4.6
		Liriodendron		6.8
		Oxydendrum	arboreum	7.5
		Oxydendrum	arboreum	3.4
		Oxydendrum	arboreum	2.2
		Kalmia latifo	olia	4
		Liriodendron	tulipifera	37
		Average DB	H - trees >10 cm (cm)	26.1
		_	H - trees >10 cm (in)	10.3

Average tree density (No. trees/acre)

142

Stream 17 (Devils Fork) – Upstream

Right Bank	DBH (cm)	Left Bank	DBH (cm)
Liriodendron tulipifera	44.3	Nyssa sylvatica	21.3
Liriodendron tulipifera	16.9	Quercus alba	53.1
Nyssa sylvatica	3.8	Kalmia latifolia	3.5
Acer rubrum	12.2	Acer rubrum	13.4
Liriodendron tulipifera	13.3	Oxydendrum arboreum	3
Liriodendron tulipifera	34.8	Liriodendron tulipifera	3.3
Oxydendrum arboreum	6	Asimina triloba	3.3
Liriodendron tulipifera	12.4	Kalmia latifolia	2.4
Robinia pseudoacacia	21.4	Kalmia latifolia	4
		Asimina triloba	2.5
		Average DBH - trees >10 cm (cm)	24.3
		Average DBH - trees >10 cm (in)	9.6
		Average tree density (No. trees/acre)	202

Stream 17 (Devils Fork) – Downstream

Stream 17 (Devils Fork) – I Right Bank	DBH (cm)	Left Bank	DBH (cm)
Fagus grandifolia	2.1	Robinia pseudoacacia	48
Liriodendron tulipifera	19.4	Ilex opaca	32
Liriodendron tulipifera	25.5	Nyssa sylvatica	4
Liriodendron tulipifera	15	Cornus florida	9.6
Liriodendron tulipifera	19	Ilex opaca	6.2
Oxydendrum arboreum	4.6	Liriodendron tulipifera	32
Liriodendron tulipifera	6.8	Ilex opaca	11.2
Oxydendrum arboreum	7.5	Liriodendron tulipifera	34
Oxydendrum arboreum	3.4	Acer rubrum	5
Oxydendrum arboreum	2.2	Fagus grandifolia	2.5
Kalmia latifolia	4	Fagus grandifolia	3.4
Liriodendron tulipifera	37	Liriodendron tulipifera	28.2
		Liriodendron tulipifera	27.5
		Liriodendron tulipifera	32
		Rhododendron	4
		Rhododendron	4.5
		Rhododendron	7.5
		Rhododendron	2.4
		Rhododendron	4.7
		Average DBH - trees >10 cm (cm)	27.8
		Average DBH - trees >10 cm (in)	10.9
		Average tree density (No. trees/acre)	263

Photo 1. View of vegetation plot on left bank of upstream reach at Stream 1 (Limber Pole Creek

Photo 2. View of vegetation plot on right bank of upstream reach at Stream 1 (Limber Pole Creek), facing southeast

Photo 3. View of vegetation plot on left bank of downstream reach at Stream 1 (Limber Pole Creek), facing southwest

Photo 4. View of vegetation plot on right bank of downstream reach at Stream 1 (Limber Pole Creek), facing southeast

Photo 5. View of vegetation plot on left bank of upstream reach at Stream 7 (Howard Creek), facing southeast

Photo 6. View of vegetation plot on right bank of upstream reach at Stream 7 (Howard Creek), facing southeast

Photo 7. View of vegetation plot on left bank of downstream reach at Stream 7 (Howard Creek), facing southwest

Photo 8. View of vegetation plot on right bank of downstream reach at Stream 7 (Howard Creek), facing northeast

Photo 9. View of vegetation plot on left bank of upstream reach at Stream 12, facing southeast

Photo 10. View of vegetation plot on right bank of upstream reach at Stream 12, facing northwest

Photo 11. View of vegetation plot on left bank of downstream reach at Stream 12, facing southwest

Photo 12. View of vegetation plot on right bank of downstream reach at Stream 12, facing south

Photo 13. View of vegetation plot on left bank of upstream reach at Stream 15, facing northwest

Photo 14. View of vegetation plot on left bank of upstream reach at Stream 15, facing northwest

Photo 15. View of vegetation plot on left bank of downstream reach at Stream 15, facing west

Photo 16. View of vegetation plot on right bank of upstream reach at Stream 16

Photo 17. View of vegetation plot on right bank of downstream reach at Stream 15, facing southeast

Photo 18. View of vegetation plot on left bank of upstream reach of Stream 16 and right bank of upstream reach of Stream 17 (Devils Fork), facing northeast

Photo 19. View of vegetation plot on left bank of upstream reach of Stream 17 (Devils Fork), facing northwest

Photo 20. View of vegetation plot on left bank of downstream reach of Stream 16 and right bank of downstream reach of Stream 17 (Devils Fork), facing north

Photo 21. View of vegetation plot on left bank of downstream reach of Stream 17 (Devils Fork), facing east

Photo 22. View of vegetation plot on right bank of downstream reach of Stream 16, facing west

Attachment F

Attachment F - Stream

Quantification Tool Rapid

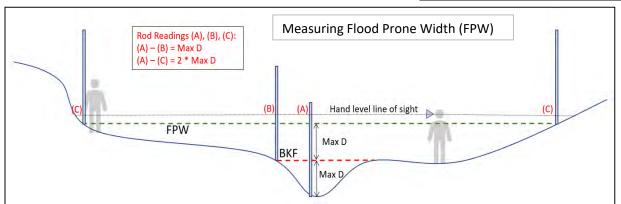
Method Forms

Upstream Version 1.0

Reach Information and Stratification

Project Name:	Bad Creek Pumped Storage Project	Shading Key
Reach ID:	Limber Pole Creek - Upstream	Desktop Value
Upstream Latitude:	34.991512	Field Value
Upstream Longitude:	-83.02083761	
Downstream Latitude:	34.991604	
Downstream Longitude:	-83.02053397	
Ecoregion:	Blue Ridge	
River Basin:	Savannah	
Stream Reach Length (ft):	100	
Valley Type:	Colluvial	
Drainage Area (sq. mi.):	1.780579	
Strahler Stream Order:	3	
Flow Type:	Perennial	
Buffer Valley Slope (%):	7.5	
Dominant Buffer Land Use:	Forested	
Stream Temperature:		
Macroinvertebrate Sampling Method:	SCDHEC SOP	

11. Reach Walk


•••	Reach Wark	
A.	Number of concen	trated flow points:
	Notes: No CFPs	
B.	Armored	Bank Lengths (ft):
	Notes: No bank armoring	
C.	Difference between BKF stage and WS (ft)	Describe the bankfull indicator
	0.82	Back of depositional feature
B. Armored Bank Lengths (ft): Notes: No bank armoring C. Difference between BKF stage and WS (ft) Describe the bankfull indicator		
		Armored Bank Lengths (ft): Describe the bankfull indicator

Version 1.0

III. Bankfull Verification and Stable Riffle Cross Section

A.	Difference between BKF stage and Average or consensus value from rea	0.82				
B.	Bankfull Width (ft)					
E.	Regional Curve Bankfull Width (ft)					
F.	Regional Curve Bankfull Mean Depth (ft)					
G.	Regional Curve Bankfull Area (sq. ft.)					
H.	Curve Used	SCDNR Stream Geomorphology and Data Colelction and Analysis South Carolina Ecoregions 66, 45, 65, 63				
l.	Flood Prone Width (FPW; ft)	16.08				

Cross Section Measurements Depth measured from bankfull								
Station	Depth							
0	0.22	14	0.18					
1	0.5	14.4	0					
2	0.88							
3	0.9							
4.9	1.05							
5.5	1.4							
6	1.52							
7	1.5							
8	1.35							
9	1.28							
10	1							
11	1.12							
12	1.1							
13	1.08							

SC SQT Rapid Method Form Version 1.0

Date: 10/2/2023 Investigators: EBS, KC, SP (HDR)

Representative Sub-Reach

^	Assessment Segment Length	100	20*Bankfull Width	288.4
Α.	At least 20 x the Bankfull Width	100	20 Barikidii Widdi	200.4

B. Riffle Data

IV.

	R1	R2	R3	R4	R5	R6	R7	R8
	IXI	I\Z	1/2	114	1/2	1.0	11.7	1/0
Begin Station (Distance along tape)	3.8	85						
End Station (Distance along tape)	34.9	102.5						
Low Bank Height (ft)	4.15	3.11						
Bankfull Max Depth (ft)	1.2	1.92						
Bankfull Width (ft)	14.4	22.3						
Flood Prone Width (ft)	16.1	38.4						
Bankfull Mean Depth (ft)	1.2	1.3			_			

C. Pool Data

POOL DATA								
	P1	P2	Р3	P4	P5	P6	P7	P8
Geomorphic Pool?	G	G						
Station At maximum pool depth	43.8	166.6						
Geomorphic P-P Spacing (ft)		122.8						
Pool Depth (ft) Measured from Bankfull	1.81	2.58						

D. Slope

Due to difficulty with dense vegetation, slope was calcluated using GIS and 2-foot topography	Begin	End	Difference	Slope (ft/ft)
Station along tape (ft)	0	103.2	103.2	0.019
Stadia Rod Reading (ft)	1694	1692	2.0	

E. Sinuosity

Calculated in GIS using delineated boundaries

Stream Length (ft)	103.2			
Valley Length (ft)	98.17			
Sinuosity	1.05			

Stream 1 (Limber Pole Creek) -**SC SQT Rapid Method Form**

Date: 10/2/2023 Upstream Version 1.0 Investigators: EBS, KC, SP (HDR)

F. LWD Piece Count (find 328-feet segment within assessment sub-reach with the MOST LWD)

Entire stream reach assessed for LWD

# of LWD Pieces	15
Assessment length (ft)	100
# of LWD Pieces/100 m	49.2

Stream 1 (Limber Pole Creek) -Upstream

SC SQT BEHI/NBS Field Form

Reach ID: Limber Pole Creek - Upstream

Valley Type: **Colluvial**

Bed Material: **D50 = 11.3 mm, medium gravel**

		Bank Erosion Hazard Index (BEHI) & Near-bank Stress (NBS)									
Station ID	Bank Length (Ft)	Study Bank Height (ft)	BKF Height (ft)	Root Depth (ft)	Root Density (%)	Bank Angle (degrees)	Surface Protection (%)	Bank Material Adjustment	Stratification Adjustment	BEHI Total/ Category	NBS Ranking
					75						
25	12	20	1.17	5	/5	75	75	silt- N/A	N/A	31.65 / High	1.0 / Low

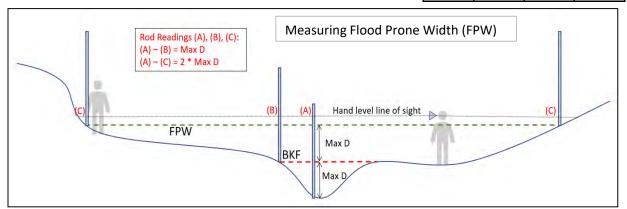
Date: 10/2/2023 Investigators: EBS, KC, SP (HDR) Downstream Version 1.0

Reach Information and Stratification

В.

C.

Read	ch Information	ı and Stratifi	cation			
Project Name:	Bad Creek Pu	mped Storage Pro	oject		Shadiı	ng Key
Reach ID:	Limber Pole	Creek - Downstre	am		Deskto	p Value
Upstream Latitude:	3	4.991604		1	Field	Value
Upstream Longitude:	-83	3.02053397		1		
Downstream Latitude:	3	4.991628		1		
Downstream Longitude:	-8	3.0200869		1		
Ecoregion:	В	llue Ridge				
River Basin:	9	avannah				
Stream Reach Length (ft):		146				
Valley Type:		Colluvial				
Drainage Area (sq. mi.):		1.780579				
Strahler Stream Order:		3				
Flow Type:	F	Perennial		1		
Buffer Valley Slope (%):		2.5				
Dominant Buffer Land Use:		Forested				
Stream Temperature:						
Macroinvertebrate Sampling	SC	DHEC SOP				
Method:	30	DHEC 3OF				
Reach Walk						
Number of concer	trated flow points:					
Notes: No CFPs	L					
Notes. No ciris						
Armoreo	d Bank Lengths (ft):					
Notes: No bank armoring						
Troces. No bank armoring						


Difference between BKF stage Describe the bankfull indicator and WS (ft) 0.83 bottom of undercut, top of mid-channel depositional bar

Version 1.0

III. Bankfull Verification and Stable Riffle Cross Section

Α.	Difference between BKF stage and Average or consensus value from rea		0.83		
В.	Bankfull Width (ft)				
E.	Regional Curve Bankfull Width (ft)				
F.	Regional Curve Bankfull Mean Depth (ft)				
G.	Regional Curve Bankfull Area (sq. ft.)				
Н.	Curve Used	SCDNR Stream Geomorphology ar Data Colelction and Analysis Souti Carolina Ecoregions 66, 45, 65, 63 (SCDNR 2020)			
l.	Flood Prone Width (FPW; ft)	21.1			

Cross Section Measurements Depth measured from bankfull							
Station	Depth	Station	Depth				
0	1.3	14	0.54				
1	1.28	15	0.84				
2	1.18	16	0.88				
3	1.28	17	0.84				
4	1.16	18	0.84				
5	0.88						
6	0.62						
7	0.5						
8	0.4						
9	0.4						
10	0.48						
11	0.54						
12	0.54						
13	0.64						

SC SQT Rapid Method Form Version 1.0

Date: 10/2/2023

Investigators: EBS, KC, SP (HDR)

Representative Sub-Reach

٨	Assessment Segment Length	100	20*Bankfull Width	364
Α.	At least 20 x the Bankfull Width	100	20"Barikidii Widdi	304

В. Riffle Data

IV.

	R1	R2	R3	R4	R5	R6	R7	R8
Begin Station (Distance along tape)	107							
End Station (Distance along tape)	146							
Low Bank Height (ft)	4.7							
Bankfull Max Depth (ft)	1.28							
Bankfull Width (ft)	18.2							
Flood Prone Width (ft)	2.56							
Bankfull Mean Depth (ft)	0.8							

C. Pool Data

POOI Dala								
	P1	P2	Р3	P4	P5	P6	P7	P8
Geomorphic Pool?	G							
Station At maximum pool depth	66.6	24.1						
Geomorphic P-P Spacing (ft)								
Pool Depth (ft) Measured from Bankfull	2.58	1.84						

D. Slope

Due to difficulty with dense vegetation, slope was calcluated using GIS and 2-foot topography	Begin	End	Difference	Slope (ft/ft)
Station along tape (ft)	0	146.83	146.8	0.014
Stadia Rod Reading (ft)	1692	1690	2.0	

E. Sinuosity

Calculated in GIS using delineated boundaries

Stream Length (ft)	146.83
Valley Length (ft)	134.89
Sinuosity	1.09

Stream 1 (Limber Pole Creek) -**SC SQT Rapid Method Form**

Date: 10/2/2023 Downstream Version 1.0 Investigators: EBS, KC, SP (HDR)

F. LWD Piece Count (find 328-feet segment within assessment sub-reach with the MOST LWD)

Entire stream reach assessed for LWD

# of LWD Pieces	12
Assessment length (ft)	146.83
# of LWD Pieces/100 m	26.8

Stream 1 (Limber Pole Creek) -Downstream

SC SQT BEHI/NBS Field Form

Reach ID: Limber Pole Creek - Downstream

Valley Type: **Colluvial**

Bed Material: **D50 = 14.55 mm, medium gravel**

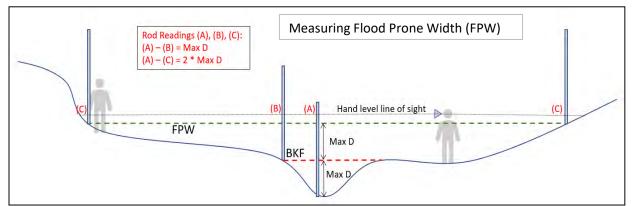
			Bank Erosion Hazard Index (BEHI) & Near-bank Stress (NBS)								
		Study									
	Bank	Bank	BKF		Root		Surface				
	Length	Height	Height	Root	Density	Bank Angle	Protection	Bank Material	Stratification	BEHI Total/	NBS
Station ID	(Ft)	(ft)	(ft)	Depth (ft)	(%)	(degrees)	(%)	Adjustment	Adjustment	Category	Ranking
All streambank	s stable										
ĺ											

B.

C.

Upstream Version 1.0

Reach Information and Stratification


١.	Reaci	n Information	and S	tratific	ation			
	Project Name:	Bad Creek Pu	mped Sto	orage Pro	ject		Shadii	ng Key
	Reach ID:	Howard	Creek - U	pstream			Deskto	p Value
	Upstream Latitude:	34.991168					Field	Value
	Upstream Longitude:	-83	3.002757	48			-	
	Downstream Latitude:	3	34.991031					
	Downstream Longitude:	-8	3.002467	'6				
	Ecoregion:	В	lue Ridge)				
	River Basin:	9	Savannah					
	Stream Reach Length (ft):		100					
	Valley Type:		Colluvial					
	Drainage Area (sq. mi.):		4.13202					
	Strahler Stream Order:		2					
	Flow Type:		Perennial					
	Buffer Valley Slope (%):		2.3					
	Dominant Buffer Land Use:		Forested					
	Stream Temperature:	(Coldwate	_				
	Macroinvertebrate Sampling	SC	DHEC SC)P				
	Method:	30	DITEC 30	/1				
l.	Reach Walk							
	Number of concent	trated flow points:						
	Notes: No CFPs	l						
	Notes. No Cirs							
						1		1
	Armored	Bank Lengths (ft):						
	Notes: No armored banks	L			<u> </u>	<u>l</u>	<u> </u>	
	Difference between BKF stage and							
	WS (ft)	Describe the bankfull indicator						
	0.02	undercut bank, mo	ss lines					

Stream 7 (Howard Creek) -Date: 10/2/2023 Upstream Investigators: EBS, KC, SP (HDR) Version 1.0

Bankfull Verification and Stable Riffle Cross Section III.

A.	Difference between BKF stage and V Average or consensus value from reac	` '	0.02	
B.	Bankfull Width (ft)		19.167	
E.	Regional Curve Bankfull Width (ft)		31.22	
F.	Regional Curve Bankfull Mean Deptl	າ (ft)	1.7197	
G.	Regional Curve Bankfull Area (sq. ft.)			
Н.	Curve Used	SCDNR Stream Geomorphology a Data Colelction and Analysis Soul Carolina Ecoregions 66, 45, 65, 6 (SCDNR 2020)		
l.	Flood Prone Width (FPW; ft)	20.8		

Cross Section Measurements Depth measured from bankfull								
Station	Depth	Station	Depth					
0	0.7	14	1					
1	0.71	15	0.7					
2	0.68	16	1.02					
3	0.48	17	1.02					
4	0.4	18	1.02					
5	0.52	19	0.9					
6	0.48							
7	0.1							
8	0.42							
9	0.5							
10	0.88							
11	1.2							
12	0.68							
13	0.82							

Upstream Version 1.0

IV. **Representative Sub-Reach**

	Assessment Segment Length	100	20*Bankfull Width	202 22
Α.	At least 20 x the Bankfull Width	100	20"Barikidii Widiri	363.33

В. Riffle Data

	R1	R2	R3	R4	R5	R6	R7	R8
Begin Station (Distance along tape)	46	1	23.5	84.2				
End Station (Distance along tape)	66.5	19	31.1	100				
Low Bank Height (ft)	1.83	3.92	3.33	1.83				
Bankfull Max Depth (ft)	0.84	0.62	1.2	1.46				
Bankfull Width (ft)	19.2	12.7	12.1	17.1				
Flood Prone Width (ft)	20.8	13	12.9	27.8				
Bankfull Mean Depth (ft)	0.8	0.8	0.8	0.8				

C. Pool Data

FUUI Dala								
	P1	P2	Р3	P4	P5	P6	P7	P8
Geomorphic Pool?	G	G	G					
Station At maximum pool depth	23.2	40.5	72					
Geomorphic P-P Spacing (ft)		17.3	31.5					
Pool Depth (ft) Measured from Bankfull	1.18	1.36	1.42					

Slope D.

Due to difficulty with dense vegetation, slope was calcluated using GIS and 2-foot topography	Begin	End	Difference	Slope (ft/ft)
Station along tape (ft)	0	102.95	103.0	0.019
Stadia Rod Reading (ft)	1320	1318	2.0	

E. Sinuosity

Calculated in GIS using delineated boundaries

Stream Length (ft)	102.95
Valley Length (ft)	96.33
Sinuosity	1.07

Stream 7 (Howard Creek) - SC SQT Rapid Method Form
Upstream Version 1.0

F. LWD Piece Count (find 328-feet segment within assessment sub-reach with the MOST LWD)

Entire stream reach assessed for LWD

Investigators: EBS, KC, SP (HDR)

Date: 10/2/2023

# of LWD Pieces	6
Assessment length (ft)	100
# of LWD Pieces/100 m	19.7

Stream 7 (Howard Creek) -Upstream

SC SQT BEHI/NBS Field Form

Reach ID: **Howard Creek - Upstream**

Valley Type: **Colluvial**

Bed Material: **D50 = 34.6 mm, very coarse gravel**

Bank Erosion Hazard Index (BEHI) & Near-bank Stress (NBS)											
Station ID	Bank Length (Ft)	Study Bank Height (ft)	BKF Height (ft)	Root Depth (ft)	Root Density	Bank Angle (degrees)	Surface Protection (%)	Bank Material Adjustment		BEHI Total/ Category	NBS Ranking
12	15	3	0.68	2	60	125	40	NA- silt	NA	33.3 / High	0.52 / Very Low
25	10	3.33	1.2	2.5	50	130	40	NA- silt	NA	32.05 / High	1.0 / Low
30	8	4	1.2	2	40	145	30	NA- silt	NA	37.02 / High	1.0 / Low

Date: 10/2/2023

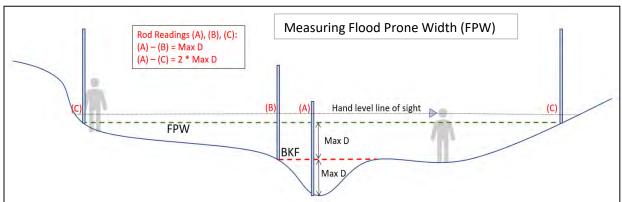
B.

C.

Investigators: EBS, KC, SP (HDR)

Reach Information and Stratification

Read	in information and Stratification	
Project Name:	Bad Creek Pumped Storage Project	Shading Key
Reach ID:	Howard Creek - Downstream	Desktop Value
Upstream Latitude:	34.991031	Field Value
Upstream Longitude:	-83.0024676	
Downstream Latitude:	34.990804	
Downstream Longitude:	-83.00220504	
Ecoregion:	Blue Ridge	
River Basin:	Savannah	
Stream Reach Length (ft):	114	
Valley Type:	Confined Alluvial	
Drainage Area (sq. mi.):	4.13202	
Strahler Stream Order:	2	
Flow Type:	Perennial	
Buffer Valley Slope (%):	2.3	
Dominant Buffer Land Use:	Forested	
Stream Temperature:	Coldwater	
Macroinvertebrate Sampling Method:	SCDHEC SOP	
Reach Walk		
Number of conce	ntrated flow points:	
Notes: No CFPs		
Armore	d Bank Lengths (ft):	


Armored	Bank Lengths (ft):					
Notes: No armored banks						
Difference between BKF stage and WS (ft)		Descr	ibe the b	ankfull inc	dicator	
	depositional bench	า w/veg -	top			

Date: 10/2/2023 Downstream Investigators: EBS, KC, SP (HDR) Version 1.0

Bankfull Verification and Stable Riffle Cross Section III.

A.	Difference between BKF stage and WS (ft) Average or consensus value from reach walk.					
B.	Bankfull Width (ft)					
E.	Regional Curve Bankfull Width (ft)					
F.	Regional Curve Bankfull Mean Depth (ft)					
G.	Regional Curve Bankfull Area (sq. ft.)					
Н.	Curve Used	SCDNR Stream Geomorphology and Data Colelction and Analysis South Carolina Ecoregions 66, 45, 65, 63				
l.	Flood Prone Width (FPW; ft)	29.5				

Cross Section Measurements Depth measured from bankfull									
Station	Depth	Station	Depth						
0	0.4	15	1.16						
1	0.62	16	1.18						
2	0.78	17	0.88						
3	0.88	18	1.18						
4	0.8	19	1.4						
5	0.58	20	0.86						
6	0.54	21	0.88						
7	1.24	22	0.58						
8	1.28	23	0.36						
10	1.16	24	0.25						
11	0.48	25	0						
12	0.52								
13	0.74								
14	0.78								

SC SQT Rapid Method Form

Version 1.0

Date: 10/2/2023 Investigators: EBS, KC, SP (HDR)

IV. **Representative Sub-Reach**

^	Assessment Segment Length	100	20*Bankfull Width	504
A.	At least 20 x the Bankfull Width	100	20"Balikiuli Widti	504

В. Riffle Data

	R1	R2	R3	R4	R5	R6	R7	R8
Begin Station (Distance along tape)	33							
End Station (Distance along tape)	96.5							
Low Bank Height (ft)	2.67							
Bankfull Max Depth (ft)	1.28							
Bankfull Width (ft)	25.2							
Flood Prone Width (ft)	29.5							
Bankfull Mean Depth (ft)	0.9							

C. Pool Data

1 001 Data								
	P1	P2	Р3	P4	P5	P6	P7	P8
Geomorphic Pool?								
Station At maximum pool depth	8.7							
Geomorphic P-P Spacing (ft)								
Pool Depth (ft) Measured from Bankfull	2.64							

D. Slope

Due to difficulty with dense vegetation, slope was calcluated using GIS and 2-foot topography	Begin	End	Difference	Slope (ft/ft)
Station along tape (ft)	0	116.7	116.7	0.051
Stadia Rod Reading (ft)	1318	1312	6.0	

E. Sinuosity

Calculated in GIS using delineated boundaries

Stream Length (ft)	116.7
Valley Length (ft)	114.28
Sinuosity	1.02

Stream 7 (Howard Creek) -**SC SQT Rapid Method Form**

Date: 10/2/2023 Downstream Version 1.0 Investigators: EBS, KC, SP (HDR)

F. LWD Piece Count (find 328-feet segment within assessment sub-reach with the MOST LWD)

Entire stream reach assessed for LWD

# of LWD Pieces	15
Assessment length (ft)	114
# of LWD Pieces/100 m	43.2

Stream 7 (Howard Creek) -Downstream

SC SQT BEHI/NBS Field Form

Reach ID: **Howard Creek - Downstream**

Valley Type: **Colluvial**

Bed Material: **D50 = 56.69 mm, very coarse gravel**

			Bank Erosion Hazard Index (BEHI) & Near-bank Stress (NBS)								
Station ID	Bank Length (Ft)	Study Bank Height (ft)	BKF Height (ft)	Root Depth (ft)	Root Density (%)	Bank Angle (degrees)	Surface Protection (%)	Bank Material Adjustment	Stratification Adjustment	BEHI Total/ Category	NBS Ranking
98	8	6	1.3	0	0	85	100	Bedrock	NA	2.69 / Very Low	1.44 / Low

Date: 10/2/2023

Stream 12 - Upstream Investigators: EBS, KC, SP (HDR) Version 1.0

Reach Information and Stratification

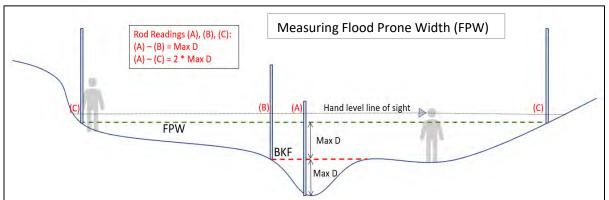
Project Name:	Bad Creek Pumped Storage Project	Shading Key
Reach ID:	Stream 12 - Upstream	Desktop Value
Upstream Latitude:	34.995613	Field Value
Upstream Longitude:	-83.0064477	
Downstream Latitude:	34995642	
Downstream Longitude:	-83.00094113	
Ecoregion:	Blue Ridge	
River Basin:	Savannah	
Stream Reach Length (ft):	100	
Valley Type:	Colluvial	
Drainage Area (sq. mi.):	0.031178	
Strahler Stream Order:	1	
Flow Type:	Intermittent	
Buffer Valley Slope (%):	15.7	
Dominant Buffer Land Use:	Forested	
Stream Temperature:	Coldwater	
Macroinvertebrate Sampling	NA	
Method:		

II. **Reach Walk**

A.	Number of concen	ntrated flow points:						
	Notes: No CFPs							
B.	Armored	d Bank Lengths (ft):						
	Notes: No bank amoring							
C.	Difference between BKF stage and WS (ft)	Describe the bankfull indicator						
	0.3	No water present. Veg/moss break.						

Stream 12 - Upstream

Investigators: EBS, KC, SP (HDR)


Date: 10/2/2023

Version 1.0

III. Bankfull Verification and Stable Riffle Cross Section

A.	Difference between BKF stage an Average or consensus value from re	0.3			
B.	Bankfull Width (ft)				
E.	Regional Curve Bankfull Width (ft)				
F.	Regional Curve Bankfull Mean De	0.4048			
G.	Regional Curve Bankfull Area (sq. ft.)				
H.	Curve Used	Data Colelction and Analysis South Carolina Ecoregions 66, 45, 65, 63			
1.	Flood Prone Width (FPW; ft) 5.7				

Cross Section Measurements Depth measured from bankfull									
Station	Depth	Station	Depth						
0	0.42								
1	0.38								
2	0.36								
3	0.28								
4	0.18								
5	0								

Stream 12 - Upstream

Investigators: EBS, KC, SP (HDR)

Version 1.0

IV. Representative Sub-Reach

^	Assessment Segment Length	100	20*Bankfull Width	100
A.	At least 20 x the Bankfull Width	100	20"Bariki'uli Widili	100

B. Riffle Data

Date: 10/2/2023

	R1	R2	R3	R4	R5	R6	R7	R8
Begin Station (Distance along tape)	12	32.5	46					
End Station (Distance along tape)	31	42.7	56					
Low Bank Height (ft)	2.9	1.62	1.62					
Bankfull Max Depth (ft)	0.38	0.5	0.68					
Bankfull Width (ft)	5	5.6	4.2					
Flood Prone Width (ft)	5.7	7.8	5.4					
Bankfull Mean Depth (ft)	0.3	0.3	0.3					-

C. Pool Data

POOI Data								
	P1	P2	Р3	P4	P5	P6	P7	P8
Geomorphic Pool?	G	G	G					
Station At maximum pool depth	10.9	31	44.1					
Geomorphic P-P Spacing (ft)		20.1	13.1					
Pool Depth (ft) Measured from Bankfull	0.9	0.38	0.78					

D. Slope

Due to difficulty with dense vegetation, slope was calcluated using GIS and 2-foot topography	Begin	End	Difference	Slope (ft/ft)
Station along tape (ft)	0	99.88	99.9	0.120
Stadia Rod Reading (ft)	1542	1530	12.0	

E. Sinuosity

Calculated in GIS using delineated boundaries

Stream Length (ft)	99.88
Valley Length (ft)	89.4
Sinuosity	1.12

SC SQT Rapid Method Form

Stream 12 - Upstream

Date: 10/2/2023

Investigators: EBS, KC, SP (HDR) Version 1.0

F. LWD Piece Count (find 328-feet segment within assessment sub-reach with the MOST LWD)

Entire stream reach assessed for LWD

# of LWD Pieces	3
Assessment length (ft)	100
# of LWD Pieces/100 m	9.8

Investigators: EBS, KC, SP (HDR)

Reach ID: Stream 12 - Upstream

Valley Type: Colluvial

Bed Material: **D50 = 14.29, medium gravel**

Length Height Height Root Density Bank Angle Protection Bank Material Stratification BEHI Total/ Station ID (Ft) (ft) (ft) Depth (ft) (%) (degrees) (%) Adjustment Adjustment Category R	
Station ID (Ft) (ft) (ft) Depth (ft) (%) (degrees) (%) Adjustment Adjustment Category R.	
	NBS
All banks stable	Ranking

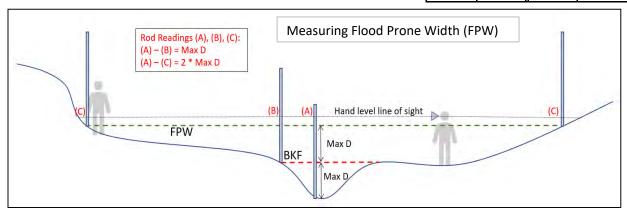
Reach Information and Stratification

Project Name:	Bad Creek Pumped Storage Project	Shading Key
Reach ID:	Stream 12 - Downstream	Desktop Value
Upstream Latitude:	34.995642	Field Value
Upstream Longitude:	-83.00094113	
Downstream Latitude:	34.995534	
Downstream Longitude:	-83.00115561	
Ecoregion:	Blue Ridge	
River Basin:	Savannah	
Stream Reach Length (ft):	100	
Valley Type:	Colluvial	
Drainage Area (sq. mi.):	0.031178	
Strahler Stream Order:	1	
Flow Type:	Intermittent	
Buffer Valley Slope (%):	15.7	
Dominant Buffer Land Use:	Forested	
Stream Temperature:	Coldwater	
Macroinvertebrate Sampling	NA	
Method:	IVA	
Reach Walk		

П

11.	Reach wark	
A.	Number of concen	ntrated flow points:
	Notes: No CFPs	
В.	Armored	d Bank Lengths (ft):
	Notes: No bank amoring	
C.	Difference between BKF stage and WS (ft)	Describe the bankfull indicator
	0.75	Back of bench

Investigators: EBS, KC, SP (HDR)


Date: 10/2/2023

Version 1.0

III. Bankfull Verification and Stable Riffle Cross Section

Α.	Difference between BKF stage and Naverage or consensus value from read	0.75				
B.	Bankfull Width (ft)					
E.	Regional Curve Bankfull Width (ft)	4.4209				
F.	Regional Curve Bankfull Mean Dept	0.4048				
G.	Regional Curve Bankfull Area (sq. ft	1.811				
H.	Curve Used	SCDNR Stream Geomorphology and Data Colelction and Analysis South Carolina Ecoregions 66, 45, 65, 63				
l.	Flood Prone Width (FPW; ft) 9.5					

		Measuren d from ba	
Station	Depth	Station	Depth
0	0.12		
1	0.16		
2	0.46		
3	0		
3.5	0.38		
4	0.66		
5	0.58		
6	0.68		
7	0.82		
8	0.82		

Stream 12 - Downstream

Date: 10/2/2023 Version 1.0 Investigators: EBS, KC, SP (HDR)

Representative Sub-Reach IV.

^	Assessment Segment Length	100	20*Bankfull Width	162
A.	At least 20 x the Bankfull Width	100	20"Balikiuli Widti	162

В. Riffle Data

	R1	R2	R3	R4	R5	R6	R7	R8
Begin Station (Distance along tape)	18	30.9	77.6					
End Station (Distance along tape)	28.8	73.5	100					
Low Bank Height (ft)	1.46	3.2	1.85					
Bankfull Max Depth (ft)	0.8	0.8	0.8					
Bankfull Width (ft)	8.1	5.2	8.7					
Flood Prone Width (ft)	9.6	10.5	10.3					
Bankfull Mean Depth (ft)	0.5	0.5	0.5					

C. Pool Data

FUUI Data								
	P1	P2	Р3	P4	P5	P6	P7	P8
Geomorphic Pool?	G	G	G					
Station At maximum pool depth	6.5	13	16.8	30.2	76.7			
Geomorphic P-P Spacing (ft)		6.5	3.8					
Pool Depth (ft) Measured from Bankfull	0.56	0.38	0.52	0.7	0.8			

D. Slope

Due to difficulty with dense vegetation, slope was calcluated using GIS and 2-foot topography	Begin	End	Difference	Slope (ft/ft)
Station along tape (ft)	0	100.7	100.7	0.079
Stadia Rod Reading (ft)	1530	1522	8.0	

E. Sinuosity

Calculated in GIS using delineated boundaries

Stream Length (ft)	100.7
Valley Length (ft)	75.27
Sinuosity	1.34

Stream 12 - Downstream SC SQT Rapid Method Form

Date: 10/2/2023 Stream 12 - Downstream

Investigators: EBS, KC, SP (HDR) Version 1.0

F. LWD Piece Count (find 328-feet segment within assessment sub-reach with the MOST LWD)

Entire stream reach assessed for LWD

# of LWD Pieces	16
Assessment length (ft)	100
# of LWD Pieces/100 m	52.5

Date: 10/2/2023 Stream 12 - Downstream **SC SQT BEHI/NBS Field Form**

Investigators: EBS, KC, SP (HDR)

Reach ID: Stream 12 - Downstream

Valley Type: Colluvial

Bed Material: **D50 = 3.13, very fine gravel**

			Bank Erosion Hazard Index (BEHI) & Near-bank Stress (NBS)								
Station ID	Bank Length (Ft)	Study Bank Height (ft)	BKF Height (ft)	Root Depth (ft)	Root Density (%)	Bank Angle (degrees)	Surface Protection (%)	Bank Material Adjustment	Stratification Adjustment	BEHI Total/ Category	NBS Ranking
20	10	7	0.5	6	60	60	40	silt	NA	25.37 / Moderate	1.6 / Moderate

Date: 10/3/2023 Investigators: EBS, KC, SP (HDR) Version 1.0

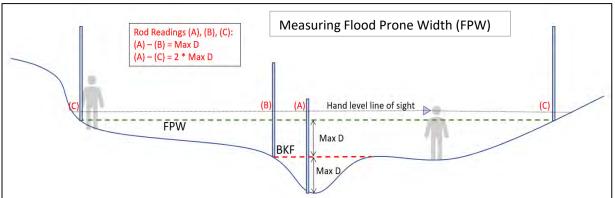
Reach Information and Stratification

Project Name:	Bad Creek Pumped Storage Project	Shading Key
Reach ID:	Stream 15 Upstream	Desktop Value
Upstream Latitude:	34.99311	Field Value
Upstream Longitude:	-82.99787492	
Downstream Latitude:	34.992924	
Downstream Longitude:	-82.99763355	
Ecoregion:	Blue Ridge	
River Basin:	Savannah	
Stream Reach Length (ft):	100	
Valley Type:	Colluvial	
Drainage Area (sq. mi.):	0.018879	
Strahler Stream Order:	First	
Flow Type:	Perennial	
Buffer Valley Slope (%):	8.1	
Dominant Buffer Land Use:	Forested	
Stream Temperature:	Coldwater	
Macroinvertebrate Sampling	N/A	
Method:	IN/A	

П Reach Walk

	Reach Walk							
A.	Number of concen	itrated flow points:						
	Notes: No CFPs							
B.	Armored	Bank Lengths (ft):						
	Notes: No bank amoring							
C.	Difference between BKF stage and WS (ft)	Describe the bankfull indicator						
	0.72	undercut						
	0.47	back of depositional bar						
	0.31	back of depositional bar						

Investigators: EBS, KC, SP (HDR)


Date: 10/3/2023

Version 1.0

III. Bankfull Verification and Stable Riffle Cross Section

A.	Difference between BKF stage and Average or consensus value from rea	0.5) D	
В.	Bankfull Width (ft)	3.1		Sta	
E.	Regional Curve Bankfull Width (ft)	3.6171		(
F.	Regional Curve Bankfull Mean Dep	0.349		,	
G.	Regional Curve Bankfull Area (sq. fi	1.2786		1	
H.	Curve Used	Data Colelction and Ana Carolina Ecoregions 66, (SCDNR 2020			:
l.	Flood Prone Width (FPW; ft)	4.3			
					3

Cross Section Measurements Depth measured from bankfull							
Station Depth		Station	Depth				
0	0.54						
1	0.62						
1.5	0.74						
2	0.62						
3	0.42						
3.1	0						

Stream 15 - Upstream

Version 1.0

IV. Representative Sub-Reach

Α	Assessment Segment Length At least 20 x the Bankfull Width	100	20*Bankfull Width	62

B. Riffle Data

	R1	R2	R3	R4	R5	R6	R7	R8
Begin Station (Distance along tape)	27.2	42.3	48.8	65				
End Station (Distance along tape)	33.8	45.6	51	65.5				
Low Bank Height (ft)	1.42	1.32	1.46	1.18				
Bankfull Max Depth (ft)	0.74	0.48	0.58	0.32				
Bankfull Width (ft)	3.1	3.2	5.3	5.3				
Flood Prone Width (ft)	4.3	4.55	5.6	6.7				
Bankfull Mean Depth (ft)	0.6	0.6	0.6	0.6				

C. Pool Data

1 001 Data								
	P1	P2	Р3	P4	P5	P6	P7	P8
Geomorphic Pool?	G	G	G	G	G			
Station At maximum pool depth	15.7	38	46.7	54.7	74.7			
Geomorphic P-P Spacing (ft)		22.3	8.7	8.0	20.0			
Pool Depth (ft) Measured from Bankfull	0.86	1.24	0.68	0.72	0.68			

D. Slope

Due to difficulty with dense vegetation, slope was calcluated using GIS and 2-foot topography	Begin	End	Difference	Slope (ft/ft)
Station along tape (ft)	0	101.07	101.1	0.079
Stadia Rod Reading (ft)	1744	1736	8.0	

E. Sinuosity

Calculated in GIS using delineated boundaries

Stream Length (ft)	101.07
Valley Length (ft)	99.06
Sinuosity	1.02

Stream 15 - Upstream

Date: 10/3/2023

Investigators: EBS, KC, SP (HDR) Version 1.0

F. LWD Piece Count (find 328-feet segment within assessment sub-reach with the MOST LWD)

# of LWD Pieces	3
Assessment length (ft)	100
# of LWD Pieces/100 m	9.8

Reach ID: Stream 15 - Upstream

Valley Type: Colluvial

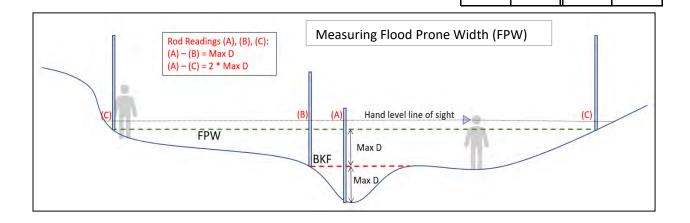
Bed Material: **D50 = 1.36, very coarse sand**

				Bank Erosion Hazard Index (BEHI) & Near-bank Stress (NBS)								
	Bank Length	Study Bank Height	BKF Height	Root	Root Density	Bank Angle	Surface Protection	Bank Material	Stratification			
Station ID	(Ft)	(ft)	(ft)	Depth (ft)	_	(degrees)	(%)	Adjustment	Adjustment	BEHI Total/ Category	NBS Ranking	
7	10	4	0.9	4	30	120	20	10 - Fine san	NA	44.12 / Very High	1.43 / Low	
50	6	1.5	0.7	1	15	110	20	Silt	NA	35.49 / High	0.97 / Very Low	
55	25	1.5	0.7	0.5	10	90	10	10 - Fine san	NA	49.53 / Extreme	1.2 / Low	
80	12	2	0.5	0.5	10	45	20	Silt	NA	36.93 / High	1.13 / Low	

В.

C.

Version 1.0


Reach Information and Stratification

Project Name:	Bad Creek Pumped Storage Project	Shading Key							
Reach ID:	Stream 15 Downstream	Desktop Value							
Upstream Latitude:	34.992924	Field Value							
Upstream Longitude:	-82.99763355								
Downstream Latitude:	344.992705								
Downstream Longitude:	-82.997434								
Ecoregion:	Blue Ridge								
River Basin:	Savannah								
Stream Reach Length (ft):	100								
Valley Type:	Colluvial								
Drainage Area (sq. mi.):	0.018879								
Strahler Stream Order:	1								
Flow Type:	Perennial								
Buffer Valley Slope (%):	30.1								
Dominant Buffer Land Use:	Forested								
Stream Temperature:	Coldwater								
Macroinvertebrate Sampling	N/A								
Method:									
l. Reach Walk									
Armore Notes: no bank armoring	d Bank Lengths (ft):								
Difference between BKF stage and WS (ft)	Describe the bankfull indica	ator							
0.58	No great indicators - wide bedrock area, sheet flo	W							
	_								

Version 1.0

III. Bankfull Verification and Stable Riffle Cross Section

A.	Difference between BKF stage and Average or consensus value from rea	0.58	Cross Section Measurements Depth measured from bankfull				
B.	Bankfull Width (ft)			Station	Depth	Station	Depth
E.	Regional Curve Bankfull Width (ft)		3.6171	0	0.44		
F.	Regional Curve Bankfull Mean Dep	th (ft)	0.349	1	0.54		
G.	Regional Curve Bankfull Area (sq. ft.)			2	0.52		
Н.	Curve Used	Data Colelction and Ana Carolina Ecoregions 66, (SCDNR 2020)	lysis South 45, 65, 63	3	0.7		
l.	Flood Prone Width (FPW; ft)	3.9		3.2	0.7		

I

Stream 15 - Downstream

Investigators: EBS, KC, SP (HDR)

Version 1.0

Representative Sub-Reach IV.

^	Assessment Segment Length	100	20*Bankfull Width	64
Α.	At least 20 x the Bankfull Width	100	20"Barikidii Widiri	64

В. Riffle Data

Date: 10/3/2023

	R1	R2	R3	R4	R5	R6	R7	R8
Begin Station (Distance along tape)	42	55.8						
End Station (Distance along tape)	44	57.5						
Low Bank Height (ft)	1.12	1.32						
Bankfull Max Depth (ft)	0.22	0.58						
Bankfull Width (ft)	1.4	3.2						
Flood Prone Width (ft)	4.5	3.9						
Bankfull Mean Depth (ft)	0.6	0.6						

C. Pool Data

	P1	P2	P3	P4	P5	P6	P7	P8
Geomorphic Pool?	G	G	G	G				
Station At maximum pool depth	23.1	41.2	52.6	60.5				
Geomorphic P-P Spacing (ft)		18.1	11.4	7.9				
Pool Depth (ft) Measured from Bankfull	0.72	0.58	0.92	0.72				

D. Slope

Due to difficulty with dense vegetation, slope was calcluated using GIS and 2-foot topography	Begin	End	Difference	Slope (ft/ft)
Station along tape (ft)	0	100.2	100.2	0.299
Stadia Rod Reading (ft)	1736	1706	30.0	

E. Sinuosity

Calculated in GIS using delineated boundaries

Stream Length (ft)	100.2
Valley Length (ft)	99.62
Sinuosity	1.01

SC SQT Rapid Method Form

Stream 15 - Downstream

Date: 10/3/2023

Investigators: EBS, KC, SP (HDR) Version 1.0

F. LWD Piece Count (find 328-feet segment within assessment sub-reach with the MOST LWD)

# of LWD Pieces	0
Assessment length (ft)	100
# of LWD Pieces/100 m	0

SC SQT

Investigators: EBS, KC, SP (HDR)

Reach ID: Stream 15 - Downstream

Valley Type: Colluvial Bed Material: **Bedrock**

				Bank Erosion Hazard Index (BEHI) & Near-bank Stress (NBS)							
	Bank Length	Study Bank	BKF Height	Root	Root Density	Bank Angle	Surface Protection	Bank Material		BEHI Total/	NBS
Station ID	(Ft)	Height (ft)	(ft)	Depth (ft)	(%)	(degrees)	(%)	Adjustment	Adjustment	Category	Ranking
All banks stable	, no mea	nders									

Date: 10/3/2023

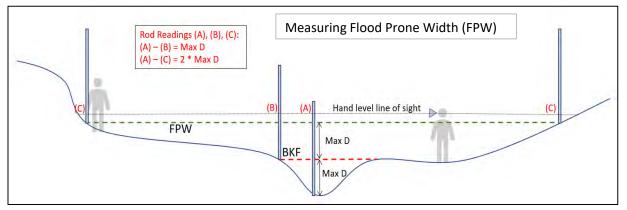
Version 1.0

Reach Information and Stratification

Project Name:	Bad Creek Pumped Storage Project	Shading Key
Reach ID:	Stream 16 - Upstream	Desktop Value
Upstream Latitude:	34.993683	Field Value
Upstream Longitude:	-82.99403219	
Downstream Latitude:	34.993628	
Downstream Longitude:	-82.99371234	
Ecoregion:	Blue Ridge	
River Basin:	Savannah	
Stream Reach Length (ft):	100	
Valley Type:	Colluvial	
Drainage Area (sq. mi.):	0.019919	
Strahler Stream Order:	First	
Flow Type:	Perennial	
Buffer Valley Slope (%):	8.2	
Dominant Buffer Land Use:	Forested	
Stream Temperature:	Coldwater	
Macroinvertebrate Sampling		
Method:		

II. Reach Walk

A.	Number of concen	strated flow points:							
	Notes: No CFPs								
В.	Armored	d Bank Lengths (ft):							
	Notes: No bank amoring								
C.	C. Difference between BKF stage Describe the bankfull indicator								
	0.68	top of depositional bar							
	3.25	top of bench							
	0.14	top of depositional bar							
	0.5	mid depositional bar opposite undercut bank							
	0.56	undercut bank							


Date: 10/3/2023

Version 1.0

III. Bankfull Verification and Stable Riffle Cross Section

A.	Difference between BKF stage and WS (ft) Average or consensus value from reach walk.		
B.	Bankfull Width (ft)		
E.	Regional Curve Bankfull Width (ft)		
F.	Regional Curve Bankfull Mean Depth (ft)		
G.	Regional Curve Bankfull Area (sq. ft.)		
Н.	Curve Used	SCDNR Stream Geomorph Data Colelction and Analy Carolina Ecoregions 66, 4	
I.	Flood Prone Width (FPW; ft)	11.8	

Cross Section Measurements Depth measured from bankfull						
Station	Depth	Station	Depth			
0	0.38					
1	0.46					
2	0.4					
3	0.68					
4	0.78					
5	0.62					
6	0.4					
7	0.62					
8	0.58					
9	0.64					
10	0.66					
10.5	0					

Stream 16 - Upstream

Version 1.0

D. Slope

Due to difficulty with dense vegetation, slope was calcluated using GIS and 2-foot topography	Begin	End	Difference	Slope (ft/ft)
Station along tape (ft)	0	100.2	100.2	0.080
Stadia Rod Reading (ft)	1496	1488	8.0	

E. Sinuosity

Calculated in GIS using delineated boundaries

Stream Length (ft)	100.2
Valley Length (ft)	97.83
Sinuosity	1.02

F. LWD Piece Count (find 328-feet segment within assessment sub-reach with the MOST LWD)

# of LWD Pieces	4
Assessment length (ft)	100
# of LWD Pieces/100 m	13.1

Date: 10/3/2023 Stream 16 - Upstream

Investigators: EBS, KC, SP (HDR)

Representative Sub-Reach

^	Assessment Segment Length	100	20*Bankfull Width	20.52	Г
Α.	At least 20 x the Bankfull Width	100	20"Barikidii Widiii	20.52	l

B. Riffle Data

IV.

	R1	R2	R3	R4	R5	R6	R7	R8
Begin Station (Distance along tape)	7	31	37	45.5	56	60	66	88.5
End Station (Distance along tape)	29	34.5	39.5	53.2	58.2	65	85	93
Low Bank Height (ft)	1.96	1.87	1.12	1.48	0.9	0.64	1.42	1.42
Bankfull Max Depth (ft)	0.76	0.32	0.56	0.6	0.24	0.3	0.6	0.6
Bankfull Width (ft)	10.5	3	3.3	4.3	3.9	3.6	4.7	4.9
Flood Prone Width (ft)	11.8	4.5	5.7	6.1	5.3	8	7.6	6.8
Bankfull Mean Depth (ft)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5

C. Pool Data

	P1	P2	Р3	P4	P5	P6	P7	P8	P9	P10
Geomorphic Pool?	G	G	G	G	G	G	G	G	G	G
Station At maximum pool depth	4	19.7	30	35.3	43	54.4	58.6	65.4	86.8	95
Geomorphic P-P Spacing (ft)		15.7	10.3	5.3	7.7	11.4	4.2	6.8	21.4	8.2
Pool Depth (ft) Measured from Bankfull	0.78	0.66	0.5	0.56	1.08	0.66	0.76	0.44	0.78	0.78

Reach ID: Stream 16 - Upstream

Valley Type: Colluvial

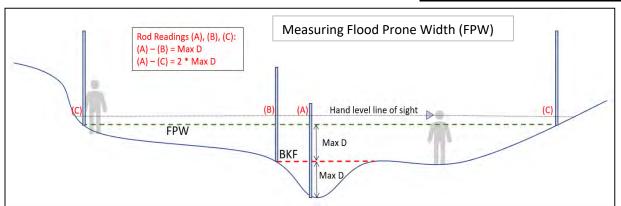
Bed Material: **D50 = 10.2 mm, medium gravel**

			Bank Erosion Hazard Index (BEHI) & Near-bank Stress (NBS)								
Station ID	Bank Length (Ft)	Study Bank Height (ft)	BKF Height (ft)	Root Depth (ft)	Root Density (%)	Bank Angle (degrees)	Surface Protection (%)	Bank Material Adjustment	Stratification Adjustment	BEHI Total/ Category	NBS Ranking
92	10	1.6	0.6	1	60	145	20	Silt	N/A	34.63 / High	1.56 / Moderate

Version 1.0

Reach Information and Stratification

	Project Name:	Bad Creek Pumped Storage Project		Shadir	ng Key
	Reach ID:	Stream 16 - Downstream		Deskto	
	Upstream Latitude:	34.993628		Field \	Value
	Upstream Longitude:	-82.99371234	_		
	Downstream Latitude:	34.993423			
	Downstream Longitude:	-82.99349421			
	Ecoregion:	Blue Ridge			
	River Basin:	Savannah			
	Stream Reach Length (ft):	100			
	Valley Type:	Colluvial			
	Drainage Area (sq. mi.):	0.049116			
	Strahler Stream Order:	First			
	Flow Type:	Perennial			
	Buffer Valley Slope (%):	10.1			
	Dominant Buffer Land Use:	Forested			
	Stream Temperature:	Coldwater			
	Macroinvertebrate Sampling				
	Method:				
II.	Reach Walk				
	Ni walan of across	trate difference interest			
A.	Number of concer	ntrated flow points: 1			
	Notes: Double HDPE culvert				
B.	Armored	d Bank Lengths (ft):			
	Notes: No bank amoring				
	Difference between BKF stage	T			
C.	and WS (ft)	Describe the bankfull indicator	r		
	0.74	Veg break			
	1.06	undercut bank/eroded			
	0.86	undercut bank/eroded			


Date: 10/3/2023

Version 1.0

III. Bankfull Verification and Stable Riffle Cross Section

A.	Difference between BKF stage and Average or consensus value from rea	0.89			
B.	Bankfull Width (ft)		6.2		
E.	Regional Curve Bankfull Width (ft)		5.3023		
F.	Regional Curve Bankfull Mean Depth (ft)				
G.	Regional Curve Bankfull Area (sq. ft.)				
Н.	SCDNR Stream Geomorphology and Data Colection and Analysis South Carolina Ecoregions 66, 45, 65, 63				
l.	Flood Prone Width (FPW; ft) 7.1				

Cross Section Measurements Depth measured from bankfull								
Бериі	measure	alikiuli						
Station	Depth	Station	Depth					
0	0.3							
1	0.82							
2	0.86							
3	1							
4	1.02							
5	1.02							
6	1							
6.2	0							

Stream 16 - Downstream

Investigators: EBS, KC, SP (HDR)

Version 1.0

IV. Representative Sub-Reach

A. Assessment Segment Length At least 20 x the Bankfull Width	100	20*Bankfull Width	124

B. Riffle Data

Date: 10/3/2023

	R1	R2	R3	R4	R5	R6	R7	R8
Begin Station (Distance along tape)	0	35	41.5	58				
End Station (Distance along tape)	29.2	38	54	83				
Low Bank Height (ft)	1.42	2.2	2.1	2.32				
Bankfull Max Depth (ft)	0.8	0.82	1.01	0.9				
Bankfull Width (ft)	5.8	4.1	6.2	4.9				
Flood Prone Width (ft)	9.6	5.5	7.1	5.8				
Bankfull Mean Depth (ft)	0.9	0.9	0.9	0.9				

C. Pool Data

	P1	P2	Р3	P4	P5	P6	P7	P8
Geomorphic Pool?	G	G	G					
Station At maximum pool depth	31.5	41	56.4					
Geomorphic P-P Spacing (ft)		9.5	15.4					
Pool Depth (ft) Measured from Bankfull	0.8	0.72	1.42					

D. Slope

Due to difficulty with dense vegetation, slope was calcluated using GIS and 2-foot topography	Begin	End	Difference	Slope (ft/ft)
Station along tape (ft)	0	101.7	101.7	0.098
Stadia Rod Reading (ft)	1488	1478	10.0	

E. Sinuosity

Calculated in GIS using delineated boundaries

Stream Length (ft)	101.7
Valley Length (ft)	99.15
Sinuosity	1.03

SC SQT Rapid Method Form

Stream 16 - Downstream

Date: 10/3/2023

Investigators: EBS, KC, SP (HDR)

Version 1.0

F. LWD Piece Count (find 328-feet segment within assessment sub-reach with the MOST LWD)

# of LWD Pieces	2
Assessment length (ft)	100
# of LWD Pieces/100 m	6.6

Reach ID: Stream 16 - Downstream

Valley Type: Colluvial

Bed Material: **D50 = 20.13 mm, coarse gravel**

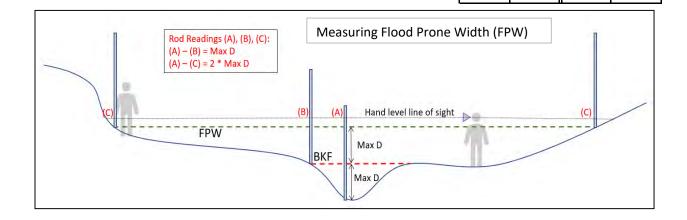
											1
		-	Bank Erosion Hazard Index (BEHI) & Near-bank Stress (NBS)								
Station ID	Bank Length (Ft)	Study Bank Height (ft)	BKF Height (ft)	Root Depth (ft)	Root Density (%)	Bank Angle (degrees)	Surface Protection (%)	Bank Material Adjustment	Stratification Adjustment	BEHI Total/ Category	NBS Ranking
41	20	3	1	2	30	75	30	silt	NA	31.61 / High	1.1 / Low
46	15	2.5	1	2	50	130	30	silt	NA	32.02 / High	1.1 / Low
61	12	3.5	1	2.5	50	110	20	silt	NA	34.20 / High	1.0 / Low
	-										

В.

C.

Upstream Version 1.0

Reach Information and Stratification


•	Reacl	h Information and Stratification						
	Project Name:	Bad Creek Pumped Storage Project Shading Key						
	Reach ID:	Devils Fork - Upstream Desktop Value						
	Upstream Latitude:	34.994000 Field Value						
	Upstream Longitude:	-82.99362823						
	Downstream Latitude:	34.993794						
	Downstream Longitude:	-82.99344255						
	Ecoregion:	Blue Ridge						
	River Basin:	Savannah						
	Stream Reach Length (ft):	100						
	Valley Type:	Colluvial						
	Drainage Area (sq. mi.):	0.049116						
	Strahler Stream Order:	Second						
	Flow Type:	Perennial						
	Buffer Valley Slope (%):	6.4						
	Dominant Buffer Land Use:	Forested						
	Stream Temperature:	Coldwater						
	Macroinvertebrate Sampling	N/A						
	Method:	IWA						
	Reach Walk	-						
	Number of concen	ntrated flow points:						
	Notes: No CFPs	L						
	Armored	d Bank Lengths (ft):						
	Notes: No bank armoring							
	Notes. No bank armorning							
	Difference between BKF stage and	Describe the bankfull indicator						
	WS (ft)							
	n 58	lundercut						

Describe the bankfull indicator
undercut
bench

Date: 10/3/2023 **SC SQT Rapid Method Form** Upstream Investigators: EBS, KC, SP (HDR) Version 1.0

Bankfull Verification and Stable Riffle Cross Section III.

A.	Difference between BKF stage and W Average or consensus value from reach	0.51	Cross Section Measurements Depth measured from bankfull				
B.	Bankfull Width (ft)	5.1	Station	Depth	Station	Depth	
E.	Regional Curve Bankfull Width (ft)		5.3023	0	0.5		
F.	Regional Curve Bankfull Mean Depth	0.4631	1	0.48			
G.	Regional Curve Bankfull Area (sq. ft.)		2.4826	2	0.48		
H.	Curve Used	SCDNR Stream Geomorp Data Colelction and Ana Carolina Ecoregions 66, (SCDNR 2020)	lysis South 45, 65, 63	3	0.48		
l.	Flood Prone Width (FPW; ft)	6.05		4	0.58		
				5	0.38		

IV. Representative Sub-Reach

٨	Assessment Segment Length	100	20*Bankfull Width	102
A.	At least 20 x the Bankfull Width	100	20"Barikidii Widtii	102

B. Riffle Data

	R1	R2	R3	R4	R5	R6	R7	R8
Begin Station (Distance along tape)	0	4	24.5					
End Station (Distance along tape)	5	23	69					
Low Bank Height (ft)	2.1	1.24	1.38					
Bankfull Max Depth (ft)	0.46	0.64	0.72					
Bankfull Width (ft)	2.46	5.1	5.6					
Flood Prone Width (ft)	3.2	6.05	6.8					
Bankfull Mean Depth (ft)	0.5	0.5	0.5					

C. Pool Data

POOI Data								
	P1	P2	Р3	P4	P5	P6	P7	P8
Geomorphic Pool?	G							
Station At maximum pool depth	3							
Geomorphic P-P Spacing (ft)								
Pool Depth (ft) Measured from Bankfull	0.32							

D. Slope

Due to difficulty with dense vegetation, slope was calcluated using GIS and 2-foot topography	Begin	End	Difference	Slope (ft/ft)
Station along tape (ft)	0	99.7	99.7	0.060
Stadia Rod Reading (ft)	1496	1490	6.0	

E. Sinuosity

Calculated in GIS using delineated boundaries

Stream Length (ft)	99.7
Valley Length (ft)	93.55
Sinuosity	1.07

Stream 17 (Devils Fork) -**SC SQT Rapid Method Form**

Date: 10/3/2023 Upstream Version 1.0 Investigators: EBS, KC, SP (HDR)

LWD Piece Count (find 328-feet segment within assessment sub-reach with the MOST LWD) F.

# of LWD Pieces	2
Assessment length (ft)	100
# of LWD Pieces/100 m	6.6

Date: 10/3/2023 Stream 17 (Devils Fork) -Investigators: EBS, KC, SP (HDR)

Upstream

SC SQT **BEHI/NBS Field Form**

Reach ID: **Devils Fork - Upstream**

Valley Type: Colluvial

Bed Material: **D50 = 9.32 mm, medium gravel**

				Bank	< Erosior	Hazard Inc	lex (BEHI) 8	Near-bank	Stress (NBS)			
	Bank	Study Bank	BKF		Root		Surface					
6 15	Length	Height	Height	Root	Density	Bank Angle	Protection		Stratification	BEHI Total/	NBS	
Station ID	(Ft)	(ft)	(ft)	Depth (ft)	(%)	(degrees)	(%)	Adjustment	Adjustment	Category	Ranking	Notes Outside bend; Bankfull
26	6	3	0.6	2	40	85	40	silt	NA	High	1.44 / Low	Max Depth from Riffle

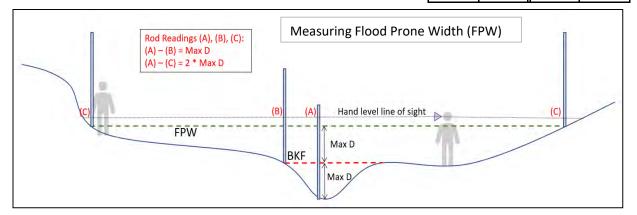
Date: 10/3/2023 Investigators: EBS, KC, SP (HDR) Downstream Version 1.0

Reach Information and Stratification

В.

C.

Reac	h Information and Stratification
Project Name:	Bad Creek Pumped Storage Project Shading Key
Reach ID:	Devils Fork - Downstream Desktop Value
Upstream Latitude:	34.993568 Field Value
Upstream Longitude:	-82.99330012
Downstream Latitude:	34.993794
Downstream Longitude:	-82.99344255
Ecoregion:	Blue Ridge
River Basin:	Savannah
Stream Reach Length (ft):	100
Valley Type:	Colluvial
Drainage Area (sq. mi.):	0.049116
Strahler Stream Order:	Second
Flow Type:	Perennial
Buffer Valley Slope (%):	6.6
Dominant Buffer Land Use:	Forested
Stream Temperature:	Coldwater
Macroinvertebrate Sampling	N/A
Method:	IVA
Reach Walk	
Number of concent	rated flow points:
Notes: No CFPs	<u> </u>
Armored	Bank Lengths (ft):
	Bully Eculous (it).
Notes: No bank armoring	
Difference between BKF stage	


Difference between BKF stage and WS (ft)	Describe the bankfull indicator					
0.32	top of depositional bar					
0.28	undercut bank					

Date: 10/3/2023 Downstream Investigators: EBS, KC, SP (HDR) Version 1.0

Bankfull Verification and Stable Riffle Cross Section III.

A.	Difference between BKF stage and Average or consensus value from rea	0.3					
B.	Bankfull Width (ft)						
E.	Regional Curve Bankfull Width (ft)						
F.	Regional Curve Bankfull Mean Depth (ft)						
G.	Regional Curve Bankfull Area (sq. ft.)						
H.	Curve Used	hology and lysis South 45, 65, 63					
l.	Flood Prone Width (FPW; ft)	8.8					

		Measuren d from ba			
Station	Depth	Station	Depth		
0	0.3				
1	0.26				
2	0.14				
3	0.08				
4	0.18				
5	0.36				
6	0.3				
7	0.36				
8	0.38				
8.2	0.36				

I

Date: 10/3/2023 Investigators: EBS, KC, SP (HDR)

Representative Sub-Reach

^	Assessment Segment Length	100	20*Bankfull Width	168
Α.	At least 20 x the Bankfull Width	100	20 Barikidii Widtii	100

B. Riffle Data

IV.

	R1	R2	R3	R4	R5	R6	R7	R8
Begin Station (Distance along tape)	32.5	80.2						
End Station (Distance along tape)	57	100						
Low Bank Height (ft)	2.02	2.04						
Bankfull Max Depth (ft)	0.36	0.52						
Bankfull Width (ft)	8.4	7.8						
Flood Prone Width (ft)	8.8	7.95						
Bankfull Mean Depth (ft)	0.3	0.3						

C. Pool Data

POOI Data									
	P1	P2	Р3	P4	P5	P6	P7	P8	
Geomorphic Pool?									
Station At maximum pool depth	79								
Geomorphic P-P Spacing (ft)									
Pool Depth (ft) Measured from Bankfull	0.52								

D. Slope

Due to difficulty with dense vegetation, slope was calcluated using GIS and 2-foot topography	Begin	End	Difference	Slope (ft/ft)
Station along tape (ft)	0	100.1	100.1	0.060
Stadia Rod Reading (ft)	1490	1484	6.0	

E. Sinuosity

Calculated in GIS using delineated boundaries

Stream Length (ft)	100.1
Valley Length (ft)	91
Sinuosity	1.1

Date: 10/3/2023 Downstream Version 1.0 Investigators: EBS, KC, SP (HDR)

F. LWD Piece Count (find 328-feet segment within assessment sub-reach with the MOST LWD)

# of LWD Pieces	8
Assessment length (ft)	100
# of LWD Pieces/100 m	26.2

Date: 10/3/2023 Stream 17 (Devils Fork) -Investigators: EBS, KC, SP (HDR)

Downstream

SC SQT **BEHI/NBS Field Form**

Reach ID: **Devils Fork - Downstream**

Valley Type: Colluvial

Bed Material: **D50 = 0.45 mm, medium sand**

	Bank Erosion Hazard Index (BEHI) & Near-bank Stress (NBS)											
Station ID	Bank Length (Ft)	Study Bank Height (ft)	BKF Height (ft)	Root Depth (ft)	Root Density (%)	Bank Angle (degrees)	Surface Protection (%)	Bank Material Adjustment	Stratification Adjustment	BEHI Total/ Category	NBS Ranking	Notes
No unstable ba		(10)	(10)	Верит (те)	(70)	(degrees)	(70)	Adjustment	Adjustificit	category	Kariking	Notes
TVO difficulties	T											

Attachment G

Attachment G - Streams Photolog

Photo 1. View of Stream 1 (Limber Pole Creek), facing upstream.

Photo 2. View of Stream 1 (Limber Pole Creek), facing downstream.

Photo 3. View of Stream 7 (Howard Creek), facing upstream.

Photo 4. View of Stream 7 (Howard Creek), facing downstream.

Photo 5. View of Stream 12, facing upstream.

Photo 6. View of Stream 12, facing downstream.

Photo 7. View of Stream 15, facing upstream.

Photo 8. View of Stream 15, facing downstream.

Photo 9. View of Stream 16, facing upstream.

Photo 10. View of Stream 16, facing downstream.

Photo 11. View of Stream 17 (Devils Fork), facing upstream.

Photo 12. View of Stream 17 (Devils Fork), facing downstream.

Attachment H

Attachment H - Fish Community
Sampling Data and Photo
Vouchers

Table 1. Stream reach widths, sample lengths, and shock times for each sampling event.

		•	,	Stream	width	s (m)		Sample	Effort
Stream reach	Sample date	0	25	50	75	100	Mean	length (m)	(s)
Limber Pole	7/25/2023	2.9	3.1	2.7	2.7	2.8	2.8	100	721
Creek -	9/5/2023	2.9	2.8	3.2	4.1	3.3	3.3	100	829
Upstream	10/9/2023	2.7	2.8	3.3	4.0	2.9	3.1	100	957
Limber Pole	7/25/2023	4.0	3.5	4.2	2.7	4.1	3.7	111	1,304
Creek -	9/5/2023	3.7	5.3	4.7	2.6	4.6	4.2	125	1,093
Downstream	10/9/2023	3.9	5.0	4.2	2.6	3.8	3.9	117	1,397
H 10 1	7/25/2023	7.1	7.5	5.9	5.1	6.0	6.3	190	2,344
Howard Creek - Upstream	9/6/2023	6.9	7.6	5.5	6.2	6.2	6.5	194	3,381
Opstream	10/10/2023	6.8	8.1	6.7	5.8	6.1	6.7	201	4,027
	7/25/2023	6.5	5.3	8.7	7.4	7.0	7.0	209	2,695
Howard Creek - Downstream	9/6/2023	7.1	6.0	7.4	8.4	5.7	6.9	208	3,581
Downstream	10/10/2023	5.1	8.6	4.2	5.0	4.6	5.5	165	3,978

Table 2. Water quality parameters for each sampling event.

Stream reach	Sample date	Temperature (°C)	Dissolved oxygen (mg/L)	Specific conductivity (µS/cm)	pH (units)	Salinity (ppt)	Turbidity (NTU)
Limber Pole	7/25/2023	19.4	8.6	15	6.6	0.01	7.5
Creek -	9/5/2023	20.4	8.4	18	7.0	0.01	4.0
Upstream	10/9/2023	11.6	9.9	16	6.9	0.01	1.1
Limber Pole	7/25/2023	19.4	8.6	15	6.6	0.01	7.5
Creek -	9/5/2023	20.4	8.4	18	7.0	0.01	4.0
Downstream	10/9/2023	11.6	9.9	16	6.9	0.01	1.1
	7/25/2023	18.8	8.9	26	6.9	0.01	2.4
Howard Creek - Upstream	9/6/2023	19.5	8.7	30	7.3	0.01	3.0
Opstream	10/10/2023	13.0	9.9	27	7.4	0.01	1.6
	7/25/2023	18.8	8.9	26	6.9	0.01	2.4
Howard Creek - Downstream	9/6/2023	20.8	7.9	28	7.1	0.01	3.0
Downstream	10/10/2023	13.9	9.7	21	6.9	0.01	1.6

Table 3. Fish collected within each stream reaches for each sampling event.

Stream reach	Sample date	Rainbow Trout	Western Blacknose Dace	Salamanders (Desmognathus)
	7/25/2023	0	0	10
Limber Pole Creek - Upstream	9/5/2023	0	0	15
	10/9/2023	0	0	15
	7/25/2023	0	0	9
Limber Pole Creek - Downstream	9/5/2023	0	0	8
Downstream	10/9/2023	0	0	5
	7/25/2023	39	108	12
Howard Creek - Upstream	9/6/2023	22	97	8
	10/10/2023	40	133	2
	7/25/2023	30	130	5
Howard Creek - Downstream	9/6/2023	3	39	10
	10/10/2023	31	136	3

Table 4. Catch rates and densities of fish each stream reaches for each sampling event.

		Catc	h rate (No./h	r)	Dens	ity (No./100 ı	m)
Stream reach	Sample date	Rainbow Trout	Western Blacknose Dace	Total	Rainbow Trout	Western Blacknose Dace	Total
	7/25/2023	0	0	0	0	0	0
Limber Pole Creek - Upstream	9/5/2023	0	0	0	0	0	0
Opstream	10/9/2023	0	0	0	0	0	0
	7/25/2023	0	0	0	0	0	0
Limber Pole Creek - Downstream	9/5/2023	0	0	0	0	0	0
Downstream	10/9/2023	0	0	0	0	0	0
TT 10 1	7/25/2023	59.9	165.9	225.8	20.5	56.8	77.4
Howard Creek - Upstream	9/6/2023	23.4	103.3	126.7	11.3	50.0	61.3
Орѕисані	10/10/2023	35.8	118.9	154.7	19.9	66.2	86.1
	7/25/2023	40.1	173.7	213.7	14.4	62.2	76.6
Howard Creek -	9/6/2023	3.0	39.2	42.2	1.4	18.8	20.2
Downstream	10/10/2023	28.1	123.1	151.1	18.8	82.4	101.2

Photo 1. Stream 1 (Limber Pole Creek) - Upstream Fish Sampling Location

Photo 2. Stream 1 (Limber Pole Creek) - Downstream Fish Sampling Location

Photo 3. Stream 7 (Howard Creek) - Upstream Fish Sampling Location

Photo 4. Stream 7 (Howard Creek) - Downstream Fish Sampling Location

F)3

Photo 5. Rainbow Trout Collected from Stream 7 (Howard Creek)

Photo 6. Western Blacknose Dace Collected from Stream 7 (Howard Creek)

Photo 7. Salamanders collected from Stream 1 (Limber Pole Creek)

Photo 8. Salamanders collected from Stream 7 (Howard Creek)

Attachment I

Attachment I -Macroinvertebrate Sampling Data and Photolog

Table 1. Summary of Organisms Collected during Macroinvertebrate Surveys

	Pollution	Functional Feeding		Pole Creek	r	rd Creek
Taxon	Tolerance Value ¹	Group ²	Upstream	Downstream	Upstream	Downstream
Annelida						
Class Clitellata						
Subclass Oligochaeta		CG				
Order Lumbriculida						
Lumbriculidae	7	CG			2	
Arthropoda						
Insecta						
Ephemeroptera						
Baetidae		CG				
Acentrella turbida	2	CG	6			2
Baetis flavistriga	6.8	CG	1		44	1
Baetis pluto	3.4		5	1	5	5
Plauditus sp.	5.4	CG		3	7	
Heterocloeon sp.	3.7	SC			2	
Ephemerillidae		CG				
Drunella tuberculata	0	SC	25	14	2	
Ephemerella sp.	2.1	SC	1			
Ephemerella catawba	0			1		
Serratella sp.	1.7	SC	2			
Serratella frisoni				2	7	
Teloganopsis deficiens	2.6	SC	2	1		2
Ephemeridae		CG				
Ephemera sp.	2	CG	1	3		
Heptageniidae		SC		2		21
Epeorus sp.	1.6	CG	6	2	10	30

	Pollution	Functional Feeding	Limber	Pole Creek	Howard Creek		
Taxon	Tolerance Value ¹	Group ²	Upstream	Downstream	Upstream	Downstream	
Epeorus dispar	1	CG	13	7			
Epeorus vitreus	1.2	CG			2	2	
Heptagenia sp.	1.9	SC		2			
Heptagenia marginalis gp.	2.2	SC	1			1	
Leucrocuta sp.	2	SC	2	4	2	2	
Stenonema sp.		SC	10	5	37	29	
Stenonema meririvulanum	0.5	SC	3	2	4	5	
Isonychiidae		CG					
Isonychia sp.	3.6	CG	2	8			
Odonata							
Cordulegastridae	5.7	P					
Cordulegaster sp.	5.7	P		1			
Gomphidae					1		
Lanthus sp.	1.6	P		2		3	
Lanthus vernalis	0.8				2		
Plecoptera							
Leuctridae		SH					
Leuctra sp.	1.5	SH	3	3	5	3	
Peltoperlidae		SH					
Peltoperla sp.			6	37		3	
Perlidae		P			3	5	
Acroneuria abnormis	2.1	P	10		1	5	
Eccoptura xanthenes	4.7	P				1	
Paragnetina sp.	1.5	P			5	6	
Paragnetina immarginata	1.1	P			5	13	

	Pollution	Functional Feeding	Limber	Pole Creek	Howa	rd Creek
Taxon	Tolerance Value ¹	Group ²	Upstream	Downstream	Upstream	Downstream
Perlesta sp.	2.9	P			1	1
Perlodidae		P			6	
Pteronarcidae	1.6	SH				
Pteronarcys (Allonarcys) sp.	1.8	SH	1	9		3
Pteronarcys dorsata	2.4	SH			1	
Pteronarcys scotti		SH	1	2		
Hemiptera						
Veliidae		P				
Rhagovelia obesa		P		1		
Trichoptera			1			
Glossosomatidae		SC				
Glossosoma sp.	1.4	SC	2			
Glossosoma nigrior		SC			20	14
Goeridae						
Goera calcarata	1				1	
Hydropsychidae		FC				
Cheumatopsyche sp.	6.6	FC			41	5
Diplectrona modesta	2.3	FC	33	30	3	4
Hydropsyche sparna	2.5	FC			18	32
Limnephilidae						
Pycnopsyche sp.	2.5	SH	1			2
Philopotamidae		FC				
Dolophilodes distinctus	0.1	FC	3		1	5
Psychomyiidae		CG				
Lype diversa	3.9	SC			2	

	Pollution	Functional Feeding	Limber	Pole Creek	Howard Creek		
Taxon	Tolerance Value ¹	Group ²	Upstream	Downstream	Upstream	Downstream	
Psychomyia flavida	3	CG			3		
Rhyacophilidae		P					
Rhyacophila carolina	0.4	P	1				
Rhyacophila fuscula	1.6	P			1	4	
Uenoidae							
Neophylax mitchelli	0		1	1	1	1	
Neophylax oligius	2.4				1		
Coleoptera							
Dryopidae							
Helichus fastigiatus	4.6	SC		1			
Elmidae		CG					
Optioservus sp.	2.1	SC		1			
Optioservus ovalis	2.1	SC			1		
Optioservus tardella	0	SC	4		21	3	
Stenelmis sp.	5.6	SC				1	
Gyrinidae		P					
Dineutus sp.	5	P	2		1		
Psephenidae		SC					
Ectopria nervosa	4.3	SC				1	
Psephenus herricki	2.4	SC	8	14	46	23	
Diptera							
Athericidae							
Atherix lantha	1.8	P				1	
Ceratopogonidae		P	1				
Chironomidae							

	Pollution	Functional Feeding	Limber	Pole Creek	Howard Creek		
Taxon	Tolerance Value ¹	Group ²	Upstream	Downstream	Upstream	Downstream	
Parametriocnemus sp.	3.9	CG				1	
Rheotanytarsus sp.	6.5	FC			1		
Rheotanytarsus exiguus gp.	5.9	FC				1	
Dixidae		CG					
Dixa sp.	2.5	CG	1				
Limoniidae							
Antocha sp.	4.4	CG			3		
Dicranophragma sp.			1				
Hexatoma sp.	3.5	P	1				
Pediciidae							
Dicranota sp.	0	P		1		1	
Simuliidae		FC					
Simulium sp.	4.9	FC				3	
Tipulidae		SH					
Tipula sp.	7.5	SH	2	1		1	
Total No. of Organisms			163	161	319	246	
Total No. of Taxa			35	29	39	39	
EPT Index			27	21	30	28	
Biotic Index Assigned Values			1.68	2.04	2.98	2.25	
EPT Score			3.93	3.19	4.31	4.06	
Biotic Index Score			9.04	8.57	7.31	8.29	
South Carolina Bioclassification Experience Feeding Groups: CG = college			6.49	5.88	5.81	6.17	

¹Functional Feeding Groups: CG = collector-gatherer; FC = filterer-collector; P = predator; SC = scraper; SH = shredder

Macroinvertebrate Habitat Assessment

Station <u>L4</u>	Date 8/1/20	23 _{Tim}	ne <u>12:00pm</u>	_Jars	Vials			
Stream Limber Pole Cr	eek Location	Upstrear	n reach	County	Oconee County			
Collectors EM, JK, LA	Fie	eld QC Log	book	Pa	age#			
pH (SU) 6.1 DO (mg/L) 8.31 H ₂ O Temp (C°) 19.5 Cond (umhos/cm) 94.9								
Aquatic Habitat Score: Excellent = 5 Good = 4 Good-Fair = 3 Fair = 2 Poor = 1 Nonexistent = 0								
*Habitat Score Comments								
Root Banks 5	4 3	2 1	0					
Logs, Sticks, Snags 5	4 3	2 1	0					
Rock/Gravel Riffle 5	4 3	2 1	0					
Mature Leaf Pack 5	4 3	2 1	0					
Aquatic Vegetation 5	4 3	2 1	0					
*If aufwuchs and/or sediment on the is noted in the comments section; ho				oinvertebrates, this	s impact			
•	5 nels with water under /lain" channel hard to distinguish.		3 2 Side channel(s) present but with less flow/water.	Islands or si				
Stream detritus % pine nee	edles:	0 %						
Amount of pine needles in	stream: 5	4 e	3	2 1 les	0			
Velocity/Flow:	5	4	3	2 1				
Sedimentation: 2 (Moderate) 1 (Severe)								
Species observed but not collected:								

Macroinvertebrate Habitat Assessment

Station L3	Date <u>8/1</u>	<u>1/2023</u> Tin	ne <u>2:15pm</u>	Jars	Via l s				
Stream Limber Pole Cree	Location	Downstre	eam reach	County	Oconee County				
Collectors EM, JK, LA	Fi	eld QC Log	jbook	P	age#				
pH (SU) 6.89 DO (mg/L) 824, 910% H ₂ O Temp (C°) 20.2 Cond (umhos/cm) 92.4									
Aquatic Habitat Score: Excellent = 5 Good = 4 Good-Fair = 3 Fair = 2 Poor = 1 Nonexistent = 0									
*Habitat	Score			Comments					
Root Banks 5	4 3	2 1	0						
Logs, Sticks, Snags 5	4 3	2 1	0						
Rock/Gravel Riffle 5	4 3	2 1	0						
Mature Leaf Pack 5	4 3	2 1	0						
Aquatic Vegetation 5	4 3	2 1	0						
*If aufwuchs and/or sediment on the hal is noted in the comments section; howe		•	•	croinvertebrates, thi	s impact				
Braided channel: Multiple clear channel most conditions. "Mai		0	3 Side channel(s) present but with les flow/water.	2 1 Islands or s s channels or high water.	ide Not nly during braided				
Stream detritus % pine need	les:	0 %							
Amount of pine needles in st	ream:		3	2 ²	1 0				
Velocity/Flow:	Ę	5 4	3	2	1 0				
Sedimentation: 3 (Litt	le or No)	2 (Modera	1 (S	Severe)					
Species observed but not collected:									

Crayfish and salamanders

Macroinvertebrate Habitat Assessment

Station H5	_Date _8	3/2/2023	Time	J	ars	Vials			
Stream Howard Creek	Loca	ation Ups	tream Re	ach	County	Oconee County			
Collectors EM, JK, LA		_Field QC	Logbook _.		Pa	ge#			
pH (SU) DO (mg/L)8.77, 94.9% H ₂ O Temp (C°) Cond (umhos/cm)99.5									
Aquatic Habitat Score: Excellent = 5 Good = 4 Good-Fair = 3 Fair = 2 Poor = 1 Nonexistent = 0									
*Habitat	Scor	·e		C	Comments				
Root Banks 5	4 C	3 2	1 0						
Logs, Sticks, Snags 5	4	3 2	1 0						
Rock/Gravel Riffle 5	4	3 2	1 0						
Mature Leaf Pack 5	4	3 2	1 0						
Aquatic Vegetation 5	4	3 2	1 0						
*If aufwuchs and/or sediment on the his noted in the comments section; how				ion by macroin	vertebrates, this	impact			
Braided channel: Multiple clear channel most conditions. "Ma	els with water in" channe l h		Side cha	out with less	1 Islands or sid channels onl high water.				
Stream detritus % pine need	dles:	0	%						
Amount of pine needles in s	tream:	5 more	4	3	2 1 less	0			
Velocity/Flow:		5	4	3	2 1	0			
Sedimentation: 2 (Moderate) 1 (Severe)									
Species observed but not collected:									

Crayfish and fish

Macroinvertebrate Habitat Assessment

Station H4 Date 8/2/2	2023 Time <u>9:12am</u> JarsVia l s							
Stream Howard Creek Location	Downstream reach County Oconee County							
Collectors EM, JK, LA Field QC LogbookPage#								
pH (SU) 7.44 DO (mg/L) 8.87, 96% H ₂ O Temp (C°) 19.2 Cond (umhos/cm) 100.7								
Aquatic Habitat Score: Excellent = 5 Good = 4 Good	od-Fair = 3 Fair = 2 Poor = 1 Nonexistent = 0							
*Habitat Score	Comments							
Root Banks 5 4 3	2 1 0							
Logs, Sticks, Snags 5 4 3	2 1 0							
Rock/Gravel Riffle 5 4 3	2 1 0							
Mature Leaf Pack 5 4 3	2 1 0							
Aquatic Vegetation 5 4 3	2 1 0							
*If aufwuchs and/or sediment on the habitats appear to a is noted in the comments section; however, the habitat so	adversely affect colonization by macroinvertebrates, this impact score does not change.							
Braided channel: 5 Multiple clear channels with water unde most conditions. "Main" channel hard to distinguish	to present but with less channels only during braided							
Stream detritus % pine needles: 0	0 %							
•	5 4 3 2 1 0 ore less							
Velocity/Flow: 5	5 4 3 2 1 0							
Sedimentation: 3 (Little or No)	Sedimentation: 2 (Moderate) 1 (Severe)							
Species observed but not collected:								

1 dusky salamander Several crayfish

Photo 1. View of Upstream Reach of Limber Pole Creek, facing upstream.

Photo 2. View of Downstream Reach of Limber Pole Creek, facing upstream

Photo 3. View of Upstream Reach of Howard Creek, facing downstream

Photo 4. View of Downstream Reach of Howard Creek, facing upstream.

Attachment J

Attachment J - SQT Catchment Assessment and Matrix Summaries

Version 1.1		Notes	Notes							
Version Last Updated:	7-Dec-22	1. Users input values that	1. Users input values that are highlighted based on restoration potential							
		2. Users select values fror	2. Users select values from a pull-down menu							
		3. Leave values blank for	3. Leave values blank for field values that were not measured							
		D								
		Programmatic Goals								
Select:	1 6.11	Other								
Expand on the programmatic go										
_	·	s current condition by implementing	-							
	•	reek II is pursued and if the propos								
		g landscape and watershed exhibit		_						
	he drainage area to Li	mber Pole Creek is classified as for	ested based on the NLCD, with a co	ompletely	intact ripa	rian				
buffer.										
		Project Description								
Project Name:		•	umped Storage Project							
Project ID:		10261671 - EEOC1 Bad Creek Relicensing								
Ecoregion:			Ridge Mountains							
River Basin:			Savannah							
12-digit HUC:		30	0601010104							
		Reach Summary								
Worksheet Title	Reach ID	Reach Description	Reach Break Criteria	ECS	PCS	ΔFF				
Quantification_Tool_US	er Pole Creek - Upsti	Upstream of temp access rd crossi	Single reach upstream to	0.58	0.58					
		Downstroom of town access rd are	Single reach from temporary							
Quantification_Tool_DS	r Pole Creek - Downs	Downstream of temp access rd cro	access road, downstream	0.53	0.53					

				ries rated as poor were considered in the selection of				
Ove	rall Catchment Condition (select:)	Good	·	ne reach(es): None - stream is in natural condition windrainage area and 97.4% forested.	ith only			
	Catanavias	Description of Catchment Condition						
	Categories	Poor	Fair Good					
1	Concentrated Flow	Existing concentrated flow/impairments immediately upstream of the project reach with no treatments in place.	concentrated flow/impairments from adjacent land use or	No potential for concentrated flow/impairments from adjacent land use and/or channel immediately upstream of project reach.	G			
2	Impervious cover	≥ 25%	>10% and <25%	≤ 10%	G			
3	Urbanization	Rapidly urbanizing/urban.	Some urban growth potential, or uncertain growth potential. May	Rural communities/slow growth potential, or primarily forested.	G			
4	Development Activities (e.g. utility rights- of-way, pipeline, mining, silviculture, roads)	High development or potential for impacts in contributing watershed or within 1 mile of project reach, or high potential of impacts >1 mile away from project reach.	or moderate potential for impacts, but none within 1 mile of project	No development or no potential for impacts.	G			
5	Percent Forested	≤ 20%	>20% and <70%	≥ 70%	G			
6	Riparian Vegetation	<50% of contributing stream length (project reach and upstream channel) has >25-m (~82 ft) corridor width.	stream length (project reach and upstream	>80% of contributing stream length (project reach and upstream channel) has >25-m (~82 ft) corridor width.	G			
7	Sediment Supply	Multiple, large anthropogenic-caused sources of sediment supply from upstream bank erosion and surface runoff.	honoral bac 325 m (2012) Moderate anthropgenic caused sediment supply from upstream bank erosion and surface	A few small anthropogenic-caused sediment supply sources. Upstream bank erosion and surface runoff is minimal, as sediment supply is low.	G			
8	Proximity to 303(d) or TMDL listed waters	Project reach on, upstream, or downstream of a 303(d) waterway without a TMDL/watershed management plan to address deficiencies.	runoff Project reach on, upstream, or downstream of a 303(d) waterway with a TMDL/	Project reach is not on the 303(d) list.	G			
9	Agricultural Land Use	Livestock access to stream and/or intensive cropland immediately upstream of the project reach.	Agricultural land uses are present in the catchment, but impacts are likely attenuated	There is little to no agricultural land uses or forested buffers exist between the receiving waters and the agriculture land and/or livestock.	G			
10	NPDES Permits	Many NPDES permits within the catchment or some within 1 mile of the project reach.	A few NPDES permits within the catchment and none within 1 mile	No NPDES permits within the catchment and none within 1 mile of the project reach.	G			
11	Inline Watershed Impoundments	Impoundment(s) are located near the project area (within 1 mile upstream or downstream), and/or impoundment(s) within the catchment have a negative effect on project area (e.g., flow alteration or reduced sediment supply) and fish passage.	A few small impoundments within the catchment and none within one mile of the project reach.	No impoundment (including farm ponds) upstream or downstream of project area OR only natural impoundments that allow for fish passage.	G			
12	Organism Recruitment	Channel immediately upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) is concrete, piped, or hardened.	upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) has	Channel immediately upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) has native bed and bank material.	G			

Site Information and					
Reference Curve Stratification					
Project Name:	Bad Creek Pumped Storage Project				
Reach ID:	Limber Pole Creek - Upstream				
Restoration Potential:					
Preservation (Y/N):	Yes				
Ecoregion:	Blue Ridge Mountains				
River Basin:	Savannah				
Existing Stream Length (ft):	100				
Proposed Stream Length (ft):					
Existing Stream Type:	В				
Reference Stream Type:	В				
Valley Type:	Colluvial				
Drainage Area (sq. mi.):	1.78				
Stream Slope (%):	2.1				
Strahler Stream Order:	Third				
Flow Type:	Perennial				
Proposed Bed Material:					
Buffer Valley Slope (%):	< 5 %				
Dominant Buffer Land Use:					
Proposed Canopy Cover (%) at project closeout:					
Stream Temperature:	Coldwater				
Fish Bioassessment Class:	2 - Upland Savannah				

Notes
Users input values that are highlighted
2. Users select values from a pull-down menu
3. Leave values blank for field values that were not measured

FUNCTIONAL CHANGE SUM	MARY
Existing Condition Score (ECS)	0.58
Proposed Condition Score (PCS)	0.58
Change in Functional Condition (PCS - ECS)	0.00
Percent Condition Change	0%
Existing Stream Length (ft)	100.0
Proposed Stream Length (ft)	
Additional Stream Length (ft)	
Existing Functional Foot Score (FFS)	
Proposed Functional Foot Score (FFS)	
Proposed FFS - Existing FFS (△FF)	
Functional Yield (ΔFF/LF)	

Little restoration potential. Surrounding landscape and watershed exhibit little anthropogenic influence or degradation on the stream. Approximately 97.4 percent of the drainage area to Limber Pole Creek is classified as forested based on the NLCD. Limber Pole Creek is in stable condition with conditions typical of B-type streams.

Functional	Function-Based Parameters	Metric	EXIST	EXISTING CONDITION ASSESSMENT			PROPOSED CONDITION ASSESSMENT			
Category		Weth	Field Value	Index Value	Parameter	Category	Field Value	Index Value	Parameter	Category
Hydrology	Reach Runoff	Land Use Coefficient	55	1.00	1.00	1.00				
nyurology	Reacii Rulloli	Concentrated Flow Points (#/1000 LF)	0	1.00	1.00	1.00				
	Floodplain Connectivity	Bank Height Ratio (ft/ft)	2.8	0.00	0.27					
Hydraulics	Ploodplain Connectivity	Entrenchment Ratio (ft/ft)	1.3	0.53	0.27	0.53				
	Flow Dynamics	Width/Depth Ratio State (O/E)	0.83	0.79	0.79					
	Large Woody Debris	LWD Index			1.00					
	Large Woody Debris	LWD Piece Count (#/100m)	39.4	1.00	1.00					
		Erosion Rate (ft/yr)								
	Lateral Migration	Dominant BEHI/NBS	H/L	0.20	0.58					
	Lateral Wilgration	Percent Streambank Erosion (%)	6	0.95	0.56					
		Percent Streambank Armoring (%)								
	Riparian Vegetation	Buffer Width (ft)	300	FALSE		0.72				
Geomorphology		Average DBH (in)	9.52	1.00						
		Tree Density (#/acre)	405	0.50	0.75					
		Native Shrub Density (#/acre)			0.73					
		Native Herbaceous Cover (%)								
		Monoculture Area (%)								
		Pool Spacing Ratio (ft/ft)								
	Bed Form Diversity	Pool Depth Ratio (ft/ft)	1.6	0.18	0.55					
		Percent Riffle (%)	49	0.92						
	Temperature	Summer Daily Maximum (°F)								
	Bacteria	E. Coli (MPN/100 ml)								
Physicochemical	Nitrogen	Total Nitrogen (mg/L)								
rnysicochemical	Phosphorus	Total Phosphorus (mg/L)								
	Suspended Sediment	Total Suspended Solids (mg/L)								
	Suspended Sediment	Turbidity (NTU)								
Biology	Macroinvertebrates	EPT Taxa Present	27	0.66	0.66	0.66				
biology	Fish	South Carolina Biotic Index				0.00				

Site Information and					
Reference Curve Stratification					
Project Name:	Bad Creek Pumped Storage Project				
Reach ID:	Limber Pole Creek - Downstream				
Restoration Potential:					
Preservation (Y/N):	Yes				
Ecoregion:	Blue Ridge Mountains				
River Basin:	Savannah				
Existing Stream Length (ft):	100				
Proposed Stream Length (ft):					
Existing Stream Type:	В				
Reference Stream Type:	В				
Valley Type:	Colluvial				
Drainage Area (sq. mi.):	1.82				
Stream Slope (%):	2.1				
Strahler Stream Order:	Third				
Flow Type:	Perennial				
Proposed Bed Material:					
Buffer Valley Slope (%):	< 5 %				
Dominant Buffer Land Use:					
Proposed Canopy Cover (%) at project closeout:					
Stream Temperature:	Coldwater				
Fish Bioassessment Class:	2 - Upland Savannah				

Notes
1. Users input values that are highlighted
Users select values from a pull-down menu
3. Leave values blank for field values that were not measured

FUNCTIONAL CHANGE SUMMARY					
Existing Condition Score (ECS)	0.53				
Proposed Condition Score (PCS)	0.53				
Change in Functional Condition (PCS - ECS)	0.00				
Percent Condition Change	0%				
Existing Stream Length (ft)	100.0				
Proposed Stream Length (ft)					
Additional Stream Length (ft)					
Existing Functional Foot Score (FFS)					
Proposed Functional Foot Score (FFS)					
Proposed FFS - Existing FFS (△FF)					
Functional Yield (ΔFF/LF)					

Little restoration potential. Surrounding landscape and watershed exhibit little anthropogenic influence or degradation on the stream. Approximately 97.4 percent of the drainage area to Limber Pole Creek is classified as forested based on the NLCD. Limber Pole Creek is in stable condition with conditions typical of B-type streams.

Functional		Metric	EXIST	ING CONDIT	ION ASSESS	MENT	PROPOSED CONDITION ASSESSMENT				
Category	Function-Based Parameters	Function-Based Parameters	Wietric	Field Value	Index Value	Parameter	Category	Field Value	Index Value	Parameter	Category
Hydrology	Reach Runoff	Land Use Coefficient	55	1.00	1.00	1.00					
пуштогоду	Reacti Kulloti	Concentrated Flow Points (#/1000 LF)	0	1.00	1.00	1.00					
Hydraulics	Floodplain Connectivity	Bank Height Ratio (ft/ft)	2.8	0.00	0.00						
	riodupiani connectivity	Entrenchment Ratio (ft/ft)	0.8	0	0.00	0.31					
	Flow Dynamics	Width/Depth Ratio State (O/E)	1.31	0.61	0.61						
	Large Woody Debris	LWD Index			0.97						
	Large Woody Debris	LWD Piece Count (#/100m)	26.8	0.97	0.57						
		Erosion Rate (ft/yr)									
	Lateral Migration	Dominant BEHI/NBS			1.00						
		Percent Streambank Erosion (%)	0	1.00	1.00						
		Percent Streambank Armoring (%)									
	Riparian Vegetation	Buffer Width (ft)	300	FALSE		0.95					
Geomorphology		Average DBH (in)	10.48	1.00							
		Tree Density (#/acre)	223	1.00	1.00						
		Native Shrub Density (#/acre)			1.00						
		Native Herbaceous Cover (%)									
		Monoculture Area (%)									
		Pool Spacing Ratio (ft/ft)									
	Bed Form Diversity	Pool Depth Ratio (ft/ft)	2.7	0.90	0.82						
		Percent Riffle (%)	39	0.74							
	Temperature	Summer Daily Maximum (°F)									
	Bacteria	E. Coli (MPN/100 ml)									
Physicochemical	Nitrogen	Total Nitrogen (mg/L)									
nysicochemical	Phosphorus	Total Phosphorus (mg/L)									
	Suspended Sediment	Total Suspended Solids (mg/L)									
	<u>'</u>	Turbidity (NTU)									
Biology		EPT Taxa Present	21	0.39	0.39	0.39					
5.0.061	Fish	South Carolina Biotic Index				0.55					

Version 1.1		Notes								
Version Last Updated:	7-Dec-22	1. Users input values that are	1. Users input values that are highlighted based on restoration potential							
		2. Users select values from a	pull-down menu							
		3. Leave values blank for field	values that were not measured							
		Programmatic Goal	ls							
Select:		Other								
Expand on the programm	atic goals of this proje	ect:								
The goals for this project	are to preserve the cu	rrent condition of Howard Creek by im	plementing Best Management Prac	tices and	avoidance	and				
minimization measures to	the maximum extent	practicable if Bad Creek II is pursued a	nd if the proposed temporary acess	s road is co	onstructed	d. Little				
restoration potential exist	ts for this surface wate	er; the surrounding landscape and wate	ershed exhibit little anthropogenic i	nfluence o	or degrada	ation on				
the stream. Only 0.4 perce	ent of the drainage ar	ea to Howard Creek is classified as imp	ervious area based on the 2019 NLC	CD. Both, i	upstream	and				
downstream reaches exhi	bit a completely intac	t, forested riparian buffer.								
		Project Description	1							
Project Name:		Bad Creek Pum	nped Storage Project							
Project ID:		How	vard Creek							
Ecoregion:		Blue Rid	lge Mountains							
River Basin:		Sa	avannah							
12-digit HUC:		306	01010104							
		Reach Summary								
Worksheet Title	Reach ID	Reach Description	Reach Break Criteria	ECS	PCS	ΔFF				
Quantification_Tool_US	ward Creek - Upstre	Upstream of temporary access road cr	Single reach upstream to access	0.6	0.6					
		Downstream of temporary access road	Single reach from temporary							
Quantification_Tool_DS	ard Creek - Downstr	Downstream of temporary access road	access road, downstream	0.58	0.58					
				1	1	1				

App	licable Reach(es):	Howard Creek Upstream and Downstream	reaches			
Ove	rall Catchment Condition (select:)	Good	Describe how any categories rated as poor were considere None - stream is in natural condition with only 0.4% imper		e reach(es)	
			Description of Catchment Condition		Rating	
	Categories	Poor	Fair	Good	(P/F/G)	
1	Concentrated Flow	Existing concentrated flow/impairments immediately upstream of the project reach with no treatments in place.	immediately upstream of the project reach with the project reach but measures are in place to protect		G	
2	Impervious cover	≥ 25%	>10% and <25%	≤ 10%	G	
3	Urbanization	Rapidly urbanizing/urban.	Some urban growth potential, or uncertain growth potential. May consist of single family homes/suburban.	Rural communities/slow growth potential, or primarily forested.	G	
4	Development Activities (e.g. utility rights-of-way, pipeline, mining, silviculture, roads)	High development or potential for impacts in contributing watershed or within 1 mile of project reach, or high potential of impacts >1 mile away from project reach.	Moderate development or moderate potential for impacts, but none within 1 mile of project reach.	No development or no potential for impacts.	G	
5	Percent Forested	≤ 20%	>20% and <70%	≥ 70%	G	
6	Riparian Vegetation	<50% of contributing stream length (project reach and upstream channel) has >25-m (~82 ft) corridor width.	50-80% of contributing stream length (project reach and upstream channel) has >25-m (~82 ft) corridor width.	>80% of contributing stream length (project reach and upstream channel) has >25-m (~82 ft) corridor width.	G	
7	Sediment Supply	Multiple, large anthropogenic-caused sources of sediment supply from upstream bank erosion and surface runoff.	Moderate anthropogenic-caused sediment supply from upstream bank erosion and surface runoff.	A few small anthropogenic-caused sediment supply sources. Upstream bank erosion and surface runoff is minimal, as sediment supply is low.	G	
8	Proximity to 303(d) or TMDL listed waters	Project reach on, upstream, or downstream of a 303(d) waterway without a TMDL/watershed management plan to address deficiencies.	Project reach on, upstream, or downstream of a 303(d) waterway with a TMDL/ watershed management plan addressing deficiencies.	Project reach is not on the 303(d) list.	G	
9	Agricultural Land Use	Livestock access to stream and/or intensive cropland immediately upstream of the project reach.	Agricultural land uses are present in the catchment, but impacts are likely attenuated within the project reach.	There is little to no agricultural land uses or forested buffers exist between the receiving waters and the agriculture land and/or livestock.	G	
10	NPDES Permits	Many NPDES permits within the catchment or some within 1 mile of the project reach.	A few NPDES permits within the catchment and none within 1 mile of the project reach.	No NPDES permits within the catchment and none within 1 mile of the project reach.	G	
11	Inline Watershed Impoundments	Impoundment(s) are located near the project area (within 1 mile upstream or downstream), and/or impoundment(s) within the catchment have a negative effect on project area (e.g., flow alteration or reduced sediment supply) and fish passage.	A few small impoundments within the catchment and none within one mile of the project reach.	No impoundment (including farm ponds) upstream or downstream of project area OR only natural impoundments that allow for fish passage.	G	
12	Organism Recruitment	Channel immediately upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) is concrete, piped, or hardened.	Channel immediately upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) has native bed and bank material that is highly embedded by fine sediment, but proximate stream reaches support desirable aqu	Channel immediately upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) has native bed and bank material.	G	
13	Other					

Site Information and					
Reference Curve Stratification					
Project Name:	Bad Creek Pumped Storage Project				
Reach ID:	Howard Creek - Upstream				
Restoration Potential:					
Preservation (Y/N):	Yes				
Ecoregion:	Blue Ridge Mountains				
River Basin:	Savannah				
Existing Stream Length (ft):	100				
Proposed Stream Length (ft):					
Existing Stream Type:	Вс				
Reference Stream Type:	Вс				
Valley Type:	Colluvial				
Drainage Area (sq. mi.):	4.16				
Stream Slope (%):	1.9				
Strahler Stream Order:	Second				
Flow Type:	Perennial				
Proposed Bed Material:					
Buffer Valley Slope (%):	< 5 %				
Dominant Buffer Land Use:					
Proposed Canopy Cover (%) at project closeout:					
Stream Temperature:	Coldwater				
Fish Bioassessment Class:	2 - Upland Savannah				

No	tes		
1. Users input values that are highlighte	d		
Users select values from a pull-down menu			
3. Leave values blank for field values that were not measured			

FUNCTIONAL CHANGE SUMMARY				
Existing Condition Score (ECS)	0.60			
Proposed Condition Score (PCS)	0.60			
Change in Functional Condition (PCS - ECS)	0.00			
Percent Condition Change	0%			
Existing Stream Length (ft)	100.0			
Proposed Stream Length (ft)				
Additional Stream Length (ft)				
Existing Functional Foot Score (FFS)				
Proposed Functional Foot Score (FFS)				
Proposed FFS - Existing FFS (△FF)				
Functional Yield (ΔFF/LF)				

No restoration potential. Surrounding landscape and watershed exhibit little anthropogenic influence or degradation on the stream. Only 0.4 percent of the drainage area to Howard Creek is classified as impervious area based on the 2019 NLCD. Howard Creek is in stable condition with conditions typical of B-type streams.

Functional		Metric	EXIST	EXISTING CONDITION ASSESSMENT			PROPOSED CONDITION ASSESSMENT			
Category	Function-Based Parameters	Weth	Field Value	Index Value	Parameter	Category	Field Value	Index Value	Parameter	Category
Hydrology	Reach Runoff	Land Use Coefficient	55	1.00	1.00	1.00				
riyurology	Reacti Kulloti	Concentrated Flow Points (#/1000 LF)	0	1.00	1.00					
	Floodplain Connectivity	Bank Height Ratio (ft/ft)	3.2	0.00	0.18	0.56				
Hydraulics	Produpiani Connectivity	Entrenchment Ratio (ft/ft)	1.2	0.35						
	Flow Dynamics	Width/Depth Ratio State (O/E)	0.96	0.95	0.95					
	Large Woody Debris	LWD Index			0.79					
	Large Woody Debris	LWD Piece Count (#/100m)	19.7	0.79	0.73					
		Erosion Rate (ft/yr)				0.71				
	Lateral Migration	Dominant BEHI/NBS	H/L	0.20	0.40					
	Editorial Wilgidation	Percent Streambank Erosion (%)	16.5	0.60	0.40					
		Percent Streambank Armoring (%)								
		Buffer Width (ft)	300	FALSE						
Geomorphology		Average DBH (in)	12.3	1.00						
	Riparian Vegetation	Tree Density (#/acre)	142	1.00	1.00					
	Taparian Vegetation	Native Shrub Density (#/acre)			2.00					
		Native Herbaceous Cover (%)								
		Monoculture Area (%)								
		Pool Spacing Ratio (ft/ft)	1.9	1.00						
	Bed Form Diversity	Pool Depth Ratio (ft/ft)	1.1	0.03	0.67					
		Percent Riffle (%)	62	0.97						
	Temperature	Summer Daily Maximum (°F)								
	Bacteria	E. Coli (MPN/100 ml)								
Physicochemical	Nitrogen	Total Nitrogen (mg/L)								
,5.000.101111001	Phosphorus	Total Phosphorus (mg/L)								
	Suspended Sediment	Total Suspended Solids (mg/L)								
	<u>'</u>	Turbidity (NTU)								
Biology	Macroinvertebrates	EPT Taxa Present	30	0.78	0.78	0.74				
2.0.061	Fish	South Carolina Biotic Index	0	0.70	0.70	5.74				

Site Information and					
Reference Curve Stratification					
Project Name:	Bad Creek Pumped Storage Project				
Reach ID:	Howard Creek - Downstream				
Restoration Potential:					
Preservation (Y/N):	Yes				
Ecoregion:	Blue Ridge Mountains				
River Basin:	Savannah				
Existing Stream Length (ft):	100				
Proposed Stream Length (ft):					
Existing Stream Type:	Ва				
Reference Stream Type:	Ва				
Valley Type:	Colluvial				
Drainage Area (sq. mi.):	4.13202				
Stream Slope (%):	1.9				
Strahler Stream Order:	Second				
Flow Type:	Perennial				
Proposed Bed Material:					
Buffer Valley Slope (%):	< 5 %				
Dominant Buffer Land Use:					
Proposed Canopy Cover (%) at project closeout:					
Stream Temperature:	Coldwater				
Fish Bioassessment Class:	2 - Upland Savannah				

Notes			
Users input values that are highlighted			
2. Users select values from a pull-down menu			
3. Leave values blank for field values that were not measured			

FUNCTIONAL CHANGE SUMI	MADV
	VIART
Existing Condition Score (ECS)	0.58
Proposed Condition Score (PCS)	0.58
Change in Functional Condition (PCS - ECS)	0.00
Percent Condition Change	0%
Existing Stream Length (ft)	100.0
Proposed Stream Length (ft)	
Additional Stream Length (ft)	
Existing Functional Foot Score (FFS)	
Proposed Functional Foot Score (FFS)	
Proposed FFS - Existing FFS (△FF)	
Functional Yield (ΔFF/LF)	

Little restoration potential. Surrounding landscape and watershed exhibit little anthropogenic influence or degradation on the stream. Only 0.4 percent of the drainage area to Howard Creek is classified as impervious area based on the 2019 NLCD. Howard Creek is in stable condition with conditions typical of B-type streams.

Functional		Metric	EXIST	EXISTING CONDITION ASSESSMENT			PROPOSED CONDITION ASSESSMENT			
Category	ory Function-Based Parameters	Metric	Field Value	Index Value	Parameter	Category	Field Value	Index Value	Parameter	Category
Hydrology	Reach Runoff	Land Use Coefficient	55	1.00	1.00	1.00				
Tryurology	Reacti Rution	Concentrated Flow Points (#/1000 LF)	0	1.00	1.00					
	Floodplain Connectivity	Bank Height Ratio (ft/ft)	2.1	0.00	0.18					
Hydraulics	Ploodplain Connectivity	Entrenchment Ratio (ft/ft)	1.2	0.35	0.18	0.28				
	Flow Dynamics	Width/Depth Ratio State (O/E)	1.5	0.38	0.38					
	Large Woody Debris	LWD Index			1.00					
	Large Woody Debris	LWD Piece Count (#/100m)	43.2	1.00	1.00					
		Erosion Rate (ft/yr)				0.91				
	Lateral Migration	Dominant BEHI/NBS	VL/L	1.00	1.00					
	Lateral Migration	Percent Streambank Erosion (%)	0	1.00	1.00					
		Percent Streambank Armoring (%)								
		Buffer Width (ft)	300	FALSE						
Geomorphology		Average DBH (in)	8.48	0.91						
	Riparian Vegetation	Tree Density (#/acre)	121	0.90	0.91					
	Riparian vegetation	Native Shrub Density (#/acre)			0.91					
		Native Herbaceous Cover (%)								
		Monoculture Area (%)								
		Pool Spacing Ratio (ft/ft)	1.3	1.00						
	Bed Form Diversity	Pool Depth Ratio (ft/ft)	1.6	0.18	0.72					
		Percent Riffle (%)	62	0.97						
	Temperature	Summer Daily Maximum (°F)								
	Bacteria	E. Coli (MPN/100 ml)								
Dhysicach om:!	Nitrogen	Total Nitrogen (mg/L)								
Physicochemical	Phosphorus	Total Phosphorus (mg/L)								
	Cusp and ad Cadimant	Total Suspended Solids (mg/L)								
	Suspended Sediment	Turbidity (NTU)								
Dieles.	Macroinvertebrates	EPT Taxa Present	28	0.70	0.70	0.70				
Biology	Fish	South Carolina Biotic Index	0	0.70	0.70	0.70				

Version 1.1		Notes							
Version Last Updated:	7-Dec-22		Users input values that are highlighted based on restoration potential						
reision Last opaatea.	, 500 11	2. Users select values from a p		o terrerar					
			values that were not measured						
		Programmatic Goal	S						
Select:		Other							
Expand on the programma									
	•	rrent condition of Stream 12 by implen							
		practicable if Bad Creek II is pursued a							
·		er; the surrounding landscape and wate			_				
the stream. 89.9 percent of	of the drainage area is	s classified as forested and only 0.9 per	cent is classified as impervious acco	ording to t	he 2019 N	LCD.			
		Project Description	1						
Project Name:		Bad Creek Pum	nped Storage Project						
Project ID:		Sti	ream 12						
Ecoregion:		Blue Rid	ge Mountains						
River Basin:		Sa	vannah						
12-digit HUC:		3060	01010104						
		Reach Summary							
Worksheet Title	Reach ID	Reach Description	Reach Break Criteria	ECS	PCS	ΔFF			
Quantification_Tool_US	tream 12 - Upstrean	Upstream of temporary access road cr	Single reach upstream to access	0.39	0.39				
		Downstream of temporary access road	Single reach from temporary						
Quantification_Tool_DS	ream 12 Downstrea	bownstream of temporary access roac	access road, downstream	0.47	0.47				
						<u> </u>			
						<u> </u>			

Ann	olicable Reach(es):	Stream 12 upstream and downstream					
Overall Catchment Condition (select:)		Describe how any categories rated as poor were considered in the selection of the restoration potential of the Good Overall catchment condition is good. An existing electric transmission ROW is located just east (upstream) of St					
-			Description of Catchment Condition				
	Categories	Poor	Fair	Good	Rating (P/F/G)		
1	Concentrated Flow	Existing concentrated flow/impairments immediately upstream of the project reach with no treatments in place.	Potential for concentrated flow/impairments from adjacent land use or channel immediately upstream of the project reach, but measures are in place to protect resources.	No potential for concentrated flow/impairments from adjacent land use and/or channel immediately upstream of project reach.	G		
2	Impervious cover	≥ 25%	>10% and <25%	≤ 10%	G		
3	Urbanization	Rapidly urbanizing/urban.	Some urban growth potential, or uncertain growth potential. May consist of single family homes/suburban.	Rural communities/slow growth potential, or primarily forested.	G		
4	Development Activities (e.g. utility rights-of-way, pipeline, mining, silviculture, roads)	High development or potential for impacts in contributing watershed or within 1 mile of project reach, or high potential of impacts >1 mile away from project reach.	Moderate development or moderate potential for impacts, but none within 1 mile of project reach.	No development or no potential for impacts.	Р		
5	Percent Forested	≤ 20%	>20% and <70%	≥ 70%	G		
6	Riparian Vegetation	<50% of contributing stream length (project reach and upstream channel) has >25-m (~82 ft) corridor width.	50-80% of contributing stream length (project reach and upstream channel) has >25-m (~82 ft) corridor width.	>80% of contributing stream length (project reach and upstream channel) has >25-m (~82 ft) corridor width.	F		
7	Sediment Supply	Multiple, large anthropogenic-caused sources of sediment supply from upstream bank erosion and surface runoff.	Moderate anthropogenic-caused sediment supply from upstream bank erosion and surface runoff.	A few small anthropogenic-caused sediment supply sources. Upstream bank erosion and surface runoff is minimal, as sediment supply is low.	G		
8	Proximity to 303(d) or TMDL listed waters	Project reach on, upstream, or downstream of a 303(d) waterway without a TMDL/watershed management plan to address deficiencies.	Project reach on, upstream, or downstream of a 303(d) waterway with a TMDL/ watershed management plan addressing deficiencies.	Project reach is not on the 303(d) list.	G		
9	Agricultural Land Use	Livestock access to stream and/or intensive cropland immediately upstream of the project reach.	Agricultural land uses are present in the catchment, but impacts are likely attenuated within the project reach.	There is little to no agricultural land uses or forested buffers exist between the receiving waters and the agriculture land and/or livestock.	G		
10	NPDES Permits	Many NPDES permits within the catchment or some within 1 mile of the project reach.	A few NPDES permits within the catchment and none within 1 mile of the project reach.	No NPDES permits within the catchment and none within 1 mile of the project reach.	G		
11	Inline Watershed Impoundments	Impoundment(s) are located near the project area (within 1 mile upstream or downstream), and/or impoundment(s) within the catchment have a negative effect on project area (e.g., flow alteration or reduced sediment supply) and fish passage.	A few small impoundments within the catchment and none within one mile of the project reach.	No impoundment (including farm ponds) upstream or downstream of project area OR only natural impoundments that allow for fish passage.	G		
12	Organism Recruitment	Channel immediately upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) is concrete, piped, or hardened.	Channel immediately upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) has native bed and bank material that is highly embedded by fine sediment, but proximate stream reaches support desirable aquatic communities.	Channel immediately upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) has native bed and bank material.	G		
13	Other						

Site Information and					
Reference Curve Stratification					
Project Name:	Bad Creek Pumped Storage Project				
Reach ID:	Stream 12 - Upstream				
Restoration Potential:					
Preservation (Y/N):	Yes				
Ecoregion:	Blue Ridge Mountains				
River Basin:	Savannah				
Existing Stream Length (ft):	100				
Proposed Stream Length (ft):					
Existing Stream Type:	A				
Reference Stream Type:	A				
Valley Type:	Colluvial				
Drainage Area (sq. mi.):	0.046				
Stream Slope (%):	12				
Strahler Stream Order:	First				
Flow Type:	Intermittent				
Proposed Bed Material:					
Buffer Valley Slope (%):	5 - 20 %				
Dominant Buffer Land Use:					
Proposed Canopy Cover (%) at project closeout:					
Stream Temperature:	Coldwater				
Fish Bioassessment Class:					

Notes	
Users input values that are highlighted	
2. Users select values from a pull-down menu	
3. Leave values blank for field values that were not measured	

FUNCTIONAL CHANGE SUMMARY	
Existing Condition Score (ECS)	0.39
Proposed Condition Score (PCS)	0.39
Change in Functional Condition (PCS - ECS)	0.00
Percent Condition Change	0%
Existing Stream Length (ft)	100.0
Proposed Stream Length (ft)	
Additional Stream Length (ft)	
Existing Functional Foot Score (FFS)	
Proposed Functional Foot Score (FFS)	
Proposed FFS - Existing FFS (△FF)	
Functional Yield (ΔFF/LF)	

Little restoration potential. Surrounding landscape and watershed exhibit little anthropogenic influence or degradation on the stream. Approximately 89.9 percent of the drainage area to Stream 12 is classified as forested based on the NLCD, with only 0.9 percent impervious. Stream 12 is in stable condition with conditions typical of A-type streams.

Functional	Function-Based Parameters	Metric	EXIST	EXISTING CONDITION ASSESSMENT			PROPOSED CONDITION ASSESSMENT			
Category		Metric	Field Value	Index Value	Parameter	Category	Field Value	Index Value	Parameter	Category
Hydrology	Reach Runoff	Land Use Coefficient	55	1.00	1.00	1.00				
	Reacti Rution	Concentrated Flow Points (#/1000 LF)	0	1.00	1.00					
	Floodplain Connectivity	Bank Height Ratio (ft/ft)	5.1	0.00	0.00					
Hydraulics	Ploodplain Connectivity	Entrenchment Ratio (ft/ft)	1.3	FALSE	0.00	0.12				
	Flow Dynamics	Width/Depth Ratio State (O/E)	1.62	0.23	0.23					
	Large Woody Debris	LWD Index			0.43					
	Large Woody Debris	LWD Piece Count (#/100m)	9.8	0.43	0.43					
		Erosion Rate (ft/yr)								
	Lateral Migration	Dominant BEHI/NBS	VL/VL	1.00	1.00	0.83				
	Lateral Migration	Percent Streambank Erosion (%)	0	1.00	1.00					
		Percent Streambank Armoring (%)								
	Riparian Vegetation	Buffer Width (ft)	300	FALSE						
Geomorphology		Average DBH (in)	18.58	1.00						
		Tree Density (#/acre)	243	1.00	1.00					
		Native Shrub Density (#/acre)			1.00					
		Native Herbaceous Cover (%)								
		Monoculture Area (%)								
		Pool Spacing Ratio (ft/ft)	3.3	1.00						
	Bed Form Diversity	Pool Depth Ratio (ft/ft)	2.5	1.00	0.91					
		Percent Riffle (%)	39	0.72						
	Temperature	Summer Daily Maximum (°F)								
	Bacteria	E. Coli (MPN/100 ml)								
Dhysicachamical	Nitrogen	Total Nitrogen (mg/L)								
Physicochemical	Phosphorus	Total Phosphorus (mg/L)								
	Suspended Sediment	Total Suspended Solids (mg/L)								
	Suspended Sediment	Turbidity (NTU)								
Diology	Macroinvertebrates	EPT Taxa Present								
Biology	Fish	South Carolina Biotic Index								

Site Information and					
Reference Curve S	Reference Curve Stratification				
Project Name:	Bad Creek Pumped Storage Project				
Reach ID:	Stream 12 Downstream				
Restoration Potential:					
Preservation (Y/N):	Yes				
Ecoregion:	Blue Ridge Mountains				
River Basin:	Savannah				
Existing Stream Length (ft):	100				
Proposed Stream Length (ft):					
Existing Stream Type:	Ва				
Reference Stream Type:	В				
Valley Type:	Colluvial				
Drainage Area (sq. mi.):	0.031178				
Stream Slope (%):	8				
Strahler Stream Order:	1				
Flow Type:	Intermittent				
Proposed Bed Material:					
Buffer Valley Slope (%):	5 - 20 %				
Dominant Buffer Land Use:					
Proposed Canopy Cover (%) at project closeout:					
Stream Temperature:	Coldwater				
Fish Bioassessment Class:					

Notes			
Users input values that are highlighted			
2. Users select values from a pull-down menu			
3. Leave values blank for field values that were not measured			

FUNCTIONAL CHANGE SUMMARY				
Existing Condition Score (ECS)	0.47			
Proposed Condition Score (PCS)	0.47			
Change in Functional Condition (PCS - ECS)	0.00			
Percent Condition Change	0%			
Existing Stream Length (ft)	100.0			
Proposed Stream Length (ft)				
Additional Stream Length (ft)				
Existing Functional Foot Score (FFS)				
Proposed Functional Foot Score (FFS)				
Proposed FFS - Existing FFS (△FF)				
Functional Yield (ΔFF/LF)				

Little restoration potential. Surrounding landscape and watershed exhibit little anthropogenic influence or degradation on the stream. Approximately 89.9 percent of the drainage area to Stream 12 is classified as forested based on the NLCD, with only 0.9 percent impervious. Stream 12 is in stable condition with conditions typical of B-type streams.

Functional		Metric	EXISTING CONDITION ASSESSMENT			PROPOSED CONDITION ASSESSMENT				
Category	Function-Based Parameters	Wethe	Field Value	Index Value	Parameter	Category	Field Value	Index Value	Parameter	Category
Hydrology	Reach Runoff	Land Use Coefficient	55	1.00	1.00	1.00				
	Reach Runon	Concentrated Flow Points (#/1000 LF)	0	1.00	1.00					
	Floodplain Connectivity	Bank Height Ratio (ft/ft)	3.2	0.00	0.38					l
Hydraulics	1100dplain connectivity	Entrenchment Ratio (ft/ft)	1.5	0.75		0.53				
	Flow Dynamics	Width/Depth Ratio State (O/E)	1.25	0.69	0.69					
	Large Woody Debris	LWD Index			1.00					İ
	Large Woody Debris	LWD Piece Count (#/100m)	52.5	1.00	1.00					
		Erosion Rate (ft/yr)								ĺ
	Lateral Migration	Dominant BEHI/NBS	M/M	0.50	0.75					İ
	Lateral Wilgration	Percent Streambank Erosion (%)	5	1.00	0.73					İ
		Percent Streambank Armoring (%)								j
	Riparian Vegetation	Buffer Width (ft)	300	FALSE						İ
Geomorphology		Average DBH (in)	14.71	1.00		0.83				ı
		Tree Density (#/acre)	162	1.00	1.00					İ
		Native Shrub Density (#/acre)			1.00				İ	
		Native Herbaceous Cover (%)								i
		Monoculture Area (%)								j
		Pool Spacing Ratio (ft/ft)	0.6	1.00						İ
	Bed Form Diversity	Pool Depth Ratio (ft/ft)	1.2	0.06	0.56					İ
		Percent Riffle (%)	76	0.62						
	Temperature	Summer Daily Maximum (°F)								
	Bacteria	E. Coli (MPN/100 ml)								j
Physicochemical	Nitrogen	Total Nitrogen (mg/L)								
riiysicociieiiiicai	Phosphorus	Total Phosphorus (mg/L)								
	Suspended Sediment	Total Suspended Solids (mg/L)								1
	suspended sediment	Turbidity (NTU)								
Biology	Macroinvertebrates	EPT Taxa Present								
DIOIOGY	Fish	South Carolina Biotic Index								

Version 1.1		Notes							
Version Last Updated:	7-Dec-22	7-Dec-22 1. Users input values that are highlighted based on restoration potential							
		2. Users select values from a	pull-down menu						
		3. Leave values blank for field	values that were not measured						
		Programmatic Goa	ls						
Select:		Other							
Expand on the programm	atic goals of this proje	ect:	•	,					
		Project Description	n						
Project Name:		Bad Creek Pur	nped Storage Project						
Project ID:		St	ream 15						
Ecoregion:		Blue Ridge Mountains							
River Basin:		Si	avannah						
12-digit HUC:		306	01010104						
		Reach Summary							
Worksheet Title	Reach ID	Reach Description	Reach Break Criteria	ECS	PCS	ΔFF			
Quantification_Tool_US		Reach upstream of temporary access		0.36	0.36				
Quantification_Tool_DS	ream 15 - Downstrea	Reach downstream of temporary acce	Downstream of access road	0.35	0.35				
						<u> </u>			
						1			

Арр	licable Reach(es):	Stream 15 upstream and downstream						
Overall Catchment Condition (select:)		Describe how any categories rated as poor were considered in the selection of the restoration potential of th None were rated as poor. Catchment is in good condition with approximately 85.6 percent of classified as fo percent classified as impervious based on the NLCD.						
	Catalania		Description of Catchment Condition		Rating			
	Categories	Poor Fair		Good	(P/F/G)			
1	Concentrated Flow	Existing concentrated flow/impairments immediately upstream of the project reach with no treatments in place.	Potential for concentrated flow/impairments from adjacent land use or channel immediately upstream of the project reach, but measures are in place to protect resources.	No potential for concentrated flow/impairments from adjacent land use and/or channel immediately upstream of project reach.	G			
2	Impervious cover	≥ 25%	>10% and <25%	≤ 10%	G			
3	Urbanization	Rapidly urbanizing/urban.	Some urban growth potential, or uncertain growth potential. May consist of single family homes/suburban.	Rural communities/slow growth potential, or primarily forested.	G			
4	Development Activities (e.g. utility rights-of-way, pipeline, mining, silviculture, roads)	High development or potential for impacts in contributing watershed or within 1 mile of project reach, or high potential of impacts >1 mile away from project reach.	Moderate development or moderate potential for impacts, but none within 1 mile of project reach.	No development or no potential for impacts.	G			
5	Percent Forested	≤ 20%	>20% and <70%	≥ 70%	G			
6	Riparian Vegetation	<50% of contributing stream length (project reach and upstream channel) has >25-m (~82 ft) corridor width.	50-80% of contributing stream length (project reach and upstream channel) has >25-m (~82 ft) corridor width.	>80% of contributing stream length (project reach and upstream channel) has >25-m (~82 ft) corridor width.	F			
7	Sediment Supply	Multiple, large anthropogenic-caused sources of sediment supply from upstream bank erosion and surface runoff.	Moderate anthropogenic-caused sediment supply from upstream bank erosion and surface runoff.	A few small anthropogenic-caused sediment supply sources. Upstream bank erosion and surface runoff is minimal, as sediment supply is low.	F			
8	Proximity to 303(d) or TMDL listed waters	Project reach on, upstream, or downstream of a 303(d) waterway without a TMDL/watershed management plan to address deficiencies.	Project reach on, upstream, or downstream of a 303(d) waterway with a TMDL/ watershed management plan addressing deficiencies.	Project reach is not on the 303(d) list.	G			
9	Agricultural Land Use	Livestock access to stream and/or intensive cropland immediately upstream of the project reach.	Agricultural land uses are present in the catchment, but impacts are likely attenuated within the project reach.	There is little to no agricultural land uses or forested buffers exist between the receiving waters and the agriculture land and/or livestock.	G			
10	NPDES Permits	Many NPDES permits within the catchment or some within 1 mile of the project reach.	A few NPDES permits within the catchment and none within 1 mile of the project reach.	No NPDES permits within the catchment and none within 1 mile of the project reach.	G			
11	Inline Watershed Impoundments	Impoundment(s) are located near the project area (within 1 mile upstream or downstream), and/or impoundment(s) within the catchment have a negative effect on project area (e.g., flow alteration or reduced sediment supply) and fish passage.	A few small impoundments within the catchment and none within one mile of the project reach.	No impoundment (including farm ponds) upstream or downstream of project area OR only natural impoundments that allow for fish passage.	G			
12	Organism Recruitment	Channel immediately upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) is concrete, piped, or hardened.	Channel immediately upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) has native bed and bank material that is highly embedded by fine sediment, but proximate stream reaches support desirable aquatic communities.	Channel immediately upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) has native bed and bank material.	G			
13	Other							

Site Information and				
Reference Curve Stratification				
Project Name:	Bad Creek Pumped Storage Project			
Reach ID:	Stream 15 - Upstream			
Restoration Potential:				
Preservation (Y/N):	Yes			
Ecoregion:	Blue Ridge Mountains			
River Basin:	Savannah			
Existing Stream Length (ft):	100			
Proposed Stream Length (ft):				
Existing Stream Type:	G			
Reference Stream Type:	В			
Valley Type:	Colluvial			
Drainage Area (sq. mi.):	0.018879			
Stream Slope (%):	7.9			
Strahler Stream Order:	First			
Flow Type:	Perennial			
Proposed Bed Material:				
Buffer Valley Slope (%):	5 - 20 %			
Dominant Buffer Land Use:				
Proposed Canopy Cover (%) at project closeout:				
Stream Temperature:	Coldwater			
Fish Bioassessment Class:				

No	tes		
1. Users input values that are highlighte	d		
2. Users select values from a pull-down menu			
3. Leave values blank for field values that were not measured			

FUNCTIONAL CHANGE SUMMARY				
Existing Condition Score (ECS)	0.36			
Proposed Condition Score (PCS)	0.36			
Change in Functional Condition (PCS - ECS)	0.00			
Percent Condition Change	0%			
Existing Stream Length (ft)	100.0			
Proposed Stream Length (ft)				
Additional Stream Length (ft)				
Existing Functional Foot Score (FFS)				
Proposed Functional Foot Score (FFS)				
Proposed FFS - Existing FFS (△FF)				
Functional Yield (ΔFF/LF)				

Some restoration potential. Surrounding landscape and watershed exhibit little anthropogenic influence or degradation on the stream. Approximately 85.6 percent of the drainage area to Stream 15 is classified as forested and 5 percent classified as impervious based on the NLCD. Approximately 26.5 percent of the reach exhibited bank erosion.

Functional		Metric	EXIST	EXISTING CONDITION ASSESSMENT			PROPOSED CONDITION ASSESSMENT			
Category	Function-Based Parameters	Wethe	Field Value	Index Value	Parameter	Category	Field Value	Index Value	Parameter	Category
Hydrology	Reach Runoff	Land Use Coefficient	55.95	0.96	0.98	0.98				
	Reacti Rution	Concentrated Flow Points (#/1000 LF)	0	1.00	0.38					
	Floodplain Connectivity	Bank Height Ratio (ft/ft)	2.3	0.00	0.27					
Hydraulics	Ploodplain Connectivity	Entrenchment Ratio (ft/ft)	1.3	0.53	0.27	0.37				
	Flow Dynamics	Width/Depth Ratio State (O/E)	0.578687	0.47	0.47					
	Large Woody Debris	LWD Index			0.43					
	Large Woody Debris	LWD Piece Count (#/100m)	9.8	0.43	0.43					
		Erosion Rate (ft/yr)								
	Lateral Migration	Dominant BEHI/NBS	Ex/L	0.00	0.21					
	Lateral Wilgration	Percent Streambank Erosion (%)	26.5	0.42	0.21					
		Percent Streambank Armoring (%)								
	Riparian Vegetation	Buffer Width (ft)								
Geomorphology		Average DBH (in)	8.2	0.88		0.46				
		Tree Density (#/acre)	101	0.75	0.82					
		Native Shrub Density (#/acre)			0.62					
		Native Herbaceous Cover (%)								
		Monoculture Area (%)								
		Pool Spacing Ratio (ft/ft)	4.6	0.82						
	Bed Form Diversity	Pool Depth Ratio (ft/ft)	1.4	0.12	0.40					
		Percent Riffle (%)	13	0.25						
	Temperature	Summer Daily Maximum (°F)								
	Bacteria	E. Coli (MPN/100 ml)								
Physicochemical	Nitrogen	Total Nitrogen (mg/L)							_	
rnysicochemicai	Phosphorus	Total Phosphorus (mg/L)								
	Suspended Sediment	Total Suspended Solids (mg/L)								
	Suspended Sediment	Turbidity (NTU)								
Diology	Macroinvertebrates	EPT Taxa Present								
Biology	Fish	South Carolina Biotic Index								

Site Information and				
Reference Curve Stratification				
Project Name:	Bad Creek Pumped Storage Project			
Reach ID:	Stream 15 - Downstream			
Restoration Potential:				
Preservation (Y/N):	Yes			
Ecoregion:	Blue Ridge Mountains			
River Basin:	Savannah			
Existing Stream Length (ft):	100			
Proposed Stream Length (ft):				
Existing Stream Type:	A			
Reference Stream Type:	А			
Valley Type:	Colluvial			
Drainage Area (sq. mi.):	0.018879			
Stream Slope (%):	29.9			
Strahler Stream Order:	First			
Flow Type:	Perennial			
Proposed Bed Material:				
Buffer Valley Slope (%):	21 - 40 %			
Dominant Buffer Land Use:				
Proposed Canopy Cover (%) at project closeout:				
Stream Temperature:	Coldwater			
Fish Bioassessment Class:				

	Notes			
1	L. Users input values that are highlighted			
2	2. Users select values from a pull-down menu			
3	B. Leave values blank for field values that were not measured			

FUNCTIONAL CHANCE CHANADY					
FUNCTIONAL CHANGE SUMMARY					
Existing Condition Score (ECS)	0.35				
Proposed Condition Score (PCS)	0.35				
Change in Functional Condition (PCS - ECS)	0.00				
Percent Condition Change	0%				
Existing Stream Length (ft)	100.0				
Proposed Stream Length (ft)					
Additional Stream Length (ft)					
Existing Functional Foot Score (FFS)					
Proposed Functional Foot Score (FFS)					
Proposed FFS - Existing FFS (△FF)					
Functional Yield (ΔFF/LF)					

No restoration potential. This reach consisted of high-grade bedrock cascades with no streambank erosion present.

Functional		Metric	EXIST	ING CONDIT	ION ASSESS	MENT	PROPOSED CONDITION ASSESSMENT			
Category	Function-Based Parameters	Weth	Field Value	Index Value	Parameter	Category	Field Value	Index Value	Parameter	Category
Hydrology	Reach Runoff	Land Use Coefficient	55	1.00	1.00	1.00				
Tryurology		Concentrated Flow Points (#/1000 LF)	0	1.00	1.00					
	Floodplain Connectivity	Bank Height Ratio (ft/ft)	3.8	0.00	0.00					
Hydraulics	Ploodplain Connectivity	Entrenchment Ratio (ft/ft)	2.3	FALSE	0.00	0.10				
	Flow Dynamics	Width/Depth Ratio State (O/E)	0.354913	0.19	0.19					
	Large Woody Debris	LWD Index			0.00					
	Large Woody Debris	LWD Piece Count (#/100m)	0	0.00	0.00					
		Erosion Rate (ft/yr)								
	Lateral Migration	Dominant BEHI/NBS	VL/VL	1.00	1.00					
	Lateral Wigration	Percent Streambank Erosion (%)	0	1.00	1.00					
		Percent Streambank Armoring (%)								
	Riparian Vegetation	Buffer Width (ft)				0.64				
Geomorphology		Average DBH (in)	9.6	1.00						
		Tree Density (#/acre)	223	1.00	1.00					
		Native Shrub Density (#/acre)			1.00					
		Native Herbaceous Cover (%)								
		Monoculture Area (%)								
		Pool Spacing Ratio (ft/ft)	3.6	1.00						
	Bed Form Diversity	Pool Depth Ratio (ft/ft)	1.3	0.57	0.55					
		Percent Riffle (%)	4	0.07						
	Temperature	Summer Daily Maximum (°F)								
	Bacteria	E. Coli (MPN/100 ml)								
Physicochemical	Nitrogen	Total Nitrogen (mg/L)								
i iry sicociiei iiicai	Phosphorus	Total Phosphorus (mg/L)								
	Suspended Sediment	Total Suspended Solids (mg/L)								
	Suspended Sediment	Turbidity (NTU)								
Biology	Macroinvertebrates	EPT Taxa Present								
olology	Fish	South Carolina Biotic Index								

Version 1.1		Notes								
Version Last Updated:	7-Dec-22	1. Users input values that are	1. Users input values that are highlighted based on restoration potential							
·		2. Users select values from a pull-down menu								
		·	values that were not measured							
		Due average tie Cool	1-							
		Programmatic Goal	IS T							
Select:	-+:lf+h::-	Other								
Expand on the programm	atic goals of this proje	ect:								
		Project Description	1							
Project Name:		Bad Creek Pun	nped Storage Project							
Project ID:	D: Stream 16									
Ecoregion:		Blue Rid	ge Mountains							
River Basin:		Sa	avannah							
12-digit HUC:		30601010104								
		Reach Summary								
Worksheet Title	Reach ID	Reach Description	Reach Break Criteria	ECS	PCS	ΔFF				
Quantification_Tool_US	tream 16 - Upstrean	Upstream of temp access rd crossing	Single reach upstream to	0.4	0.4					
		Downstream of temp access rd crossir	Single reach from temporary							
Quantification_Tool_DS	ream 16 - Downstrea	Downstream of temp access to crossin	access road, downstream	0.37	0.37					
						<u> </u>				
						<u> </u>				
						<u> </u>				
						<u> </u>				
						<u> </u>				

Арр	licable Reach(es):	Stream 16					
Ove	erall Catchment Condition (select:)	Good	Describe how any categories rated as poor were considere double HDPE installed at the upper extent of project reach				
			Description of Catchment Condition				
	Categories	Poor	Fair	Good	Rating (P/F/G)		
1	Concentrated Flow	Existing concentrated flow/impairments immediately upstream of the project reach with no treatments in place.	Potential for concentrated flow/impairments from adjacent land use or channel immediately upstream of the project reach, but measures are in place to protect resources.	No potential for concentrated flow/impairments from adjacent land use and/or channel immediately upstream of project reach.	P		
2	Impervious cover	≥ 25%	>10% and <25%	≤ 10%	G		
3	Urbanization	Rapidly urbanizing/urban.	Some urban growth potential, or uncertain growth potential. May consist of single family homes/suburban.	Rural communities/slow growth potential, or primarily forested.	G		
4	Development Activities (e.g. utility rights-of-way, pipeline, mining, silviculture, roads)	High development or potential for impacts in contributing watershed or within 1 mile of project reach, or high potential of impacts >1 mile away from project reach.	Moderate development or moderate potential for impacts, but none within 1 mile of project reach.	No development or no potential for impacts.	F		
5	Percent Forested	≤ 20%	>20% and <70%	≥ 70%	G		
6	Riparian Vegetation	<50% of contributing stream length (project reach and upstream channel) has >25-m (~82 ft) corridor width.	50-80% of contributing stream length (project reach and upstream channel) has >25-m (~82 ft) corridor width.	>80% of contributing stream length (project reach and upstream channel) has >25-m (~82 ft) corridor width.	G		
7	Sediment Supply	Multiple, large anthropogenic-caused sources of sediment supply from upstream bank erosion and surface runoff.	Moderate anthropogenic-caused sediment supply from upstream bank erosion and surface runoff.	A few small anthropogenic-caused sediment supply sources. Upstream bank erosion and surface runoff is minimal, as sediment supply is low.	G		
8	Proximity to 303(d) or TMDL listed waters	Project reach on, upstream, or downstream of a 303(d) waterway without a TMDL/watershed management plan to address deficiencies.	Project reach on, upstream, or downstream of a 303(d) waterway with a TMDL/ watershed management plan addressing deficiencies.	Project reach is not on the 303(d) list.	G		
9	Agricultural Land Use	Livestock access to stream and/or intensive cropland immediately upstream of the project reach.	Agricultural land uses are present in the catchment, but impacts are likely attenuated within the project reach.	There is little to no agricultural land uses or forested buffers exist between the receiving waters and the agriculture land and/or livestock.	G		
10	NPDES Permits	Many NPDES permits within the catchment or some within 1 mile of the project reach.	A few NPDES permits within the catchment and none within 1 mile of the project reach.	No NPDES permits within the catchment and none within 1 mile of the project reach.	G		
11	Inline Watershed Impoundments	Impoundment(s) are located near the project area (within 1 mile upstream or downstream), and/or impoundment(s) within the catchment have a negative effect on project area (e.g., flow alteration or reduced sediment supply) and fish passage.	A few small impoundments within the catchment and none within one mile of the project reach.	No impoundment (including farm ponds) upstream or downstream of project area OR only natural impoundments that allow for fish passage.	G		
12	Organism Recruitment	Channel immediately upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) is concrete, piped, or hardened.	Channel immediately upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) has native bed and bank material that is highly embedded by fine sediment, but proximate stream reaches support desirable aquatic communities.	Channel immediately upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) has native bed and bank material.	G		
13	Other						

Site Information and						
Reference Curve Stratification						
Project Name:	Bad Creek Pumped Storage Project					
Reach ID:	Stream 16 - Upstream					
Restoration Potential:						
Preservation (Y/N):	Yes					
Ecoregion:	Blue Ridge Mountains					
River Basin:	Savannah					
Existing Stream Length (ft):	100					
Proposed Stream Length (ft):						
Existing Stream Type:	А					
Reference Stream Type:	А					
Valley Type:	Colluvial					
Drainage Area (sq. mi.):	0.019919					
Stream Slope (%):	8					
Strahler Stream Order:	First					
Flow Type:	Perennial					
Proposed Bed Material:						
Buffer Valley Slope (%):	5 - 20 %					
Dominant Buffer Land Use:						
Proposed Canopy Cover (%) at project closeout:						
Stream Temperature:	Coldwater					
Fish Bioassessment Class:						

Notes	
Users input values that are highlighted	
2. Users select values from a pull-down menu	
3. Leave values blank for field values that were not measured	

FUNCTIONAL CHANGE SUMMARY					
Existing Condition Score (ECS)	0.40				
Proposed Condition Score (PCS)	0.40				
Change in Functional Condition (PCS - ECS)	0.00				
Percent Condition Change	0%				
Existing Stream Length (ft)	100.0				
Proposed Stream Length (ft)					
Additional Stream Length (ft)					
Existing Functional Foot Score (FFS)					
Proposed Functional Foot Score (FFS)					
Proposed FFS - Existing FFS (△FF)					
Functional Yield (ΔFF/LF)					

Little restoration potential. Surrounding landscape and watershed exhibit little anthropogenic influence or degradation on the stream. Approximately 87.6 percent of the drainage area to Stream 16 is classified as forested based on the NLCD. Stream 16 is in stable condition with conditions typical of A-type streams.

Functional		Metric	EXIST	ING CONDIT	ION ASSESS	MENT	PROPOSED CONDITION ASSESSMENT			
Category	Function-Based Parameters	Wettic	Field Value	Index Value	Parameter	Category	Field Value	Index Value	Parameter	Category
Hydrology	Reach Runoff	Land Use Coefficient	55	1.00	1.00	1.00				
	Reacti Kulloti	Concentrated Flow Points (#/1000 LF)	0	1.00	1.00					
	Floodplain Connectivity	Bank Height Ratio (ft/ft)	2.6	0.00	0.00	0.37				
Hydraulics	1 loodplain connectivity	Entrenchment Ratio (ft/ft)	1.1	FALSE						
	Flow Dynamics	Width/Depth Ratio State (O/E)	1.22	0.73	0.73					
	Large Woody Debris	LWD Index			0.18					
	Large Woody Debris	LWD Piece Count (#/100m)	4	0.18	0.10					
		Erosion Rate (ft/yr)				0.65				
	Lateral Migration	Dominant BEHI/NBS	H/M	0.20	0.60					
	Euterui Wiigration	Percent Streambank Erosion (%)	5	1.00	0.00					
		Percent Streambank Armoring (%)								
	Riparian Vegetation	Buffer Width (ft)	300	FALSE						
Geomorphology		Average DBH (in)	8.6	0.92						
		Tree Density (#/acre)	263	1.00	0.96					
		Native Shrub Density (#/acre)			0.50					
		Native Herbaceous Cover (%)								
		Monoculture Area (%)								
		Pool Spacing Ratio (ft/ft)	0.8	1.00						
	Bed Form Diversity	Pool Depth Ratio (ft/ft)	1.4	0.70	0.86					
		Percent Riffle (%)	66	0.89						
	Temperature	Summer Daily Maximum (°F)								
	Bacteria	E. Coli (MPN/100 ml)								
Physicochemical	Nitrogen	Total Nitrogen (mg/L)								
i ilysicocileitiicai	Phosphorus	Total Phosphorus (mg/L)								
	Suspended Sediment	Total Suspended Solids (mg/L)								
	Suspended Sediment	Turbidity (NTU)								
Biology	Macroinvertebrates	EPT Taxa Present								
olology	Fish	South Carolina Biotic Index								

Site Information and						
Reference Curve Stratification						
Project Name:	Bad Creek Pumped Storage Project					
Reach ID:	Stream 16 - Downstream					
Restoration Potential:						
Preservation (Y/N):	Yes					
Ecoregion:	Blue Ridge Mountains					
River Basin:	Savannah					
Existing Stream Length (ft):	100					
Proposed Stream Length (ft):						
Existing Stream Type:	G					
Reference Stream Type:	В					
Valley Type:	Colluvial					
Drainage Area (sq. mi.):	0.019919					
Stream Slope (%):	9.8					
Strahler Stream Order:	First					
Flow Type:	Perennial					
Proposed Bed Material:						
Buffer Valley Slope (%):	5 - 20 %					
Dominant Buffer Land Use:						
Proposed Canopy Cover (%) at project closeout:						
Stream Temperature:	Coldwater					
Fish Bioassessment Class:						

No	tes		
1. Users input values that are highlighte	d		
2. Users select values from a pull-down	menu		
Leave values blank for field values that were not measured			

FUNCTIONAL CHANGE SUMMARY				
Existing Condition Score (ECS)	0.37			
Proposed Condition Score (PCS)	0.37			
Change in Functional Condition (PCS - ECS)	0.00			
Percent Condition Change	0%			
Existing Stream Length (ft)	100.0			
Proposed Stream Length (ft)				
Additional Stream Length (ft)				
Existing Functional Foot Score (FFS)				
Proposed Functional Foot Score (FFS)				
Proposed FFS - Existing FFS (△FF)				
Functional Yield (ΔFF/LF)				

Some restoration potential. Surrounding landscape and watershed exhibit little anthropogenic influence or degradation on the stream. Approximately 87.6 percent of the drainage area to Stream 16 is classified as forested and 2.2 percent classified as impervious based on the NLCD. Approximately 23.5 percent of the reach exhibited bank erosion.

Functional		Metric EXISTING CONDITION ASSESSMENT					PROPO	SED CONDI	TION ASSESS	SMENT
Category	Function-Based Parameters	Wettic	Field Value	Index Value	Parameter	Category	Field Value	Index Value	Parameter	Category
Hydrology	Reach Runoff	Land Use Coefficient	55	1.00	0.85	0.85				
Tryurology	Reacti Rution	Concentrated Flow Points (#/1000 LF)	1	0.70	0.83	0.83				
	Floodplain Connectivity	Bank Height Ratio (ft/ft)	2.2	0.00	0.35					
Hydraulics	Produpiani Connectivity	Entrenchment Ratio (ft/ft)	1.4	0.7	0.33	0.42				
	Flow Dynamics	Width/Depth Ratio State (O/E)	0.58	0.48	0.48					
	Large Woody Debris	LWD Index			0.29					
	Large Woody Debris	LWD Piece Count (#/100m)	6.6	0.29	0.29					
		Erosion Rate (ft/yr)								
	Lateral Migration	Dominant BEHI/NBS	H/L	0.20	0.34					
	Lateral Wilgration	Percent Streambank Erosion (%)	23.5	0.48	0.34					
		Percent Streambank Armoring (%)								
	Riparian Vegetation	Buffer Width (ft)	300	FALSE						
Geomorphology		Average DBH (in)	10.3	1.00		0.56				
		Tree Density (#/acre)	142	1.00	1.00					
		Native Shrub Density (#/acre)			1.00					
		Native Herbaceous Cover (%)								
		Monoculture Area (%)								
		Pool Spacing Ratio (ft/ft)	2	1.00						
	Bed Form Diversity	Pool Depth Ratio (ft/ft)	1.1	0.03	0.60					
		Percent Riffle (%)	70	0.77						
	Temperature	Summer Daily Maximum (°F)								
	Bacteria	E. Coli (MPN/100 ml)								
Dhi.a.a.h.a.a.i.a.a.l	Nitrogen	Total Nitrogen (mg/L)								
Physicochemical	Phosphorus	Total Phosphorus (mg/L)								
	Cusa and ad Cadina ant	Total Suspended Solids (mg/L)								
	Suspended Sediment	Turbidity (NTU)								
Dieles.	Macroinvertebrates	EPT Taxa Present								
Biology	Fish	South Carolina Biotic Index								

Version 1.1		Notes							
Version Last Updated:	7-Dec-22	1. Users input values that are highlighted based on restoration potential							
		2. Users select values from a							
	3. Leave values blank for field values that were not measured								
		Programmatic Goal	S						
Select:		Other							
Expand on the programm	atic goals of this proje	ect:							
		Project Description	1						
Project Name:	Bad Creek Pumped Storage Project								
Project ID:		De	vils Fork						
Ecoregion:		Blue Rid	ge Mountains						
River Basin:		Sa	vannah						
12-digit HUC:		306	01010104						
		Reach Summary							
Worksheet Title	Reach ID	Reach Description	Reach Break Criteria	ECS	PCS	ΔFF			
Quantification_Tool_US	evils Fork - Upstrear	Upstream of temporary access road cr	Single reach upstream to access	0.38	0.38				
		Downstream of temporary access road	Single reach from temporary						
Quantification_Tool_DS	vils Fork - Downstre	downstream of temporary access roat	access road, downstream	0.43	0.43				
				4		1			

App	olicable Reach(es):	Devils Fork upstream and downstream						
Describe how any categories rated as poor were considered in the selection of the restoration potent None - all categories rated Good.								
			Description of Catchment Condition	ition				
	Categories	Poor	Fair	Good	(P/F/G)			
1	Concentrated Flow	Existing concentrated flow/impairments immediately upstream of the project reach with no treatments in place.	Potential for concentrated flow/impairments from adjacent land use or channel immediately upstream of the project reach, but measures are in place to protect resources.	No potential for concentrated flow/impairments from adjacent land use and/or channel immediately upstream of project reach.	G			
2	Impervious cover	≥ 25%	>10% and <25%	≤ 10%	G			
3	Urbanization	Rapidly urbanizing/urban.	Some urban growth potential, or uncertain growth potential. May consist of single family homes/suburban.	Rural communities/slow growth potential, or primarily forested.	G			
4	Development Activities (e.g. utility rights-of-way, pipeline, mining, silviculture, roads)	High development or potential for impacts in contributing watershed or within 1 mile of project reach, or high potential of impacts >1 mile away from project reach.	Moderate development or moderate potential for impacts, but none within 1 mile of project reach.	No development or no potential for impacts.	G			
5	Percent Forested	≤ 20%	>20% and <70%	≥ 70%	G			
6	Riparian Vegetation	<50% of contributing stream length (project reach and upstream channel) has >25-m (~82 ft) corridor width.	50-80% of contributing stream length (project reach and upstream channel) has >25-m (~82 ft) corridor width.	>80% of contributing stream length (project reach and upstream channel) has >25-m (~82 ft) corridor width.	G			
7	Sediment Supply	Multiple, large anthropogenic-caused sources of sediment supply from upstream bank erosion and surface runoff.	Moderate anthropogenic-caused sediment supply from upstream bank erosion and surface runoff.	A few small anthropogenic-caused sediment supply sources. Upstream bank erosion and surface runoff is minimal, as sediment supply is low.	G			
8	Proximity to 303(d) or TMDL listed waters	Project reach on, upstream, or downstream of a 303(d) waterway without a TMDL/watershed management plan to address deficiencies.	Project reach on, upstream, or downstream of a 303(d) waterway with a TMDL/ watershed management plan addressing deficiencies.	Project reach is not on the 303(d) list.	G			
9	Agricultural Land Use	Livestock access to stream and/or intensive cropland immediately upstream of the project reach.	Agricultural land uses are present in the catchment, but impacts are likely attenuated within the project reach.	There is little to no agricultural land uses or forested buffers exist between the receiving waters and the agriculture land and/or livestock.	G			
10	NPDES Permits	Many NPDES permits within the catchment or some within 1 mile of the project reach.	A few NPDES permits within the catchment and none within 1 mile of the project reach.	No NPDES permits within the catchment and none within 1 mile of the project reach.	G			
11	Inline Watershed Impoundments	Impoundment(s) are located near the project area (within 1 mile upstream or downstream), and/or impoundment(s) within the catchment have a negative effect on project area (e.g., flow alteration or reduced sediment supply) and fish passage.	A few small impoundments within the catchment and none within one mile of the project reach.	No impoundment (including farm ponds) upstream or downstream of project area OR only natural impoundments that allow for fish passage.	G			
12	Organism Recruitment	Channel immediately upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) is concrete, piped, or hardened.	Channel immediately upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) has native bed and bank material that is highly embedded by fine sediment, but proximate stream reaches support desirable aquatic communities.	Channel immediately upstream or downstream of the project reach (i.e., within 1 km or 0.62 mi) has native bed and bank material.	G			
13	Other							

Site Information and						
Reference Curve Stratification						
Project Name:	Bad Creek Pumped Storage Project					
Reach ID:	Devils Fork - Upstream					
Restoration Potential:						
Preservation (Y/N):	Yes					
Ecoregion:	Blue Ridge Mountains					
River Basin:	Savannah					
Existing Stream Length (ft):	100					
Proposed Stream Length (ft):						
Existing Stream Type:	A					
Reference Stream Type:	A					
Valley Type:	Colluvial					
Drainage Area (sq. mi.):	0.049116					
Stream Slope (%):	6					
Strahler Stream Order:	Second					
Flow Type:	Perennial					
Proposed Bed Material:						
Buffer Valley Slope (%):	5 - 20 %					
Dominant Buffer Land Use:						
Proposed Canopy Cover (%) at project closeout:						
Stream Temperature:	Coldwater					
Fish Bioassessment Class:						

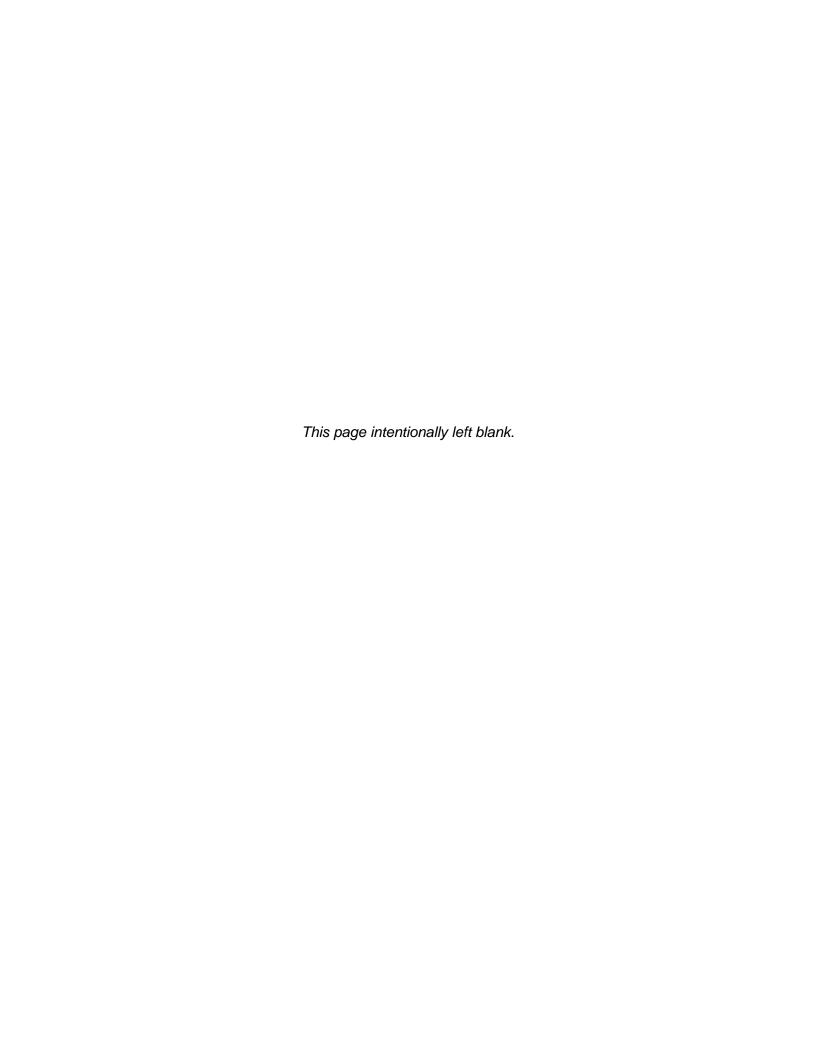
Notes			
Users input values that are highlighted			
2. Users select values from a pull-down menu			
3. Leave values blank for field values that were not measured			

FUNCTIONAL CHANGE SUMMARY					
Existing Condition Score (ECS)	0.38				
Proposed Condition Score (PCS)	0.38				
Change in Functional Condition (PCS - ECS)	0.00				
Percent Condition Change	0%				
Existing Stream Length (ft)	100.0				
Proposed Stream Length (ft)					
Additional Stream Length (ft)					
Existing Functional Foot Score (FFS)					
Proposed Functional Foot Score (FFS)					
Proposed FFS - Existing FFS (△FF)					
Functional Yield (ΔFF/LF)					

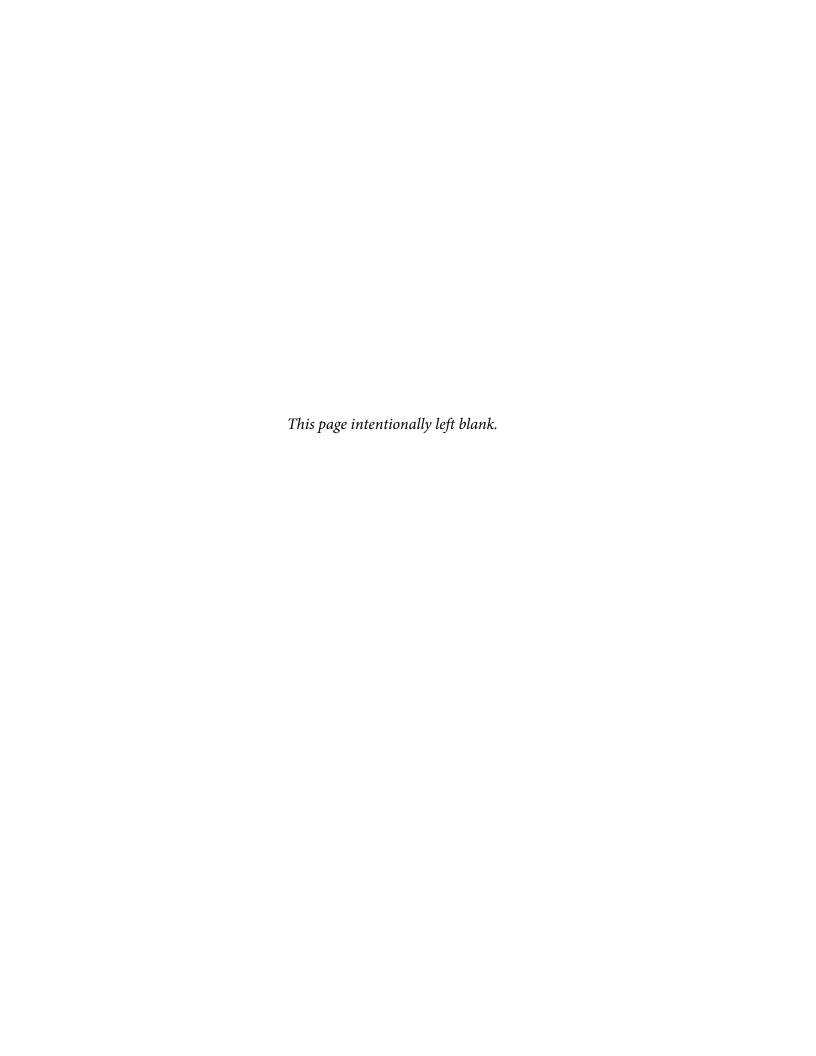
Little restoration potential. Surrounding landscape and watershed exhibit little anthropogenic influence or degradation on the stream. Approximately 87.6 percent of the drainage area to Devils Fork is classified as forested and 2.2 percent classified as impervious based on the NLCD. Devils Fork is in stable condition with conditions typical of A-type streams.

Functional		Wetric	EXISTING CONDITION ASSESSMENT			PROPO	SED CONDI	TION ASSESS	SMENT	
Category	Function-Based Parameters		Field Value	Index Value	Parameter	Category	Field Value	Index Value	Parameter	Category
Hydrology	Reach Runoff	Land Use Coefficient Concentrated Flow Points (#/1000 LF)	55 0	1.00 1.00	1.00	1.00				
Hydraulics	Floodplain Connectivity	Bank Height Ratio (ft/ft) Entrenchment Ratio (ft/ft)	2.5 1.2	0.00 FALSE	0.00	0.38				
, a. aa	Flow Dynamics	Width/Depth Ratio State (O/E)	1.2	0.75	0.75	0.50				
	Large Woody Debris	LWD Index LWD Piece Count (#/100m)	6.6	0.29	0.29					
	Lateral Migration	Erosion Rate (ft/yr) Dominant BEHI/NBS Percent Streambank Erosion (%) Percent Streambank Armoring (%)	H/L 3	0.20 1.00	0.60					
Geomorphology	Riparian Vegetation	Buffer Width (ft) Average DBH (in) Tree Density (#/acre) Native Shrub Density (#/acre) Native Herbaceous Cover (%) Monoculture Area (%)	300 9.6 202	FALSE 1.00 1.00	1.00	0.53				
	Bed Form Diversity	Pool Spacing Ratio (ft/ft) Pool Depth Ratio (ft/ft) Percent Riffle (%)	0.7 83	0.00 0.45	0.23					
	Temperature	Summer Daily Maximum (°F)								
	Bacteria	E. Coli (MPN/100 ml)								
Physicochemical	Nitrogen	Total Nitrogen (mg/L)								
,	Phosphorus	Total Phosphorus (mg/L)								
	Suspended Sediment	Total Suspended Solids (mg/L) Turbidity (NTU)								
Riology	Macroinvertebrates	EPT Taxa Present								
Biology	Fish	South Carolina Biotic Index								

Site Information and						
Reference Curve Stratification						
Project Name:	Bad Creek Pumped Storage Project					
Reach ID:	Devils Fork - Downstream					
Restoration Potential:						
Preservation (Y/N):	Yes					
Ecoregion:	Blue Ridge Mountains					
River Basin:	Savannah					
Existing Stream Length (ft):	100					
Proposed Stream Length (ft):						
Existing Stream Type:	Ва					
Reference Stream Type:	Ва					
Valley Type:	Colluvial					
Drainage Area (sq. mi.):	0.049116					
Stream Slope (%):	6					
Strahler Stream Order:	Second					
Flow Type:	Perennial					
Proposed Bed Material:						
Buffer Valley Slope (%):	5 - 20 %					
Dominant Buffer Land Use:						
Proposed Canopy Cover (%) at project						
Stream Temperature:	Coldwater					
Fish Bioassessment Class:						


Notes			
Users input values that are highlighted			
Users select values from a pull-down menu			
3. Leave values blank for field values that were not measured			

FUNCTIONAL CHANGE SUMMARY						
Existing Condition Score (ECS)	0.43					
Proposed Condition Score (PCS)	0.43					
Change in Functional Condition (PCS - ECS)	0.00					
Percent Condition Change	0%					
Existing Stream Length (ft)	100.0					
Proposed Stream Length (ft)						
Additional Stream Length (ft)						
Existing Functional Foot Score (FFS)						
Proposed Functional Foot Score (FFS)						
Proposed FFS - Existing FFS (△FF)						
Functional Yield (ΔFF/LF)						


Little restoration potential. Surrounding landscape and watershed exhibit little anthropogenic influence or degradation on the stream. Approximately 87.6 percent of the drainage area to Devils Fork is classified as forested based on the NLCD. Devils Fork is in stable condition with conditions typical of B-type streams.

Explain the goals and objectives for this reach:

Functional		Metric	EXIST	ING CONDIT	ION ASSESS	MENT	PROPO	SED CONDI	TION ASSESS	SMENT
Category	Function-Based Parameters		Field Value	Index Value	Parameter	Category	Field Value	Index Value	Parameter	Category
Unidon la min	Reach Runoff	Land Use Coefficient	55	1.00	1.00	1.00				
Hydrology	Reacti Rution	Concentrated Flow Points (#/1000 LF)	0	1.00	1.00	1.00				
	Floodplain Connectivity	Bank Height Ratio (ft/ft)	4.9	0.00	0.00					
Hydraulics	1100dplain connectivity	Entrenchment Ratio (ft/ft)	1	0	0.00	0.24				
	Flow Dynamics	Width/Depth Ratio State (O/E)	0.58	0.48	0.48					
	Large Woody Debris	LWD Index			0.96					
	Large Woody Debris	LWD Piece Count (#/100m)	26.2	0.96	0.90					
		Erosion Rate (ft/yr)								
	Lateral Migration	Dominant BEHI/NBS	VL/VL	1.00	1.00					
	Later ar wings at loss	Percent Streambank Erosion (%)	0	1.00	1.00					
		Percent Streambank Armoring (%)								
	Riparian Vegetation	Buffer Width (ft)	300	FALSE						
Geomorphology		Average DBH (in)	10.9	1.00	1.00	0.90	0.90			
		Tree Density (#/acre)	263	1.00						
	Mparian vegetation	Native Shrub Density (#/acre)								
		Native Herbaceous Cover (%)								
		Monoculture Area (%)								
		Pool Spacing Ratio (ft/ft)								
	Bed Form Diversity	Pool Depth Ratio (ft/ft)	2.1	0.43	0.63					
		Percent Riffle (%)	44	0.83						
	Temperature	Summer Daily Maximum (°F)								
	Bacteria	E. Coli (MPN/100 ml)								
Physicochemical	Nitrogen	Total Nitrogen (mg/L)								
, s.cochennear	Phosphorus	Total Phosphorus (mg/L)								
	Suspended Sediment	Total Suspended Solids (mg/L)								
	Suspended Sediment	Turbidity (NTU)								
Biology	Macroinvertebrates	EPT Taxa Present								
5.0.061	Fish	South Carolina Biotic Index								

Attachment 4 **Consultation Documentation**

From: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Sent: Wednesday, April 19, 2023 11:06 AM

To: Abney, Michael A; Amy Breedlove; Dan Rankin; Elizabeth Miller; Erika Hollis;

Settevendemio, Erin; Gerry Yantis; jhains@g.clemson.edu; Lynn Quattro; Olds, Melanie J; amedeemd@dhec.sc.gov; Morgan Kern; Ross Self; Stuart, Alan Witten; Wahl, Nick; William T. Wood; Alison Jakupca; Kevin Nebiolo;

Jordan Johnson (Jordan.Johnson@KleinschmidtGroup.com)

Cc: Kulpa, Sarah; Salazar, Maggie; McCarney-Castle, Kerry

Subject: Bad Creek Relicensing Aquatics Resource Committee 4/6/2023 Meeting

Summary and Information

Importance: High

Categories: Bad Creek

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Bad Creek Relicensing Aquatic Resources Committee:

The meeting summary and slide deck from the Entrainment Consultation meeting held on April 6, 2023 has been uploaded to the <u>Bad Creek Relicensing Project Resource Committees Sharepoint Site</u> in the <u>Aquatic Resources Committee folder</u>.

As discussed during the meeting, Duke Energy proposes to use the NC Stream Assessment Method (NC SAM) to evaluate streams that will be assessed under Task 3 (Stream Habitat Quality Surveys) of the Aquatic Resources Study. The NC SAM field assessment form and user manual is also provided on the sharepoint site. Additional information can be found on the NC Department of Environmental Quality website: Wetland Information & Projects | NC DEQ

Please review the Stream Assessment Form and Tools and let us know if you have any comments by **Monday, May 17**.

Thank you for your time in attending the entrainment consultation meeting. Our team is working on the revisions and additional analyses discussed during the meeting, and we'll be in touch with an updated schedule for the distribution of the revised entrainment study report soon.

Please let Mike Abney, Alan Stuart or me know if you have any questions.

Thanks,

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
526 S. Church Street, EC12Q | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

From: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Sent: Friday, May 5, 2023 12:30 PM

To: Abney, Michael A; Amy Breedlove; Dan Rankin; Elizabeth Miller; Erika Hollis;

Settevendemio, Erin; Gerry Yantis; jhains@g.clemson.edu; Lynn Quattro; Olds, Melanie J; amedeemd@dhec.sc.gov; Morgan Kern; Ross Self; Stuart, Alan Witten; Wahl, Nick; William T. Wood; Alison Jakupca; Kevin Nebiolo;

Jordan Johnson (Jordan.Johnson@KleinschmidtGroup.com)

Cc: Kulpa, Sarah; Salazar, Maggie; McCarney-Castle, Kerry

Subject: RE: Bad Creek Relicensing Aquatics Resource Committee Meeting - Follow Up

Information Requested during April 6 Meeting

Categories: Bad Creek

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Dear Bad Creek Aquatic Resources Committee Members:

Following up from the April 6, 2023 Entrainment Consultation meeting, we would like to provide some additional information from action items taken during the meeting. During study updates, William Wood (SCDNR) asked what the depth is between the minimum safety depth over the weir and low pool if the weir was increased in height. The minimum safety depth for Lake Jocassee is 50 feet, or elevation 1,060 ft msl at full pool. The crest of the submerged weir downstream of the Bad Creek powerhouse is approximately at this elevation (see the Pre-Application Document or Water Resources Revised Study Plan) Recall that expanding the existing weir elevation is not currently considered or planned if Bad Creek II is pursued.

An additional action item included determining the temperature range that Threadfin Shad and/or Blueback herring become stressed or moribund.

Please see the table below for a summary of temperatures reported by multiple resources.

Effects	Threadfin Shad threshold	Blueback Herring threshold
Sublethal effects (feeding cessation)	12°C	7°C
Inactivity	6-7°C	4-5°C
Death	4-5°C	2-3°C

Additionally, the **Keowee-Toxaway Fish Community Assessment Study FERC Required Fish Entrainment Modification** report (10/7/2013) stated,

"...The lower temperature tolerance of this species (TFS) has been reported as 7-14°C (Lee et al. 1980). Cold-induced mortality of threadfin shad has been observed at temperatures of 9-12°C; massive winter die-offs are not uncommon at the limits of this species' range. Mobility of threadfin shad may be impaired at temperatures below about 14°C, potentially increasing susceptibility to entrainment and predation (Griffith 1978; Burgess 1980; McLean et al. 1982, 1985; Etnier and Starnes 1993). Blueback herring have exhibited a preference for habitat with temperatures between

13° and 24°C and oxygen concentrations exceeding 3 mg/L during the warmer months (Dennerline and Degan 1999; Goodrich 2002). In contrast to threadfin shad, blueback herring tolerate winter temperatures as low as 2°C (Lee et al. 1980; Page and Burr 1991)."

For the purposes of updates to the entrainment study modeling, a threshold of 12°C will be used to represent the threshold for increased susceptibility of forage fish to entrainment.

Please let Mike Abney and me know if you have any questions regarding the provided information.

Regards,

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
526 S. Church Street, EC12Q | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

Subject:

FW: Bad Creek Relicensing Aquatics Resource Committee 4/6/2023 Meeting Summary and Information

From: Elizabeth Miller < Miller E@dnr.sc.gov>

Sent: Monday, May 8, 2023 5:24 PM

To: Crutchfield Jr., John U <John.Crutchfield@duke-energy.com>; Abney, Michael A <Michael.Abney@duke-energy.com>; Amy Breedlove <BreedloveA@dnr.sc.gov>; Dan Rankin <RankinD@dnr.sc.gov>; Erika Hollis <ehollis@upstateforever.org>; Settevendemio, Erin <Erin.Settevendemio@hdrinc.com>; Gerry Yantis <gcyantis2@yahoo.com>; jhains@g.clemson.edu; Lynn Quattro <QuattroL@dnr.sc.gov>; Olds, Melanie J <melanie_olds@fws.gov>; amedeemd@dhec.sc.gov; Morgan Kern <KernM@dnr.sc.gov>; Ross Self <SelfR@dnr.sc.gov>; Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Wahl, Nick <Nick.Wahl@duke-energy.com>; William T. Wood <WoodW@dnr.sc.gov>; Alison Jakupca <Alison.Jakupca@KleinschmidtGroup.com>; Kevin Nebiolo <Kevin.Nebiolo@KleinschmidtGroup.com>; Jordan Johnson@KleinschmidtGroup.com) <Jordan.Johnson@KleinschmidtGroup.com>

Cc: Kulpa, Sarah <Sarah.Kulpa@hdrinc.com>; Salazar, Maggie <maggie.salazar@hdrinc.com>; McCarney-Castle, Kerry <Kerry.McCarney-Castle@hdrinc.com>

Subject: RE: Bad Creek Relicensing Aquatics Resource Committee 4/6/2023 Meeting Summary and Information

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hi John,

The SCDNR would like to request that Duke Energy use the South Carolina Stream Quantification Tool (SC-SQT) to evaluate streams to be assessed under Task 3 (Stream Habitat Quality Surveys) of the Aquatic Resources Study. The SC-SQT was developed to evaluate stream function and conditions. Duke Energy can find all the information needed here on the SC Stream Quantification Tool: https://dnr.sc.gov/environmental/streamrestoration.html

Please let me know if you have any questions.

Thank you,

Elizabeth

Elizabeth C. Miller SCDNR

Office: 843-953-3881 Cell: 843-729-4636

From: Crutchfield Jr., John U < John. Crutchfield@duke-energy.com>

Sent: Wednesday, April 19, 2023 11:06 AM

To: Abney, Michael A <Michael.Abney@duke-energy.com>; Amy Chastain <BreedloveA@dnr.sc.gov>; Dan Rankin <RankinD@dnr.sc.gov>; Elizabeth Miller <MillerE@dnr.sc.gov>; Erika Hollis <ehollis@upstateforever.org>; Erin Settevendemio@hdrinc.com>; Gerry Yantis <gcyantis2@yahoo.com>; John Haines <jhains@g.clemson.edu>; Lynn Quattro <QuattroL@dnr.sc.gov>; Olds, Melanie J <melanie_olds@fws.gov>; Morgan Amedee <amedeemd@dhec.sc.gov>; Morgan Kern <KernM@dnr.sc.gov>; Ross Self <SelfR@dnr.sc.gov>; Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Wahl, Nick <Nick.Wahl@duke-energy.com>; William T. Wood <WoodW@dnr.sc.gov>; Alison Jakupca <Alison.Jakupca@KleinschmidtGroup.com>; Kevin Nebiolo <Kevin.Nebiolo@KleinschmidtGroup.com);

<Jordan.Johnson@KleinschmidtGroup.com>

Cc: Sarah Kulpa <Sarah.Kulpa@hdrinc.com>; Maggie Salazar <maggie.salazar@hdrinc.com>; Kerry McCarney-Castle <Kerry.McCarney-Castle@hdrinc.com>

Subject: Bad Creek Relicensing Aquatics Resource Committee 4/6/2023 Meeting Summary and Information

Importance: High

Bad Creek Relicensing Aquatic Resources Committee:

The meeting summary and slide deck from the Entrainment Consultation meeting held on April 6, 2023 has been uploaded to the Bad Creek Relicensing Project Resource Committees Sharepoint Site in the Aquatic Resources Committee Folder.

As discussed during the meeting, Duke Energy proposes to use the NC Stream Assessment Method (NC SAM) to evaluate streams that will be assessed under Task 3 (Stream Habitat Quality Surveys) of the Aquatic Resources Study. The NC SAM field assessment form and user manual is also provided on the sharepoint site. Additional information can be found on the NC Department of Environmental Quality website: Wetland Information & Projects | NC DEQ

Please review the Stream Assessment Form and Tools and let us know if you have any comments by Monday, May 17.

Thank you for your time in attending the entrainment consultation meeting. Our team is working on the revisions and additional analyses discussed during the meeting, and we'll be in touch with an updated schedule for the distribution of the revised entrainment study report soon.

Please let Mike Abney, Alan Stuart or me know if you have any questions.

Thanks,

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
526 S. Church Street, EC12Q | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

EXTERNAL EMAIL: Do not click any links or open any attachments unless you trust the sender and know the content is safe.

Salazar, Maggie

From: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Sent: Tuesday, May 9, 2023 6:06 AM

To: Elizabeth Miller; Abney, Michael A; Amy Breedlove; Dan Rankin; Erika Hollis;

Settevendemio, Erin; Gerry Yantis; jhains@g.clemson.edu; Lynn Quattro; Olds, Melanie J; amedeemd@dhec.sc.gov; Morgan Kern; Ross Self; Stuart, Alan Witten; Wahl, Nick;

William T. Wood; Alison Jakupca; Kevin Nebiolo; Jordan Johnson

(Jordan.Johnson@KleinschmidtGroup.com)

Cc: Kulpa, Sarah; Salazar, Maggie; McCarney-Castle, Kerry

Subject: RE: [EXTERNAL] RE: Bad Creek Relicensing Aquatics Resource Committee 4/6/2023

Meeting Summary and Information

Elizabeth: Thank you for your comments. We will review the SC-SQT methodology and SCDNR recommendation and respond back to the Committee.

All: Please let us know if you have any comments on the recommended SC-SQT methodology recommendation.

Regards, John

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
526 S. Church Street, EC12Q | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

From: Elizabeth Miller < Miller E@dnr.sc.gov>

Sent: Monday, May 8, 2023 5:24 PM

To: Crutchfield Jr., John U <John.Crutchfield@duke-energy.com>; Abney, Michael A <Michael.Abney@duke-energy.com>; Amy Chastain <BreedloveA@dnr.sc.gov>; Dan Rankin <RankinD@dnr.sc.gov>; Erika Hollis <ehollis@upstateforever.org>; Erin Settevendemio <Erin.Settevendemio@hdrinc.com>; Gerry Yantis <gcyantis2@yahoo.com>; John Haines <jhains@g.clemson.edu>; Lynn Quattro <QuattroL@dnr.sc.gov>; Olds, Melanie J <melanie_olds@fws.gov>; Morgan Amedee <amedeemd@dhec.sc.gov>; Morgan Kern <KernM@dnr.sc.gov>; Ross Self <SelfR@dnr.sc.gov>; Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Wahl, Nick <Nick.Wahl@duke-energy.com>; William T. Wood <WoodW@dnr.sc.gov>; Alison Jakupca <Alison.Jakupca@KleinschmidtGroup.com>; Kevin Nebiolo <Kevin.Nebiolo@KleinschmidtGroup.com>; Jordan Johnson@KleinschmidtGroup.com) <Jordan.Johnson@KleinschmidtGroup.com>

Cc: Sarah Kulpa <Sarah.Kulpa@hdrinc.com>; Maggie Salazar <maggie.salazar@hdrinc.com>; Kerry McCarney-Castle <Kerry.McCarney-Castle@hdrinc.com>

Subject: [EXTERNAL] RE: Bad Creek Relicensing Aquatics Resource Committee 4/6/2023 Meeting Summary and Information

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

Hi John,

The SCDNR would like to request that Duke Energy use the South Carolina Stream Quantification Tool (SC-SQT) to evaluate streams to be assessed under Task 3 (Stream Habitat Quality Surveys) of the Aquatic Resources Study. The SC-SQT was developed to evaluate stream function and conditions. Duke Energy can find all the information needed here on the SC Stream Quantification Tool: https://dnr.sc.gov/environmental/streamrestoration.html

Please let me know if you have any questions.

Thank you, Elizabeth

Elizabeth C. Miller SCDNR

Office: 843-953-3881 Cell: 843-729-4636

From: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Sent: Wednesday, April 19, 2023 11:06 AM

To: Abney, Michael A < Michael. Abney@duke-energy.com >; Amy Chastain < BreedloveA@dnr.sc.gov >; Dan Rankin < RankinD@dnr.sc.gov >; Elizabeth Miller < MillerE@dnr.sc.gov >; Erika Hollis < ehollis@upstateforever.org >; Erin Settevendemio < Erin. Settevendemio@hdrinc.com >; Gerry Yantis < gcyantis2@yahoo.com >; John Haines < ihains@g.clemson.edu >; Lynn Quattro < QuattroL@dnr.sc.gov >; Olds, Melanie J < melanie olds@fws.gov >; Morgan Amedee < amedeemd@dhec.sc.gov >; Morgan Kern < KernM@dnr.sc.gov >; Ross Self < SelfR@dnr.sc.gov >; Stuart, Alan Witten < Alan. Stuart@duke-energy.com >; Wahl, Nick < Nick. Wahl@duke-energy.com >; William T. Wood < WoodW@dnr.sc.gov >; Alison Jakupca < Alison. Jakupca@KleinschmidtGroup.com >; Kevin Nebiolo < Kevin. Nebiolo@KleinschmidtGroup.com >; Jordan Johnson@KleinschmidtGroup.com) < Jordan. Johnson@KleinschmidtGroup.com >

Cc: Sarah Kulpa <<u>Sarah.Kulpa@hdrinc.com</u>>; Maggie Salazar <<u>maggie.salazar@hdrinc.com</u>>; Kerry McCarney-Castle <<u>Kerry.McCarney-Castle@hdrinc.com</u>>

Subject: Bad Creek Relicensing Aquatics Resource Committee 4/6/2023 Meeting Summary and Information **Importance:** High

Bad Creek Relicensing Aquatic Resources Committee:

The meeting summary and slide deck from the Entrainment Consultation meeting held on April 6, 2023 has been uploaded to the Bad Creek Relicensing Project Resource Committees Sharepoint Site in the Aquatic Resources Committee folder.

As discussed during the meeting, Duke Energy proposes to use the NC Stream Assessment Method (NC SAM) to evaluate streams that will be assessed under Task 3 (Stream Habitat Quality Surveys) of the Aquatic Resources Study. The NC SAM field assessment form and user manual is also provided on the sharepoint site. Additional information can be found on the NC Department of Environmental Quality website: Wetland Information & Projects | NC DEQ

Please review the Stream Assessment Form and Tools and let us know if you have any comments by Monday, May 17.

Thank you for your time in attending the entrainment consultation meeting. Our team is working on the revisions and additional analyses discussed during the meeting, and we'll be in touch with an updated schedule for the distribution of the revised entrainment study report soon.

Please let Mike Abney, Alan Stuart or me know if you have any questions.

Thanks,

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
526 S. Church Street, EC12Q | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

EXTERNAL EMAIL: Do not click any links or open any attachments unless you trust the sender and know the content is safe.

Salazar, Maggie

Subject: FW: Bad Creek Relicensing Aquatic Resources - SCDNR SQT May 24 Meeting Minutes and Technical Memo **Attachments:** 20230524 Bad Creek SCDNR SQT meeting summary.pdf; Bad Creek stream assessment approach memo_20230609.pdf Importance: High From: Crutchfield Jr., John U < John. Crutchfield@duke-energy.com> Sent: Friday, June 9, 2023 8:26 AM To: Elizabeth Miller <MillerE@dnr.sc.gov>; Lorianne Riggin <rigginl@dnr.sc.gov> Cc: Abney, Michael A <Michael.Abney@duke-energy.com>; Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Wahl, Nick < Nick. Wahl@duke-energy.com>; Settevendemio, Erin < erin.settevendemio@hdrinc.com> Subject: RE: Bad Creek Relicensing Aquatic Resources - SCDNR SQT May 24 Meeting Minutes and Technical Memo Importance: High Elizabeth and Lorianne: The links provided below are an internal SharePoint site which you cannot access. I have attached the referenced documents for your review. Let me know if you have any questions. Thanks, John From: Crutchfield Jr., John U **Sent:** Friday, June 9, 2023 6:38 AM To: Elizabeth Miller <millere@dnr.sc.gov>; rigginl@dnr.sc.gov Cc: Abney, Michael A <Michael.Abney@duke-energy.com>; Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Wahl, Nick <Nick.Wahl@duke-energy.com>; Erin Settevendemio <erin.settevendemio@hdrinc.com> Subject: Bad Creek Relicensing Aquatic Resources - SCDNR SQT May 24 Meeting Minutes and Technical Memo Importance: High Elizabeth and Lorianne: Per discussion during our recent Bad Creek Relicensing Aquatic Resources meeting on May 24, please find attached

Relicensing SharePoint links to two documents:

- 1) May 24, 2023 meeting minutes regarding discussion of the SCDNR Stream Quantitative Tool (SQT) 20230524 Bad Creek SCDNR SQT meeting summary.pdf
- 2) Duke Energy Technical Memo detailing the sampling methods approach for conducting the Bad Creek relicensing stream surveys Stream Survey Approach

Duke Energy would appreciate your review of these two documents and request comments be provided by COB, Friday, June 16.

Please reply to me if you have or don't have any comments on these documents.

After your review, Duke Energy will distribute these documents to the entire Aquatic Resources Committee for review.

Please let Mike, Alan or I know if you have any questions about these documents.

Thank you,

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
526 S. Church Street, EC12Q | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

Salazar, Maggie

From: Maggie.Salazar@hdrinc.com

Subject: FW: Bad Creek Relicensing Aquatic Resources - SCDNR SQT May 24 Meeting Minutes

and Technical Memo

Attachments: SC List of Metrics_v1.1.xlsx; SC_SQT_Data_Collection_and_Analysis_Manual.pdf;

SC_SQT_RapidMethodForm (1).xlsx

From: Elizabeth Miller < Miller E@dnr.sc.gov> Sent: Thursday, June 15, 2023 2:06 PM

To: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>; Lorianne Riggin < RigginL@dnr.sc.gov>

Cc: Abney, Michael A < Michael. Abney@duke-energy.com >; Stuart, Alan Witten < Alan. Stuart@duke-energy.com >; Wahl,

Nick < Nick. Wahl@duke-energy.com>; Settevendemio, Erin < erin.settevendemio@hdrinc.com>

Subject: RE: Bad Creek Relicensing Aquatic Resources - SCDNR SQT May 24 Meeting Minutes and Technical Memo

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hi John,

Lorianne and I do not have any comments on the meeting minutes. However, we have a few comments on the memo.

Page 2: Under the SCDNR Stream Quantification Tool Approach header, first paragraph, last sentence needs to state ". . . 404 program, including assessing impacts (debits) and restoration/mitigation (credits)."

Page 2: The SQT would be applicable to all the streams proposed regardless of drainage area up to Level 3 Geomorphology of the tool. This would include Hydrology and Hydraulics as well. The data that is put into those reference curves is beyond the Jennings streams surveyed. The Jennings streams surveyed were additional data points to ensure that the existing hydraulic regional curves created for NC were also appropriate for SC within the same ecoregions and to identify publicly available reference streams for stream restoration design development. Additional data that supports the various metrics in the Hydrology, Hydraulics and Geomorphology categories is detailed in the attached spreadsheet (also found here: https://www.dnr.sc.gov/sqt/docs/SC List of Metrics.xlsx) on the References tab. Where the SQT may not be appropriate will be for use of the macroinvertebrate reference curve and the fish biotic index reference curves. The Macroinvertebrate reference curves within the SQT are only applicable to perennial streams with a drainage area of 3 square miles or larger. The Fish Biotic Index reference curves within the SQT is only applicable in streams with drainage areas between 1.5 square miles and 63 square miles. We recommend that other metrics are used for macroinvertebrates, like a simple baseline of EPT be established between June 15 and September 15 and monitored postdisturbance within that same time period. DHEC should be consulted and provide input on this recommendation. For fish, we can check with Mark Scott and Kevin Kubach to see if they could adapt our existing Fish BI framework and see if something could be made available for this project after baseline fish surveys are conducted during the appropriate time of year and then compare to post.

Page 3: Duke Energy discusses using the Debit Tool in addition to the SQT. Is the purpose of using the Debit Tool to monitor change of stream function and condition? If so, Duke Energy does not need to use the Debit Tool until it comes time to quantify how many credits are needed from the Corps. Since this debit tool is not yet adopted by the Corps (but it is forthcoming) we would recommend focusing the stream assessment for condition and function approach solely on the SQT. Also note, there is a rapid assessment under the SQT for a basic suite of metrics within the hydrology, hydraulics and geomorphology functional categories. See Appendix A in the SC SQT Data Collection and Analysis Manual and the rapid method form (both attached). The rapid method would be good to use on all the streams.

Please let us know if you have any additional questions.

Thank you,

Elizabeth

Elizabeth C. Miller SCDNR

Office: 843-953-3881 Cell: 843-729-4636

From: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Sent: Friday, June 9, 2023 8:26 AM

To: Elizabeth Miller < Miller E@dnr.sc.gov>; Lorianne Riggin < RigginL@dnr.sc.gov>

Cc: Abney, Michael A <Michael.Abney@duke-energy.com>; Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Wahl,

Nick <Nick.Wahl@duke-energy.com>; Erin Settevendemio <erin.settevendemio@hdrinc.com>

Subject: RE: Bad Creek Relicensing Aquatic Resources - SCDNR SQT May 24 Meeting Minutes and Technical Memo

Importance: High

Elizabeth and Lorianne: The links provided below are an internal SharePoint site which you cannot access.

I have attached the referenced documents for your review.

Let me know if you have any questions.

Thanks. John

From: Crutchfield Jr., John U

Sent: Friday, June 9, 2023 6:38 AM

To: Elizabeth Miller < millere@dnr.sc.gov >; rigginl@dnr.sc.gov

Cc: Abney, Michael A < Michael A < Michael A < Michael A < Michael A < Michael A < Michael A < Michael A < Michael A < Michael A < Michael A < Michael A < Michael A < Michael A < Michael A < Michael A < Michael A < Michael A < Michael A < Michael A < Michael A < Michael A < Michael A < Michael A < Michael A < Michael A < Michael A < Michael A < Michael A < Michael A < Michael.Abney@duke-energy.com

Nick < Nick. Wahl@duke-energy.com >; Erin Settevendemio < erin.settevendemio@hdrinc.com >

Subject: Bad Creek Relicensing Aquatic Resources - SCDNR SQT May 24 Meeting Minutes and Technical Memo

Importance: High

Elizabeth and Lorianne:

Per discussion during our recent Bad Creek Relicensing Aquatic Resources meeting on May 24, please find attached Relicensing SharePoint links to two documents:

- 1) May 24, 2023 meeting minutes regarding discussion of the SCDNR Stream Quantitative Tool (SQT) 20230524

 Bad Creek SCDNR SQT meeting summary.pdf
- 2) Duke Energy Technical Memo detailing the sampling methods approach for conducting the Bad Creek relicensing stream surveys Stream Survey Approach

Duke Energy would appreciate your review of these two documents and <u>request comments be provided by COB, Friday,</u> June 16.

Please reply to me if you have or don't have any comments on these documents.

After your review, Duke Energy will distribute these documents to the entire Aquatic Resources Committee for review.

Please let Mike, Alan or I know if you have any questions about these documents.

Thank you,

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
526 S. Church Street, EC12Q | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

EXTERNAL EMAIL: Do not click any links or open any attachments unless you trust the sender and know the content is safe.

From: Huff, Jen

Sent: Friday, June 23, 2023 9:00 AM

To: Crutchfield Jr., John U; Elizabeth Miller; Lorianne Riggin; Abney, Michael A; Stuart, Alan

Witten; Settevendemio, Erin; Wahl, Nick; Kulpa, Sarah

Subject: RE: Bad Creek Relicensing - Discuss SC-SQT methodology

Attachments: 2023 06 21 sqt meeting summary.docx

Follow Up Flag: Follow up Flag Status: Flagged

Attached please find the summary of our discussion on Wednesday. Please provide comments by the end of next week (6/30/2023) if possible.

Have a great weekend.

Jen Huff

D 980.337.5041 M 980.309.5491

hdrinc.com/follow-us

----Original Appointment----

From: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Sent: Monday, June 19, 2023 9:04 AM

To: Crutchfield Jr., John U; Elizabeth Miller; Lorianne Riggin; Abney, Michael A; Stuart, Alan Witten; Settevendemio, Erin;

Wahl, Nick; Kulpa, Sarah

Cc: Huff, Jen

Subject: Bad Creek Relicensing - Discuss SC-SQT methodology

When: Wednesday, June 21, 2023 11:00 AM-12:00 PM (UTC-05:00) Eastern Time (US & Canada).

Where: Microsoft Teams Meeting

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Meeting to discuss SCDNR's comments on Bad Creek stream assessment methodology.

Microsoft Teams meeting

Join on your computer, mobile app or room device

Click here to join the meeting

Meeting ID: 254 195 123 338

Passcode: QUqJKR

Download Teams | Join on the web

Join with a video conferencing device

duke-energy@m.webex.com

Meeting Summary

Project: Bad Creek Pumped Storage Project Relicensing

Subject: SCDNR's Stream Quantification Tool (SQT) for Aquatic Habitat Analysis

Date: Wednesday, June 21, 2023

Location: Virtual Meeting

Attendees

Mike Abney, Duke Energy John Crutchfield, Duke Energy Alan Stuart, Duke Energy Nick Wahl, Duke Energy Jen Huff, HDR Sarah Kulpa, HDR
Erin Settevendemio, HDR
Elizabeth Miller, SC Department of Natural
Resources (SCDNR)
Lorianne Riggin, SCDNR

Discussion

John Crutchfield opened the meeting and proposed the group use SCDNR's email response to Duke Energy's stream assessment approach technical memo dated June 9, 2023, to guide the conversation. Elizabeth Miller and Lorianne Riggin agreed.

- J. Crutchfield stated Duke Energy has no questions regarding SCDNR's first comment about page 2 of the memo and will incorporate the change in the stream assessment description. He then asked L. Riggin and E. Miller to expand on their second comment.
- L. Riggin provided additional background on the development of the SQT. She referred to the references tab on the "SC List of Metrics_v1.1" SCDNR provided with its comments. That tab explains each metric and the source of each. She further explained there is no minimum stream size for the hydrology, hydraulics, and geomorphology Threshold Index Values. The only Functional Categories with minimum stream size are the Physicochemical and Biology levels (i.e., yellow and green rows). L. Riggin also noted there is both a rapid and detailed assessment up to Level 3 in the SQT.

Mike Abney asked how ephemeral and intermittent streams are evaluated under the SQT. L. Riggin replied SQT doesn't apply to ephemeral streams but does apply to intermittent streams. M. Abney stated some of the streams in the spoil disposal areas haven't been field checked, but some have and some don't have water even after heavy rain.

J. Crutchfield asked if SCDNR would be willing to participate in field reconnaissance of the streams (or representative streams). L. Riggin stated she would be interested.

Alan Stuart asked how to score Riparian Vegetation Buffer Width if the proposed activity isn't listed in the Description. L. Riggen recommended using the Single Family Residential, x Slope values. A. Stuart asked if there are other metrics with stratification. L. Riggin stated the other stratifications are based on the Rosgen stream classification. Perennial streams could be

evaluated up to Level 5, regardless of stream size; intermittent streams could be analyzed to Level 3 (i.e., Geomorphology). She will check the SQT tool for ephemeral stream analysis level.

Nick Wahl shared photos from a June 20, 2023, site visit of Stream 14 in Spoil Area G. The area experienced heavy rain during the previous two days, but other than sheet flow, there was no stream channel. L. Riggin asked for the Rosgen stream classification. N. Wahl stated he has limited experience with Rosgen stream classifications, but he estimated it would be classified as AA+, which are high-gradient streams, usually in colluvial valleys. Erin Settevendemio added A-type streams are often headwater streams and are not deeply entrenched.

M. Abney asked how the stream feature would be evaluated using SQT. L. Riggin stated we would still use SQT to evaluate using the correct reference curve. E. Settevendemio asked if SQT can be used on D-type streams. L. Riggin responded it cannot; SQT is used solely for single-thread streams.

A. Stuart asked how much of Stream 14 would be surveyed under the SQT methodology. L. Riggin responded that a representative reach should be surveyed. The manual describes how to determine the amount to survey. Chapter 3 of the SQT manual describes how to delineate survey reaches based on stream length and functional changes. If thousands of feet of stream are functioning the same, just a representative sample would be surveyed.

- E. Settevendemio stated Eric Mularski estimated up to 10 stream reaches would need to be surveyed and according to the SQT manual, each rapid assessment would require 2-4 hours. She asked which Functional Categories were included in that time estimate. L. Riggin replied the 2-4 hour estimate includes the first three levels (i.e., through Geomorphology).
- E. Settevendemio stated she believes using the SQT for the streams in the disposal areas will result in measure of the feet of functional yield. L. Riggin confirmed that is correct and that information can then be used with the Debit tool for calculating USACE mitigation credit needs. The SQT will evaluate how well the stream is functioning or not functioning.
- M. Abney asked how SQT would be used for the streams that would be filled for spoil disposal. L. Riggin stated there wouldn't be a post-fill survey, but would instead use the Debit tool since all stream functions would be eliminated after filling. The Debit tool would identify the delta between pre- and post-construction stream function.
- M. Abney asked about using SQT for temporary road stream crossings. Since the crossings will be temporary, he expects minimal effects and the Debit tool delta could be zero. L. Riggin agreed it's possible but the debit calculator manual includes impact severity tiers to quantify functions that are lost or diminished.
- A. Stuart asked if the tool accounts for the decreased effects associated with bottomless culverts. L. Riggin referred to the USACE Charleston District guidance for impacts. Bridges have less impact than bottomless culverts, which have less impact than culvert/low water crossing.
- E. Settevendemio referred to Appendix A of debit calculator manual and the Reach 1 example with 1st and 2nd order streams. In that example, there was not fieldwork because it was assumed the streams had the highest quality functions. She asked if the same process was used here (i.e., assume all streams are at their highest function), would they need to be surveyed. L. Riggin stated the goal of SQT was to give applicants options. If the field reconnaissance

indicates all the streams are high functioning, surveys aren't needed (i.e., Debit Option 1). However, that would maximize the debits that would be needed since stream impacts would be based on the highest standard score. L. Riggin will find where those standard scores are located and share with E. Settevendemio.

- E. Settevendemio ask if SCDNR or the USACE is scheduling training for the SQT tool. L. Riggin stated it will be incorporated into existing scheduled workshops. There are plans to have an SQT field camp, but it hasn't been scheduled yet. Rosgen training will be a prerequisite to training specific to the SQT tool.
- L. Riggin reiterated the first step of the process is to assess stream functions; the Debit Tool is used after that step. L. Riggin noted that one of SCDNR's goals for creating the SQT tool was to give permit applicants options, especially where impacts are proposed to poorly functioning streams. She encouraged Duke Energy representatives to contact her with questions.
- J. Crutchfield stated Duke Energy will revise the stream assessment technical memo based on today's conversation and send it to SCDNR for review as well as provide a summary of the meeting discussion.
- M. Abney said he is planning to schedule the field reconnaissance the week of 7/10 or 7/17 with surveys scheduled for the week of 7/24. L. Riggin said she is available on 7/12.

Action Items

- 1) M. Abney: Schedule field reconnaissance to look at streams in the potential spoil disposal areas.
- 2) L. Riggin: Review SQT for treatment of ephemeral streams.
- 3) L. Riggin: Provide standard scores for Debit Tool.
- 4) Duke Energy will prepare a meeting summary for the relicensing consultation record, revised the stream assessment technical memo and provide both documents to SCDNR for review and comment.

Settevendemio, Erin

From: Lorianne Riggin < RigginL@dnr.sc.gov>

Sent: Friday, June 23, 2023 10:27 AM

To: Huff, Jen; Crutchfield Jr., John U; Elizabeth Miller; Abney, Michael A; Stuart, Alan Witten;

Settevendemio, Erin; Wahl, Nick; Kulpa, Sarah

Subject: RE: Bad Creek Relicensing - Discuss SC-SQT methodology

Attachments: SC_SQT v1.1.xlsx; Denison etal 2021

 $Integrating_Regional_Frameworks_and_Local_Variabil.pdf$

Categories: Bad Creek

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Thanks all!

Here are some comments on the notes.

1. Bottom of page 1/top of page 2: It states that perennial stream can be evaluated up to Level 4, regardless of stream size. To clarify, perennial streams can go up to Level 5 Biology, but Level 5 does have thresholds of applicability based on the function-based parameters of Macroinvertebrates (applicable to perennial streams with a drainage area of at least 3 square miles) and Fish (applicable to perennial streams with drainage areas between 1.5 and 63 square miles). Please see the Parameter and Metric Selection spreadsheet in the attached SQT Workbook. This should help provide a visual of what applies and where.

Additionally to Alan's question regarding stratification, there are other stratifications in the tool outside of the Rosgen stream types, such as those based on adjacent land use and slope, whether you choose to use LWD piece count versus LWD Index and what ecoregion for macroinvertebrates and stream bioassessment class for fishes the stream is located. To determine your fish bioassessment class – you can use the viewer here: https://dnr.sc.gov/environmental/streamrestoration.html. The fish bioassessment classes are based on the attached published paper by Denison et.al.

You can view all the reference curves associated with these stratifications on the Reference Curve worksheet of the attached SQT. You can also read more detail about how these are used in the SC SQT User Manual Section 6.1 and Appendix A. Additionally, Section 6.2 of the SC SQT User Manual explains in further detail how the stratification process works within the tool. The Reference Curve Stratification can also be seen on the Reference Curve Thresholds tab (Columns D and E) of the SC List of Metrics I provided prior to our recent meeting.

- 2. Bottom of page 2 regarding bottomless culverts Just an additional comment to note that this is a similar scenario as discussed with the temporary crossings. If using a bottomless arched culvert, you would just need to take into account what stream functions are impacted. See the discussion of Impact Severity Tiers in Section 2.5 of the Debit Calculator Manual.
- 3. Page 3: Note there are plans to have a SQT Field Camp in South Carolina. Existing field camps scheduled can be found here: https://stream-mechanics.com/workshops/

In regards to my tasks –

Ephemeral Stream Question

The overall score output by the SQT is related to stream size (Strahler stream order) and flow type (perennial, intermittent, and ephemeral) to potentially match impacted stream types to mitigation stream types. In the SC SQT Workbook attached, on the parameter and metric selection tab you will see which metrics for the various function-based parameters are applicable to ephemeral streams, but to summarize here, it includes the following Function-Based Parameters: Reach Runoff, Large Woody Debris, and Riparian Vegetation. Note the Lateral Migration Parameter is not appropriate for ephemeral channels as they are systems that are naturally in disequilibrium.

Debit Standard Scores

As I mentioned briefly on the call, the working group that developed the Debit Tool Calculator decided to keep the reference standards for the standard scores assumed hidden to prevent misuse of the Debit Tool Calculator (this is also noted in Chapter 3 of the Debit Calculator User Manual). However, Section 3.5.1 of the Debit Calculator User Manual gives you an overview of what values are assumed and in more detail Section 3.5.1.2. Debit Options 1, 2a, and 2b assign standard scores to function-based parameters for the existing condition when the metric is NOT measured/assessed and the standard score is assigned based on priority category. Priority category is a factor that recognizes the importance of aquatic resources that provide valuable functions and services on a watershed scale, that occupy important positions in the landscape, or that are considered important because of their rarity. See section 2.4.1 of the Debit Calculator User Manual to distinguish what priority the streams in question may be. Section 3.4 of the Debit Calculator User Manual explains under the various debit options which parameters assume standard scores based on those priorities.

In summary – stream classified as primary priority are going to assume an existing condition standard score of 1.0, secondary priority as 0.8 and tertiary priority as 0.7.

Metrics in the SQT and Debit Calculator are linked to reference curves that relate measured field values to a function index scale ranging from 0.00 to 1.00. The function index scale rates field values relative to departure from the reference condition in the region. The function index value range is standardized across metrics by determining how field values relate to functional capacity (i.e., functioning, functioning-at-risk, and not functioning conditions; Table 6 of the Debit Calculator Manual). The Debit Calculator and SQT use the same reference curves to score metrics; to see the reference curves see the Reference Curve spreadsheet in the attached Workbook.

Let me know if you have any other questions.

Thanks, Lorianne

Lorianne Riggin
Office of Environmental Programs Director, SCDNR
Office 803-734-4199
Cell 803-667-2488
1000 Assembly Street, PO Box 167
Columbia, SC 29202
www.dnr.sc.gov/environmental

From: Huff, Jen <Jen.Huff@hdrinc.com> Sent: Friday, June 23, 2023 9:00 AM

To: Crutchfield Jr., John U <John.Crutchfield@duke-energy.com>; Elizabeth Miller <MillerE@dnr.sc.gov>; Lorianne Riggin <RigginL@dnr.sc.gov>; Abney, Michael A <Michael.Abney@duke-energy.com>; Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Settevendemio, Erin <Erin.Settevendemio@hdrinc.com>; Wahl, Nick <Nick.Wahl@duke-energy.com>;

Kulpa, Sarah <sarah.kulpa@hdrinc.com>

Subject: RE: Bad Creek Relicensing - Discuss SC-SQT methodology

Attached please find the summary of our discussion on Wednesday. Please provide comments by the end of next week (6/30/2023) if possible.

Have a great weekend.

Jen Huff

D 980.337.5041 M 980.309.5491

hdrinc.com/follow-us

----Original Appointment----

From: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Sent: Monday, June 19, 2023 9:04 AM

To: Crutchfield Jr., John U; Elizabeth Miller; Lorianne Riggin; Abney, Michael A; Stuart, Alan Witten; Settevendemio, Erin;

Wahl, Nick; Kulpa, Sarah

Cc: Huff, Jen

Subject: Bad Creek Relicensing - Discuss SC-SQT methodology

When: Wednesday, June 21, 2023 11:00 AM-12:00 PM (UTC-05:00) Eastern Time (US & Canada).

Where: Microsoft Teams Meeting

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Meeting to discuss SCDNR's comments on Bad Creek stream assessment methodology.

Microsoft Teams meeting

Join on your computer, mobile app or room device

Click here to join the meeting

Meeting ID: 254 195 123 338

Passcode: QUqJKR

Download Teams | Join on the web

Join with a video conferencing device

duke-energy@m.webex.com

Video Conference ID: 113 267 448 9

Alternate VTC instructions

Or call in (audio only)

<u>+1 704-659-4701,,997829859#</u> United States, Charlotte

Phone Conference ID: 997 829 859#

Find a local number | Reset PIN

Learn More | Help | Meeting options

EXTERNAL EMAIL: Do not click any links or open any attachments unless you trust the sender and know the content is safe.

Bad Creek Pumped Storage Project No. 2740

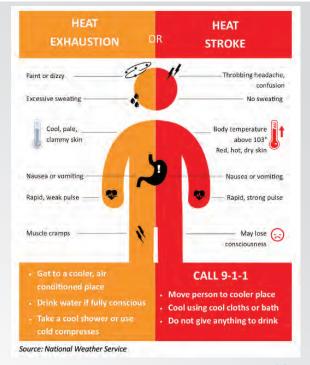
Joint Aquatic and Water Resources Committee Meeting

JULY 27, 2023

DUKE ENERGY. BUILDING A SMARTER ENERGY FUTURE ®

1

Meeting Agenda


- Welcome and Meeting Purpose
- Safety Moment
- Introductions and FERC ILP Schedule
- Water Resources Study Update
 - Overview of Tasks
 - CFD Model Discussion
 - Preliminary Results
- Break (15 min)
- CHEOPS Discussion and Performance Measures
- Aquatic Resources Study Update
 - Revised Entrainment Study Report
 - Mussel & Stream Habitat Quality Surveys
- Action Items

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 2

Safety Moment - Heat Safety

- **Tips for Keeping Cool**
 - · Drink water (even if you aren't thirsty). Rule of thumb when working in heat is 1 gallon per 4 hours!
 - Avoid alcohol and caffeine
 - Wear sunscreen (even a mild sunburn can affect the body's ability to cool properly!)
 - Try to schedule outdoor optional outdoor activities for the early morning or evening; if you must work during the day, rest and find shade
 - · Wear loose, light-colored clothing.
- Know the difference between Heat Exhaustion and Heat Stroke.
- Heat Stroke is a MEDICAL EMERGENCY that can lead to death if not treated quickly.

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 3

3

Resource Committees

Lead Technical Manager

John Crutchfield

Aquatic Resources

- Mike Abney
- Nick Wahl

Water Resources

Maverick Raber

Wildlife & Botanical Resources

- Scott Fletcher
- Mike Abney

Project Manager

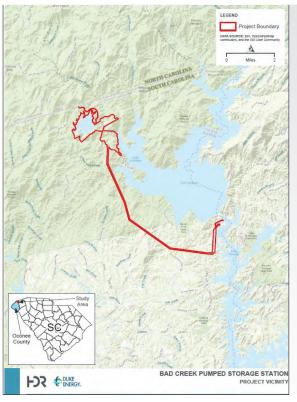
Alan Stuart

Cultural Resources

Christy Churchill

Recreation & Aesthetics

- Alan Stuart
- Ethan Pardue


Operations

- Lynne Dunn
- Ed Bruce

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 4

FERC ILP Schedule

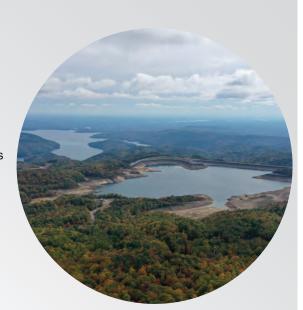
Activity	Responsible Parties	Timeframe	Estimated Filing Date or Deadline
File Notice of Intent (NOI) and Pre-application Document (PAD) (18 CFR §5.5(d))	Licensee	Within 5 years to 5.5 years prior to license expiration	Feb 23, 2022
Initial Tribal Consultation Meeting (18 CFR §5.7)	FERC	No later than 30 days following filing of NOI/PAD	Mar 25, 2022
Issue Notice of NOI/PAD and Scoping Document 1 (SD1) (18 CFR §5.8(a))	FERC	Within 60 days following filing of NOI/PAD	Apr 24, 2022
Conduct Scoping Meetings and site visit (18 CFR §5.8(b)(viii))	FERC	Within 30 days following Notice of NOI/PAD and SD1	May 16-17, 2022
Comments on PAD, SD1, and Study Requests (18 CFR §5.9(a))	Licensee Stakeholders	Within 60 days following Notice of NOI/PAD and SD1	June 23, 2022
Issue Scoping Document 2 (SD2) (18 CFR §5.10)	FERC	Within 45 days following deadline for filing comments on PAD/SD1	Aug 7, 2022
File Proposed Study Plan (PSP) (18 CFR §5.11)	Licensee	Within 45 days following deadline for filing comments on PAD/SD1	Aug 7, 2022
PSP Meeting (18 CFR §5.11(e))	Licensee	Within 30 days following filing of PSP	Sept 7, 2022
Comments on PSP (18 CFR §5.12)	Stakeholders	Within 90 days following filing of PSP	Nov 5, 2022
File Revised Study Plan (RSP) (18 CFR §5.13(a))	Licensee	Within 30 days following deadline for comments on PSP	Dec 5, 2022
Comments on RSP (18 CFR §5.13(b))	Stakeholders	Within 15 days following filing of RSP	Dec 20, 2022
Issue Study Plan Determination (18 CFR §5.13(c))	FERC	Within 30 days following filing of RSP	Jan 4, 2023
Conduct First Season of Studies (18 CFR §5.15)	Licensee	-	Spring-Fall 2023
File Study Progress Reports (18 CFR §5.15(b))	Licensee	Quarterly	Spring 2023 -Fall 2024
File Initial Study Report (ISR) (18 CFR §5.15(c))	Licensee	Pursuant to the Commission-approved study plan or no later than 1 year after Commission approval of the study plan, whichever comes first Jan 4, 2024	

Bad Creek Pumped Storage Project Location and FERC Project Boundary

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 6

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 5

Water Resources Study


Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 7

7

Water Resources Study

Task Refresher

- Task 1 Summary of Existing Water Quality Data And Standards
- Task 2 Water Quality Monitoring in Whitewater River Arm
- Task 3 Velocity Effects and Vertical Mixing in Lake Jocassee Due to a Second Powerhouse (CFD Modeling)
- Task 4 Water Exchange Rates and Lake Jocassee Reservoir Levels (CHEOPS Modeling)
- Task 5 Future Water Quality Monitoring Plan Development

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 8

Water Resources Study

- Task 1 Summary of Existing Water Quality Data and Standards
 - Objective: Compile previously collected water quality data and provide a summary of existing data from Lake Jocassee and Howard Creek under current Project operations and prior to Project operations, while addressing stakeholder concerns.
 - Status: The draft report was uploaded to the SharePoint site on June 30 for a 60-day review period.

SUMMARY OF EXISTING WATER QUALITY AND STANDARDS

DRAFT REPORT

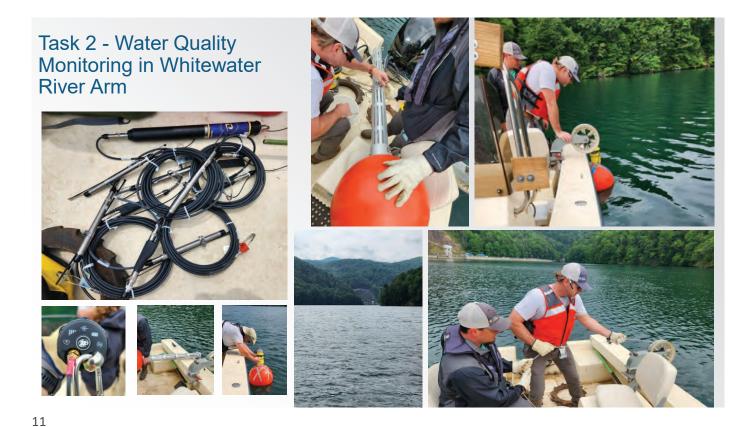
WATER RESOURCES STUDY

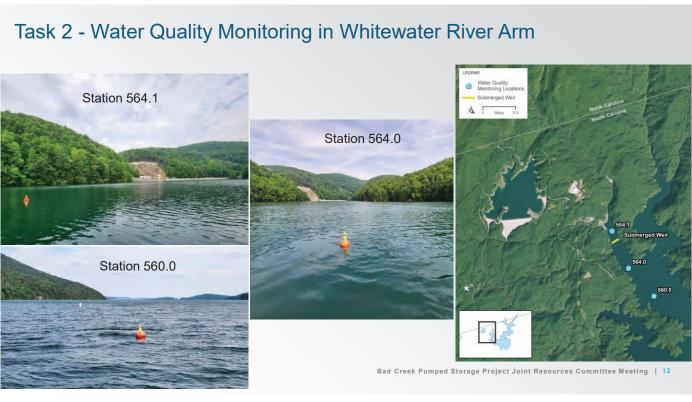
Bad Creek Pumped Storage Project FERC Project No. 2740

Oconee County, South Carolina

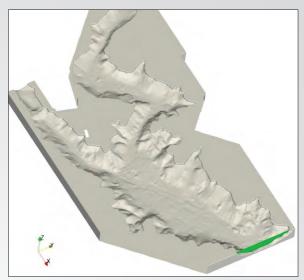
June 30, 2023

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 9


۵

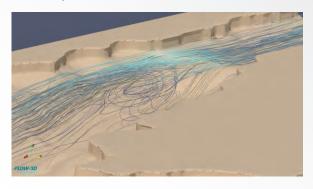

Water Resources Study

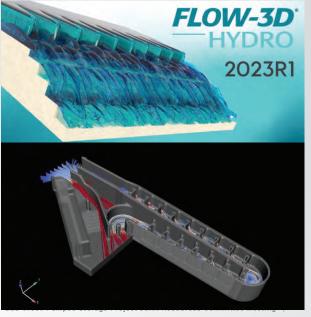
- Task 2 Water Quality Monitoring in Whitewater River Arm
 - Objective: Collect continuous temperature data and periodic DO (bi-weekly) from three historical locations in the Whitewater River Cove to gather current-day representative (i.e., baseline) water quality information in Summer 2023 and 2024.
 - · Status: Ongoing.
 - Dataloggers were deployed May 22nd and 23rd.
 - Four data collection trips have been made and will continue every two weeks through September.


Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 10

Water Resources Study

- Task 3 Velocity Effects and Vertical Mixing in Lake Jocassee Due to a Second Powerhouse (CFD Modeling)
 - Objectives
 - Use a two-dimensional (2-D) hydraulic model to determine the downstream extent of potential effects (i.e., mixing) in the Whitewater River Cove due to an additional powerhouse (Bad Creek II).
 - Develop CFD model to evaluate flows and extent of vertical mixing in the Whitewater River arm and downstream of the submerged weir due to the addition of Bad Creek II.
 - · Status: Ongoing.
 - · Simulations are complete and analyses are ongoing.
 - Velocity data were collected in mid-July along 5 transects in the Whitewater River cove with boatmounted ADCP for ongoing model validation.




Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 13

13

Task 3 – Introduction to Computational Fluid Dynamics

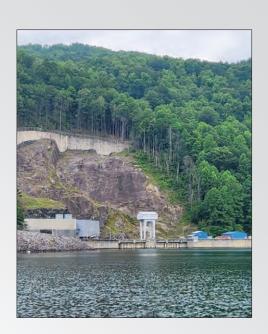
- · Modeling software capable of solving complex hydraulics in three dimensions.
- CFD models solve the three-dimensional form of the Navier-Stokes equations that govern fluid momentum in conjunction with conservation of mass (continuity).
- Commercially available Flow-3D software used for the Bad Creek analysis.

Task 3 – Modeling Steps and Take-Home Message

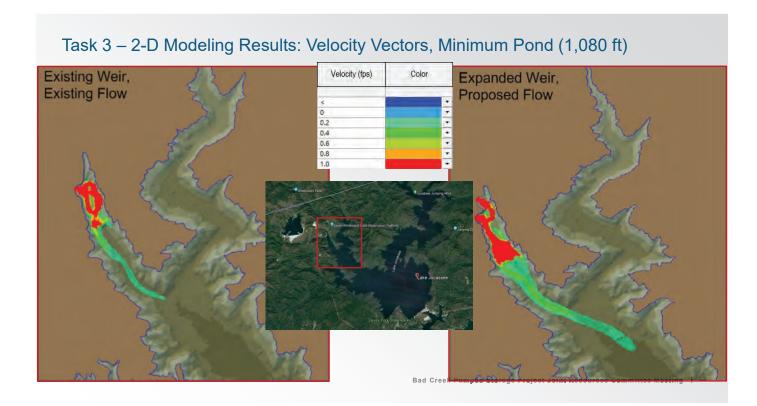
- 2-D hydraulic model (Innovyze) was developed to help determine the downstream modeling extent (model domain) required for the CFD model.
- 2. CFD model was developed to evaluate hydraulic effects (depth, velocity, flow patterns) of Bad Creek II operations on vertical mixing in the Whitewater River cove.
- 3. Sixteen scenarios were evaluated using pumping and generating modes under existing and proposed conditions (including potentially expanded weir).

Take home message: Of the "bookend" scenarios analyzed, combined Bad Creek and Bad Creek II operations (39,200 cfs) with Lake Jocassee at minimum pond elevation (1,080 ft msl) was found to have the greatest effect on Whitewater River Cove hydraulics, however at the downstream model boundary that effect was negligible.

Lake Jocassee Area (full pond): 7,980 acres Modeled Area (full pond): 2,840 acres

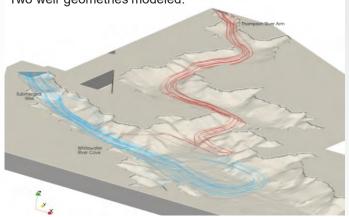


Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 15


15

Task 3 – 2-D Modeling [Innovyze ICM]

- CFD modeling requires lengthy computing time, therefore 2-D model was used to quickly determine the approximate CFD modeling extent (modeling boundary).
- 2-D model terrain based on previously gathered Lake Jocassee bathymetry and SC State lidar.
- Scenarios assume full generation/pumping capacity for the entirety of the simulation.
- Simulation length was determined by the time it takes to drain/fill Bad Creek from full pond to maximum drawdown.
- · 2-D modeling is depth-averaged.



Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 16

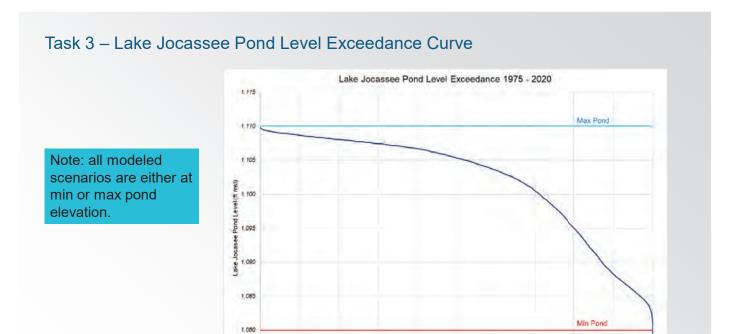
Task 3 – CFD Model Development

- Model domain extends just upstream of confluence with Devil's Fork Arm.
- Inflows and water surface elevations held constant at the inflow boundary.
- · Maximum generating/pumping capacity simulated.
- Thompson River flow included (long term average flow).
- · Two pond levels modeled.
- · Two weir geometries modeled.

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 18

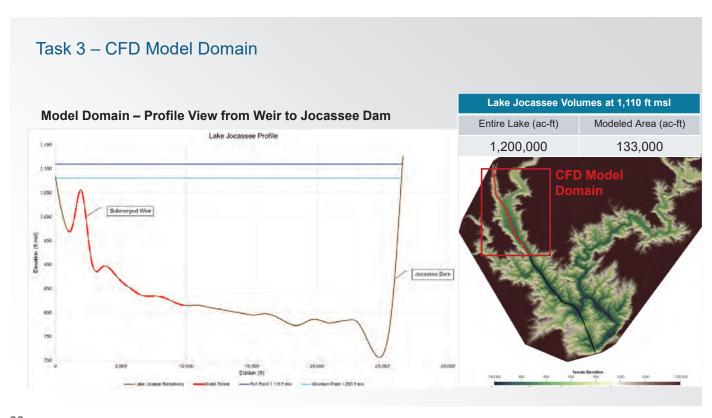
Task 3 – CFD Model Geometries & Scenarios

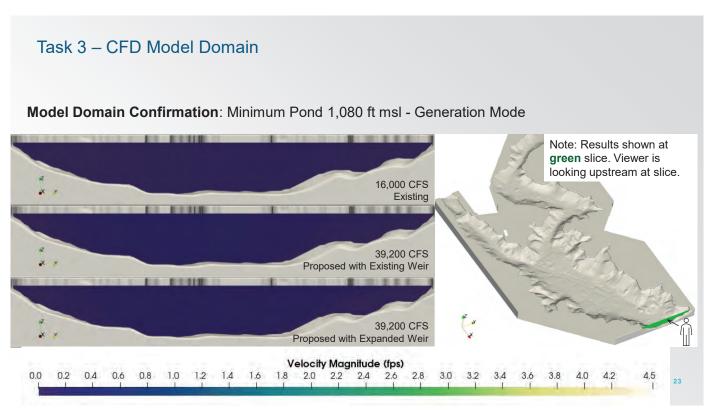
Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 19


19

Task 3 – CFD Modeled Scenarios

Station	Operating Mode	Submerged Weir Configuration	Scenario	Flow (cfs)	Jocassee Reservoir Elevation (ft msl)
Bad Creek Only Upgraded Generation Upgraded Pumping	Generating	Existing	1	16,000	1,110
			2	16,000	1,080
	Dumanina		7	13,780	1,110
		8	13,780	1,080	
	Unavaded Consustion	Existing	13	19,440	1,110
	Upgraded Generation		14	19,440	1,080
	Upgraded Pumping		15	15,000	1,110
			16	15,000	1,080
Bad Creek and Bad Creek II Generating Pumping Generating Pumping	Generating	Existing	3	39,200	1,110
			4	39,200	1,080
	Din		9	32,720	1,110
	Pumping		10	32,720	1,080
	Generating	Expanded	5	39,200	1,110
			6	39,200	1,080
	Pumping		11	32,720	1,110
			12	32,720	1,080

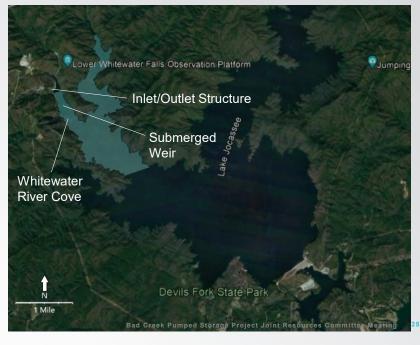

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 20


| 21



1.075

21



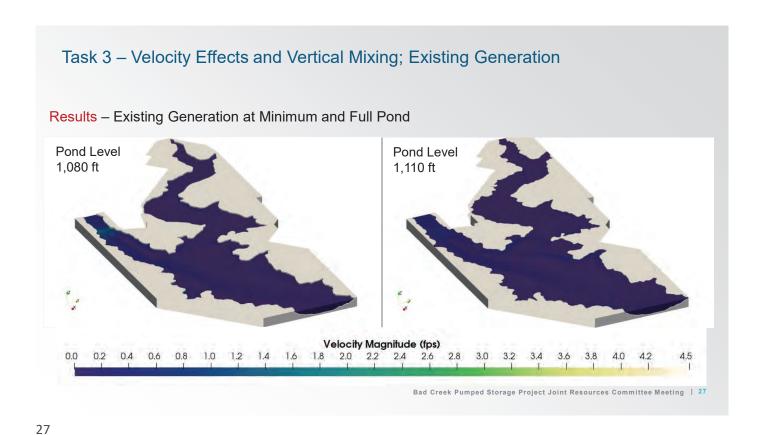
Task 3 – Velocity Effects and Vertical Mixing; Existing Generation

Results – Existing Generation at Full Pond

- Max velocity approx. 0.6 fps
- Teal: < 1.0 fps

(Teal shading indicates model extent.)

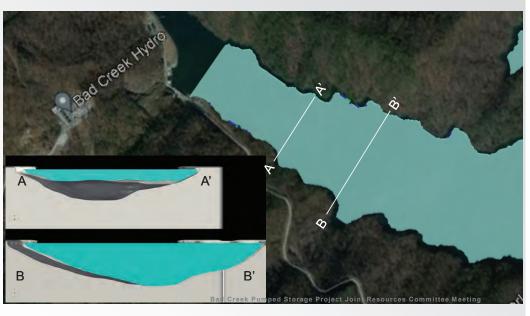
25


Task 3 – Velocity Effects and Vertical Mixing; Existing Generation

Results – Existing Generation at **Minimum Pond**

- Max velocity approx. 2.9 fps
- Teal: < 1.0 fps
- Blue: 1.0 2.0 fps
- Green: 2.0 3.0 fps

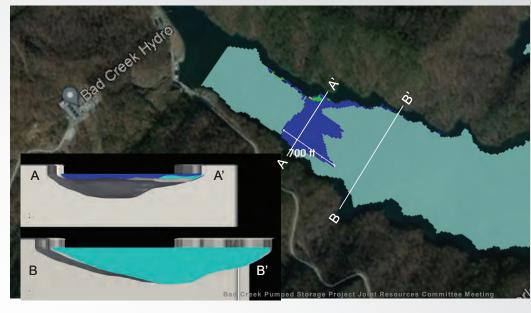
(Teal shading indicates model extent.)



Task 3 – Velocity Effects and Vertical Mixing; Existing Generation

Results – Existing Generation at Full Pond

- Max velocity approx.
 0.6 fps
- Teal: < 1.0 fps


Task 3 – Velocity Effects and Vertical Mixing; Existing Generation

Results - Existing Generation at **Minimum Pond**

Max velocity approx. 2.9 fps Teal: < 1.0 fps

Blue: 1.0 - 2.0 fps

Green: 2.0 – 3.0 fps

29

CFD Results -**Existing Pumping** Operations

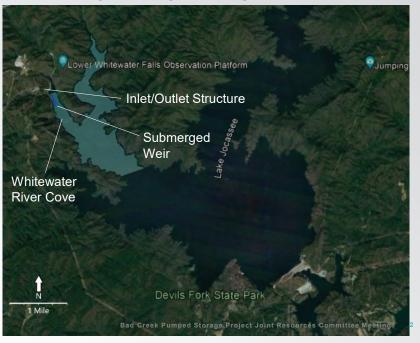
Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 30

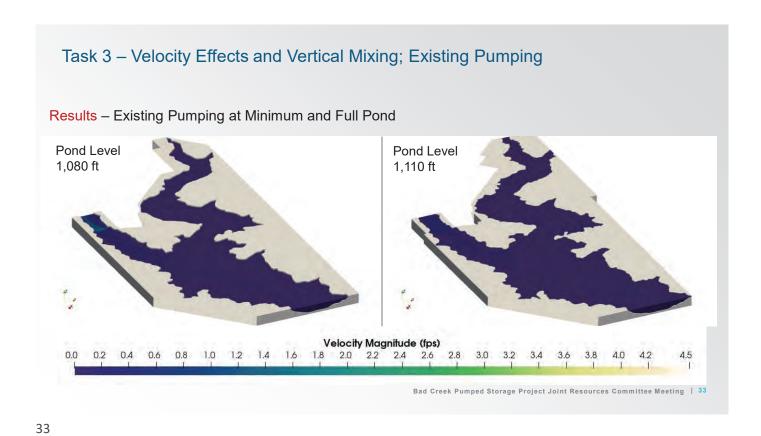
Task 3 – Velocity Effects and Vertical Mixing; Existing Pumping

Results – Existing Pumping at Full Pond

- Max velocity approx. 0.5 fps
- Teal: < 1.0 fps

(Teal shading indicates model extent.)

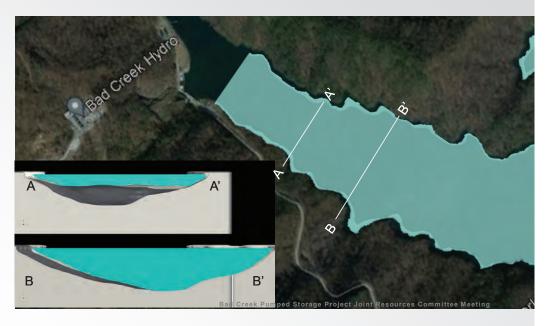

31


Task 3 – Velocity Effects and Vertical Mixing; Existing Pumping

Results – Existing Pumping at **Minimum Pond**

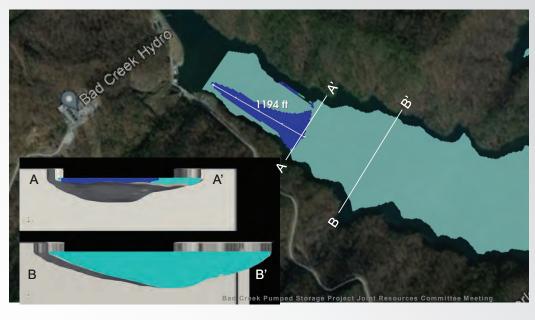
- Max velocity approx. 1.4 fps
- Teal: < 1.0 fps
- Blue: 1.0 2.0 fps

(Teal shading indicates model extent.)



Task 3 – Velocity Effects and Vertical Mixing; Existing Pumping

Results – Existing Pumping at **Full Pond**


- Max velocity approx.
 0.5 fps
- Teal: < 1.0 fps

Task 3 – Velocity Effects and Vertical Mixing; Existing Pumping

Results – Existing Pumping at **Minimum Pond**

- Max velocity approx.2.9 fps
- Teal: < 1.0 fps
- Blue: 1.0 2.0 fps

35

CFD Results – Proposed Generation Operations

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 36

Task 3 – Velocity Effects and Vertical Mixing; Proposed Generation

Results – Proposed Generation at Full Pond

3-D Contours of Velocity

Max velocity approx. 1.3 fps

Teal: < 1.0 fps

Blue: 1.0 – 2.0 fps

(Teal shading indicates model extent.)

37

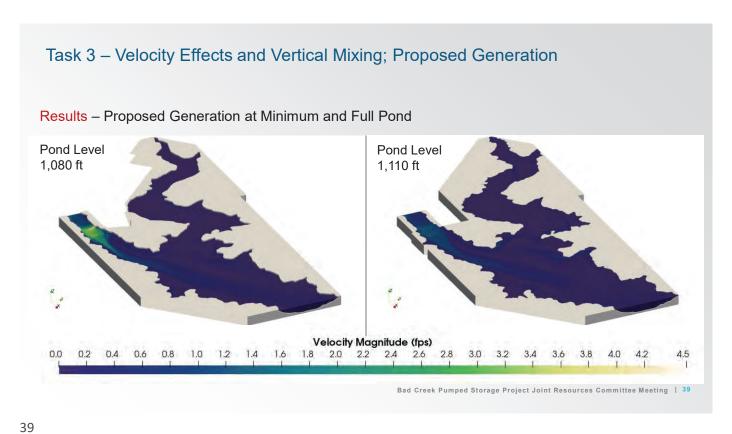
Task 3 – Velocity Effects and Vertical Mixing; Proposed Generation

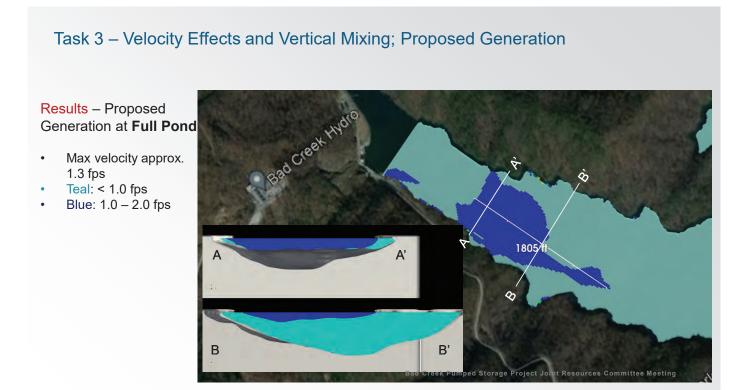
Results – Proposed Generation at Minimum Pond

Max velocity approx. 4.5 fps


Teal: < 1.0 fps

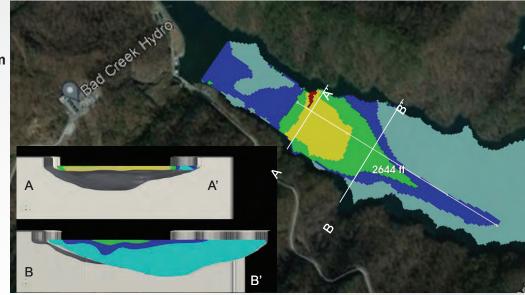
Blue: 1.0 – 2.0 fps
 Green: 2.0 – 3.0 fps


Yellow: 3.0 – 4.0 fps


Red: > 4.0 fps

(Teal shading indicates model extent.)

. . .



Task 3 – Velocity Effects and Vertical Mixing; Proposed Generation

Results – Proposed Generation at Minimum Pond

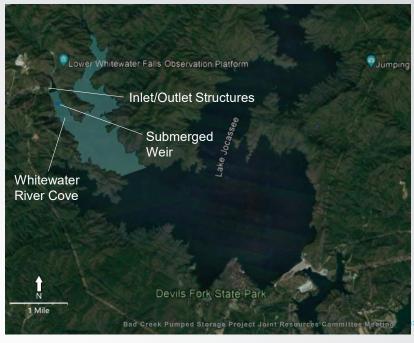
- Max velocity approx.4.5 fps
- Teal: < 1.0 fps
- Blue: 1.0 2.0 fps
- Green: 2.0 3.0 fps
 Yellow: 3.0 4.0 fps
- Red: > 4.0 fps

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 41

41

CFD Results – Proposed Pumping Operations

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 42


Task 3 – Velocity Effects and Vertical Mixing; Proposed Pumping

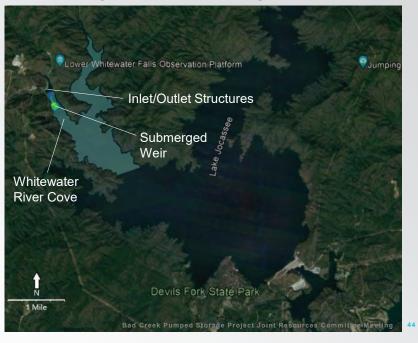
Results – Proposed Pumping at Full Pond

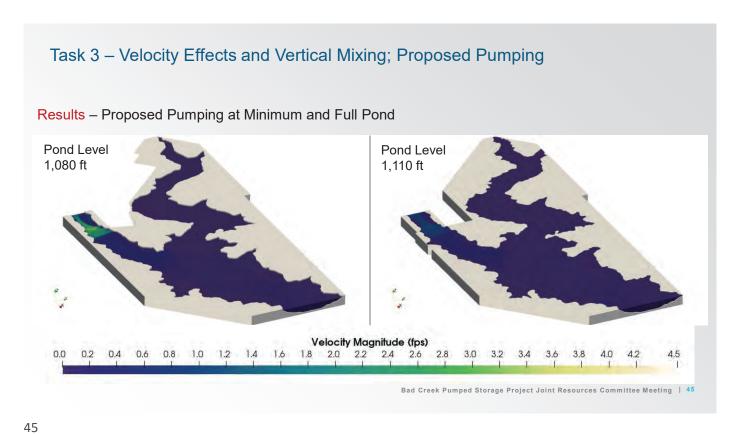
Max velocity approx. 1.1 fps

Teal: < 1.0 fpsBlue: 1.0 - 2.0 fps

(Teal shading indicates model extent.)

43

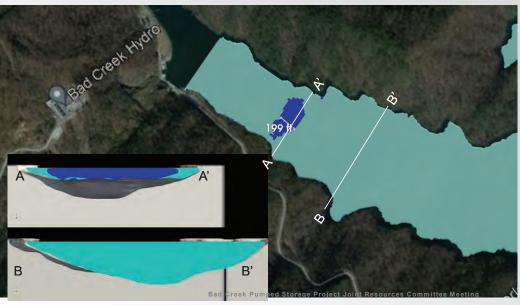

Task 3 – Velocity Effects and Vertical Mixing; Proposed Pumping


Results – Proposed Pumping at Minimum Pond

Max velocity approx. 3.3 fps

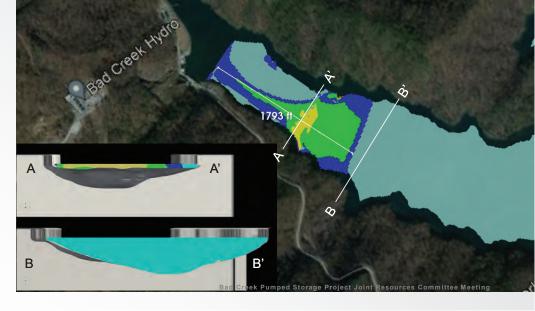
Teal: < 1.0 fps
Blue: 1.0 - 2.0 fps
Green: 2.0 - 3.0 fps
Yellow: 3.0 - 4.0 fps

(Teal shading indicates model extent.)



Results – Proposed Pumping at Full Pond

- Max velocity approx.1.1 fps
- Teal: < 1.0 fps
- Blue: 1.0 2.0 fps

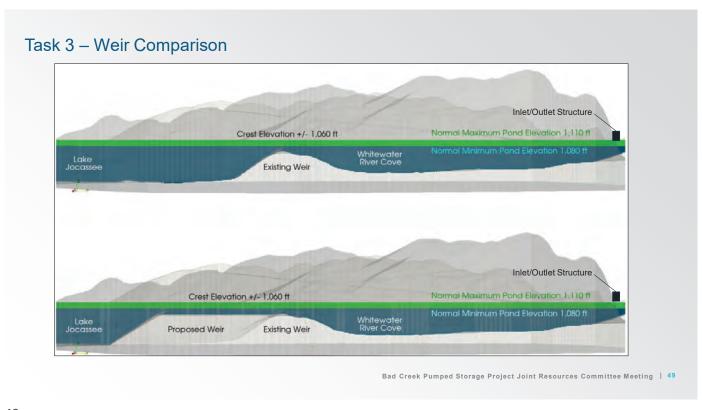

Task 3 – Velocity Effects and Vertical Mixing; Proposed Pumping

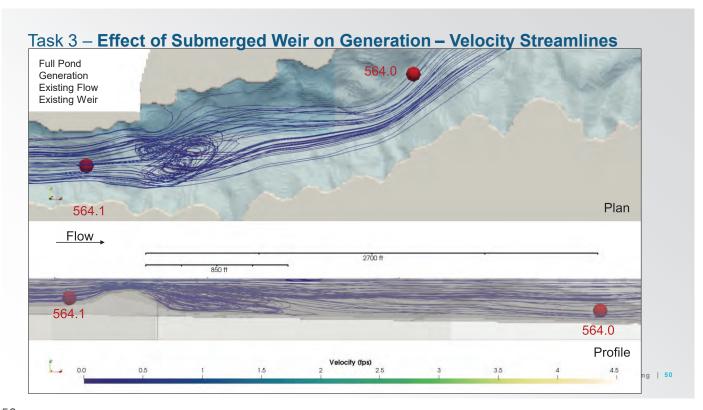
Results - Proposed Pumping at **Minimum Pond**

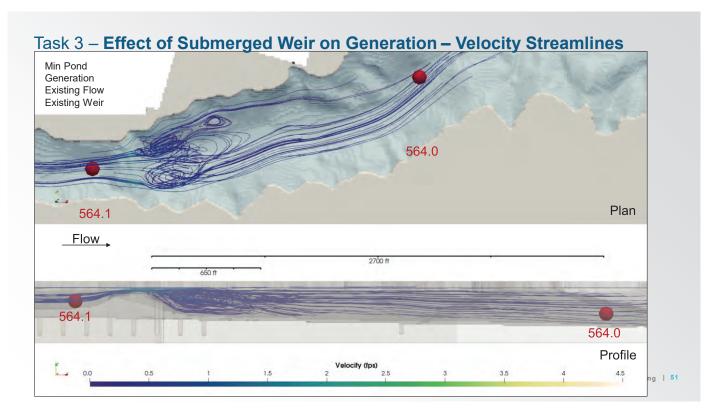
Max velocity approx. 3.3 fps

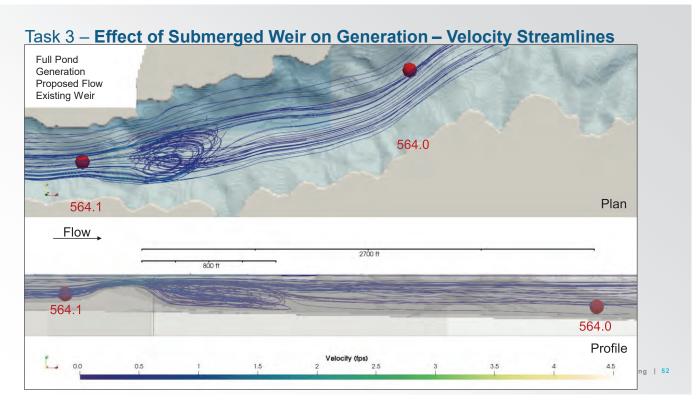
Teal: < 1.0 fps Blue: 1.0 – 2.0 fps Green: 2.0 – 3.0 fps

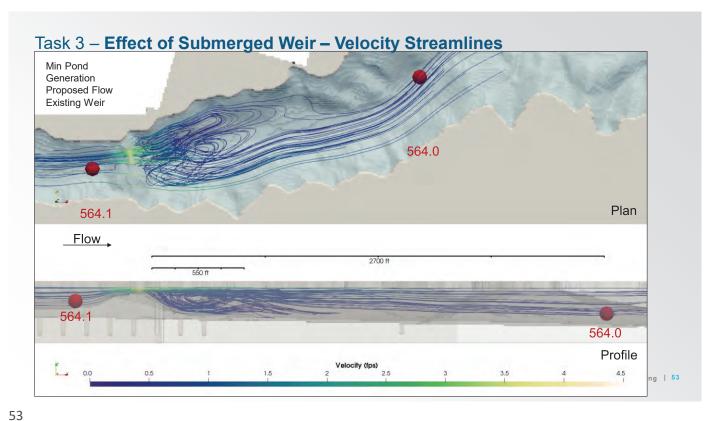
Yellow: 3.0 - 4.0 fps

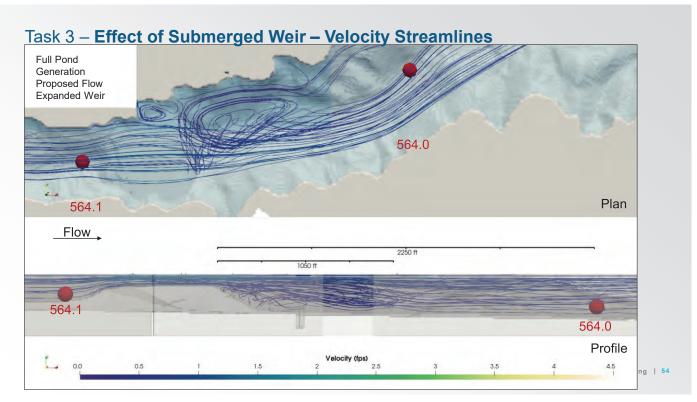


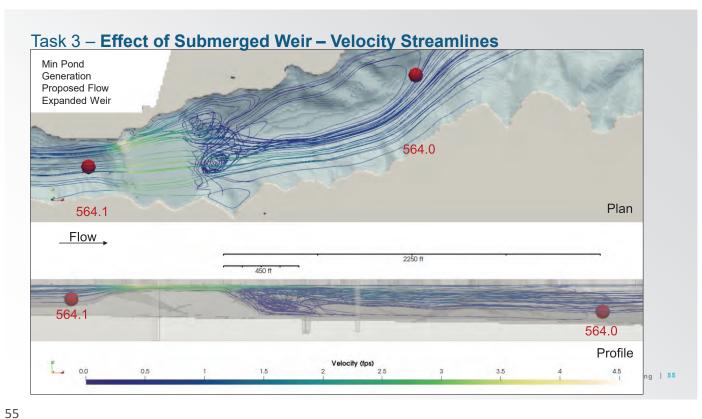

47

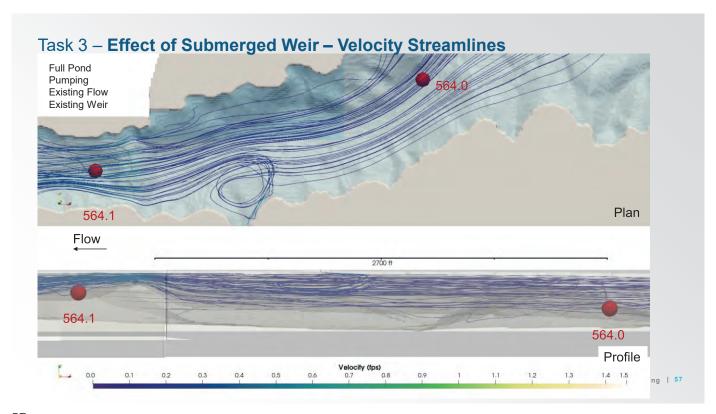

Effect of Submerged Weir Geometry during Generation

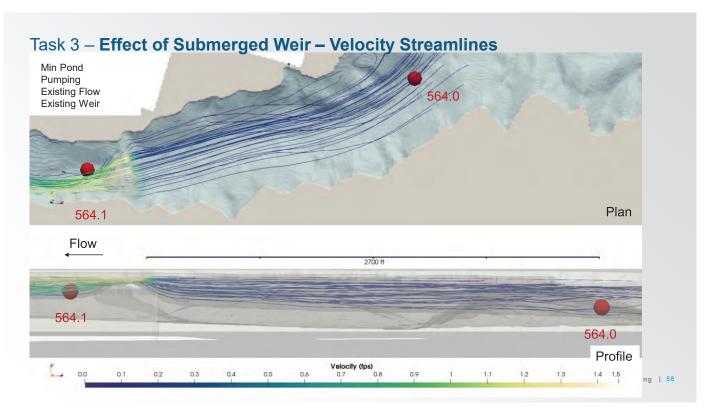


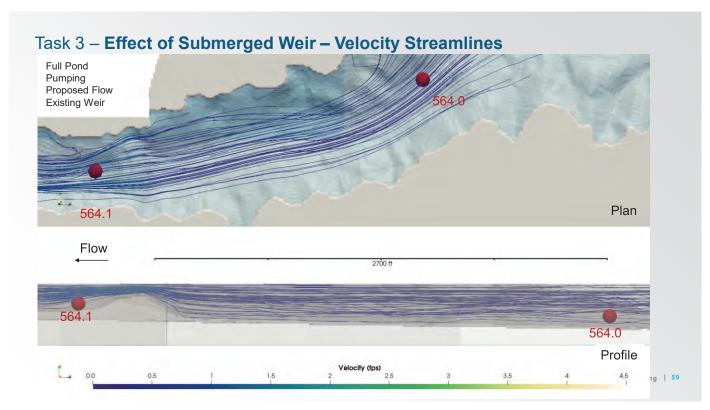

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 48

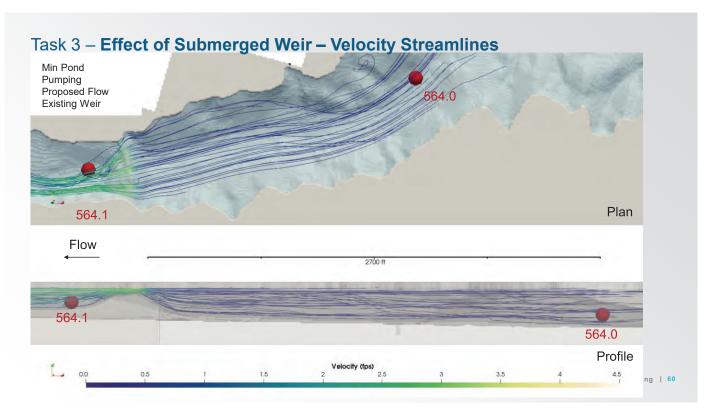


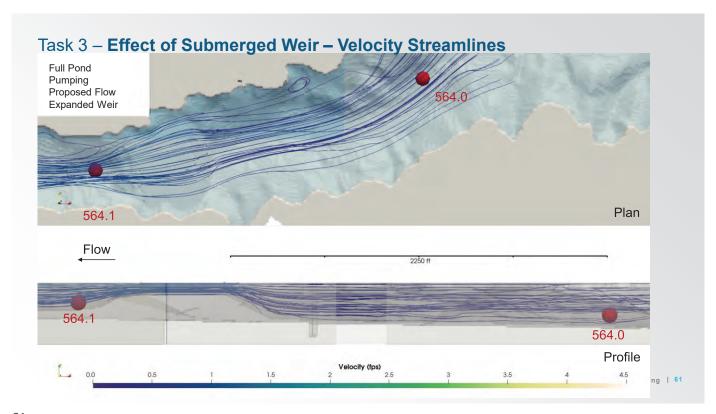


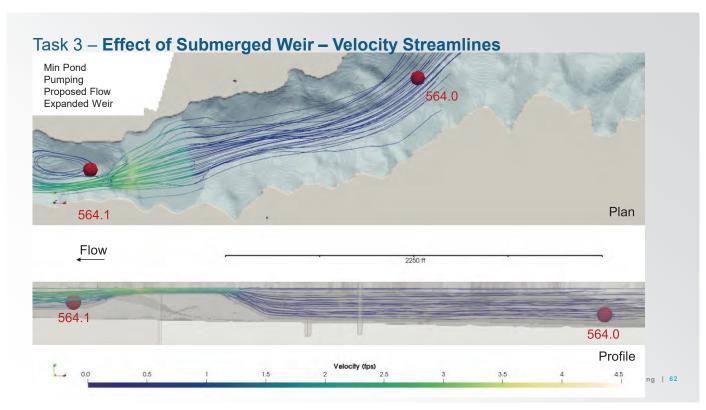












Task 3 – Initial Conclusions from CFD Modeling

Generation

- The energy of the water discharged from Bad Creek is dissipated as it's forced up and over the existing submerged weir.
- · Similar vertical mixing and flow patterns result from flows over existing and expanded weir.
- Similar vertical mixing and flow patterns result from Bad Creek II powerhouse operations.
- Results indicate Bad Creek II powerhouse operations will not alter existing stratification patterns observed at Station 564.0 (downstream of weir).

Pumping

- Hydraulic impacts due to Bad Creek II pumping impacts limited to Whitewater River Cove upstream of submerged weir.
- Pumping in any configuration does not create mixing downstream of submerged weir.

**Draft Report will be distributed in the fall for Resource Committee review

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 63

63

Water Resources Study

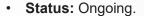
Task 4 – Water Exchange Rates and Lake Jocassee Reservoir Levels (CHEOPS Modeling)

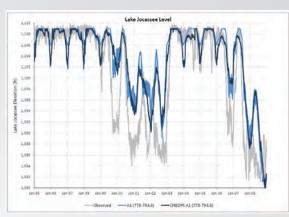
Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 64

Task 4 – Water Exchange Rates and Lake Jocassee Reservoir Levels (CHEOPS Modeling)

Goals for today:

- Initial CHEOPS performance measures
- · Modeling scenarios
- · Update on model refinement


Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 65


65

Task 4 – Performance Measures

· Objectives:

- Use the existing CHEOPS model to evaluate the difference in water <u>exchange rate</u>, <u>frequency</u>, <u>and magnitude</u> between Bad Creek Reservoir and Lake Jocassee due to the addition of a second powerhouse.
- Identify and evaluate impacts, if any, to Lake Keowee as a result of operating an additional powerhouse at the Project.

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 66

Task 4 - CHEOPS Scenarios

Baseline:

- · Existing Bad Creek powerhouse
- · Existing Bad Creek license
- KT license
- · Updated demand curve (Bad Creek and Jocassee)
- Updated pumping dispatch curves (Bad Creek and Jocassee)
- Updated weekly drawdown cycle (30,000 ac-ft)

Bad Creek II:

- Baseline plus:
 - 4 Bad Creek II units (identical to existing units)
 - Pumping dispatch curve (Bad Creek II)
 - Assumption: Bad Creek II available for the entire scenario run

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 67

67

Task 4 – Bad Creek Performance Measures

Performance Measures Worksheet

- Minimum Increment of Significant Change (MISC)
- Side-by-side comparison
- Color coded

$\overline{}$												
Line Number	Performance Measures	Criterion (Note 1)	Start Date	End Date	MISC (Note 2)	Baseline	Blend 2A v1	Blend 2A v2	Blend 2A v3	Blend 2B v1	Blend 2B v2	Blend 2B
	Lake Keowee											
	Glevation: Storage Availability											
31	Maximize adherence to reliably meet all Project related water demands Floyation: Aprillation	Number of years reservoir level at or above 798 ft AMSL on May 1	1-May	1-May	- 5	63	65	68	68	- 65	68	- 68
32		Percent of time reservoir level at or above 797 ft AMSL	3-bin	11-Dec	20%	82%	91%	93 K	93%	93%	93%	93%
33	Maximize lake levels	Percent of time reservoir level at or above 795 ft AMSL	3-Jan	31-Dec	10%	89%	58%	98N	98N	58N	98%	98%
34	Minimize significant drawdown of lake level	Number of days reservoir level below 796 ft AMSL	1-Jan	31-Dec	.5	4,132	1,102	1,076	1,095	1,102	1,078	1,093
	Elevation - Recreation											_
35		Number of years where cove access (reservoir level below 792 ft AMSL) is restricted for more than 25 days (Note 9)	1-Jan	\$1-Dec	2	ø	n		þ	6	à	0
36	Minimize restricted recreation	Greatest number of days with restricted cove access (reservoir level below 792 ft AMIS), during higher use months in any calendar year (Note 9)	1-Mir	31-Oct	5	0	o.	ū	0	0	0	0
\$7		Greatest number of days with restricted cove access (reservoir level below 792 ft AMSL) in any calendar year (Note 9)	1-tin	31-Dec	š.	0	18	12	12	16.	- 12	12
38	D. S. S. St. St. All	Number of years where reservoir level is below toot ramp critical level (790 ft AMSL) during higher use months for more than 25 days (Note 10)	1-Mar	31-Oct	2	0	ò	6	ò	6	0.	0
39	Minimize restricted take boot launching	Greatest number of days where reservoir level is below boat ramp critical level (790 ft AMSL) during higher use months in any calendar year (Note 10)	1-Mir.	31-Oct	5	0	0	0	0	0	0	0
40	Manimite boat dock unage	Percent of time reservoir level is at or above level where 85% of docks are usable (796.25 ft AMSL) during higher use months from 7:00 am to 7:00 pm (Note 27)	2-Mar	31-Oct	5%	85%	36%	96%	36%	56N	Ties.	98N
AI	Maximus oper occi, usage	Percent of time reservoir level is at or above level where 70% of docks are usable (793.5 ft AMSL) during higher use months from 7:00 em to 7:00 pm (Note 27)	1-Mir	33-Oct	.5%	100%	100%	100%	300%	soew	100%	100%
	Elevation - Natural Resources											
42	Minimize number of days water level is below too of riprep	Number of days reservoir level below 754 ft AMSL (Note 11)	1-Jan	31-Dec	250	71.	108	97	102	130	116	116
43		Percent of years (hourly) reservoir level remains within (-0.5 to 2.0) ft band for 10 consecutive days at least once (Note 20)	15-Mar	15-May	10%	100%	100%	100%	100%	100%	100%	100%
41	Maximize spawning success for black bass and blueback herring	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 15 consecutive days at least once (Note 20)	15-Mar	15-May	10%	100%	100%	100%	300%	100%	100%	100%
45	(2.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0) ft band for 20 consecutive days at least once (Note 20)	15 Mar	15-May	10%	100%	100%	100%	100%	100%	100%	100%
46		Percent of years (hourly) reservoir level remains within (-0.5 to 3.0) ft band for 10 consecutive days at least once (Note 20)	35-Mar	15-Mey	10%	100N	100%	100%	100%	500K	100%	100N
47	Maximize spawning success for black bass and blueback herring	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 15 consecutive days at least once (Note 20)	15 Mar	15-May	10%	100%	100%	100%	100%	100%	100%	100%
48	(3.5-ft fluctuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 3.0) ft band for 20 consecutive days at least once (Note 20)	15-Mar	15-May	10%	100%	100%	200%	100%	200%	100%	100%
40	Takes and the second	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 10 consecutive days at least once (Note 20)	25-May	15-aul	10%	100%	100%	100%	100%	100%	100%	100%
50	Maximize spiranting soccess for sunfish and threadfile shad (2.5-ft factuation band)	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0) ff band for 15 consecutive days at least once (Note 20)	15-May	15-iui	10%	100%	100%	100%	:100%	100%	100%	100%
51	(4.3"H. HALLISBOY DRING)	Percent of years (hourly) reservoir level remains within (-0.5 to 2.0) ft band	25-May	15-au	10%	97%	100%	100%	22N	100%	100%	99%

Bad Creek Pumped Storage Project Joint Resource Committee Meeting | 68

Task 4 – Bad Creek Performance Measures

- Starting Point: KT Relicensing Performance Measures
 - All Jocassee and Keowee lake level measures & LIP Stages
 - New measure: Measure 7 Number of days where Jocassee reservoir level changes more than 1.0 ft in one hour
 - Revised measures
 - Measure 59 Number of days where Keowee level below critical level (790.0 ft msl) for thermal power operation
 - Measures 61-66 Number of days in LIP Stages; added MISC

		Criterion (Note 1)	Start Date	Linu Date	(Note 2
	Lake Jacarree				
	Devetion Storage desilebility				
1	Maximize adherence to reliably meet all Project-related water demands	Number of years reservoir level at or above 1,108 ft AMSL on May 1	1-May	1-May	5
	Elevation - Reservation	Number of years where core access (reservoir level below 1,090 ft AMSL) is restricted for			
2		more than 25 days (Note 3)	1-Jan	31-Dec	2
3	Minimize restricted recreation	Greatest number of days with restricted cove access (reservoir level below 1,030 ft AMSL) during higher use months in any calendar year (Note 3)	1-Mar	31-Oct	5
4		Greatest number of days with restricted cove access (reservoir level below 1,030 ft AMSL) in any calendar year (Note 3)	1-Jan	31-Dec	5
5	Minimize restricted boot launching	Number of years where reservoir level is below boat ramp critical level (1,080 ft AMSL) during higher use months for more than 25 days (Note 4)		31-Oct	2
6	- Minimize restricted book lounching	Greatest number of days where reservoir level is below boot rump critical level (1,080 ft AMSL) during higher use months in any calendar year (Note 4)	1-Mar	31-Oct	5
7	Minimize effects on recreational	Number of days where recervoir level changes more than 1.0 ft in one hour	1-Jso	31-Dec	10
	Elevation : Hateral Resources				
8		Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 10 consecutive days at least once (Note 5)	1-Apr	15-Muy	10%
9	Maximize spawning success for black bass and black-ack herring	Percent of years (boarly) reservoir level remains within (-0.5 to 2.0)-ft band for 15 consecutive days at least once (Note 5)	1-Apr	15-Muy	10%
10	(2.5-ft flectestion band)	Percent of years (boarly) reservoir level remains within (-0.5 to 2.0)-ft band for 20 consecutive days at least once (Note 5)	1-Apr	15-Muy	10%
11		Percent of years (bourly) reservoir level remains within (-0.5 to 3.0)-ft band for 10 concecutive days at least once (Note 5)	1-Apr	15-Muy	10%
12	Maximize spanning success for black bass and blackock herring (3.5-ft flactuation band)	Percent of years (bourly) reservoir level remains within (-0.5 to 3.0)-ft band for 15 concecutive days at least once (More 5)	1-Apr	15-Muy	10%
13		Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 20	1-Apr	15-May	10%
14	Maximize spanning success for sunfish and threadfin shad	consecutive days at least once (Note 5) Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 10	15-Mov	15-Jul	10%
15		consecutive days at least once (Note 5) Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 15	15-Mov	15-Jul	10%
16	(2.5-ft fluctuation band)	consecutive days at least once (Note 5) Percent of years (hourly) reservoir level remains within (-0.5 to 2.0)-ft band for 20	15-Mov	15-Ad	10%
17		consecutive days at least once (Note 5) Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 10	15-May	15-Ad	10%
18	Maximize spawning success for sunfish and threadfin shad	consecutive days at least once (Note 5) Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 15	15-May	15-Au	10%
19	(3.5-ft fluctuation band)	consecutive days at least once (Note 5) Percent of years (hourly) reservoir level remains within (-0.5 to 3.0)-ft band for 20	15-May	15-Ad	10%
		consecutive days at least once (Note 5)			
20	Minimize entrainment due to Bad Creek	Percent of days average reservoir level at or below 1,096 ft AMSL (Note 3)	1-Jan	31-Dec	10%
21	operations Maximize litteral habitat during	Percent of days average reservoir level below 1,096 ft AMSL (Note 3)	1-Dec	31-Mar 30-Sep	10%
23		Percent of days average receivoir level above 1,107 ft AMSL (Note 4) Percent of days average receivoir level above 1,105 ft AMSL (Note 4)	1-Apr 1-Apr	30-Sep	10%
23	growing season Maximize littoral habitat during	Percent of days average receiver level above 1,105 ft AMSL (Note 4) Percent of days average receiver level above 1,107 ft AMSL (Note 4)	1-Apr 1-Apr	30-Sep 31-Mau	10%
25	cpowning occors	Percent of days average recorvoir level above 1,105 ft AMISL (Note 4)	1-Apr	31-May	10%
26	Amped Storage Misimize days below lake levels that impact Bad Creek operations	Number of days reservoir level below 1,099 ft AMSL (Note 6)	1-Jan	31-Dec	227
27	Minimize days below lake levels that impact Jocasses operations	Number of days reservoir level below 1,090 ft AMSL (Note 6)	1-Jan	31-Dec	14
28	Misimiza daya below lake levels that impact Bad Crook officioncy	Number of days reservoir level below 1,081 ft AMSL (Note 7)	1-Jan	31-Dec	12
	Lake Kenuee				
	Elevation - Starage Mediability				
29	Maximize adherence to reliably meet all Project-related water demands	Number of years recorvoir level at or above 738 ft AMSL on May 1	1-May	1-May	5
	Direction Acethorica				
31	Maximize loke lovels	Percent of time reservoir level at or above 797 ft AMSL	1-Jun	31-Dec	20%
32	Minimize significant drawdown of lake	Percent of time reservoir level at or above 735 R AMSL	1-Jan	31-Dec	10%
		Number of days reservoir level below 736 ft AMSL	5-Jan	31-Dec	5

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 69

69

Aquatic Resources Study

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 70

Task 1 – Consultation on Entrainment

Draft Entrainment Study Report

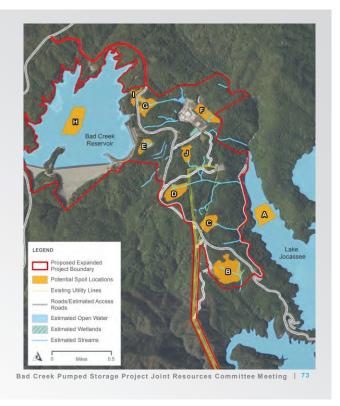
- Meeting with the Aquatic Resources RC in April 2023
- Entrainment study evaluating additional parameters affecting entrainment scenarios
 - Lake surface elevation (+/- 1,099 ft msl; 89 ft)
 - · Water temperature
 - Hours of pumping (day vs night operations)
- Distribute draft study report by November 2023

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 71

71

Task 2 – Desktop Studies on Potential Effects to Pelagic and Littoral Habitat

- Meeting with the Water Resources RC in July 2023 (today)
- · Water Resources Study modeling results
 - 2-D hydraulic model
 - CFD model
 - CHEOPS model
- Discuss desktop study results in early spring 2024



Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 72

Task 3 - Mussel Surveys and Stream Habitat Quality Surveys

Potential Spoil Locations

- Mussel surveys
 - Late July: survey of Lake Jocassee shoreline in the vicinity of Bad Creek inlet/outlet and submerged weir
 - · Mussel habitat is not present at upland potential spoil locations
- Stream habitat assessments
 - NC Stream Assessment Method (NCSAM) and USEPA Rapid Bioassessment Protocol (RBP) will be completed for all streams within potential spoil locations

73

Task 3 – Mussel Surveys and Stream Habitat Quality Surveys

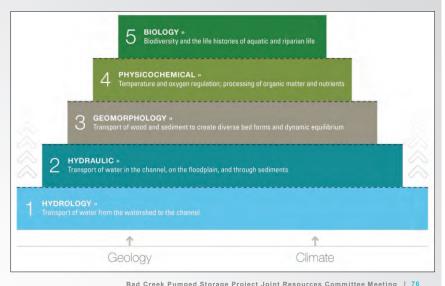
Potential Access Road

- Fish Community & Mussel surveys
 - **Howard Creek**
 - Limber Pole Creek
- Stream habitat assessments
 - All streams crossed by the potential access road
 - NCSAM + USEPA RBP
 - SCDNR Stream Quantification Tool (SQT)

Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 74

Task 3 – SCDNR Consultation

- May 2023: SCDNR requested that Duke Energy use the Stream Quantification Tool (SQT) to evaluate streams potentially impacted by Bad Creek II Complex construction activities
- May 24 and June 21, 2023: consultation calls held with SCDNR regarding SQT methodology and applicability
- July 12, 2023: site visit with Lorianne Riggin (SCDNR) to streams within two potential spoil locations
- ➤ A memo is under development which will include a summary of the survey approach for streams within potential spoil locations and along the potential access road.
- Methods described in the RSP still apply.


Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 7

75

Task 3 - Mussel Surveys and Stream Habitat Quality Surveys

SCDNR Stream Quantification Tool

- Used to assess functional lift or loss from an action
- Based on five functional categories
- Function-based parameters
 - Reach runoff
 - Floodplain connectivity
 - Flow dynamics
 - · Large woody debris
 - Lateral migration/erosion
 - Riparian vegetation
 - Bed form diversity
 - Biology dependent on drainage area
 - Fish community
 - Macroinvertebrates

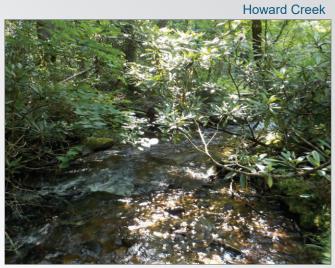
and order transport order to the transport of the transpo

Task 3 – Mussel Surveys and Stream Habitat Quality Surveys

Field Studies Schedule

Task	Location(s)	Timeframe
Fish community sampling*	Potential access road	Late July - October (3 events)
Mussel surveys*	Lake Jocassee & Potential access road	Late July
Macroinvertebrate sampling*	Potential access road	Early August
Stream habitat assessments (NCSAM + USEPA RBP)*	Potential spoil locations & potential access road	Early-mid October
Stream geomorphic surveys and riparian vegetation assessments	Potential access road	Early-mid October

^{*}Incidental observations of amphibians and reptiles will be documented.


Bad Creek Pumped Storage Project Joint Resources Committee Meeting | 77

77

Task 3 – Mussel Surveys and Stream Habitat Quality Surveys

Limber Pole Creek

Bad Creek Pumped Storage Project Joint Resources Committee Meeting

Questions and Action Items

Meeting Summary

Project: Bad Creek Pumped Storage Project Relicensing

Subject: Bad Creek Water and Aquatic Resources Joint Resource Committee Meeting

Date: Thursday, July 27, 2023

Location: Duke Energy Operations Center, Greenville, SC

Attendees (in-person)

John Crutchfield, Duke Energy

Alan Stuart, Duke Energy

Jeff Lineberger, Duke Energy

Ethan Pardue, Duke Energy

Paul Keener, Duke Energy

Elizabeth Miller, SCDNR

Amy Chastain, SCDNR

William Wood, SCDNR

Dan Rankin, SCDNR

Erika Hollis, Upstate Forever

Mike Abney, Duke Energy

Maverick Raber, Duke Energy

Sarah Kulpa, HDR

Joe Dvorak, HDR

Kelly Kirven, Kleinschmidt Assoc.

Joe Dvorak, HD

Kelly Kirven, Kleinschmidt Assoc.

Jen Huff, HDR

Alison Jakupka, Kleinschmidt Assoc. Kerry McCarney-Castle, HDR

Eric Mularski, HDR

Attendees (virtual)

Lynne Dunn, Duke Energy Melanie Olds, U.S. Fish and Wildlife Service Scott Fletcher, Duke Energy John Hains, Friends of Lake Keowee Society

Alex Pellett, SCDNR Kevin Nebiolo, Kleinschmidt Assoc.

Jeff Phillips, Greenville Water Ty Ziegler, HDR

Introduction

John Crutchfield welcomed participants in the room and online to the Bad Creek Relicensing Joint Water and Aquatic Resources Committee meeting, summarized the meeting agenda, provided a safety moment on heat-related issues, introduced the relicensing studies and study leads, and noted the meeting is being recorded. J. Crutchfield briefly covered the status of the relicensing efforts (ILP schedule) and showed the existing Project Boundary; he then handed the presentation over to Maverick Raber to present an update on the Water Resources Study.

Water Resources Study Update

Tasks 1 and 2

M. Raber provided an update on Water Resources Study tasks and summarized topics for discussion during the morning meeting.

- Task 1 "Summary of Existing Water Quality Data and Standards" report was submitted to the Water Resources Study Resource Committee (RC) on June 30th for a 60-day turnaround.
- Task 2 "Water Quality Monitoring in the Whitewater River Arm" is ongoing; M. Raber summarized instrumentation deployment in late May and data collection (every 2 weeks and

every 2 meters vertical profile). Continuous temperature monitoring is underway in the Whitewater River arm at stations 564.1, 564.0, and 560.0. Four elevations are being monitored for dissolved oxygen and temperature to determine flow patterns and how flow/mixing is affected by the existing submerged weir. Water quality data in the Whitewater River cove will be collected during summer 2023 and 2024 to represent conservative (higher temps) conditions under current operations (2023) and planned upgrades at the existing Bad Creek Project (2024).

Task 3

Joe Dvorak introduced modeling efforts for Task 3 of the Water Resources Study "Velocity Effects and Vertical Mixing in Lake Jocassee Due to a Second Powerhouse" (CFD Modeling in the Whitewater River Cove), the objectives of the study, and noted results are preliminary. He described how a 2-D model was developed first to determine the model extent for CFD modeling; he described CFD model assumptions and domain as well as existing and proposed weir configurations and typical exceedance water elevations for Lake Jocassee over the period of record. J. Dvorak noted all effects of the additional powerhouse are limited to the model domain which accounts for about 11 percent of the total volume of Lake Jocassee. He provided slides showing figures of preliminary CFD modeling results and indicated full results will be provided in the report to be provided this fall.

Participant Discussion and Questions Tasks 1 - 3

- John Hains (via chat) asked, "What are the criteria for "negligible"? This is in reference to language on Slide 15: "Of the "bookend" scenarios analyzed, combined Bad Creek and Bad Creek II operations (39,200 cfs) with Lake Jocassee at minimum pond elevation (1,080 ft msl) was found to have the greatest effect on Whitewater River Cove hydraulics, however at the downstream model boundary that effect was negligible." J. Dvorak replied there are no stated criteria for "negligible" as it is subjective, but today's discussion will include more about the actual results and the effect of the second powerhouse and conclusions will support this statement.
- Elizabeth Miller asked about the orientation of Slide 17. J. Dvorak explained where the I/O structure was and orientation to the lake.
- Alan conveyed a question from Erika Hollis, who asked if this information has yet been
 presented anywhere. J. Dvorak responded that this is the first time these results are being
 presented. A draft report will be issued soon which will provide detail on the overview
 covered during the presentation.
- Dan Rankin commented that from the results we are seeing (i.e., no effect at the
 downstream model domain due to expanding the weir or adding a second powerhouse), the
 main purpose of the weir is primarily to provide a place to dispose of excavation material. J.
 Dvorak agreed expanding the weir would have limited effects on velocities. D. Rankin then
 asked if any consideration has been given to creating another weir? J. Dvorak responded
 that has not been considered but the model has the capability to evaluate other designs.
- Joh Hains (via chat) asked, "Is there any reason that the expanded weir could be expected to change the velocity field at that downstream location?" J. Dvorak indicated we would get into that specifically later in the slides.
- Gerry Yantis asked if water temperature affects CFD modeling or if temperature/other criteria
 were considered. J. Dvorak indicated there are other parameters CFD model can evaluate
 like temperature, but we have not done that the focus here is solely on hydraulics. M.
 Raber added ongoing data collection efforts in the Whitewater River cove for water quality

- parameters (Task 2) supports the modeling effort to help determine mixing effects upstream and downstream.
- William Wood asked about water flow effects from the Thompson River. J. Dvorak indicated even at minimum pond, as you get further into the main body of the lake (downstream of Thompson River), flow from the Thompson River has a negligible effect on overall flow patterns in the lake.
- Ty Ziegler (via chat): "There are some very minor differences in flow patterns/velocities from
 the existing weir to the expanded weir (mostly at maximum drawdown), but by the time you
 get to WQ monitoring location 564.0, the results are similar. Therefore, we shouldn't see any
 differences in vertical mixing/stratification at location 564.0. Joe will have some figures to
 demonstrate."
- Alex Pellet (via chat): "This is off-topic at the moment, but perhaps we can circle back. I'm
 curious to understand one of the questions, I believe was from Dan Rankin. If disposing of
 the rock material is a goal of this, and there are only marginal benefits to weir expansion,
 then we might prefer other configurations of the material which provide superior aquatic
 habitat? Is that correct?"
 - J. Dvorak discussed the shape of the proposed expanded weir is simplified in the model. The length of the crest of the weir drives model results, not the composition of the weir. He deferred to M. Raber to discuss habitat effects of different materials. M. Raber noted that due to temperature density, when water comes across the weir, flow is laminar across the top, and stratification is not affected downstream of the weir (not affected by mixing upstream of the weir) so the geometry of the weir shape wouldn't change that. Would there be a configuration that would provide more/better fish habitat provided? J. Dvorak indicated there is at minimum 20 feet of water over top of the weir keeping flow at the top therefore, roughness of the surface of the crest of the weir would not affect anything.
- A. Stuart stated all Duke Energy lakes have an established minimum clearance for lake structures due to recreation, however, he does not know the exact depth for Lake Jocassee.
 Dan Rankin asked how often lake was at that minimum depth.
 - Mike Abney confirmed Duke Energy Lake Services has a minimum required depth between a structure placed in a lake (e.g., for fish habitat) and the normal minimum lake elevation. That minimum depth varies by lake and is 50 feet from full pool for Lake Jocassee).
- D. Rankin (Slide 55) asked if the size of the mixing zone downstream of the weir simply would double in length (downstream) by expanding the weir. J. Dvorak replied it's not possible to compare full to minimum pond in these mixing scenarios; it's actually an additional 200 feet downstream due to the expanded weir, not doubled.
- E. Miller (Slide 55) asked if flowlines were forming a loop downstream of the weir? J. Dvorak said it's possible but there are about 500 flow lines so it would be impossible to determine; the reason for the flow path (shown on Slides 50 through 55) is due to the natural thalweg of the flow through Whitewater River cove. M. Raber indicated the flow there is about 0.5 fps in the water column, even under worst case conditions (i.e., minimum pond, generation, two powerhouses, expanded weir).
- Lynne Dunne (virtual): Will there be additional operations requests for Bad Creek for ADCP validations for CFD modeling? A. Stuart answered we will not know if additional schedule changes will be necessary until HDR confirms if the data collected under generating and pumping at the five transects is good. (HDR collected ADCP flow data at 5 transects two weeks prior to the meeting, therefore validation data analysis is forthcoming).

Task 4 - CHEOPS

Ed Bruce opened the Task 4 "Water Exchange Rates and Lake Jocassee Reservoir Levels [CHEOPS Modeling])" discussion, summarizing study objectives and goals for today.

A. Stuart clarified there is no proposed change in the volume/capacity of Lake Jocassee associated with Bad Creek II; E. Bruce noted a good analogy is putting a bigger faucet on a bathtub, but it's still the same bathtub.

- E. Bruce reviewed the CHEOPS scenarios (baseline and with Bad Creek II). He noted that as an assumption, the second powerhouse would be available immediately (in the model runs), looking at maximum possible change scenarios and determining if there are any effects noticeable statistically and over time. The performance measures will run for X amount of years and determine any long-term effects and handed over the presentation to Jen Huff to explain more about performance measures.
- J. Huff distributed a proposed performance measures spreadsheet to the group (emailed to virtual attendees) and described what performance measures are (i.e., statistical summary of how the model performs for a particular measure), provided definitions of terms, and went through individual performance measures considered in this effort.

Erika Hollis asked about the "MISC" (minimum increment of significant change). J. Huff indicated the MISC is a value that was determined by the Operations Resource Committee (RC) formed for Keowee-Toxaway (KT) relicensing. The MISC for each measure indicates what variance from the baseline result for that measure great enough to represent a statistical difference in results. Using output from KT relicensing, J. Huff walked through what each color meant: cells with no color are not significantly different from baseline, green cells have better results than the baseline, and red performed poorer than baseline conditions. For Bad Creek, Duke Energy is proposing to use the measures used for KT relicensing for Jocassee and Keowee (i.e., nothing further downstream).

J. Crutchfield mentioned the performance measures spreadsheet will be on SharePoint for comments; J. Huff asked for comments by August 15 (comments include any proposed new measures) and requests for those proposing new measures, provide details on the measures requested.

Sarah Kulpa asked if the MISC is for the license year or just the number of times something occurs during the entire period of record. E. Bruce noted it could be for either, depending on the measure. S. Kulpa asked J. Huff to describe the philosophy of developing the MISC and asked if there is a benefit to using the same MISC that was developed for KT relicensing. J. Huff indicated the period of record that will be used for Bad Creek runs is the same as was used for KT relicensing (unimpaired flow data from same days and modeled over same number of days), so believes the MISCs to be appropriate. She also stated there was a lot of time and effort dedicated to developing the measures and MISCs during KT relicensings. E. Bruce indicated if stakeholders believe there should be a change to the MISC, the RC is welcome to suggest revisions. J. Huff reiterated the model cannot be run until performance measures are assigned.

E. Miller noted the SCDNR would like to see performance measures 8-19 and (maximum spawning success for black bass and blueback herring) and 42-53 (maximize spawning success for sunfish and threadfin shad) revised. Measures 8-13 and 42-47 should extend through the end of May (currently extend from April 1 through May 15).

- A. Stuart asked for clarification on the MISC would SCDNR want to keep the MISC at 10%. E. Miller indicated 5% might be better for the MISC (5% of the years over the period of record). W. Wood asked for clarification on the MISC J. Huff indicated 10% means 10% of years where it remains within the prescribed range. SCDNR proposed changing the MISC to 5% for measures 8-25 and 42-57.
- J. Huff reviewed performance measure example of spawning elevation using KT example on Slide 68. Difference between baseline/scenario calculation and the MISC (variance).
- D. Rankin sought clarification that Bad Creek cannot change the KT license and J. Huff confirmed.
- D. Rankin noted the PMs may not be adequate to represent fish spawning due to the spawning period having a bell-shaped curve with peak success occurring in the middle of the season. He indicated the measure would more accurately capture success with a tighter time period, not longer, to capture this.
- J. Huff indicated the thinking is that if there is at least one X-day period in spawning season, there would be some spawning success. Spawning seasons shift year-to-year and will continue to do so with climate change. Jeff Lineberger noted the same conversation occurred during KT relicensing.
- J Lineberger reminded the group that the CHEOPS model does not address water quality or factors other than lake levels. E. Bruce and J. Lineberger further described parameters for CHEOPS and future with Bad Creek exchanging water differently than occurred 15 years ago.
- J. Huff asked if it would be helpful to provide the performance measures from KT out from the spreadsheet. E. Hollis indicated it might be helpful.
- A. Stuart noted if an RC member would like to suggest a performance measure but is not sure exactly how to provide that information, Duke Energy will help. J. Huff agreed.
- D. Rankin asked for time to think about parameters for this project vs. SCDNR/Army Corps of Engineers previous parameters for KT relicensing; SCDNR also requests time to review performance measures. J. Huff offered to have a conversation offline if that would be helpful.
- A. Stuart asked D. Rankin if his concerns are related to both Jocassee and Keowee. D. Rankin indicated there was only one year of recruitment issues at Keowee and that was during a maintenance drawdown so he does not believe recruitment issues would extend downstream to Lake Keowee. However, he feels it would be more conservative to include and would like Keowee considered.
- J. Crutchfield and A. Stuart asked if the RC agreed with and could provide confirmation/comments on performance measures by August 15th. Erika Hollis asked if comments need to be formal; J. Huff indicated it could be in any format, including comment bubbles on the spreadsheet provided on SharePoint or simply an email.
- A. Pellett (via chat): "When natural resources performance measures "maximize spawning success", are we saying the fluctuation bands and numbers of consecutive days are sufficient to maximize spawning? Or, should I understand these to be "tolerable" or "sufficient to maintain populations?" I'm not suggesting that we necessarily need to maximize this specific factor (lake elevation) for spawning, I just want to understand the metric as well as I can. I'm not a fish expert... I think Dan just clarified that a bit actually..."

- A. Pellett indicated (via phone) his concern had been answered during the discussion.
- J. Huff thanked the group for the discussion and closed the Water Resources Study discussion.

<<15-Minute Break>>

Aquatic Resources Study Update

Mike Abney provided an overview of study status including updates on the entrainment study (Task 2 – Consultation on Entrainment) as well as Task 3 (Mussel Surveys and Stream Habitat Quality Surveys). M. Abney mentioned that Nick Wahl and others from Duke Energy are currently in the field for Task 3 efforts. He then introduced the two options for the potential access road proposed by Duke Energy for access to the Fisher Knob community during construction, showed the potential spoil locations (to store spoil from excavations for new structures, and briefly introduce the methodology that will be undertaken in response to requests from the SCDNR (i.e., use of SC Stream Quantification Tool [SQT]).

- E. Miller asked about SQT for small streams near spoil sites. M. Abney briefly stated there was a recent field visit with Duke Energy/HDR/SCDNR to inspect two of the representative spoil locations and discussions during the presentation will circle back to the SQT. Mussel surveys will be carried out at stream crossings but not spoil areas. Streams in spoil areas and crossed by the access road were evaluated for potential mussel habitat, however, only Howard Creek and Limber Pole Creek were determined to potentially support habitat with concurrence by the SCNDR during the July 12 site visit. Only those two creeks will be surveyed for mussels in addition to the shoreline of Lake Jocassee. M. Abney indicated surveying methods stated in the approved Study Plan will still be carried out, but the SC SQT will be implemented for the larger streams (e.g., Howard Creek, Limber Pole Creek) at potential stream crossings; he then showed field studies schedule.
- D. Rankin asked if roads would be temporary and what would they be constructed with (i.e., gravel?) and asked for clarification on use. A. Stuart indicated they would be temporary, and the hope is to gravel as much as possible, however some slopes may require a hardpan treatment. The primary reason for the road would be to provide access to the Fisher Knob community to their homes during construction.
- W. Wood asked for confirmation that the bridges would be removed following construction and the roads/area blocked off so people cannot continue to access areas (for off-roading). A. Stuart confirmed.
- D. Rankin asked about the design of the road crossings as there are significant differences on aquatic resources in the design of road crossings. A. Stuart acknowledged there could be different effects based on the two road route options given Option 2 (Slide 74) parallels Howard Creek, potentially resulting in more impacts. Duke Energy is leaning towards Option 1 to minimize impacts to the extent feasible. A. Stuart stated the road is still being designed, but he would ask the team for additional details about the design.
- D. Rankin asked if there have been field surveys conducted along the potential road routes. A. Stuart indicated the routes follow old logging roads to minimize impacts. Eric Mularski indicated a wildlife survey will be carried out for potentially listed species along the potential access road routes, so there will be a more complete dataset available of natural resources in these areas.
- J. Crutchfield asked Alison Jakupka and Kevin Nebiolo (Kleinschmidt Associates) to provide an update on the entrainment study. Kleinschmidt has worked with Duke Energy to obtain water quality

and operations data from 1991-1993. The entrainment report draft has now been revised to remove the swim speed analysis as suggested during earlier meetings and incorporate new data. K. Nebiolo reviewed progress that has been made on the entrainment task in light of new data. He noted that entrainment increases with a decrease in Jocassee elevation.

- A. Stuart asked for clarification that entrainment discussions are focused on pumpback (not generation). K. Nebiolo agreed that is the case.
- D. Rankin and W. William asked for clarification on which units are upstream/downstream first/on first off. A. Stuart clarified the Bad Creek units are numbered 1-4 moving from upstream to downstream.
- A. Stuart asked A. Jakupka when the RC can expect the revised entrainment report. K. Nebiolo responded he projects end of August for new report (to Duke Energy for review) with an RC review comment period following.
- E. Miller asked about relocation of the existing wastewater settling ponds. A Stuart indicated the ponds will be replaced separate from relicensing. E. Miller asked if impacts would be assessed prior to clearing a new location. A. Stuart indicated he did not think the location for the new treatment system will require clearing for new basins.
- J. Crutchfield concluded the meeting by thanking attendees for their participation and reviewing the action items.

Action Items

- HDR/Duke Energy will post meeting notes, recording, and presentation to SharePoint site and distribute the link to Water Resources and Aquatic Resources RCs.
- HDR/Duke Energy to provide a SharePoint link to the CHEOPS model performance measures; requested deadline for RC comments is August 15. [If needed, HDR/Duke Energy will schedule a follow-up meeting with RC regarding potential revisions to performance measures].
- Potential revisions to CHEOPS performance measures include measures 8-19 and 42-53 and would include changing MISC from 10% to 5% and extending the date from May 15 to May 31. Suggested revisions (by the SCDNR) are on hold subject to further review; SCDNR (and others) to have a closer look and provide comments and feedback by August 15.
- HDR/Duke Energy to post KT performance measures to the SharePoint site and distribute link to RCs.
- HDR/Duke Energy is currently preparing a technical memo regarding stream surveys and will
 post to the SharePoint site.
- Duke Energy to discuss and provide clarification on road and bridge design for access road.

From: maggie.salazar@hdrinc.com

Subject: FW: Bad Creek Relicensing - Stream Survey Assessment Approach Technical Memo

Attachments: Bad Creek Hydroelectric Project - Approach to Stream Assessments Post-

Consultation.pdf

Importance: High

From: Crutchfield Jr., John U < John. Crutchfield@duke-energy.com>

Sent: Thursday, August 3, 2023 8:43 AM

To: Abney, Michael A <Michael.Abney@duke-energy.com>; Amy Breedlove <BreedloveA@dnr.sc.gov>; RankinD

<RankinD@dnr.sc.gov>; Elizabeth Miller <MillerE@dnr.sc.gov>; Erika Hollis <ehollis@upstateforever.org>;

Sette vendemio, Erin < Erin. Sette vendemio@hdrinc.com>; Gerry Yantis < gcyantis 2@yahoo.com>; jhains@g.clemson.edu; and the sette vendemio and the sette vend

quattrol <quattrol@dnr.sc.gov>; Olds, Melanie J <melanie_olds@fws.gov>; amedeemd@dhec.sc.gov; kernm

<kernm@dnr.sc.gov>; SelfR <SelfR@dnr.sc.gov>; Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Wahl, Nick

<Nick.Wahl@duke-energy.com>; William T. Wood <woodw@dnr.sc.gov>

Cc: Kulpa, Sarah <Sarah.Kulpa@hdrinc.com>; Huff, Jen <Jen.Huff@hdrinc.com>; McCarney-Castle, Kerry

<Kerry.McCarney-Castle@hdrinc.com>; Salazar, Maggie <maggie.salazar@hdrinc.com>; Mularski, Eric

<Eric.Mularski@HDRInc.com>; Fletcher, Scott T <Scott.Fletcher@duke-energy.com>

Subject: Bad Creek Relicensing - Stream Survey Assessment Approach Technical Memo

Importance: High

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Dear Bad Creek Relicensing Aquatic Resources Committee:

Please find attached the Stream Survey Assessment Technical Memo which specifies the sampling approach for streams and spoil areas discussed during the July 27, 2023, Resource Committee meeting.

Please let Alan or me know if you have any questions.

Regards,

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
526 S. Church Street, EC12Q | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

Memo

Date:	Wednesday, July 26, 2023
Project:	Bad Creek Pumped Storage Project Relicensing
To:	South Carolina Department of Natural Resources
From:	HDR Engineering of the Carolinas, Inc.
Subject:	Aquatic Resources Study Approach to Stream Surveys – Revised Post-Consultation

Project Understanding

Duke Energy Carolinas, LLC (Duke Energy or Licensee) is the owner and operator of the 1,400-megawatt Bad Creek Pumped Storage Project (Project) (Federal Energy Regulatory Commission [FERC] Project No. 2740) located in Oconee County, South Carolina. Duke Energy is pursuing a new license for the Project and in accordance with 18 Code of Federal Regulations §5.11, developed a Revised Study Plan (RSP) which proposed six studies for Project relicensing, including an Aquatic Resources Study. The goal of the Aquatic Resources Study is to evaluate potential impacts to fish and aquatic life populations, communities, and habitats due to the potential construction and operation of an additional power complex (Bad Creek II Power Complex [Bad Creek II Complex]) adjacent to the existing Project. The Aquatic Resources Study is ongoing.

As additional information, Duke Energy is proposing the development of an access road to provide an alternate route to the Fisher Knob community, for use during Bad Creek II construction. The access road is not presently included in the proposed expanded FERC Project Boundary and was not yet planned at the time of preparation of the RSP. Consistent with the objective of the Aquatic Resources Study to "evaluate the aquatic resources (streams, wetlands, and Lake Jocassee) that may experience direct impacts from spoil placement or other construction activities", Duke Energy plans to evaluate surface waters that may be crossed by the access road in addition to waters within potential spoil locations as described in the RSP.

Approach to Streams within Potential Spoil Locations

According to preliminary studies and estimates for proposed material removed from underground excavations for the Bad Creek II Complex, approximately 4 million cubic yards of overburden material for the project infrastructure will need to be deposited at upland spoil locations or along the submerged weir in Lake Jocassee (Attachment 1). An additional spoil area related to the construction of a proposed transformer yard, potential spoil location J, adds an approximately 0.4 million cubic yards to the overburden amount, for a total of 4.4 million cubic yards. Nine potential streams are present within the proposed on-site spoil locations (see Table 1 and Attachment 1). Surface waters (including wetlands) in these locations were evaluated in the field during the Natural Resources Assessment completed by HDR in September 2021 (HDR 2021; Appendix E of the Pre-Application Document filed with FERC on February 23, 2022).

Consistent with the RSP, Duke Energy will complete U.S. Environmental Protection Agency (USEPA) Rapid Bioassessment Protocol (USEPA RBP; Barbour et al. 1999) stream habitat assessments for all streams within potential spoil locations. During the Joint Resource

Committee Meeting on February 22, 2023, and the Aquatic Resources Study Resource Committee Meeting held on April 6, 2023, committee members expressed interest in biological assessments. In follow-up correspondence with the Aquatic Resources Committee, Duke Energy proposed to complete stream assessments using the North Carolina Stream Assessment Method (NCSAM; N.C. Stream Functional Assessment Team 2013) in addition to the USEPA RBP.

The South Carolina Department of Natural Resources (SCDNR) also requested that Duke Energy use the SCDNR Stream Quantification Tool (SQT)¹ (South Carolina Steering Committee 2022) for stream assessments. Duke Energy consulted with the SCDNR on May 24 and June 21, 2023, to discuss the applicability and methodology of the SQT. Duke Energy, HDR, and SCDNR also participated in a site visit to Bad Creek on July 12, 2023. The site visit included Alan Stuart (Duke Energy), Allan Boggs (Duke Energy), Nick Wahl (Duke Energy), Eric Mularski (HDR), Erin Settevendemio (HDR), and Lorianne Riggin (SCDNR). The group visited spoil locations B and D (see figures in Attachment 1), which were considered locations with representative conditions of stream and riparian habitat. During the site visit, SCDNR and Duke Energy agreed that the streams within spoil locations are generally high functioning with limited (if any) anthropogenically caused degradation, and that field data collection to support SQT analysis for streams within spoil locations was not likely to produce significantly different results (i.e., lower functionality scores) than an assumption of fully functional. Therefore, field surveys of the streams within potential spoil locations applying the SQT methodology are not required.

Approach to Streams Crossed by the Access Road to the Fisher Knob Community

The potential access road would require crossings at three named streams (Limber Pole Creek, Howard Creek, and Devils Fork) and potentially other unidentified streams (see figures provided in Attachment 2). Currently, two access road routes are being considered, however only one would be developed. The routes diverge just west of Howard Creek, where Option 1 crosses Howard Creek and heads north across a ridge. Option 2 crosses Howard Creek and heads south along the left bank of Howard Creek before directing northeast. The road options converge east of the transmission line corridor west of Devils Fork. It is anticipated that Option 1 would result in fewer riparian buffer impacts and therefore this is the preferred route.

Based on review of two-foot topography contour maps, an additional three streams may be present along the access road, though the flow of these streams is currently unknown. A surface waters delineation is scheduled for mid-late August to identify stream conditions/flow of these unnamed features. If Duke Energy develops the access road, streams and creeks along the alignment will likely be spanned by [temporary] bridges. Duke Energy will conduct field assessments using the SCDNR SQT to evaluate stream function as a baseline prior to construction activities to document any changes that may occur, though none are anticipated.

Streams crossed by the access road will be assessed with the USEPA RBP and NCSAM. Stream assessments will be conducted upstream and downstream of each road crossing. The intent is to document a baseline, existing condition of the stream before the construction of the access road. When and if the road is decommissioned, the streams would be re-assessed to compare to the baseline condition. Additionally, evaluating the streams at upstream and downstream locations

¹ SCDNR Stream Quantification Tool

allows an opportunity to document changes that may have happened elsewhere (i.e., upstream) in the watershed or as a result of other factors, such as storm events.

Proposed Field Methods

Numerous methods for stream habitat and biological assessments will be used for evaluating streams in the vicinity of the Project. Field methods to be implemented at each stream are based on consultation with the Aquatic Resources Study Resource Committee (RC) and SCDNR, as discussed above. The following summary provides an overview of planned field methods for streams within spoil locations and those crossed by the potential access road.

USEPA Rapid Bioassessment Protocol

In accordance with the RSP, the USEPA RBP stream habitat assessment will be completed at all streams within spoil locations. Barbour et al. (1999) states, "an evaluation of habitat quality is critical to any assessment of ecological integrity". Stream habitat assessments are defined as the "evaluation of the structure of the surrounding physical habitat that influences the quality of the water resource and the condition of the resident aquatic community" (Barbour et al. 1999). These assessments provide information regarding stream functionality and condition, which in turn can indicate the value of aquatic habitat to aquatic and terrestrial life, and ecosystem services such as nutrient reduction and support of watershed health. The USEPA RBP includes an evaluation of the variety and quality of (1) stream substrate, (2) channel morphology, (3) bank structure, and (4) riparian vegetation. Ten parameters within the four categories are rated on a numerical scale for each sampled reach.

NC Stream Assessment Method

The NCSAM provides "an accurate, reproducible, rapid, observational, and science-based field method to determine the level of stream function relative to a reference condition" (N.C. Stream Functional Assessment Team 2013). While the NCSAM was developed for use in North Carolina, the Project is just a few miles from the North-South Carolina border and stream categories identified for the method include those in the Blue Ridge ecoregion, where the Project is located. Similarities between topography and streams in the Carolinas allow this method to provide valuable information regarding the overall function of streams with a simple and efficient tool.

The NCSAM rates streams for three Class 1 functions: hydrology, water quality, and habitat. Within each Class 1 function, streams are rated for up to eight Class 2 functions, which may include Class 3 and Class 4 functions. The functions provided by a stream are a product of the hydrologic, geologic, morphologic, and vegetational setting of the stream and its drainage area (Gordon et al. 1992 as cited by N.C. Stream Functional Assessment Team 2013). Alterations and/or stressors can contribute to the degradation of a stream, either naturally or anthropogenically, including storm damage, excessive vegetation, beaver impoundment, stream migration, and sedimentation, which can lead to lower stream function. Parameters evaluated with NCSAM protocol include flow restrictions; streambank erosion; buffer size and type; water quality stressors; substrate composition; in-stream habitat; visual and dip netting assessments for aquatic life; presence of wetlands; shade; and others.

SCDNR Stream Quantification Tool Approach

As stated above, six or more streams could be crossed by the access road and Duke Energy proposes to use the SQT field methodology for stream assessments in this area. The SCDNR SQT was developed in a collaborative effort between federal and state representatives to provide a tool for assessing and quantifying functional lift and loss of streams in South Carolina. The SQT can be used to determine the functional condition of a stream, with the SQT Debit Calculator as a means of calculating credits or debits resulting from reach-scale activities typically encountered in the Clean Water Act 404 program.

The SQT requires the assessment of five functional categories: hydrology, hydraulics, geomorphology, physiochemical, and biology (South Carolina Steering Committee 2022). Depending on the anticipated type of impacts or lift, physiochemical and biology categories are optional. Guidance from the SQT suggests physiochemical parameters be measured for stream projects with "goals or objectives related to physiochemical functions or where watershed conditions suggest that uplift is possible." Work would be conducted from upland locations and no in-water work would occur. Best management practices to prevent sedimentation such as silt fencing would be installed to prevent water quality impacts at stream crossings. The future Water Quality Management Plan (developed under the Water Resources Study) will also consider water quality in the areas of the new access road. Given that impacts to water quality are not anticipated and appropriate protection measures will be taken, Duke Energy is not proposing physiochemical monitoring.

At prior meetings with Duke Energy, Aquatic Resources RC members have expressed interest in the biological community of streams in the vicinity of the proposed Bad Creek II Complex. Duke Energy therefore proposes to conduct fish and macroinvertebrate sampling supporting the SQT assessment.

Hydrology, Hydraulics, and Geomorphology

Duke Energy will survey all streams crossed by both access road options using the first three functional categories of the SQT, which comprise hydrology, hydraulics, and geomorphology, using the Rapid Method outlined in the SQT Data Collection and Analysis Manual (South Carolina Steering Committee 2022). Parameters evaluated under these categories include reach runoff, floodplain connectivity, flow dynamics, large woody debris, lateral migration, riparian vegetation, and bed form diversity. Up to 17 metrics will be taken for the parameters evaluated; metrics selection, instruction, and applicability is provided in the SQT Data Collection and Analysis Manual (South Carolina Steering Committee 2022).

Fish Surveys

Fish surveys for use with the SQT are only applicable to perennial streams with drainage areas between 1.5 and 63 square miles (South Carolina Steering Committee 2022), which includes Limber Pole Creek and Howard Creek. As outlined by the SQT Data Collection and Analysis Manual, fish surveys will follow Fish Collection Protocols for Streams as described in the SCDNR Fish Sampling Guidance² (SCDNR 2022). For streams in the Blue Ridge ecoregion, sample reaches will be 30 times the average wetted width, or a minimum 100 meters with one electrofishing pass. Surveys will be completed upstream and downstream of the road crossings

² SCDNR Fish Sampling Guidance

three times between July and October 2023. A calibrated multiparameter water quality data sonde will be used to record existing water quality conditions during sampling events, including temperature, dissolved oxygen, conductivity, pH, salinity, and turbidity.

Macroinvertebrate Surveys

Macroinvertebrate surveys under the SQT are limited to perennial streams with a minimum three-square mile drainage area (South Carolina Steering Committee 2022), which includes Limber Pole Creek and Howard Creek. As outlined in the SQT Data Collection and Analysis Manual, macroinvertebrate surveys will be completed following the Standard Operating and Quality Control Procedures for Macroinvertebrate Sampling³ (SCDHEC 2017). This method uses a qualitative multiple habitat sampling protocol with kick nets, D-shaped dip nets, and sieves to collect as many different macroinvertebrate taxa as possible during a specified amount of time. One survey per stream reach will be conducted during the recommended index period (June 15, 2023 to September 15, 2023 for the Blue Ridge ecoregion). Stream reach lengths will be determined on a site-by-site basis consistent with guidance provided in SCDHEC (2017), which is typically 100 meters of stream. Water quality conditions at the time of sampling will be recorded with a multiparameter data sonde. Collected samples will be preserved in 85 percent ethanol and labeled with the station number and collection date. Samples will be transported to a qualified laboratory for identification and analysis under chain-of-custody. Identified taxa and relative abundance will be used to calculate biotic indices to assess stream conditions.

Mussel Surveys

Consistent with the RSP, Duke Energy biologists surveyed upland spoil locations for mussel habitat and determined that no supportive habitat is present for mussel assemblages. SCDNR concurred with this assessment during the July 12, 2023 site visit to two representative spoil locations with streams characteristics of those throughout the Aquatic Resources study area.

Mussel surveys of Limber Pole Creek and Howard Creek will be conducted in late July 2023 following methods adapted from the USEPA Technical Support Document for Conducting and Reviewing Freshwater Mussel Occurrence Surveys for the Development of Site-specific Water Quality Criteria for Ammonia (USEPA 2013). The survey will include visual and tactile collection of mussels, identification to species, and enumeration. Habitat conditions will be documented, including substrate and water quality, through stream habitat assessments and fish surveys.

Summary of Proposed Field Methods

Field surveys of streams within spoil locations were proposed in the RSP. Since the proposed access road was not planned at the time of the filing of the RSP, the stream crossings were not included in Aquatic Resources Study; however, for completeness, field surveys will also be performed at potential stream crossing locations. The field methods proposed for each stream were developed in consultation with the Aquatic Resources RC and SCDNR. A summary of the proposed field methods is provided in Table 1, with brief descriptions of methods provided in Table 2.

³ SCDHEC Standard Operating and Quality Control Procedures for Macroinvertebrate Sampling

Results and Conclusions

An overview of results of field studies will be discussed in a future meeting to be scheduled for late October or early November 2023. Results and conclusions of the stream habitat assessments and SQT will be summarized in a draft report, which will be provided to the Aquatic Resources RC in November 2023 for comment and in the Initial Study Report (to be filed with FERC by January 4, 2024).

FDS

Table 1. Proposed Field Survey Approach for Streams within Potential Spoil Locations and Road Crossings

Potential Impact	Stream Name/No.	Flow	Drainage Area (sq. mi)	Stream Habitat Assessment	Fish Survey	Macroinvertebrate Survey	Mussel Survey ¹	
Potential Spoil Locations								
В	20	Perennial	0.05	USEPA RBP & NCSAM	NCSAM visual/dipnet assessment	NCSAM presence/absence assessment	USEPA qualitative presence survey	
В	21	Perennial	0.05	USEPA RBP & NCSAM	NCSAM visual/dipnet assessment	NCSAM presence/absence assessment	USEPA qualitative presence survey	
C	17	Perennial	0.05	USEPA RBP & NCSAM	NCSAM visual/dipnet assessment	NCSAM presence/absence assessment	USEPA qualitative presence survey	
D	13	Intermittent	0.04	USEPA RBP & NCSAM	NCSAM visual/dipnet assessment	NCSAM presence/absence assessment	N/A	
D	14	Perennial	0.04	USEPA RBP & NCSAM	NCSAM visual/dipnet assessment	NCSAM presence/absence assessment	USEPA qualitative presence survey	
G	4	Intermittent	0.06	USEPA RBP & NCSAM	NCSAM visual/dipnet assessment	NCSAM presence/absence assessment	N/A	
G	4a	Perennial	0.06	USEPA RBP & NCSAM	NCSAM visual/dipnet assessment	NCSAM presence/absence assessment	USEPA qualitative presence survey	
J	11	Perennial	0.11	USEPA RBP & NCSAM	NCSAM visual/dipnet assessment	NCSAM presence/absence assessment	USEPA qualitative presence survey	
	Potential Access Road Crossings							
1	Limber Pole Creek	Perennial	1.8	USEPA RBP, NCSAM, & SCDNR SQT	SCDNR Fish Collection Protocol	SCDHEC Standard Operating and Quality Control Procedures	USEPA qualitative presence survey	
2	UT Howard Creek	Unknown ²	0.03	USEPA RBP & NCSAM	Unknown ²	Unknown ²	Unknown ²	
3a/b	Howard Creek	Perennial	4.16	USEPA RBP, NCSAM, & SCDNR SQT	SCDNR Fish Collection Protocol	SCDHEC Standard Operating and Quality Control Procedures	USEPA qualitative presence survey	
4	UT Howard Creek	Unknown ²	0.01	USEPA RBP & NCSAM	Unknown ²	Unknown ²	Unknown ²	
5	UT Devils Fork	Unknown ²	0.03	USEPA RBP & NCSAM	Unknown ²	$Unknown^2$	Unknown ²	
6	Devils Fork (Stream 19)	Perennial	0.09	USEPA RBP, NCSAM, & SCDNR SQT	NCSAM visual/dipnet assessment	NCSAM presence/absence assessment	USEPA qualitative presence survey	

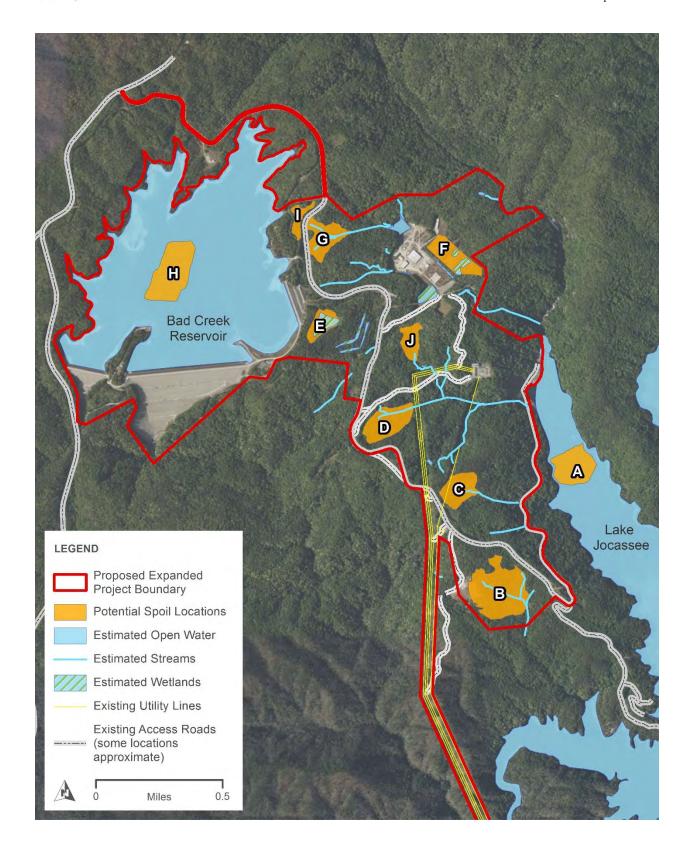
UT: unnamed tributary

¹Mussel surveys will only be completed in waters determined to provide supportive mussel habitat.

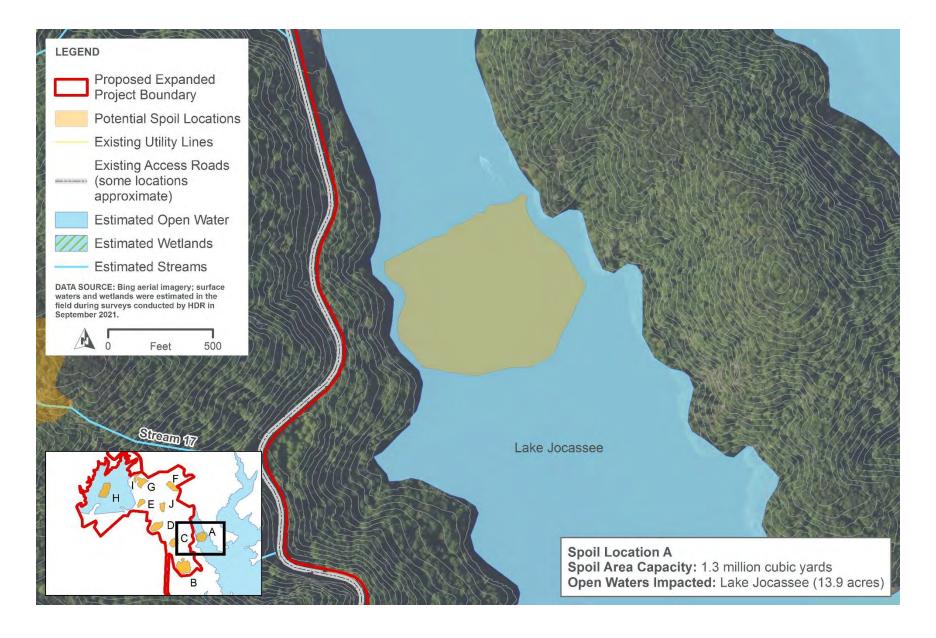
²Aquatic life surveys would only be conducted in intermittent or perennial streams.

Table 2. Descriptions of Field Survey Protocols

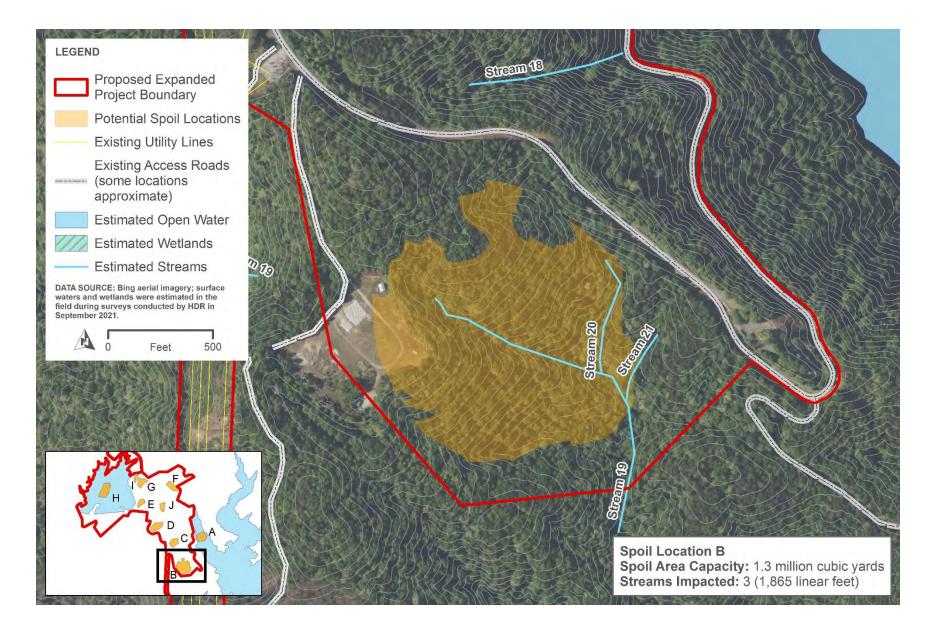
Survey Type	Survey Method	Brief Summary of Methods
	USEPA Rapid Bioassessment Protocol Stream Assessment	Scored condition parameters including epifaunal substrate/available cover, substrate embeddedness, velocity/depth regime, sediment deposition, channel flow status, channel alteration, frequency of riffles or bends, bank stability, vegetative protection, and riparian vegetative zone width.
Stream Habitat Assessment	NC Stream Assessment Method (NCSAM)	Documentation of in-stream habitat types including aquatic macrophytes and mosses; sticks, leaf packs, or emergent vegetation; snags and logs; undercut banks and root mats; and bedform and substrate types. Observations of stream instability or stressors.
	SCDNR Stream Quantification Tool (SQT)	Hydrology, hydraulics, and geomorphology will be assessed across seven functional parameters, including reach runoff, floodplain connectivity, flow dynamics, large woody debris, lateral migration, riparian vegetation, and bed form diversity. Metrics will be taken applying the Rapid Method, using tapes and stadia rods.
	NC Stream Assessment Method (NCSAM)	Visual assessment for fish and semi-aquatic life such as reptiles and amphibians.
Fish Surveys	SCDNR Stream Quantification Tool (SQT)/ SCDNR Fish Collection Protocols for Streams	Fish surveys completed for the SCDNR SQT will follow the SCDNR Fish Collection Protocols for Streams. For streams in the Blue Ridge Ecoregion, the survey reach will encompass 30 times the average wetted width of the stream or a minimum of 100 meters with one survey pass. Two to three electrofishers, two netters, and one to two buckets will be used. Water quality parameters and photo vouchers will be taken.
	NC Stream Assessment Method (NCSAM)	Presence/absence survey of macroinvertebrates in all available habitats, including riffles, pools, snags and logs, leaf packs, macrophytes, root mats, hard substrates, and banks. Macroinvertebrates sampled via dipnet with mesh size between 0.5-0.8 mm.
Macroinvertebrate Surveys	SCDNR Stream Quantification Tool (SQT)/ SCDHEC Standard Operating and Quality Control Procedures	Macroinvertebrate surveys completed for the SCDNR SQT will follow the SCDHEC Standard Operating and Quality Control Procedures. This includes a qualitative, multiple habitat sampling protocol with kick nets, D-shaped dip nets, and sieves to collect as many different macroinvertebrate taxa as possible during a specified amount of time. Stream reach lengths are typically 100 meters. Collected samples will be preserved in 85 percent ethanol and labeled with the station number and collection date. Samples will be transported to a qualified laboratory for identification and analysis under chain-of-custody. Macroinvertebrate surveys under the SQT are limited to waters with a minimum 3-square-mile drainage area.
Mussel Surveys	Adapted from USEPA Technical Support Document for Conducting and Reviewing Freshwater Mussel Occurrence Surveys	Visual sampling approach to determine mussel presence, richness, and relative density. Mussels collected visually and tactilely (grubbing) during timed searches within well-defined areas.

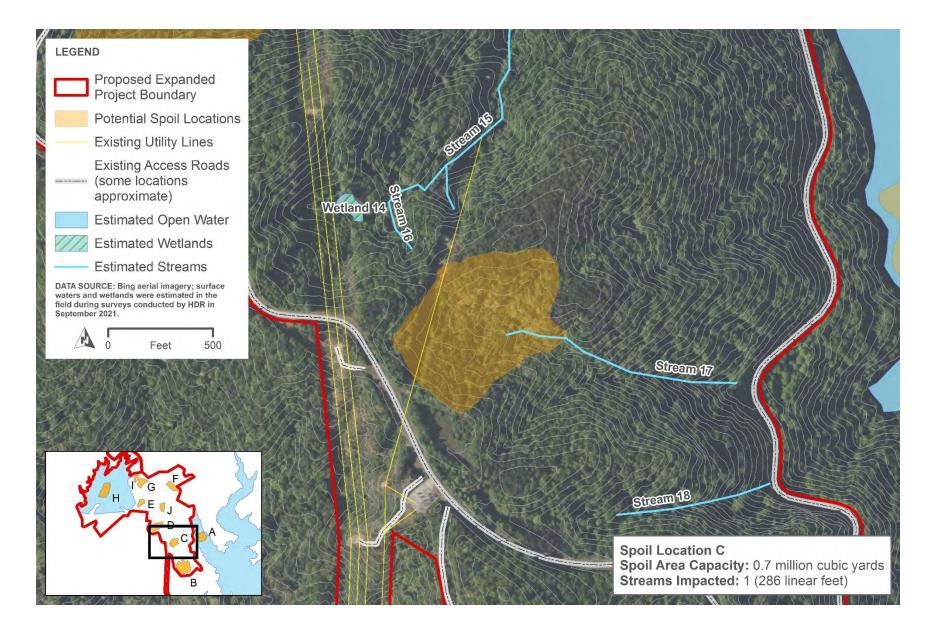

References

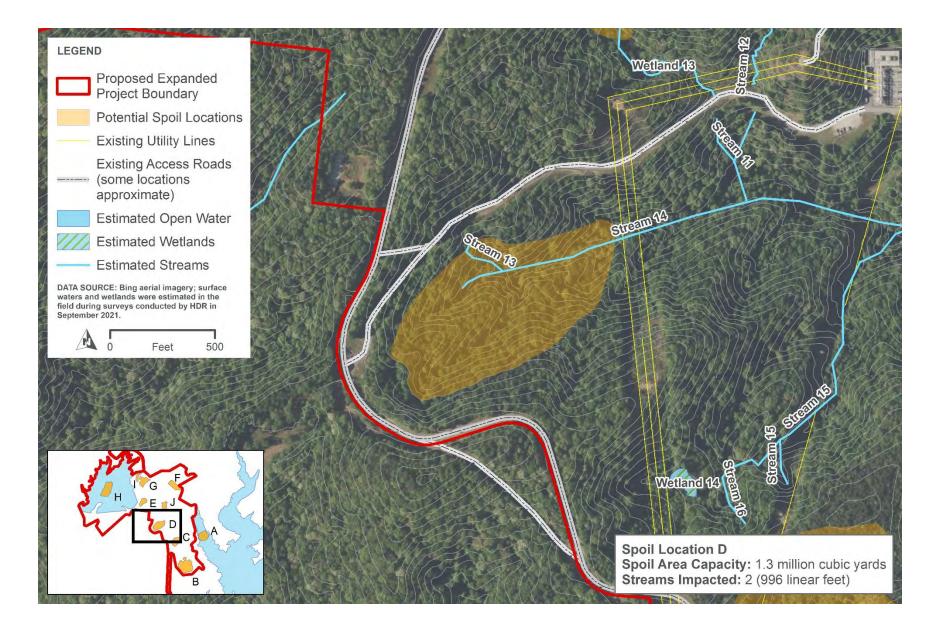
- Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C.
- North Carolina Stream Functional Assessment Team. 2013. N.C. Stream Assessment Method (NC SAM) Draft User Manual. Accessed June 2023. [URL]: https://www.saw.usace.army.mil/Portals/59/docs/regulatory/publicnotices/2013/NCSAM _Draft_User_Manual_130318.pdf
- South Carolina Department of Health and Environmental Control. 2017. Standard Operating and Quality Control Procedures for Macroinvertebrate Sampling. Technical Report No. 0914-17. Bureau of Water. Columbia, South Carolina.
- South Carolina Department of Natural Resources. 2022. Fish Sampling Guidance: Fish Collection Protocols for Streams. Accessed July 2023. [URL]: https://www.dnr.sc.gov/environmental/SCDNRSamplingProcedureFishes.pdf.
- South Carolina Steering Committee. 2022. South Carolina Stream Quantification Tool: Data Collection and Analysis Manual, SC SQT v1.1. South Carolina Department of Natural Resources, Columbia, SC.
- U.S. Environmental Protection Agency (USEPA). 2013. Technical Support Document for Conducting and Reviewing Freshwater Mussel Occurrence Surveys for the Development of Site-specific Water Quality Criteria for Ammonia. EPA 800-R-13-003. Office of Water. Washington, DC. Accessed June 2023. [URL]: https://www.epa.gov/sites/default/files/2015-08/documents/tsd_for_conducting_and_reviewing_freshwater_mussel_occurrence_surveys for the development of site-specific wqc for ammonia.pdf.

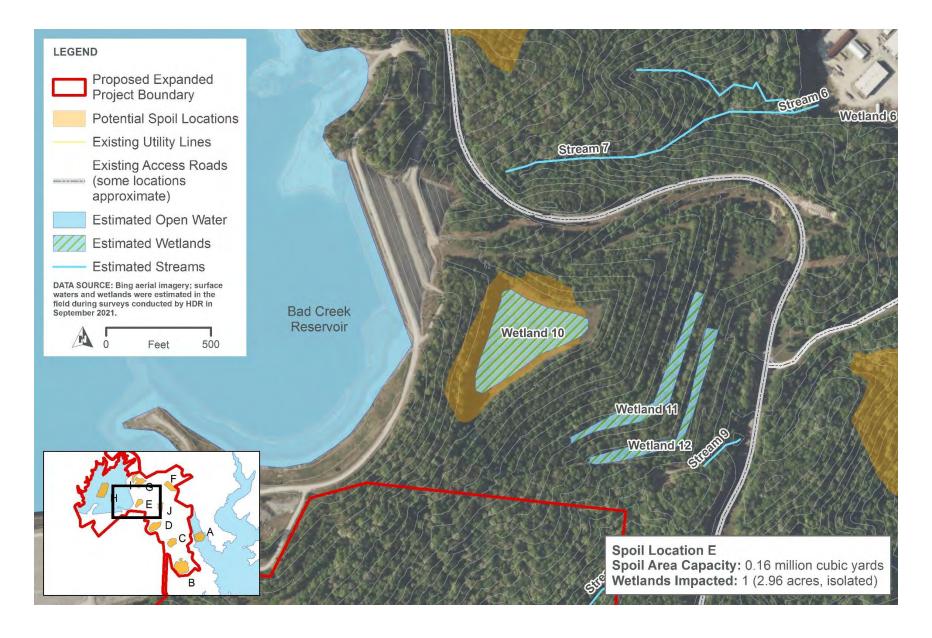

Attachment 1

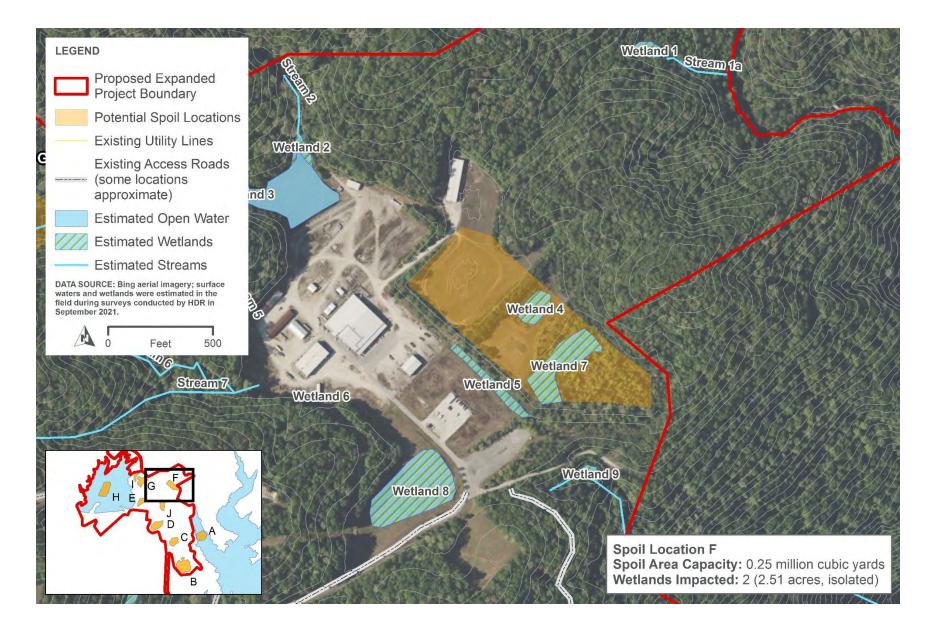
Attachment 1 – Streams and Wetlands within Potential Spoil Locations

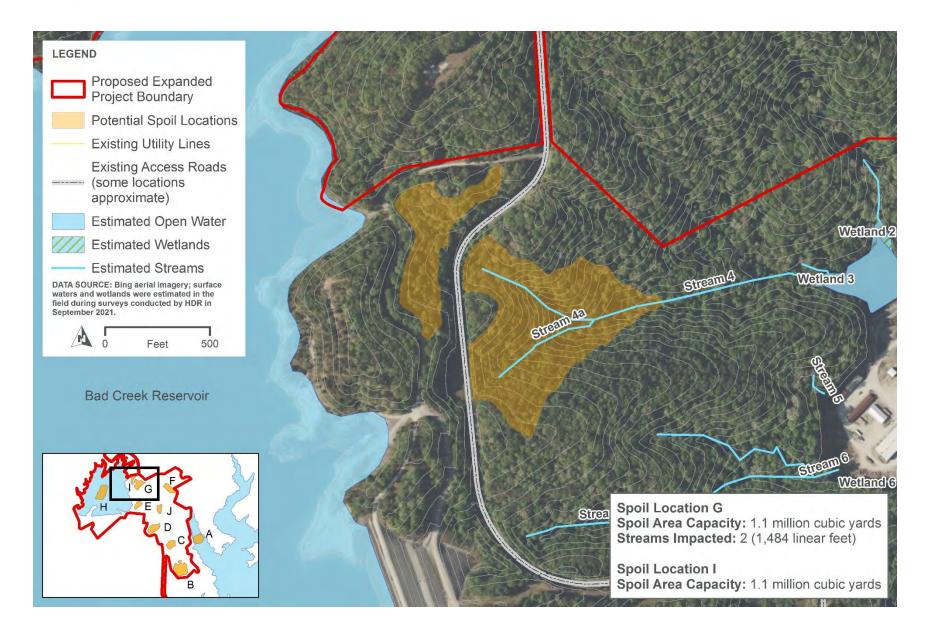


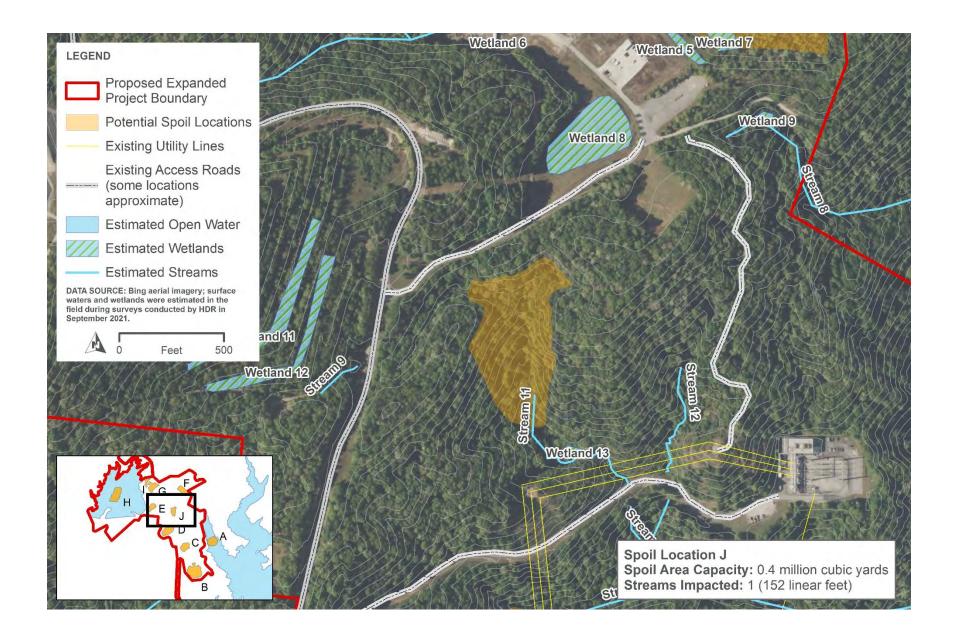


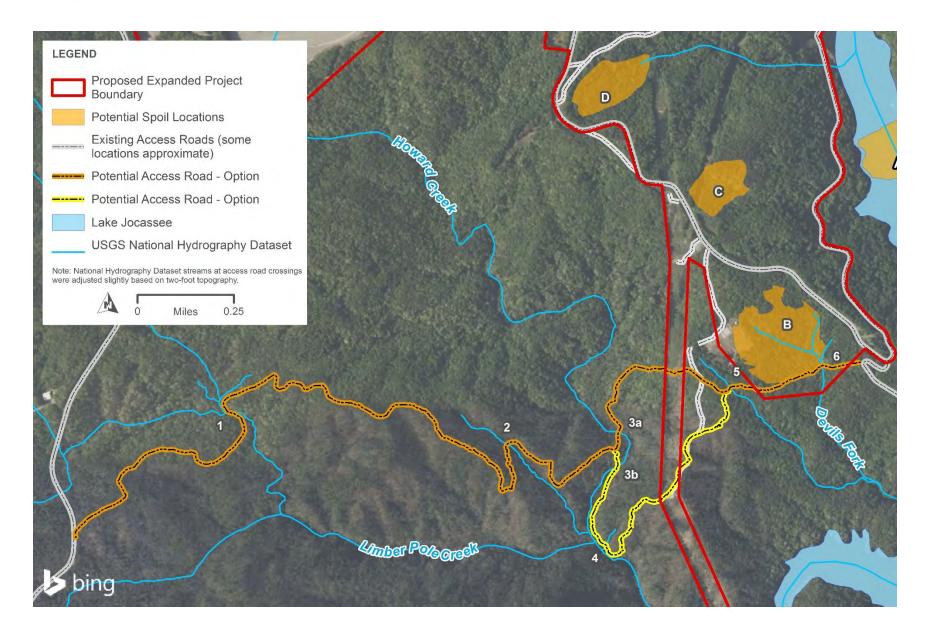


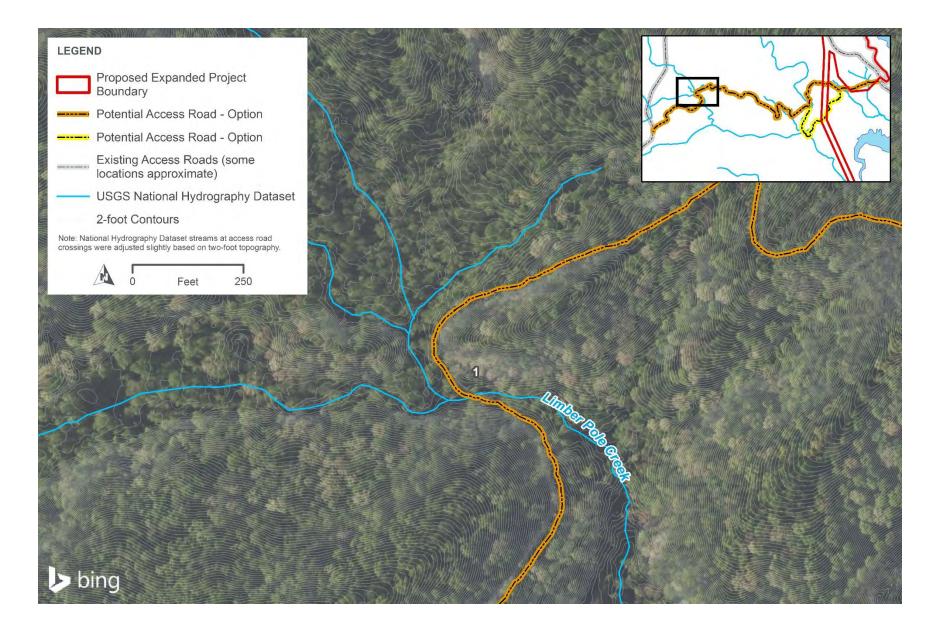




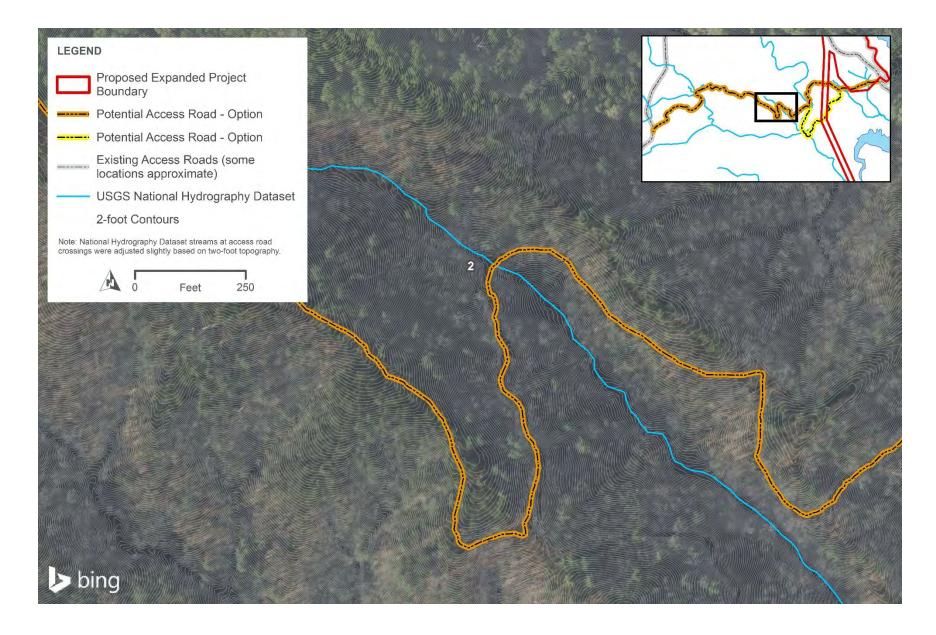


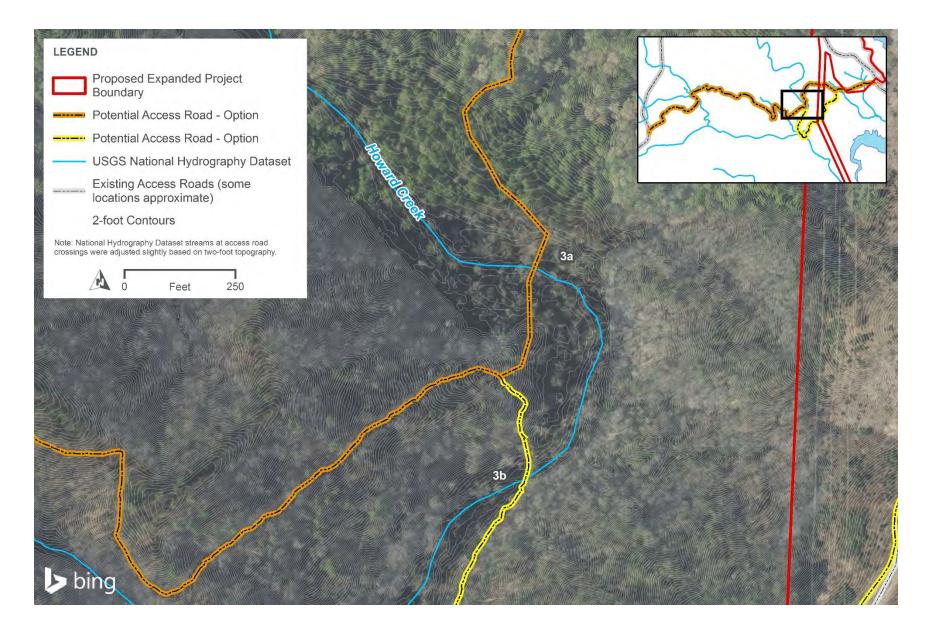


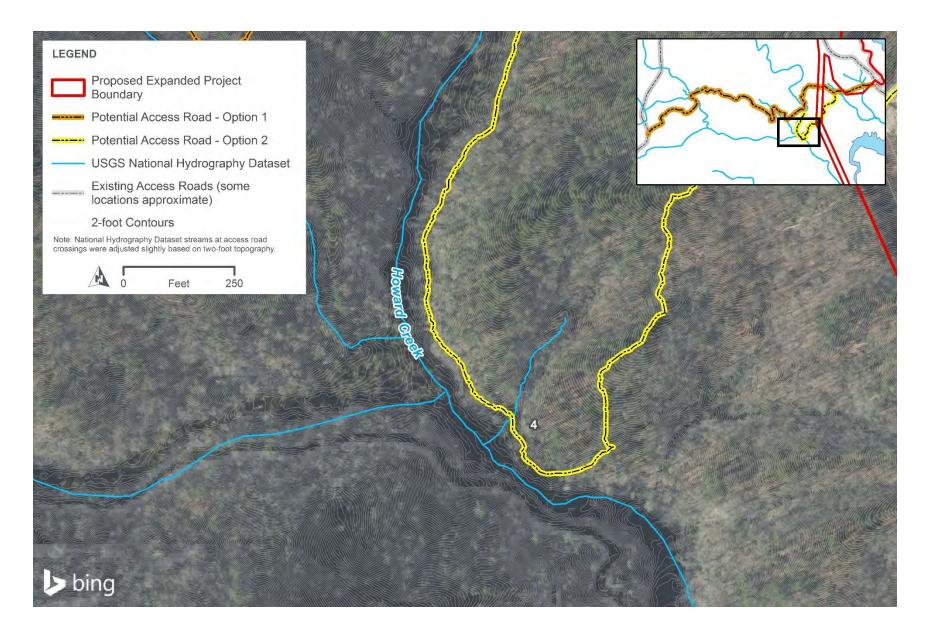


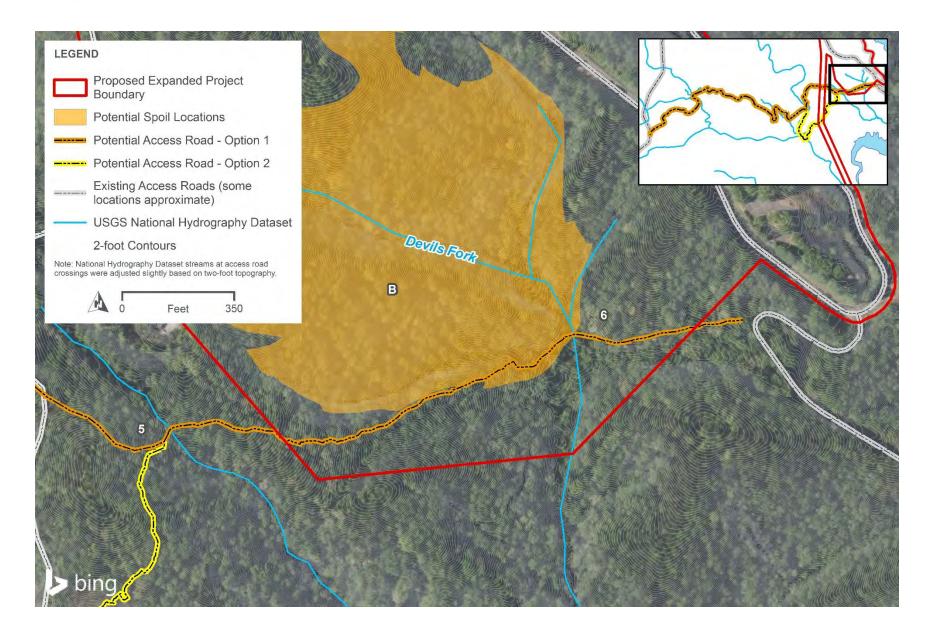

Attachment 2

Attachment 2 – Potential Access Road Stream Crossings









Subject: FW: Bad Creek Relicensing - Draft Herpetological Survey Study Plan of Spoil Sites

(Request for Review)

Attachments: DukeEnergy_BadCreekRelicensing_SpoilArea_HerpStudyplan_08152023_DRAFT.docx

Importance: High

From: Crutchfield Jr., John U < John. Crutchfield@duke-energy.com>

Sent: Thursday, August 17, 2023 8:12 AM **To:** Elizabeth Miller < Miller E@dnr.sc.gov>

Cc: Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Fletcher, Scott T <Scott.Fletcher@duke-energy.com>; Kulpa, Sarah <Sarah.Kulpa@hdrinc.com>; McCarney-Castle, Kerry <Kerry.McCarney-Castle@hdrinc.com>; Mularski, Eric <Eric.Mularski@HDRInc.com>; Huff, Jen <Jen.Huff@hdrinc.com>; Salazar, Maggie <maggie.salazar@hdrinc.com>; Abney, Michael A <Michael.Abney@duke-energy.com>

Subject: Bad Creek Relicensing - Draft Herpetological Survey Study Plan of Spoil Sites (Request for Review)

Importance: High

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Elizabeth: As discussed during the July 31, 2023, Wildlife & Botanical Resources Committee meeting, Duke Energy plans to conduct a herpetological survey of the identified spoil disposal sites at Bad Creek to support the Project 404 permitting process.

I have attached the draft study plan and request SCDNR review and provide any comments on the plan.

Duke Energy will conduct the survey beginning September 11 so we would appreciate an expedited review with comments provided by no later than August 31. We appreciate SCDNR's attention to this request.

I will let you distribute the draft survey study plan to the appropriate SCDNR personnel for review. You can provide collective comments via email and on the attached document.

Please respond back that you received the draft study plan so I will know you are in receipt.

Again, thank you for your attention to the request.

Regards,

John Crutchfield

Subject:

FW: Bad Creek Relicensing - Draft Herpetological Survey Study Plan of Spoil Sites (Request for Review)

From: Elizabeth Miller < Miller E@dnr.sc.gov> Sent: Friday, September 1, 2023 11:21 AM

To: Crutchfield Jr., John U < John. Crutchfield@duke-energy.com>

Cc: Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Fletcher, Scott T <Scott.Fletcher@duke-energy.com>; Kulpa, Sarah <Sarah.Kulpa@hdrinc.com>; McCarney-Castle, Kerry <Kerry.McCarney-Castle@hdrinc.com>; Mularski, Eric <Eric.Mularski@HDRInc.com>; Huff, Jen <Jen.Huff@hdrinc.com>; Salazar, Maggie <maggie.salazar@hdrinc.com>; Abney, Michael A <Michael.Abney@duke-energy.com>

Subject: RE: Bad Creek Relicensing - Draft Herpetological Survey Study Plan of Spoil Sites (Request for Review)

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hi John.

Sorry for the delayed response. I've been out the past couple of days due to Hurricane Idalia. The SCDNR has reviewed draft Herpetological Habitat Survey Study Plan and has no comments to offer. Thank you for the opportunity to review.

Elizabeth

Elizabeth C. Miller SCDNR

Office: 843-953-3881 Cell: 843-729-4636

From: Crutchfield Jr., John U < John. Crutchfield@duke-energy.com>

Sent: Thursday, August 17, 2023 8:12 AM **To:** Elizabeth Miller < Miller E@dnr.sc.gov >

Cc: Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Fletcher, Scott T <Scott.Fletcher@duke-energy.com>; Sarah Kulpa <Sarah.Kulpa@hdrinc.com>; Kerry McCarney-Castle <Kerry.McCarney-Castle@hdrinc.com>; Mularski, Eric -HDRInc <Eric.Mularski@HDRInc.com>; Huff, Jen <Jen.Huff@hdrinc.com>; Maggie Salazar <maggie.salazar@hdrinc.com>; Abney, Michael A <Michael.Abney@duke-energy.com>

Subject: Bad Creek Relicensing - Draft Herpetological Survey Study Plan of Spoil Sites (Request for Review)

Importance: High

Elizabeth: As discussed during the July 31, 2023, Wildlife & Botanical Resources Committee meeting, Duke Energy plans to conduct a herpetological survey of the identified spoil disposal sites at Bad Creek to support the Project 404 permitting process.

I have attached the draft study plan and request SCDNR review and provide any comments on the plan.

Duke Energy will conduct the survey beginning September 11 so we would appreciate an expedited review with comments provided by no later than August 31. We appreciate SCDNR's attention to this request.

I will let you distribute the draft survey study plan to the appropriate SCDNR personnel for review. You can provide collective comments via email and on the attached document.

Please respond back that you received the draft study plan so I will know you are in receipt.

Again, thank you for your attention to the request.

Regards,

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
526 S. Church Street, EC12Q | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

EXTERNAL EMAIL: Do not click any links or open any attachments unless you trust the sender and know the content is safe.

Subject:

FW: Bad Creek SQT - riparian vegetation plots

From: Settevendemio, Erin < Erin. Settevendemio@hdrinc.com>

Sent: Monday, September 18, 2023 12:10 PM **To:** Lorianne Riggin < RigginL@dnr.sc.gov>

Cc: Elizabeth Miller <millere@dnr.sc.gov>; Crutchfield Jr., John U <John.Crutchfield@duke-energy.com>; Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Abney, Michael A <Michael.Abney@duke-energy.com>; Wahl, Nick <Nick.Wahl@duke-energy.com>; Mularski, Eric <eric.mularski@hdrinc.com>; Kulpa, Sarah <sarah.kulpa@hdrinc.com>; Salazar, Maggie <Maggie.Salazar@hdrinc.com>; McCarney-Castle, Kerry <Kerry.McCarney-Castle@hdrinc.com>; Huff, Jen <Jen.Huff@hdrinc.com>

Subject: Bad Creek SQT - riparian vegetation plots

Good Afternoon Lorianne,

During preparations for fieldwork associated with the Stream Quantification Tool, we calculated the number plots needed for each stream reach according to the 2% area coverage requirement. Based on an average reach length of 600 feet and plot size of 100 m², we would need 1 plot per stream reach. However, in the Data Collection and Analysis Manual, it is stated that there is a 4-plot minimum. In the example provided in the manual, the stream reaches are four times the size than those at Bad Creek. Assuming a 50-foot riparian buffer, a 4-plot minimum would result in 7.2% of the riparian buffer surveyed.

In a review of the CVS-EEP Protocol for Level 2, it states that the number of vegetation plots would be calculated separately for stream enhancement, stream restoration, and wetland mitigation. Obviously, none of these categories apply to the streams at Bad Creek since we are primarily using this tool to monitor for any effects of the temporary access road. The Protocol also states that you can use the data entry tool to "aid in calculating the necessary number of plots", however I was unable to get the tool to work on my computer (I am assuming some of the macros were blocked due to our security settings). How was the 4-plot minimum decided for the SQT?

We know of three named streams and potentially up to three additional streams that will require survey along the access road. For upstream and downstream reaches, this amounts to up to 48 vegetation plots to be surveyed (consisting of 7.2% of riparian buffer per stream reach, as stated above). This seems very comprehensive for the limited area under evaluation. Is there any flexibility in the number of plots to be surveyed? We would like to propose **two vegetation plots per stream reach**. Based on initial observations in the field, the riparian buffer vegetation community is consistent across the stream reaches and, given that this information is not intended to be used to support restoration efforts, we feel this would sufficiently characterize the natural and undisturbed riparian vegetation community that exists at the site.

We welcome your thoughts and are happy to jump on the phone to discuss.

Thanks,

Erin Settevendemio

Erin Bradshaw Settevendemio, M.S., FP-C

Aquatic Sciences Team Lead

HDR

From: <u>Lorianne Riggin</u>
To: <u>Settevendemio, Erin</u>

Cc: Elizabeth Miller; Crutchfield Jr., John U; Stuart, Alan Witten; Abney, Michael A; Wahl, Nick; Mularski, Eric; Kulpa,

Sarah; Salazar, Maggie; McCarney-Castle, Kerry; Huff, Jen

Subject: RE: Bad Creek SQT - riparian vegetation plots

Date: Saturday, September 23, 2023 7:05:32 PM

Attachments: <u>image001.png</u>

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Evening Erin,

For the purpose of evaluating change at Bad Creek, I think it would be okay to limit to two plots versus the required four considered for 404 compensatory mitigation purposes; however, I defer to Elizabeth as the lead for the agency coordinating this information.

From a will the SQT still work perspective, the SQT Data Collection Manual does note "Fewer plots may be evaluated if the representative sub-reach is short or if the riparian vegetation is very uniform in structure and composition throughout the sub-reach." I feel the scenario you have here applies to that.

Hope this helps, Lorianne

Lorianne Riggin
Office of Environmental Programs Director, SCDNR
Office 803-734-4199
Cell 803-667-2488
1000 Assembly Street, PO Box 167
Columbia, SC 29202
www.dnr.sc.gov/environmental

From: Settevendemio, Erin < Erin. Settevendemio@hdrinc.com>

Sent: Monday, September 18, 2023 12:10 PM **To:** Lorianne Riggin < RigginL@dnr.sc.gov>

Cc: Elizabeth Miller <Miller E@dnr.sc.gov>; Crutchfield Jr., John U <John.Crutchfield@duke-energy.com>; Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Abney, Michael A <Michael.Abney@duke-energy.com>; Wahl, Nick <Nick.Wahl@duke-energy.com>; Mularski, Eric <eric.mularski@hdrinc.com>; Kulpa, Sarah <sarah.kulpa@hdrinc.com>; Salazar, Maggie <Maggie.Salazar@hdrinc.com>; McCarney-Castle, Kerry <Kerry.McCarney-Castle@hdrinc.com>; Huff, Jen <Jen.Huff@hdrinc.com>

Subject: Bad Creek SQT - riparian vegetation plots

Good Afternoon Lorianne,

During preparations for fieldwork associated with the Stream Quantification Tool, we calculated the number plots needed for each stream reach according to the 2% area coverage requirement. Based on an average reach length of 600 feet and plot size of 100 m², we would need 1 plot per stream reach. However, in the Data Collection and Analysis Manual, it is stated that there is a 4-plot minimum. In the example provided in the manual, the stream reaches are four times the size than those at Bad Creek. Assuming a 50-foot riparian buffer, a 4-plot minimum would result in 7.2% of the riparian buffer surveyed.

In a review of the CVS-EEP Protocol for Level 2, it states that the number of vegetation plots would be calculated separately for stream enhancement, stream restoration, and wetland mitigation. Obviously, none of these categories apply to the streams at Bad Creek since we are primarily using this tool to monitor for any effects of the temporary access road. The Protocol also states that you can use the data entry tool to "aid in calculating the necessary number of plots", however I was unable to get the tool to work on my computer (I am assuming some of the macros were blocked due to our security settings). How was the 4-plot minimum decided for the SQT?

We know of three named streams and potentially up to three additional streams that will require survey along the access road. For upstream and downstream reaches, this amounts to up to 48 vegetation plots to be surveyed (consisting of 7.2% of riparian buffer per stream reach, as stated above). This seems very comprehensive for the limited area under evaluation. Is there any flexibility in the number of plots to be surveyed? We would like to propose **two vegetation plots per stream reach**. Based on initial observations in the field, the riparian buffer vegetation community is consistent across the stream reaches and, given that this information is not intended to be used to support restoration efforts, we feel this would sufficiently characterize the natural and undisturbed riparian vegetation community that exists at the site.

We welcome your thoughts and are happy to jump on the phone to discuss.

Thanks,

Frin Settevendemio

Erin Bradshaw Settevendemio, M.S., FP-C

Aquatic Sciences Team Lead

HDB

440 S. Church Street, Suite 900 Charlotte, NC 28202-2075 D 704.973.6869 M 518.534.2798 Erin.BradshawSettevendemio@hdrinc.com

hdrinc.com/follow-us

EXTERNAL EMAIL: Do not click any links or open any attachments unless you trust the sender and know the content is safe.

To: Abney, Michael A; Amy Breedlove; RankinD; Elizabeth Miller; Erika Hollis; Settevendemio, Erin; Gerry Yantis;

jhains@g.clemson.edu; quattrol; Olds, Melanie J; Amedee, Morgan D.; kernm; SelfR; Stuart, Alan Witten; Wahl, Nick; William T. Wood; Alex Pellett; Dale Wilde; bereskind; Jeff Phillips; McCarney-Castle, Kerry; More, Priyanka; Raber, Maverick James; Scott Harder; William T. Wood; Ziegler, Ty; Dvorak, Joe; Alison Jakupca; Kevin Nebiolo;

Bruce, Ed; Dunn, Lynne; Huff, Jen

Cc: Kulpa, Sarah; Salazar, Maggie; Lineberger, Jeff

Subject: Bad Creek Relicensing - ILP Study Plans and Reports Schedule Update

Date: Tuesday, October 31, 2023 12:02:43 PM

Importance: High

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Dear Bad Creek Relicensing Water and Aquatic Resources Committees:

I hope this email finds you well and that you have been able to get out and enjoy the fantastic weather we are having this fall. It is hard to believe it is nearly November, and as we all know, the days start slipping by quickly as the year wraps up.

Duke Energy and our consultants have been working diligently to complete the first year ILP studies and advance the study reports. I wanted to take this opportunity to provide you with a preview of Resource Committee reviews that will be requested over the next month and the upcoming FERC ILP process milestones.

- 1. **Initial Study Report (ISR)** We expect to file the ISR on or just before the FERC ILP deadline of January 4, 2024.
- 2. ISR Meeting The ISR meeting is to be held within 15 days of the ISR filing. Duke Energy is coordinating availability with FERC staff, and we are presently planning to conduct the ISR Meeting at the Duke Energy Wenwood Operations Center (Greenville, SC) on Wednesday, January 17th. Please note this meeting date is subject to change depending up FERC staff availability and if it shifts to another date in January, we will let you know so you can plan accordingly. Your attendance at this meeting is greatly appreciated and encouraged, but a Teams meeting will be made available for participants who are unable to travel.

3. Water Resources Study Reports

- a. **Task 2** study report "Whitewater River Cove Water Quality Field Study":
 - i. Will not be completed until the end of the 2024 (2nd) ILP study season.
 - ii. A summary of Year 1 results will be provided in the ISR.
- b. Task 3 study report "Velocity Effects and Vertical Mixing in

Lake Jocassee Due to a Second Powerhouse":

- i. The Resource Committee comment period on this report is closed.

 Thank you to RC members who provided comments.
- ii. We are developing an addendum to that report to include field verification results (ADCP velocity measurements in the Whitewater River Cove) as discussed at the July 27th Joint RC Meeting. This addendum will be submitted to the Water Resources RC (via the SharePoint Site) by November 10 for a 30-day review and will be submitted with the ISR.
- iii. The Task 3 study report (in entirety) will be filed with FERC with the ISR. This filing will include documentation of consultation with the RC and response to comments received. (Responses to comments will also be posted separately to the SharePoint site).
- c. **Task 4** study report "Water Exchange Rates and Lake Jocassee Reservoir Levels":
 - The Duke Energy relicensing team continues to work through CHEOPS model updates, calibration, and simulations of the designated operating scenarios for Bad Creek II. We presently expect to include a status update in the ISR and distribute the draft report to the Water and Aquatics Resources RCs in Q1 2024.

4. Aquatic Resources Study Reports

- a. **Task 1** study report "Entrainment Report (Revised)" will be shared with the Aquatics RC by November 3 for a final 30-day review period.
- b. **Task 2** study report "Desktop Studies on Pelagic and Littoral Habitat Effects" requires input from the Water Resources Task 4 study report described above. We presently expect to include a status update in the ISR and distribute the draft report to the Aquatics RC in Q1 2024.
- c. **Task 3** study report "Mussel Surveys and Stream Habitat Quality Surveys" will be submitted to the Aquatics RC as a draft for review and we are targeting submittal to the RC by November 17. Duke Energy will be requesting an expedited (3-week) review period by the RC, due to the coming holidays.

If you have any questions at all about any of the activities described above or the process in general, please do not hesitate to reach out to me or Alan Stuart directly.

Thank you for your continued participation in this process, and on behalf of Duke Energy, we look forward to a productive quarter and advancing the Bad Creek Project relicensing in collaboration with this group and other stakeholders.

Regards,

John Crutchfield

To: Kulpa, Sarah; McCarney-Castle, Kerry

Subject: FW: [EXTERNAL] Re: Bad Creek Relicensing - ILP Study Plans and Reports Schedule Update

Date: Tuesday, October 31, 2023 1:01:34 PM

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

FYI.

From: John Hains <jhains@g.clemson.edu> Sent: Tuesday, October 31, 2023 12:42 PM

To: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>; Stuart, Alan Witten

<Alan.Stuart@duke-energy.com>; Dale Wilde <dwilde@keoweefolks.org>

Subject: [EXTERNAL] Re: Bad Creek Relicensing - ILP Study Plans and Reports Schedule Update

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

I will be out of the country for the entire month of January. If I have internet access where I am during the meeting I will try to connect virtually.

Thanks for letting us know the overall plan.

John Hains

On Tue, Oct 31, 2023 at 12:02 PM Crutchfield Jr., John U < <u>John.Crutchfield@duke-energy.com</u>> wrote:

Dear Bad Creek Relicensing Water and Aquatic Resources Committees:

I hope this email finds you well and that you have been able to get out and enjoy the fantastic weather we are having this fall. It is hard to believe it is nearly November, and as we all know, the days start slipping by quickly as the year wraps up.

Duke Energy and our consultants have been working diligently to complete the first year ILP studies and advance the study reports. I wanted to take this opportunity to provide you with a preview of Resource Committee reviews that will be requested over the next month and the upcoming FERC ILP process milestones.

- 1. **Initial Study Report (ISR)** We expect to file the ISR on or just before the FERC ILP deadline of January 4, 2024.
- 2. ISR Meeting The ISR meeting is to be held within 15 days of the ISR filing. Duke Energy is

coordinating availability with FERC staff, and we are presently planning to conduct the ISR Meeting at the Duke Energy Wenwood Operations Center (Greenville, SC) on Wednesday, January 17th. Please note this meeting date is subject to change depending up FERC staff availability and if it shifts to another date in January, we will let you know so you can plan accordingly. Your attendance at this meeting is greatly appreciated and encouraged, but a Teams meeting will be made available for participants who are unable to travel.

3. Water Resources Study Reports

- a. **Task 2** study report "Whitewater River Cove Water Quality Field Study":
 - i. Will not be completed until the end of the 2024 (2^{nd}) ILP study season.
 - $\mbox{ii.} \qquad \mbox{A summary of Year 1 results} \\ \mbox{will be provided in the ISR.}$
- b. **Task 3** study report "Velocity Effects and Vertical Mixing in Lake Jocassee Due to a Second Powerhouse":
 - i. The Resource Committee comment period on this report is closed. Thank you to RC members who provided comments.
 - ii. We are developing an addendum to that report to include field verification results (ADCP velocity measurements in the Whitewater River Cove) as discussed at the July 27th Joint RC Meeting. This addendum will be submitted to the Water Resources RC (via the SharePoint Site) by November 10 for a 30-day review and will be submitted with the ISR.
 - iii. The Task 3 study report (in entirety) will be filed with FERC with the ISR. This filing will include documentation of consultation with the RC and response to comments received. (Responses to comments will also be posted separately to the SharePoint site).
- c. **Task 4** study report "Water Exchange Rates and Lake Jocassee Reservoir Levels":
 - i. The Duke Energy relicensing team continues to work through CHEOPS model updates, calibration, and simulations of the designated operating scenarios for Bad Creek II. We presently expect to include a status update in the ISR and distribute the draft report to the

Water and Aquatics Resources RCs in Q1 2024.

4. Aquatic Resources Study Reports

- a. **Task 1** study report "Entrainment Report (Revised)" will be shared with the Aquatics RC by November 3 for a final 30-day review period.
- b. **Task 2** study report "Desktop Studies on Pelagic and Littoral Habitat Effects" requires input from the Water Resources Task 4 study report described above. We presently expect to include a status update in the ISR and distribute the draft report to the Aquatics RC in Q1 2024.
- c. **Task 3** study report "Mussel Surveys and Stream Habitat Quality Surveys" will be submitted to the Aquatics RC as a draft for review and we are targeting submittal to the RC by November 17. Duke Energy will be requesting an expedited (3-week) review period by the RC, due to the coming holidays.

If you have any questions at all about any of the activities described above or the process in general, please do not hesitate to reach out to me or Alan Stuart directly.

Thank you for your continued participation in this process, and on behalf of Duke Energy, we look forward to a productive quarter and advancing the Bad Creek Project relicensing in collaboration with this group and other stakeholders.

Regards,

John Crutchfield

From: Crutchfield Jr., John U

To: Abney, Michael A; Amy Breedlove; RankinD; Elizabeth Miller; Erika Hollis; Settevendemio, Erin; Gerry Yantis; jhains@g.clemson.edu;

quattrol; Olds, Melanie J; Amedee, Morgan D.; kernm; SelfR; Stuart, Alan Witten; Wahl, Nick; William T, Wood Kulpa, Sarah; Huff, Jen; McCarney-Castle, Kerry; Salazar, Maggie; Mularski, Eric; Raber, Maverick James

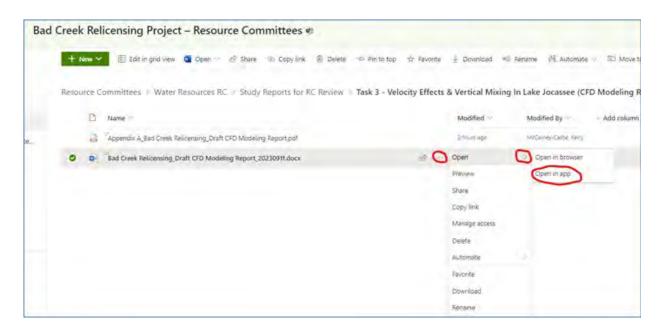
 Cc:
 Kulpa, Sarah; Huff, Jen; McCarney-Castle, Kerry; Salazar, Maggie; Mularski, Eric; Raber, Maverick James

 Subject:
 Bad Creek Relicensing - Desktop Entrainment Analysis Report Ready for Resource Committee Review

Date: Friday, November 3, 2023 10:19:46 AM

Attachments: image001.png image002.png

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.


Dear Bad Creek Relicensing Aquatic Resources Committee:

Duke Energy is pleased to distribute the Desktop Entrainment Analysis draft report for Resource Committee review. This draft report satisfies Task 1 of the Bad Creek Relicensing Aquatic Resources Study. The deliverable is available on the Bad Creek Relicensing SharePoint site at the following link: Task 1 - Entrainment Report. Duke Energy is requesting a 30-day review period, therefore, please submit all comments by **December 4th**. A confirmation email is kindly requested upon review completion (email me at John.Crutchfield@duke-energy.com).

<u>Important – Please Read!</u>

- As discussed in the kick-off meeting (July 2022), Duke Energy would like to make relicensing deliverables
 available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment;
 therefore, we request all comments be made in the SharePoint Word document using tracked changes. This
 will eliminate version control issues and result in a consolidated document for comment response.
- We strongly recommend opening the document in Word; otherwise the formatting will look distorted. The
 simplest way to do this is to click on the three dots to the right of the document (example shown below),
 choose "Open", then choose "Open in app". This will open the document in Word and you'll have the
 functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free
 to reach out to McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word — either technique works!])

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

To: Abney, Michael A; Amy Breedlove; RankinD; Elizabeth Miller; Erika Hollis; Settevendemio, Erin; Gerry Yantis; jhains@g.clemson.edu;

quattrol; Olds, Melanie J; Amedee, Morgan D.; Morgan Kern; SelfR; Stuart, Alan Witten; Wahl, Nick; William T. Wood

Cc: Kulpa, Sarah; Huff, Jen; McCarney-Castle, Kerry; Salazar, Maggie; Mularski, Eric

Subject: Bad Creek Relicensing - Impacts to Surface Waters and Associated Aquatic Fauna Draft Report (READY FOR RESOURCE COMMITTEE

REVIEW)

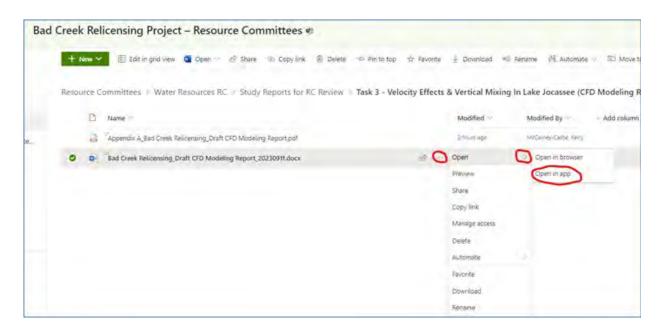
Date: Friday, November 17, 2023 1:50:17 PM

Attachments: image001.pnq image002.pnq

Importance: High

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Dear Bad Creek Relicensing Aquatic Resources Committee:


Duke Energy is pleased to distribute the Aquatic Resources Study Task 3 draft report *Impacts to Surface Waters and Associated Aquatic Fauna* for stakeholder review. The report (.doc) and associated attachments (.pdf) are available on the Bad Creek Relicensing SharePoint site at the following link: Task 3 - Impacts to Surface Waters and Associated Aquatic Fauna Draft Report.

Duke Energy is requesting a three-week review period, therefore, please submit all comments by **<u>December 8th</u>**. A confirmation email is kindly requested upon review completion (email me at <u>John.Crutchfield@duke-energy.com</u>).

Important - Please Read!

- As discussed in the kick-off meeting (July 2022), Duke Energy would like to make relicensing deliverables available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment; therefore, we request all comments be made in the SharePoint Word document using tracked changes. This will eliminate version control issues and result in a consolidated document for comment response.
- We strongly recommend opening the document in Word; otherwise the formatting will look distorted. The simplest way to do this is to click on the three dots to the right of the document (example shown below), choose "Open", then choose "Open in app". This will open the document in Word and you'll have the functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free to reach out to @McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word — either technique works!])

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

To: Abney, Michael A; Wahl, Nick; Alison Jakupca; Settevendemio, Erin; McCarney-Castle, Kerry

Cc: Stuart, Alan Witten; Kulpa, Sarah

Subject: FW: [EXTERNAL] Bad Creek Relicensing - Desktop Entrainment Analysis Report Ready for Resource Committee Review

Date: Thursday, November 30, 2023 2:45:36 PM

Attachments: <u>image001.png</u>

image002.png Outlook-cuuxmhcg.png Outlook-ny5mhzjb.png

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

FYI.

From: Olds, Melanie J <melanie_olds@fws.gov> **Sent:** Thursday, November 30, 2023 2:40 PM

To: Crutchfield Jr., John U < John. Crutchfield@duke-energy.com>

Subject: Re: [EXTERNAL] Bad Creek Relicensing - Desktop Entrainment Analysis Report Ready for Resource

Committee Review

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

John,

The Service has reviewed the Entrainment Analysis report and does not have any comments.

Melanie

Melanie Olds

Fish & Wildlife Biologist

Regulatory Team Lead/FERC Coordinator

U.S. Fish and Wildlife Service

South Carolina Ecological Services Field Office

176 Croghan Spur Road, Suite 200

Charleston, SC 29407

Phone: (843) 534-0403

NOTE: This email correspondence and any attachments to and from this sender is subject to the Freedom of Information Act (FOIA) and may be disclosed to third parties.

From: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com >

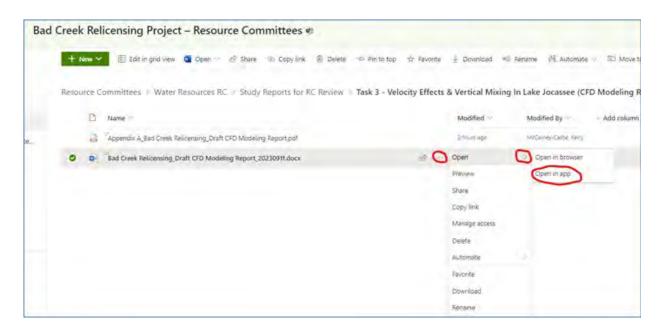
Sent: Friday, November 3, 2023 10:19 AM

To: Abney, Michael A <<u>michael.abney@duke-energy.com</u>>; Amy Breedlove <<u>BreedloveA@dnr.sc.gov</u>>; Dan Rankin <<u>RankinD@dnr.sc.gov</u>>; Elizabeth Miller <<u>MillerE@dnr.sc.gov</u>>; Erika Hollis <<u>ehollis@upstateforever.org</u>>; Erin Settevendemio <<u>Frin.Settevendemio@hdrinc.com</u>>; Gerry Yantis <<u>gcyantis2@yahoo.com</u>>; John Haines <<u>jhains@g.clemson.edu</u>>; <u>quattrol@dnr.sc.gov</u> <<u>quattrol@dnr.sc.gov</u>>; Olds, Melanie J <<u>melanie_olds@fws.gov</u>>; Morgan Amedee <<u>amedeemd@dhec.sc.gov</u>>; Morgan Kern <<u>kernm@dnr.sc.gov</u>>; <u>SelfR@dnr.sc.gov</u><<<u>SelfR@dnr.sc.gov</u>>; Stuart, Alan Witten <<u>Alan.Stuart@duke-energy.com</u>>; Wahl, Nick <<u>Nick.Wahl@duke-energy.com</u>>; William Wood <<u>woodw@dnr.sc.gov</u>>

Cc: Sarah Kulpa <<u>Sarah.Kulpa@hdrinc.com</u>>; Huff, Jen <<u>Jen.Huff@hdrinc.com</u>>; Kerry McCarney-Castle <<u>Kerry.McCarney-Castle@hdrinc.com</u>>; Maggie Salazar <<u>maggie.salazar@hdrinc.com</u>>; Mularski, Eric -HDRInc <<u>Eric.Mularski@HDRInc.com</u>>; Raber, Maverick James <<u>Maverick.Raber@duke-energy.com</u>>

Subject: [EXTERNAL] Bad Creek Relicensing - Desktop Entrainment Analysis Report Ready for Resource Committee Review

This email has been received from outside of DOI - Use caution before clicking on links, opening attachments, or responding.


Dear Bad Creek Relicensing Aquatic Resources Committee:

Duke Energy is pleased to distribute the Desktop Entrainment Analysis draft report for Resource Committee review. This draft report satisfies Task 1 of the Bad Creek Relicensing Aquatic Resources Study. The deliverable is available on the Bad Creek Relicensing SharePoint site at the following link: Task 1 - Entrainment Report. Duke Energy is requesting a 30-day review period, therefore, please submit all comments by **December 4th**. A confirmation email is kindly requested upon review completion (email me at John.Crutchfield@duke-energy.com).

Important - Please Read!

- As discussed in the kick-off meeting (July 2022), Duke Energy would like to make relicensing deliverables
 available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment;
 therefore, we request all comments be made in the SharePoint Word document using tracked changes. This
 will eliminate version control issues and result in a consolidated document for comment response.
- We strongly recommend opening the document in Word; otherwise the formatting will look distorted. The
 simplest way to do this is to click on the three dots to the right of the document (example shown below),
 choose "Open", then choose "Open in app". This will open the document in Word and you'll have the
 functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free
 to reach out to McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word — either technique works!])

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

To: Stuart, Alan Witten; Kulpa, Sarah; Abney, Michael A; Wahl, Nick; Alison Jakupca; Settevendemio, Erin; McCarney-Castle, Kerry

Subject: Fwd: [EXTERNAL] RE: Bad Creek Relicensing - Desktop Entrainment Analysis Report Ready for Resource Committee Review

Date: Sunday, December 3, 2023 5:32:01 PM

Attachments: <u>image003.png</u> <u>image004.png</u>

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments

FYI.

Get Outlook for iOS

From: gcyantis2@yahoo.com <gcyantis2@yahoo.com>

unless you recognize the sender and know the content is safe.

Sent: Sunday, December 3, 2023 5:06 PM

To: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Cc: 'Sue Williams' <suewilliams130@gmail.com>

Subject: [EXTERNAL] RE: Bad Creek Relicensing - Desktop Entrainment Analysis Report Ready for Resource

Committee Review

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

John,

I've reviewed the document and have not questions or recommendations.

Thank you, Gerry Yantis AQD

From: Crutchfield Jr., John U < John. Crutchfield@duke-energy.com>

Sent: Wednesday, November 29, 2023 8:51 AM

To: Abney, Michael A <Michael.Abney@duke-energy.com>; Amy Breedlove <BreedloveA@dnr.sc.gov>; Dan Rankin <RankinD@dnr.sc.gov>; Elizabeth Miller <MillerE@dnr.sc.gov>; Erika Hollis <ehollis@upstateforever.org>; Erin Settevendemio <Erin.Settevendemio@hdrinc.com>; Gerry Yantis <gcyantis2@yahoo.com>; John Haines <jhains@g.clemson.edu>; Lynn Quattro <quattrol@dnr.sc.gov>; Melanie Olds <melanie_olds@fws.gov>; Morgan Amedee <amedeemd@dhec.sc.gov>; Morgan Kern <kernm@dnr.sc.gov>; Ross Self <SelfR@dnr.sc.gov>; Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Wahl, Nick <Nick.Wahl@duke-energy.com>; William Wood <woodw@dnr.sc.gov>

Cc: Sarah Kulpa <Sarah.Kulpa@hdrinc.com>; Huff, Jen <Jen.Huff@hdrinc.com>; Kerry McCarney-Castle <Kerry.McCarney-Castle@hdrinc.com>; Maggie Salazar <maggie.salazar@hdrinc.com>; Mularski, Eric -HDRInc <Eric.Mularski@HDRInc.com>; Raber, Maverick James <Maverick.Raber@duke-energy.com>

Subject: RE: Bad Creek Relicensing - Desktop Entrainment Analysis Report Ready for Resource Committee Review

Dear Bad Creek Relicensing Aquatic Resources Committee:

Just a reminder comments on due on the draft Desktop Entrainment Analysis Report on December 4th.

Regards,

John Crutchfield

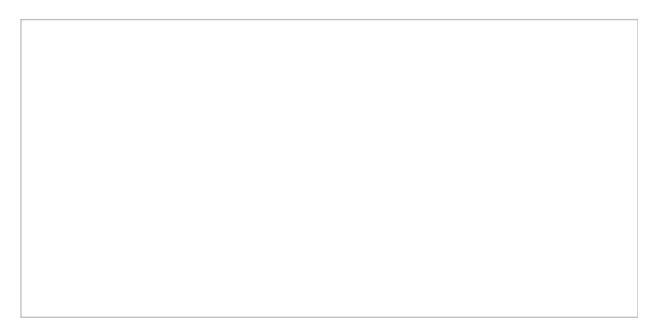
From: Crutchfield Jr., John U

Sent: Friday, November 3, 2023 10:20 AM

To: Abney, Michael A < <u>Michael.Abney@duke-energy.com</u>>; Amy Breedlove < <u>BreedloveA@dnr.sc.gov</u>>; Dan Rankin < <u>RankinD@dnr.sc.gov</u>>; Elizabeth Miller < <u>MillerE@dnr.sc.gov</u>>; Erika Hollis < <u>ehollis@upstateforever.org</u>>; Erin Settevendemio < <u>Frin.Settevendemio@hdrinc.com</u>>; Gerry Yantis < <u>gcyantis2@yahoo.com</u>>; John Haines < <u>ihains@g.clemson.edu</u>>; Lynn Quattro < <u>quattrol@dnr.sc.gov</u>>; Melanie Olds < <u>melanie_olds@fws.gov</u>>; Morgan Amedee < <u>amedeemd@dhec.sc.gov</u>>; Morgan Kern < <u>kernm@dnr.sc.gov</u>>; Ross Self < <u>SelfR@dnr.sc.gov</u>>; Stuart, Alan Witten < <u>Alan.Stuart@duke-energy.com</u>>; Wahl, Nick < <u>Nick.Wahl@duke-energy.com</u>>; William Wood < <u>woodw@dnr.sc.gov</u>>

Cc: Sarah Kulpa <<u>Sarah.Kulpa@hdrinc.com</u>>; Huff, Jen <<u>Jen.Huff@hdrinc.com</u>>; Kerry McCarney-Castle <<u>Kerry.McCarney-Castle@hdrinc.com</u>>; Maggie Salazar <<u>maggie.salazar@hdrinc.com</u>>; Mularski, Eric -HDRInc <<u>Eric.Mularski@HDRInc.com</u>>; Raber, Maverick James <<u>Maverick.Raber@duke-energy.com</u>>

Subject: Bad Creek Relicensing - Desktop Entrainment Analysis Report Ready for Resource Committee Review


Dear Bad Creek Relicensing Aquatic Resources Committee:

Duke Energy is pleased to distribute the Desktop Entrainment Analysis draft report for Resource Committee review. This draft report satisfies Task 1 of the Bad Creek Relicensing Aquatic Resources Study. The deliverable is available on the Bad Creek Relicensing SharePoint site at the following link: Task 1 - Entrainment Report. Duke Energy is requesting a 30-day review period, therefore, please submit all comments by **December 4th**. A confirmation email is kindly requested upon review completion (email me at John.Crutchfield@duke-energy.com).

Important - Please Read!

- As discussed in the kick-off meeting (July 2022), Duke Energy would like to make relicensing deliverables available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment; therefore, we request all comments be made in the SharePoint Word document using tracked changes. This will eliminate version control issues and result in a consolidated document for comment response.
- We strongly recommend opening the document in Word; otherwise the formatting will look distorted. The
 simplest way to do this is to click on the three dots to the right of the document (example shown below),
 choose "Open", then choose "Open in app". This will open the document in Word and you'll have the
 functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free
 to reach out to McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word — either technique works!])

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

To: <u>McCarney-Castle, Kerry</u>; <u>Settevendemio, Erin</u>

Subject: FW: [EXTERNAL] Re: Bad Creek Relicensing - Impacts to Surface Waters and Associated Aquatic Fauna Draft Report (READY FOR

RESOURCE COMMITTEE REVIEW)
Monday, December 4, 2023 5:53:05 PM

Attachments: image001.png

image002.png

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

From: Erika Hollis <ehollis@upstateforever.org>
Sent: Monday, December 4, 2023 2:23 PM

To: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Subject: [EXTERNAL] Re: Bad Creek Relicensing - Impacts to Surface Waters and Associated Aquatic Fauna Draft

Report (READY FOR RESOURCE COMMITTEE REVIEW)

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

Hello John,

I have reviewed the draft "Desktop Entrainment Analysis Report" and have no comments to offer. I did however make a comment in the sharepoint document on the "Impacts to the Surface Waters and Associated Aquatic Fauna Draft Report".

Contact me with any questions.

Thank you,

Erika

Erika J. Hollis Clean Water Director Upstate Forever 507 Pettigru St Greenville, SC 29601 (864) 250-0500 ext. 117 ehollis@upstateforever.org

From: Crutchfield Jr., John U < <u>John.Crutchfield@duke-energy.com</u>>

Date: Friday, November 17, 2023 at 1:50 PM

To: Abney, Michael A < <u>Michael.Abney@duke-energy.com</u>>, Amy Breedlove

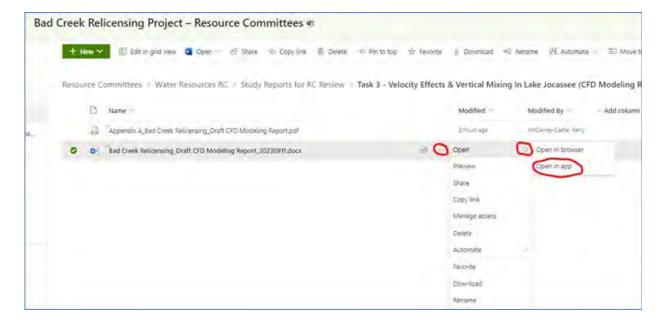
<BreedloveA@dnr.sc.gov>, Dan Rankin <RankinD@dnr.sc.gov>, Elizabeth Miller

- < Miller E@dnr.sc.gov >, Erika Hollis < ehollis@upstateforever.org >, Erin Settevendemio
- < <u>Erin.Settevendemio@hdrinc.com</u>>, Gerry Yantis < <u>gcvantis2@vahoo.com</u>>, John Haines
- <ihains@g.clemson.edu>, Lynn Quattro <quattrol@dnr.sc.gov>, Melanie Olds
- <melanie_olds@fws.gov>, Morgan Amedee amedeemd@dhec.sc.gov, Morgan Kern
- <kernm@dnr.sc.gov>, Ross Self <SelfR@dnr.sc.gov>, alan.stuart@duke-energy.com
- <alan.stuart@duke-energy.com>, Wahl, Nick < Nick.Wahl@duke-energy.com>, William Wood

<woodw@dnr.sc.gov>

Cc: Sarah Kulpa <Sarah.Kulpa@hdrinc.com>, Huff, Jen <Jen.Huff@hdrinc.com>, Kerry McCarney-Castle <Kerry.McCarney-Castle@hdrinc.com>, Maggie Salazar <maggie.salazar@hdrinc.com>, Mularski, Eric -HDRInc <Kerry.Mularski@HDRInc.com>
Subject: Bad Creek Relicensing - Impacts to Surface Waters and Associated Aquatic Fauna Draft Report (READY FOR RESOURCE COMMITTEE REVIEW)

Dear Bad Creek Relicensing Aquatic Resources Committee:


Duke Energy is pleased to distribute the Aquatic Resources Study Task 3 draft report *Impacts to Surface Waters and Associated Aquatic Fauna* for stakeholder review. The report (.doc) and associated attachments (.pdf) are available on the Bad Creek Relicensing SharePoint site at the following link: Task 3 - Impacts to Surface Waters and Associated Aquatic Fauna_Draft Report.

Duke Energy is requesting a three-week review period, therefore, please submit all comments by **December 8th**. A confirmation email is kindly requested upon review completion (email me at John.Crutchfield@duke-energy.com).

<u>Important – Please Read!</u>

- As discussed in the kick-off meeting (July 2022), Duke Energy would like to make relicensing deliverables
 available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment;
 therefore, we request all comments be made in the SharePoint Word document using tracked changes. This
 will eliminate version control issues and result in a consolidated document for comment response.
- We strongly recommend opening the document in Word; otherwise the formatting will look distorted. The
 simplest way to do this is to click on the three dots to the right of the document (example shown below),
 choose "Open", then choose "Open in app". This will open the document in Word and you'll have the
 functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free
 to reach out to @McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word — either technique works!])

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
525 South Tryon Street, DEP-35B | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

From: John Hains

To: <u>Crutchfield Jr., John U</u>

Cc: Abney, Michael A; Amy Breedlove; RankinD; Elizabeth Miller; Erika Hollis; Settevendemio, Erin; Gerry Yantis; quattrol; Olds, Melanie J;

Amedee, Morgan D.; Morgan Kern; SelfR; Stuart, Alan Witten; Wahl, Nick; William T. Wood; Kulpa, Sarah; Huff, Jen; McCarney-Castle,

Kerry; Salazar, Maggie; Mularski, Eric; Raber, Maverick James

Subject: Re: Bad Creek Relicensing - Desktop Entrainment Analysis Report Ready for Resource Committee Review

Date: Monday, December 4, 2023 5:58:25 PM

Attachments: image001.png image002.png

You don't often get email from jhains@g.clemson.edu. Learn why this is important

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

To John Crutchfield, Jr.

Re: Desktop Entrainment Analysis Report

On Behalf of FOLKS

I have read the Desktop Entrainment Analysis Report and with regard to the entrainment impacts to both blueback herring and threadfin shad, I have no concerns for either species. Blueback herring populations exist in Lake Jocassee as a result of an accidental introduction and should be considered an invasive species. They have obviously 'naturalized' to this system but Duke was not the agency responsible for their introduction and in fairness Duke Energy therefore should not be tasked with their 'protection'.

I concur with dismissal of concerns regarding T. shad because it is improbable that entrainment at Bad Creek can have any significant impact on a population with such a high intrinsic rate of increase. I concur with this aspect of the analysis.

However, as this project goes forward, I believe that the changes in the velocity field during the various operational scenarios should be viewed more rigorously and that the question of entrainment should also be linked to the hydrodynamic behavior, the subject of a separate set of studies.

John Hains Friends of Lake Keowee Society

On Wed, Nov 29, 2023 at 8:50 AM Crutchfield Jr., John U < John. Crutchfield@duke-energy.com > wrote:

Dear Bad Creek Relicensing Aquatic Resources Committee:
Just a reminder comments on due on the draft Desktop Entrainment Analysis Report on December 4th.
Regards,
John Crutchfield

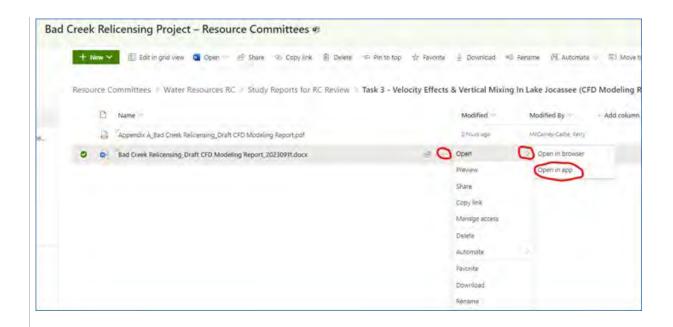
From: Crutchfield Jr., John U

Sent: Friday, November 3, 2023 10:20 AM

To: Abney, Michael A < <u>Michael.Abney@duke-energy.com</u>>; Amy Breedlove < <u>BreedloveA@dnr.sc.gov</u>>; Dan Rankin < <u>RankinD@dnr.sc.gov</u>>; Elizabeth Miller < <u>MillerE@dnr.sc.gov</u>>; Erika Hollis < <u>ehollis@upstateforever.org</u>>; Erin Settevendemio < <u>Erin.Settevendemio@hdrinc.com</u>>; Gerry Yantis < <u>gcyantis2@yahoo.com</u>>; John Haines < <u>jhains@g.clemson.edu</u>>; Lynn Quattro < <u>quattrol@dnr.sc.gov</u>>;

Melanie Olds <<u>melanie olds@fws.gov</u>>; Morgan Amedee <<u>amedeemd@dhec.sc.gov</u>>; Morgan Kern

; Ross Self ; Stuart, Alan Witten ; Wahl, Nick ; William Wood <a href="mailto:Kerry.McCarney-Ca


Dear Bad Creek Relicensing Aquatic Resources Committee:

Duke Energy is pleased to distribute the Desktop Entrainment Analysis draft report for Resource Committee review. This draft report satisfies Task 1 of the Bad Creek Relicensing Aquatic Resources Study. The deliverable is available on the Bad Creek Relicensing SharePoint site at the following link: Task 1 - Entrainment Report. Duke Energy is requesting a 30-day review period, therefore, please submit all comments by **December 4th**. A confirmation email is kindly requested upon review completion (email me at John.Crutchfield@duke-energy.com).

Important - Please Read!

- As discussed in the kick-off meeting (July 2022), Duke Energy would like to make relicensing
 deliverables available on a shared platform (i.e., SharePoint) so all stakeholders can access, review,
 and comment; therefore, we request all comments be made in the SharePoint Word document using
 tracked changes. This will eliminate version control issues and result in a consolidated document for
 comment response.
- We strongly recommend opening the document in Word; otherwise the formatting will look distorted. The simplest way to do this is to click on the three dots to the right of the document (example shown below), choose "Open", then choose "Open in app". This will open the document in Word and you'll have the functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free to reach out to McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word – either technique works!])

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

Project Manager II

Water Strategy, Hydro Licensing & Lake Services

Regulated & Renewable Energy

Duke Energy

525 South Tryon Street, DEP-35B | Charlotte, NC 28202

Office 980-373-2288 Cell 919-757-1095

From: <u>Elizabeth Miller</u>

To: Crutchfield Jr., John U; Abney, Michael A; Amy Breedlove; RankinD; Erika Hollis; Settevendemio, Erin; Gerry Yantis;

jhains@q.clemson.edu; guattroj; Olds, Melanie J; Amedee, Morgan D.; Morgan Kern; SelfR; Stuart, Alan Witten; Wahl, Nick; William T.

Wood

Cc: Kulpa, Sarah; Huff, Jen; McCarney-Castle, Kerry; Salazar, Maggie; Mularski, Eric; Raber, Maverick James

Subject: RE: Bad Creek Relicensing - Desktop Entrainment Analysis Report Ready for Resource Committee Review

Date: Monday, December 4, 2023 2:10:46 PM

Attachments: image001.png image002.png

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hi John,

Staff with the South Carolina Department of Natural Resources have reviewed the draft Desktop Entrainment Analysis Report and have no comments to offer.

Thank you,

Elizabeth

Elizabeth C. Miller SCDNR

Office: 843-953-3881 Cell: 843-729-4636

From: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Sent: Friday, November 3, 2023 10:20 AM

To: Abney, Michael A <Michael.Abney@duke-energy.com>; Amy Chastain <BreedloveA@dnr.sc.gov>; Dan Rankin <RankinD@dnr.sc.gov>; Elizabeth Miller <MillerE@dnr.sc.gov>; Erika Hollis <ehollis@upstateforever.org>; Erin Settevendemio <Erin.Settevendemio@hdrinc.com>; Gerry Yantis <gcyantis2@yahoo.com>; John Haines <jhains@g.clemson.edu>; Lynn Quattro <QuattroL@dnr.sc.gov>; Olds, Melanie J <melanie_olds@fws.gov>; Morgan Amedee <amedeemd@dhec.sc.gov>; Morgan Kern <KernM@dnr.sc.gov>; Ross Self <SelfR@dnr.sc.gov>; Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Wahl, Nick <Nick.Wahl@duke-energy.com>; William T. Wood <WoodW@dnr.sc.gov>

Cc: Sarah Kulpa <Sarah.Kulpa@hdrinc.com>; Huff, Jen <Jen.Huff@hdrinc.com>; Kerry McCarney-Castle <Kerry.McCarney-Castle@hdrinc.com>; Maggie Salazar <maggie.salazar@hdrinc.com>; Mularski, Eric -HDRInc <Eric.Mularski@HDRInc.com>; Raber, Maverick James <Maverick.Raber@duke-energy.com>

Subject: Bad Creek Relicensing - Desktop Entrainment Analysis Report Ready for Resource Committee Review

Dear Bad Creek Relicensing Aquatic Resources Committee:

Duke Energy is pleased to distribute the Desktop Entrainment Analysis draft report for Resource Committee review. This draft report satisfies Task 1 of the Bad Creek Relicensing Aquatic Resources Study. The deliverable is available on the Bad Creek Relicensing SharePoint site at the following link: Task 1 - Entrainment Report. Duke Energy is requesting a 30-day review period, therefore, please submit all comments by **December 4th**. A confirmation email is kindly requested upon review completion (email me at John.Crutchfield@duke-energy.com).

<u>Important – Please Read!</u>

• As discussed in the kick-off meeting (July 2022), Duke Energy would like to make relicensing deliverables available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment; therefore, we request all comments be made in the SharePoint Word document using tracked changes. This

will eliminate version control issues and result in a consolidated document for comment response.

• We strongly recommend opening the document in Word; otherwise the formatting will look distorted. The simplest way to do this is to click on the three dots to the right of the document (example shown below), choose "Open", then choose "Open in app". This will open the document in Word and you'll have the functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free to reach out to MCCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word — either technique works!])

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
525 South Tryon Street, DEP-35B | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

EXTERNAL EMAIL: Do not click any links or open any attachments unless you trust the sender and know the content is safe.

From: <u>Crutchfield Jr., John U</u>

To: Stuart, Alan Witten; Kulpa, Sarah; Settevendemio, Erin; McCarney-Castle, Kerry; Huff, Jen

Subject: FW: [EXTERNAL] RE: Bad Creek Relicensing - Impacts to Surface Waters and Associated Aquatic Fauna Draft Report (READY FOR

RESOURCE COMMITTEE REVIEW)

Date: Wednesday, December 6, 2023 6:06:37 AM

Attachments: <u>image003.pnq</u> <u>image004.pnq</u>

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

From: gcyantis2@yahoo.com < gcyantis2@yahoo.com>

Sent: Tuesday, December 5, 2023 4:28 PM

To: Crutchfield Jr., John U < John. Crutchfield@duke-energy.com>

Cc: 'Sue Williams' <suewilliams130@gmail.com>

Subject: [EXTERNAL] RE: Bad Creek Relicensing - Impacts to Surface Waters and Associated Aquatic Fauna Draft

Report (READY FOR RESOURCE COMMITTEE REVIEW)

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

Hello John,

AQD has no suggestions for the Aquatic Fauna Draft Report.

I do have one question: was there any assessment of the terrain around the spoils areas and the temporary roads that would identify higher risk area (e.g., extremely steep drops and/or channels that would cause high velocity of water risking erosion and silt entering the streambeds)? For such high risk area, would there be additional measures installed to prevent disturbance or damage to the streambeds and the aquatic life?

Thank you,

Gerry

From: Crutchfield Jr., John U < <u>John.Crutchfield@duke-energy.com</u>>

Sent: Monday, December 4, 2023 6:21 AM

To: Abney, Michael A < <u>Michael.Abney@duke-energy.com</u>>; Amy Breedlove < <u>BreedloveA@dnr.sc.gov</u>>; Dan Rankin < <u>RankinD@dnr.sc.gov</u>>; Elizabeth Miller < <u>MillerE@dnr.sc.gov</u>>; Erika Hollis < <u>ehollis@upstateforever.org</u>>; Erin Settevendemio < <u>Frin.Settevendemio@hdrinc.com</u>>; Gerry Yantis < <u>gcyantis2@yahoo.com</u>>; John Haines < <u>ihains@g.clemson.edu</u>>; Lynn Quattro < <u>quattrol@dnr.sc.gov</u>>; Melanie Olds < <u>melanie_olds@fws.gov</u>>; Morgan Amedee < <u>amedeemd@dhec.sc.gov</u>>; Morgan Kern < <u>kernm@dnr.sc.gov</u>>; Ross Self < <u>SelfR@dnr.sc.gov</u>>; Stuart, Alan Witten < <u>Alan.Stuart@duke-energy.com</u>>; Wahl, Nick < <u>Nick.Wahl@duke-energy.com</u>>; William Wood < <u>woodw@dnr.sc.gov</u>>

Cc: Sarah Kulpa <<u>Sarah.Kulpa@hdrinc.com</u>>; Huff, Jen <<u>Jen.Huff@hdrinc.com</u>>; Kerry McCarney-Castle <<u>Kerry.McCarney-Castle@hdrinc.com</u>>; Maggie Salazar <<u>maggie.salazar@hdrinc.com</u>>; Mularski, Eric -HDRInc <<u>Eric.Mularski@HDRInc.com</u>>

Subject: RE: Bad Creek Relicensing - Impacts to Surface Waters and Associated Aquatic Fauna Draft Report (READY FOR RESOURCE COMMITTEE REVIEW)

Dear Bad Creek Relicensing Aquatic Resources Committee:

Just a reminder that comments on the Task 3 – Impacts to Surface Waters and Associated Aquatic Fauna Draft Report is **due December 8**th.

From: Crutchfield Jr., John U

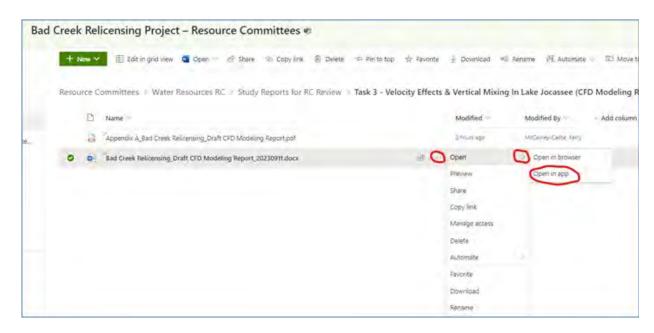
Sent: Friday, November 17, 2023 1:50 PM

To: Abney, Michael A < <u>Michael.Abney@duke-energy.com</u>>; Amy Breedlove < <u>BreedloveA@dnr.sc.gov</u>>; Dan Rankin < <u>RankinD@dnr.sc.gov</u>>; Elizabeth Miller < <u>MillerE@dnr.sc.gov</u>>; Erika Hollis < <u>ehollis@upstateforever.org</u>>; Erin Settevendemio < <u>Frin.Settevendemio@hdrinc.com</u>>; Gerry Yantis < <u>gcyantis2@yahoo.com</u>>; John Haines < <u>ihains@g.clemson.edu</u>>; Lynn Quattro < <u>quattrol@dnr.sc.gov</u>>; Melanie Olds < <u>melanie_olds@fws.gov</u>>; Morgan Amedee < <u>amedeemd@dhec.sc.gov</u>>; Morgan Kern < <u>kernm@dnr.sc.gov</u>>; Ross Self < <u>SelfR@dnr.sc.gov</u>>; Stuart, Alan Witten < <u>Alan.Stuart@duke-energy.com</u>>; Wahl, Nick < <u>Nick.Wahl@duke-energy.com</u>>; William Wood < <u>woodw@dnr.sc.gov</u>>

Cc: Sarah Kulpa <<u>Sarah.Kulpa@hdrinc.com</u>>; Huff, Jen <<u>Jen.Huff@hdrinc.com</u>>; Kerry McCarney-Castle <<u>Kerry.McCarney-Castle@hdrinc.com</u>>; Maggie Salazar <<u>maggie.salazar@hdrinc.com</u>>; Mularski, Eric -HDRInc <<u>Eric.Mularski@HDRInc.com</u>>

Subject: Bad Creek Relicensing - Impacts to Surface Waters and Associated Aquatic Fauna Draft Report (READY FOR RESOURCE COMMITTEE REVIEW)

Importance: High


Dear Bad Creek Relicensing Aquatic Resources Committee:

Duke Energy is requesting a three-week review period, therefore, please submit all comments by **December 8th**. A confirmation email is kindly requested upon review completion (email me at John.Crutchfield@duke-energy.com).

<u>Important – Please Read!</u>

- As discussed in the kick-off meeting (July 2022), Duke Energy would like to make relicensing deliverables
 available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment;
 therefore, we request all comments be made in the SharePoint Word document using tracked changes. This
 will eliminate version control issues and result in a consolidated document for comment response.
- We strongly recommend opening the document in Word; otherwise the formatting will look distorted. The simplest way to do this is to click on the three dots to the right of the document (*example* shown below), choose "Open", then choose "Open in app". This will open the document in Word and you'll have the functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free to reach out to McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word – either technique works!])

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
525 South Tryon Street, DEP-35B | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

From: <u>Elizabeth Miller</u>

To: Crutchfield Jr., John U; Abney, Michael A; Amy Breedlove; RankinD; Erika Hollis; Settevendemio, Erin; Gerry Yantis;

jhains@q.clemson.edu; guattroj; Olds, Melanie J; Amedee, Morgan D.; Morgan Kern; SelfR; Stuart, Alan Witten; Wahl, Nick; William T.

Wood

Cc: Kulpa, Sarah; Huff, Jen; McCarney-Castle, Kerry; Salazar, Maggie; Mularski, Eric

Subject: RE: Bad Creek Relicensing - Impacts to Surface Waters and Associated Aquatic Fauna Draft Report (READY FOR RESOURCE

COMMITTEE REVIEW)

Date: Thursday, December 7, 2023 10:51:21 AM

Attachments: image001.png image002.png

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hi John,

Due to the extensive and detailed nature of the document, the SCDNR expects to complete the review and submit comments by December 15, rather than the three-week review period ending by December 8 requested by Duke Energy.

Thank you,

Elizabeth

Elizabeth C. Miller SCDNR

Office: 843-953-3881 Cell: 843-729-4636

From: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Sent: Friday, November 17, 2023 1:50 PM

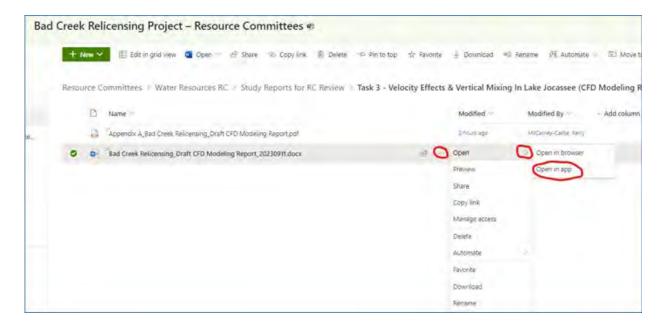
To: Abney, Michael A <Michael.Abney@duke-energy.com>; Amy Chastain <BreedloveA@dnr.sc.gov>; Dan Rankin <RankinD@dnr.sc.gov>; Elizabeth Miller <MillerE@dnr.sc.gov>; Erika Hollis <ehollis@upstateforever.org>; Erin Settevendemio@hdrinc.com>; Gerry Yantis <gcyantis2@yahoo.com>; John Haines <jhains@g.clemson.edu>; Lynn Quattro <QuattroL@dnr.sc.gov>; Olds, Melanie J <melanie_olds@fws.gov>; Morgan Amedee <amedeemd@dhec.sc.gov>; Morgan Kern <KernM@dnr.sc.gov>; Ross Self <SelfR@dnr.sc.gov>; Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Wahl, Nick <Nick.Wahl@duke-energy.com>; William T. Wood <WoodW@dnr.sc.gov>

Cc: Sarah Kulpa <Sarah.Kulpa@hdrinc.com>; Huff, Jen <Jen.Huff@hdrinc.com>; Kerry McCarney-Castle <Kerry.McCarney-Castle@hdrinc.com>; Maggie Salazar <maggie.salazar@hdrinc.com>; Mularski, Eric -HDRInc <Eric.Mularski@HDRInc.com>

Subject: Bad Creek Relicensing - Impacts to Surface Waters and Associated Aquatic Fauna Draft Report (READY FOR RESOURCE COMMITTEE REVIEW)

Importance: High

Dear Bad Creek Relicensing Aquatic Resources Committee:


Duke Energy is pleased to distribute the Aquatic Resources Study Task 3 draft report *Impacts to Surface Waters and Associated Aquatic Fauna* for stakeholder review. The report (.doc) and associated attachments (.pdf) are available on the Bad Creek Relicensing SharePoint site at the following link: Task 3 - Impacts to Surface Waters and Associated Aquatic Fauna Draft Report.

Duke Energy is requesting a three-week review period, therefore, please submit all comments by **December 8th**. A confirmation email is kindly requested upon review completion (email me at John.Crutchfield@duke-energy.com).

Important - Please Read!

- As discussed in the kick-off meeting (July 2022), Duke Energy would like to make relicensing deliverables
 available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment;
 therefore, we request all comments be made in the SharePoint Word document using tracked changes. This
 will eliminate version control issues and result in a consolidated document for comment response.
- We strongly recommend opening the document in Word; otherwise the formatting will look distorted. The
 simplest way to do this is to click on the three dots to the right of the document (example shown below),
 choose "Open", then choose "Open in app". This will open the document in Word and you'll have the
 functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free
 to reach out to @McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word — either technique works!])

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
525 South Tryon Street, DEP-35B | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

EXTERNAL EMAIL: Do not click any links or open any attachments unless you trust the sender and know the content is safe.

From: Crutchfield Jr., John U

To: Stuart, Alan Witten; Kulpa, Sarah; Settevendemio, Erin; McCarney-Castle, Kerry; Abney, Michael A; Wahl, Nick; Huff, Jen
Subject: FW: [EXTERNAL] Re: Bad Creek Relicensing - Impacts to Surface Waters and Associated Aquatic Fauna Draft Report (READY FOR

RESOURCE COMMITTEE REVIEW)

Date: Friday, December 8, 2023 7:22:32 AM

Attachments: image001.png image002.png

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

From: John Hains < jhains@g.clemson.edu> **Sent:** Thursday, December 7, 2023 8:06 PM

To: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Subject: [EXTERNAL] Re: Bad Creek Relicensing - Impacts to Surface Waters and Associated Aquatic Fauna Draft Report

(READY FOR RESOURCE COMMITTEE REVIEW)

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

Hello John.

I have reviewed the draft report: Impacts to Surface Waters and Associated Aquatic Fauna

I find the efforts to establish baselines for assessment of impacts to be comprehensive and good. I appreciate the time and effort that was invested into these studies and look forward to the final assessments if Bad Creek II goes forward. My only suggestion is that if Duke has the results from earlier studies related to the original creation of the Bad Creek Project, a comparison of these latest results to earlier ones might yield insights to the resilience of these streams in response to construction impacts. I'm not sure if such analyses have a regulatory requirement but they might be of interest for purposes of perspective....that is....if they were impacted by construction back then and recovered, that might be a clue as to how quickly they would recover from the impacts, if any, of BC II. Just a thought.

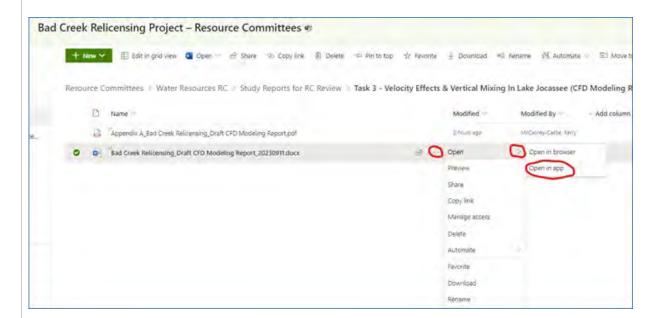
John Hains

FOLKS

On Fri, Nov 17, 2023 at 1:50 PM Crutchfield Jr., John U < john.Crutchfield@duke-energy.com> wrote:

Dear Bad Creek Relicensing Aquatic Resources Committee:

Duke Energy is pleased to distribute the Aquatic Resources Study Task 3 draft report *Impacts to Surface Waters and Associated Aquatic Fauna* for stakeholder review. The report (.doc) and associated attachments (.pdf) are available on the Bad Creek Relicensing SharePoint site at the following link: Task 3 - Impacts to Surface Waters and Associated Aquatic Fauna_Draft Report.


Duke Energy is requesting a three-week review period, therefore, please submit all comments by **<u>December</u> 8th**. A confirmation email is kindly requested upon review completion (email me at <u>John.Crutchfield@duke-energy.com</u>).

Important - Please Read!

As discussed in the kick-off meeting (July 2022), Duke Energy would like to make relicensing deliverables
available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment;
therefore, we request all comments be made in the SharePoint Word document using tracked changes. This
will eliminate version control issues and result in a consolidated document for comment response.

We strongly recommend opening the document in Word; otherwise the formatting will look distorted. The simplest way to do this is to click on the three dots to the right of the document (example shown below), choose "Open", then choose "Open in app". This will open the document in Word and you'll have the functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free to reach out to McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word – either technique works!])

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
525 South Tryon Street, DEP-35B | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

From: Olds, Melanie J

To: Crutchfield Jr., John U; Abney, Michael A; Amy Breedlove; RankinD; Elizabeth Miller; Erika Hollis; Settevendemio, Erin; Gerry Yantis;

jhains@g.clemson.edu; guattrol; Amedee, Morgan D.; Morgan Kern; SelfR; Stuart, Alan Witten; Wahl, Nick; William T. Wood

Cc: Kulpa, Sarah; Huff, Jen; McCarney-Castle, Kerry; Salazar, Maggie; Mularski, Eric

Subject: Re: [EXTERNAL] Bad Creek Relicensing - Impacts to Surface Waters and Associated Aquatic Fauna Draft Report (READY FOR

RESOURCE COMMITTEE REVIEW)

Date: Monday, December 11, 2023 10:22:01 AM

Attachments: image001.png image002.png

Outlook-I2fdzsup.png
Outlook-zxlevec4.png

You don't often get email from melanie_olds@fws.gov. Learn why this is important

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

John,

The USFWS has reviewed the draft Impacts to Surface Waters and Associated Aquatic Fauna Report and has no comments.

Melanie

Melanie Olds

Fish & Wildlife Biologist Regulatory Team Lead/FERC Coordinator

U.S. Fish and Wildlife Service South Carolina Ecological Services Field Office 176 Croghan Spur Road, Suite 200 Charleston, SC 29407 Phone: (843) 534-0403

NOTE: This email correspondence and any attachments to and from this sender is subject to the Freedom of Information Act (FOIA) and may be disclosed to third parties.

From: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Sent: Friday, November 17, 2023 1:50 PM

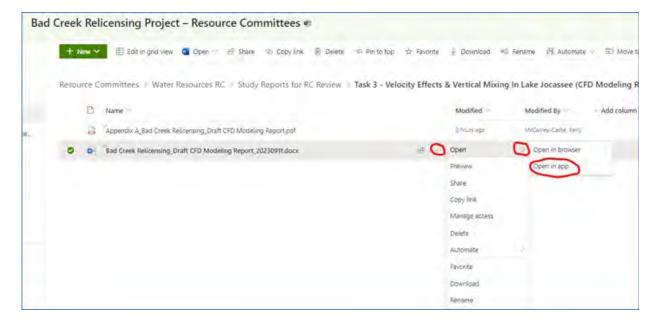
To: Abney, Michael A <michael.abney@duke-energy.com>; Amy Breedlove <BreedloveA@dnr.sc.gov>; Dan Rankin <RankinD@dnr.sc.gov>; Elizabeth Miller <MillerE@dnr.sc.gov>; Erika Hollis <ehollis@upstateforever.org>; Erin Settevendemio <Erin.Settevendemio@hdrinc.com>; Gerry Yantis <gcyantis2@yahoo.com>; John Haines <jhains@g.clemson.edu>; quattrol@dnr.sc.gov <quattrol@dnr.sc.gov>; Olds, Melanie J <melanie_olds@fws.gov>; Morgan Amedee <amedeemd@dhec.sc.gov>; Morgan Kern <kernm@dnr.sc.gov>; SelfR@dnr.sc.gov <SelfR@dnr.sc.gov>; Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Wahl, Nick <Nick.Wahl@duke-energy.com>; William Wood <woodw@dnr.sc.gov>

Cc: Sarah Kulpa <Sarah.Kulpa@hdrinc.com>; Huff, Jen <Jen.Huff@hdrinc.com>; Kerry McCarney-Castle <Kerry.McCarney-Castle@hdrinc.com>; Maggie Salazar <maggie.salazar@hdrinc.com>; Mularski, Eric -HDRInc <Eric.Mularski@HDRInc.com>

Subject: [EXTERNAL] Bad Creek Relicensing - Impacts to Surface Waters and Associated Aquatic Fauna Draft Report (READY FOR RESOURCE COMMITTEE REVIEW)

This email has been received from outside of DOI - Use caution before clicking on links, opening attachments, or responding.

Dear Bad Creek Relicensing Aquatic Resources Committee:


Duke Energy is pleased to distribute the Aquatic Resources Study Task 3 draft report Impacts to Surface Waters and Associated Aquatic Fauna for stakeholder review. The report (.doc) and associated attachments (.pdf) are available on the Bad Creek Relicensing SharePoint site at the following link: Task 3 - Impacts to Surface Waters and Associated Aquatic Fauna Draft Report.

Duke Energy is requesting a three-week review period, therefore, please submit all comments by **December 8th**. A confirmation email is kindly requested upon review completion (email me at <u>John.Crutchfield@duke-energy.com</u>).

Important - Please Read!

- As discussed in the kick-off meeting (July 2022), Duke Energy would like to make relicensing deliverables available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment; therefore, we request all comments be made in the SharePoint Word document using tracked changes. This will eliminate version control issues and result in a consolidated document for comment response.
- We strongly recommend opening the document in Word; otherwise the formatting will look distorted. The
 simplest way to do this is to click on the three dots to the right of the document (example shown below),
 choose "Open", then choose "Open in app". This will open the document in Word and you'll have the
 functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free
 to reach out to @McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word — either technique works!])

If you have any questions, please contact Alan Stuart or me.

Regards,

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
525 South Tryon Street, DEP-35B | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

From: Crutchfield Jr., John U

To: McCarney-Castle, Kerry

Subject: FW: [EXTERNAL] RE: Bad Creek Relicensing - Impacts to Surface Waters and Associated Aquatic Fauna Draft Report (READY FOR

RESOURCE COMMITTEE REVIEW)

Date: Wednesday, December 20, 2023 1:46:14 PM

Attachments: image001.pnq image002.png

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

From: Elizabeth Miller < Miller E@dnr.sc.gov> Sent: Tuesday, December 12, 2023 4:37 PM

To: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>; Stuart, Alan Witten < Alan.Stuart@duke-energy.com>; Abney, Michael A < Michael.Abney@duke-energy.com>

Cc: Lorianne Riggin < RigginL@dnr.sc.gov>; Tom Daniel < DanielT@dnr.sc.gov>; Dan Rankin < RankinD@dnr.sc.gov>; William T. Wood < WoodW@dnr.sc.gov>

Subject: [EXTERNAL] RE: Bad Creek Relicensing - Impacts to Surface Waters and Associated Aquatic Fauna Draft Report (READY FOR RESOURCE COMMITTEE REVIEW)

*** CAUTION! EXTERNAL SENDER *** STOP. ASSESS. VERIFY!! Were you expecting this email? Are grammar and spelling correct? Does the content make sense? Can you verify the sender? If suspicious report it, then do not click links, open attachments or enter your ID or password.

Hi John.

Staff with the SCDNR have reviewed the Impacts to Surface Waters and Associated Aquatic Fauna draft report and have concerns regarding the report. We would like to request a meeting to discuss the draft report before submitting comments. Can Duke Energy and HDR staff be available for a meeting from 3-4pm on Thursday or Friday of this week? If not, please propose some dates that could work next week.

Thank you,

Elizabeth

Elizabeth C. Miller SCDNR

Office: 843-953-3881 Cell: 843-729-4636

From: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com >

Sent: Friday, November 17, 2023 1:50 PM

To: Abney, Michael A < Michael.Abney@duke-energy.com>; Amy Chastain < BreedloveA@dnr.sc.gov>; Dan Rankin < RankinD@dnr.sc.gov>; Elizabeth Miller < MillerE@dnr.sc.gov>; Erika Hollis < ehollis@upstateforever.org>; Erin Settevendemio < Erin.Settevendemio@hdrinc.com>; Gerry Yantis < gcyantis2@yahoo.com>; John Haines < ihains@g.clemson.edu>; Lynn Quattro < QuattroL@dnr.sc.gov>; Olds, Melanie J < melanie_olds@fws.gov>; Morgan Amedee < amedeemd@dhec.sc.gov>; Morgan Kern < KernM@dnr.sc.gov>; Ross Self < SelfR@dnr.sc.gov>; Stuart, Alan Witten < Alan.Stuart@duke-energy.com>; Wahl, Nick < Nick.Wahl@duke-energy.com>; William T. Wood < WoodW@dnr.sc.gov>

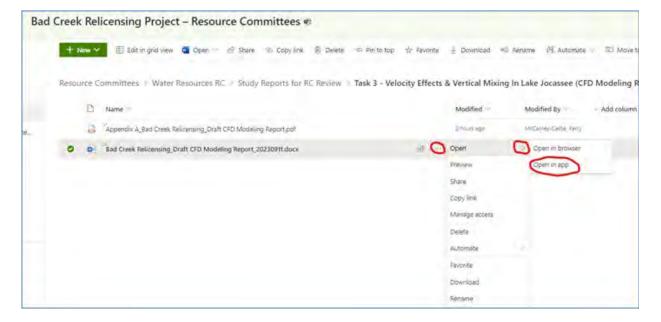
Cc: Sarah Kulpa <<u>Sarah.Kulpa@hdrinc.com</u>>; Huff, Jen <<u>Jen.Huff@hdrinc.com</u>>; Kerry McCarney-Castle <<u>Kerry.McCarney-Castle@hdrinc.com</u>>; Maggie Salazar <<u>maggie.salazar@hdrinc.com</u>>; Mularski, Eric -HDRInc <<u>Eric.Mularski@HDRInc.com</u>>

Subject: Bad Creek Relicensing - Impacts to Surface Waters and Associated Aquatic Fauna Draft Report (READY FOR

RESOURCE COMMITTEE REVIEW)

Importance: High

Dear Bad Creek Relicensing Aquatic Resources Committee:


Duke Energy is pleased to distribute the Aquatic Resources Study Task 3 draft report <u>Impacts to Surface Waters and Associated Aquatic Fauna</u> for stakeholder review. The report (.doc) and associated attachments (.pdf) are available on the Bad Creek Relicensing SharePoint site at the following link: Task 3 - Impacts to Surface Waters and Associated Aquatic Fauna Draft Report.

Duke Energy is requesting a three-week review period, therefore, please submit all comments by **December 8th**. A confirmation email is kindly requested upon review completion (email me at <u>John.Crutchfield@duke-energy.com</u>).

Important - Please Read!

- As discussed in the kick-off meeting (July 2022), Duke Energy would like to make relicensing deliverables available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment; therefore, we request all comments be made in the SharePoint Word document using tracked changes. This will eliminate version control issues and result in a consolidated document for comment response.
- We strongly recommend opening the document in Word; otherwise the formatting will look distorted. The
 simplest way to do this is to click on the three dots to the right of the document (example shown below),
 choose "Open", then choose "Open in app". This will open the document in Word and you'll have the
 functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free
 to reach out to @McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word — either technique works!])

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
525 South Tryon Street, DEP-35B | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

EXTERNAL EMAIL: Do not click any links or open any attachments unless you trust the sender and know the content is safe.

Discuss SCDNR Comments on Impacts to Surface Waters and Associated Aquatic Fauna Draft Report

Friday, December 29, 2023 11:01 AN

Meeting Date: 12/18/2023 3:00 PM Location: Microsoft Teams Meeting Link to Outlook Item: <u>click here</u>

Invitation Message

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Rescheduling meeting to Monday, December 18.

Discuss SCDNR comments on Impacts to Surface Waters and Associated Aquatic Fauna Draft Report.

Microsoft Teams meeting

;

Join on your computer, mobile app or room device

Click here to join the meeting Meeting ID: 269 880 505 057

Passcode: nRLFU4

Download Teams Join on the web

Join with a video conferencing device

duke-energy@m.webex.com

Video Conference ID: 118 357 025 9

Alternate VTC instructions
Or call in (audio only)

+1 704-659-4701,,262780584# United States, Charlotte

Phone Conference ID: 262 780 584#

Find a local number | Reset PIN | Learn More | Help | Meeting options

Participants

	<u>Crutchfield Jr., John U</u> (Meeting Organizer)
ρ.	Stuart, Alan Witten
<u> </u>	Elizabeth Miller
Ω	Lorianne Riggin
<u>ρ</u>	Tom Daniel
	Dan Rankin
0	William T. Wood
	Abney, Michael A
	Wahl, Nick
	Kulpa, Sarah (Accepted in Outlook)
	<u>Settevendemio, Erin</u>
2	Mularski, Eric
2	Huff, Jen
	Heise, Ryan Jeffrey

From: <u>Elizabeth Miller</u>

To: Crutchfield Jr., John U; Abney, Michael A; Amy Breedlove; Dan Rankin; Erika Hollis; Settevendemio, Erin; Gerry Yantis;

jhains@g.clemson.edu; quattrol; Olds, Melanie J; Amedee, Morgan D.; Morgan Kern; SelfR; Stuart, Alan Witten; Wahl, Nick; William T.

Wood; Lorianne Riggin; Tom Daniel

Cc: Kulpa, Sarah; Huff, Jen; McCarney-Castle, Kerry; Salazar, Maggie; Mularski, Eric

Subject: RE: Bad Creek Relicensing - Impacts to Surface Waters and Associated Aquatic Fauna Draft Report (READY FOR RESOURCE

COMMITTEE REVIEW)

Date: Thursday, December 21, 2023 1:33:42 PM

Attachments: image001.png image002.png

20231221 Impacts to Surface Waters and Associated Aquatic Fauna Draft Report SCDNR Comments.docx

Some people who received this message don't often get email from millere@dnr.sc.gov. Learn why this is important

CAUTION: [EXTERNAL] This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hi John,

Staff with the South Carolina Department of Natural Resources (SCDNR) have reviewed the Bad Creek Hydroelectric Project's Impacts to Surface Waters and Associated Aquatic Fauna Draft Report. We appreciated the opportunity to discuss our concerns and ask questions during the December 18th meeting. As discussed during the meeting, the SCDNR is providing a summary of our comments in the attached document by the extended deadline. Please let me know if you have any questions.

Thank you, Elizabeth

Elizabeth C. Miller SCDNR

Office: 843-953-3881 Cell: 843-729-4636

From: Crutchfield Jr., John U < John.Crutchfield@duke-energy.com>

Sent: Friday, November 17, 2023 1:50 PM

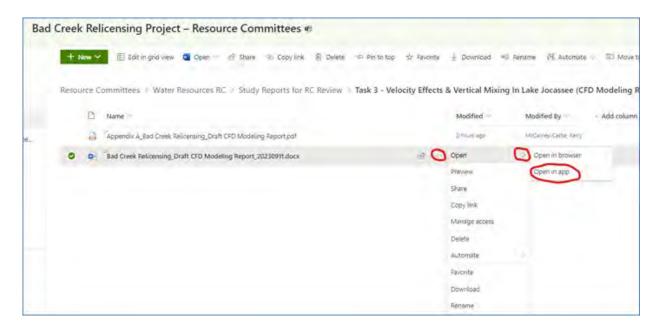
To: Abney, Michael A <Michael.Abney@duke-energy.com>; Amy Chastain <BreedloveA@dnr.sc.gov>; Dan Rankin <RankinD@dnr.sc.gov>; Elizabeth Miller <MillerE@dnr.sc.gov>; Erika Hollis <ehollis@upstateforever.org>; Erin Settevendemio <Erin.Settevendemio@hdrinc.com>; Gerry Yantis <gcyantis2@yahoo.com>; John Haines <jhains@g.clemson.edu>; Lynn Quattro <QuattroL@dnr.sc.gov>; Olds, Melanie J <melanie_olds@fws.gov>; Morgan Amedee <amedeemd@dhec.sc.gov>; Morgan Kern <KernM@dnr.sc.gov>; Ross Self <SelfR@dnr.sc.gov>; Stuart, Alan Witten <Alan.Stuart@duke-energy.com>; Wahl, Nick <Nick.Wahl@duke-energy.com>; William T. Wood <WoodW@dnr.sc.gov>

Cc: Sarah Kulpa <Sarah.Kulpa@hdrinc.com>; Huff, Jen <Jen.Huff@hdrinc.com>; Kerry McCarney-Castle <Kerry.McCarney-Castle@hdrinc.com>; Maggie Salazar <maggie.salazar@hdrinc.com>; Mularski, Eric -HDRInc <Eric.Mularski@HDRInc.com>

Subject: Bad Creek Relicensing - Impacts to Surface Waters and Associated Aquatic Fauna Draft Report (READY FOR RESOURCE COMMITTEE REVIEW)

Importance: High

Dear Bad Creek Relicensing Aquatic Resources Committee:


Duke Energy is pleased to distribute the Aquatic Resources Study Task 3 draft report *Impacts to Surface Waters and Associated Aquatic Fauna* for stakeholder review. The report (.doc) and associated attachments (.pdf) are available on the Bad Creek Relicensing SharePoint site at the following link: Task 3 - Impacts to Surface Waters and Associated Aquatic Fauna_Draft Report.

Duke Energy is requesting a three-week review period, therefore, please submit all comments by **December 8th**. A confirmation email is kindly requested upon review completion (email me at John.Crutchfield@duke-energy.com).

Important - Please Read!

- As discussed in the kick-off meeting (July 2022), Duke Energy would like to make relicensing deliverables available on a shared platform (i.e., SharePoint) so all stakeholders can access, review, and comment; therefore, we request all comments be made in the SharePoint Word document using tracked changes. This will eliminate version control issues and result in a consolidated document for comment response.
- We strongly recommend opening the document in Word; otherwise the formatting will look distorted. The simplest way to do this is to click on the three dots to the right of the document (example shown below), choose "Open", then choose "Open in app". This will open the document in Word and you'll have the functionality you are accustomed to. Your changes will be saved automatically as you review. Please feel free to reach out to McCarney-Castle, Kerry for SharePoint assistance.

(Note: If you are new to SharePoint, a very brief tutorial with screenshots is available on the home page of the Resource Committees tab called "Editing a Document in SharePoint". This is the same tutorial that was presented during the kick-off meeting. [The tutorial provides an alternative way to open the document in Word — either technique works!])

If you have any questions, please contact Alan Stuart or me.

Regards,

John Crutchfield

Project Manager II
Water Strategy, Hydro Licensing & Lake Services
Regulated & Renewable Energy
Duke Energy
525 South Tryon Street, DEP-35B | Charlotte, NC 28202
Office 980-373-2288 | Cell 919-757-1095

EXTERNAL EMAIL: Do not click any links or open any attachments unless you trust the sender and know the content is safe.

Impacts to Surface Waters and Associated Aquatic Fauna Draft Report Bad Creek Pumped Storage Project – FERC Project No. 2740 November 17, 2023

SCDNR Comments – December 21, 2023

Table 6-3

1. Is the Stream 16 that is listed as a reference reach the same Stream 16 that is proposed to be impacted by the proposed road? If it is the same stream, the SCDNR recommends that streams that are being proposed for impact would not make appropriate reference reaches.

Table 6-7

- 1. The maximum score should be a 0.6 as the streams were not measured for suspended solids which would be required for any EPT Taxa Present to be used. Due to the drainage area requirements for the use of EPT Taxa in the SC SQT (reference curve stratification), the use of EPT index would have to be used and not included in the tool.
- 2. The upstream extent of Stream 15 is classified as a G but the downstream end an A1a+. Do these sections have a clearly defined bed and bank a channel?

Attachment 2 – Potential Access Road Stream Crossings

- 1. All streams should be labeled on the maps and figures should be labeled.
- 2. To avoid confusion and aid in agency review, the SCDNR recommends each stream has its own unique name. For example, Stream 15 is listed in Attachment 1 and 2 as two different streams.

Attachment C - U.S. Environmental Protection Agency Rapid Bioassessment Protocol Data Forms

- 1. On page 47 of the pdf, the assessment for Stream 17/Devils Fork totals 140. However, on page 53 of the assessment, the score for Stream 17 scores 143 and on page 55 of the assessment, Devils Fork scores 155. Please clarify if these scores are redundant scores for a single stream or if they are scores for three different stream reaches.
- 2. Vegetative Protection scores in forested areas typically receive the highest scores to reflect "vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally." Consider upward revisions to streams with lower scores in this metric (e.g., S12, S16, S17/Devils Fork, and S4)
- 3. Riparian Vegetative Zone Width (i.e., riparian buffer width) scores for streams in forested areas should typically receive the highest rating. Consider upward revisions to streams with lower scores in this metric. (e.g., S7/Howard Creek, S12, S15, S16, and S17/Devils Fork)

Attachment F – SQT Rapid Assessment Method Forms

1. The values for Bankfull Mean Depth used in the SQT tool are not disclosed in the materials, nor can the calculations based on Bankfull Mean Depth be replicated using the information provided in the stable riffle cross sections. Please provide the values for

- Bankfull Mean Depth for all stream reaches and/or show how the values for Bankfull Mean Depth were calculated.
- 2. The Pool Depth Ratio parameter can be very sensitive to changes in the calculations for Bankfull Mean Depth. SCDNR staff were unable to verify Bankfull Mean Depth calculations using the information provided and were therefore unable to verify the values of Pool Depth Ratio for most stream reaches.
- 3. The values for Bankfull Max Depth do not always match the values provided in the stable riffle cross section (e.g., LP Creek Up, LP Creek Down, HC Down, UT12 Up, UT15 Down, UT16 Up, UT17 Up), which can influence calculations of BHR and ER. To enable review and QA/QC of the SQT results, please indicate which of the riffle cross sections is the stable riffle cross section.
- 4. To avoid introducing rounding error into calculated parameters, please use full resolution (i.e., unrounded) measurements in all calculations.
- 5. The Flood Prone Width for Limber Pole Creek (Downstream) should be verified and/or revised as appropriate.
- 6. Many of the riffle stations are very short, sometimes shorter than 5 feet (e.g., 15 U&D (multiple), 16 Up (multiple), 16 Down (R2), 17 Up (R1)). Please note that the term riffle refers to the cascade sections of steep mountain streams. Riffles are measured from head of riffle to head of pool (runs are considered riffles) and so the percent riffle metric would be the complement of percent pool. (i.e., % Riffle = 1 % Pool). The station lengths (and % riffle parameter) should be verified and revised as appropriate for all reaches, particularly those mentioned above.
- 7. Stream 15 Downstream notes that there wasn't a great bankfull indicator due to a wide bedrock area. Is that representative of the entire 100 feet of Stream 15 downstream? Is there a defined channel at all? If not, SQT may not be an appropriate method for assessing the function of this aquatic feature.
- 8. Stream 16 notes that 20 times the bankfull width (10.5) is 20.5 it should be 210.
- 9. Please check if the appropriate Rosgen stream type was chosen for Stream 15 Upstream and Stream 16 Downstream.
- 10. In the cross section measurement depth data, the first and last bankfull depth measurements should always be the edge of the channel (i.e., bankfull depth = 0). Please verify the accuracy of this information as errors in bankfull depth measurements can potentially influence many of the geomorphic ratios.
- 11. Please reference Chapter 3 of the SQT Data Collection manual to assess if reach breaks were needed on any streams analyzed (e.g., the stream that went subsurface).
- 12. For Stream 16, please provide coordinates and a photo of the concentrated flow point.

Attachment J – SQT Catchment Assessment & Matrix Summary

1. As stated in the 6/21/2023 meeting summary for the discussion on the SC SQT, for riparian buffer width in the SQT, it was recommended that the Dominant Buffer Land Use for Single Family Residential should be used. All of the SQT datasheets do not include the Dominant Buffer Land Use and therefore the Buffer Width values entered are yielding a FALSE index value. This is one of the many stratifications in the SQT that guides the tool which reference curve it should be referencing. This needs to be updated on all the streams measured with SQT.

- 2. Buffer valley slope values for colluvial valleys are often reported as being less than 10%, with some reported as less than 5%. Please note that the buffer slopes should account for the slope of the adjacent valley. Colluvial, V-shaped valleys are often associated with steep buffer slopes. Please note any considerable changes in buffer valley slope within a given stream reach.
- 3. Most of the stream reaches surveyed with SQT seem to utilize 100 linear feet as the reach to be surveyed. The SQT does allow for less than 20 times the bankfull width to be surveyed so long as it captures at least two meander wavelengths. Some of the streams surveyed would not have meander wavelengths due to them being Rosgen Type B streams step-pool streams. Of all the streams surveyed does the 100 feet capture at least two meander wavelengths or at least four step-pool features?
- 4. Why were reaches of streams broken into 100 feet segments e.g., Limberpole Upstream and Downstream instead of 200 feet of Limberpole being assessed in the SQT?
- 5. Consistently throughout, the SQT worksheets include the use of the EPT index entered as the field value instead of EPT taxa present. As discussed in the 6/15/23 comments from SCDNR in response to the 5/24/2023 SQT Meeting Notes, the SCDNR noted that "The Macroinvertebrate reference curves within the SQT are only applicable to perennial streams with a drainage area of 3 square miles or larger. . . We recommend that other metrics are used for macroinvertebrates, like a simple baseline of EPT be established between June 15 and September 15 and monitored post-disturbance within that same time period. DHEC should be consulted and provide input on this recommendation." As previously mentioned, please update all SQT workbooks to remove EPT.
- 6. SQT Limberpole Creek Upstream LWD piece count entered as 39.4 but it is 49.2.
- 7. On all the SQT workbooks, under restoration potential, choose partial in the Site Information and Reference Curve Stratification section.
- 8. On all the SQT workbooks, please make sure the appropriate valley slope is chosen to properly have buffer width field values to reference the appropriate reference curve in the Site Information and Reference Curve Stratification section. Many appear to be lower than expected for Rosgen A or B Type streams.

Additional Note

9. In the meeting held 12/18/23, it was mentioned that the upstream reach for many of these segments was going to be used as a reference for downstream. Keep in mind that it is important to define what the upstream segment may be reference for; for example, if it is for water quality parameters or biology, that makes complete sense. For geomorphology, a reference reach can be within the same ecoregion and the same Rosgen stream type; it doesn't necessarily have to be in the same stream, but it can be.